1
|
Khanh NV, Lee YH. LOV1 protein of Pseudomonas cichorii JBC1 modulates its virulence and lifestyles in response to blue light. Sci Rep 2024; 14:15672. [PMID: 38977737 PMCID: PMC11231323 DOI: 10.1038/s41598-024-66422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Bacteria perceive light signals via photoreceptors and modulate many physiological and genetic processes. The impacts played by light, oxygen, or voltage (LOV) and blue light (BL) photosensory proteins on the virulence-related traits of plant bacterial pathogens are diverse and complex. In this study, we identified LOV protein (Pc-LOV1) from Pseudomonas cichorii JBC1 (PcJBC1) and characterized its function using LOV1-deficient mutant (JBC1Δlov1). In the dark state, the recombinant Pc-LOV1 protein showed an absorption band in UV-A region with a double peak at 340 nm and 365 nm, and within the blue-region, it exhibited a main absorption at 448 nm along with two shoulder peaks at 425 nm and 475 nm, which is a typical feature of oxidized flavin within LOV domain. The adduct-state lifetime (τrec) of Pc-LOV1 was 67.03 ± 4.34 min at 25 °C. BL negatively influenced the virulence of PcJBC1 and the virulence of JBC1Δlov1 increased irrespective of BL, indicating that Pc-LOV1 negatively regulates PcJBC1 virulence. Pc-LOV1 and BL positively regulated traits relevant to colonization on plant surface, such as adhesion to the plant tissue and biofilm formation. In contrast, swarming motility, exopolysaccharide production, and siderophore synthesis were negatively controlled. Gene expression supported the modulation of bacterial features by Pc-LOV1. Overall, our results suggest that the LOV photosensory system plays crucial roles in the adaptive responses and virulence of the bacterial pathogen PcJBC1. The roles of other photoreceptors, sensing of other wavelengths, and signal networking require further investigation.
Collapse
Affiliation(s)
- Nguyen Van Khanh
- Division of Biotechnology, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea
| | - Yong Hoon Lee
- Division of Biotechnology, Jeonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do, 54596, Republic of Korea.
- Advanced Institute of Environment and Bioscience, Plant Medical Research Center, and Institute of Bio-industry, Jeonbuk National University, Jeonju-si, Republic of Korea.
| |
Collapse
|
2
|
Hatfield BM, LaSarre B, Liu M, Dong H, Nettleton D, Beattie GA. Light cues induce protective anticipation of environmental water loss in terrestrial bacteria. Proc Natl Acad Sci U S A 2023; 120:e2309632120. [PMID: 37695906 PMCID: PMC10515139 DOI: 10.1073/pnas.2309632120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023] Open
Abstract
The ecological significance of light perception in nonphotosynthetic bacteria remains largely elusive. In terrestrial environments, diurnal oscillations in light are often temporally coupled to other environmental changes, including increased temperature and evaporation. Here, we report that light functions as an anticipatory cue that triggers protective adaptations to tolerate a future rapid loss of environmental water. We demonstrate this photo-anticipatory stress tolerance in leaf-associated Pseudomonas syringae pv. syringae (Pss) and other plant- and soil-associated pseudomonads. We found that light influences the expression of 30% of the Pss genome, indicating that light is a global regulatory signal, and this signaling occurs almost entirely via a bacteriophytochrome photoreceptor that senses red, far-red, and blue wavelengths. Bacteriophytochrome-mediated light control disproportionally up-regulates water-stress adaptation functions and confers enhanced fitness when cells encounter light prior to water limitation. Given the rapid speed at which water can evaporate from leaf surfaces, such anticipatory activation of a protective response enhances fitness beyond that of a reactive stress response alone, with recurring diurnal wet-dry cycles likely further amplifying the fitness advantage over time. These findings demonstrate that nonphotosynthetic bacteria can use light as a cue to mount an adaptive anticipatory response against a physiologically unrelated but ecologically coupled stress.
Collapse
Affiliation(s)
- Bridget M. Hatfield
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Breah LaSarre
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Meiling Liu
- Department of Statistics, Iowa State University, Ames, IA50011
| | - Haili Dong
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Dan Nettleton
- Department of Statistics, Iowa State University, Ames, IA50011
| | - Gwyn A. Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| |
Collapse
|
3
|
Carrau A, Tano J, Moyano L, Ripa MB, Petrocelli S, Piskulic L, Moreira LM, Patané JSL, Setubal JC, Orellano EG. A novel BLUF photoreceptor modulates the Xanthomonas citri subsp. citri-host plant interaction. Photochem Photobiol Sci 2023; 22:1901-1918. [PMID: 37209300 DOI: 10.1007/s43630-023-00420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/05/2023] [Indexed: 05/22/2023]
Abstract
Plant-pathogen interaction is influenced by multiple environmental factors, including temperature and light. Recent works have shown that light modulates not only the defense response of plants but also the pathogens virulence. Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker, an important plant disease worldwide. The Xcc genome presents four genes encoding putative photoreceptors: one bacteriophytochrome and three blue light photoreceptors, one LOV and two BLUFs (bluf1: XAC2120 and bluf2: XAC3278). The presence of two BLUFs proteins is an outstanding feature of Xcc. In this work we show that the bluf2 gene is functional. The mutant strain, XccΔbluf2, was constructed demonstrating that BLUF2 regulates swimming-type motility, adhesion to leaves, exopolysaccharide production and biofilm formation, features involved in the Xcc virulence processes. An important aspect during the plant-pathogen interaction is the oxidative response of the host and the consequent reaction of the pathogen. We observed that ROS detoxification is regulated by Xcc bluf2 gene. The phenotypes of disease in orange plants produced by WT and XccΔbluf2 strains were evaluated, observing different phenotypes. Altogether, these results show that BLUF2 negatively regulates virulence during citrus canker. This work constitutes the first report on BLUF-like receptors in plant pathogenic bacteria.
Collapse
Affiliation(s)
- Analía Carrau
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Josefina Tano
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Laura Moyano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina
| | - María Belén Ripa
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Silvana Petrocelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Laura Piskulic
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Leandro Marcio Moreira
- Programa de Pós-Graduação em Biotecnologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | | | | | - Elena Graciela Orellano
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
4
|
Gaurav I, Thakur A, Kumar G, Long Q, Zhang K, Sidu RK, Thakur S, Sarkar RK, Kumar A, Iyaswamy A, Yang Z. Delivery of Apoplastic Extracellular Vesicles Encapsulating Green-Synthesized Silver Nanoparticles to Treat Citrus Canker. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1306. [PMID: 37110891 PMCID: PMC10146377 DOI: 10.3390/nano13081306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
The citrus canker pathogen Xanthomonas axonopodis has caused severe damage to citrus crops worldwide, resulting in significant economic losses for the citrus industry. To address this, a green synthesis method was used to develop silver nanoparticles with the leaf extract of Phyllanthus niruri (GS-AgNP-LEPN). This method replaces the need for toxic reagents, as the LEPN acts as a reducing and capping agent. To further enhance their effectiveness, the GS-AgNP-LEPN were encapsulated in extracellular vesicles (EVs), nanovesicles with a diameter of approximately 30-1000 nm naturally released from different sources, including plant and mammalian cells, and found in the apoplastic fluid (APF) of leaves. When compared to a regular antibiotic (ampicillin), the delivery of APF-EV-GS-AgNP-LEPN and GS-AgNP-LEPN to X. axonopodis pv. was shown to have more significant antimicrobial activity. Our analysis showed the presence of phyllanthin and nirurinetin in the LEPN and found evidence that both could be responsible for antimicrobial activity against X. axonopodis pv. Ferredoxin-NADP+ reductase (FAD-FNR) and the effector protein XopAI play a crucial role in the survival and virulence of X. axonopodis pv. Our molecular docking studies showed that nirurinetin could bind to FAD-FNR and XopAI with high binding energies (-10.32 kcal/mol and -6.13 kcal/mol, respectively) as compared to phyllanthin (-6.42 kcal/mol and -2.93 kcal/mol, respectively), which was also supported by the western blot experiment. We conclude that (a) the hybrid of APF-EV and GS-NP could be an effective treatment for citrus canker, and (b) it works via the nirurinetin-dependent inhibition of FAD-FNR and XopAI in X. axonopodis pv.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Abhimanyu Thakur
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Gaurav Kumar
- Clinical Research Division, Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, Uttar Pradesh, India
| | - Qin Long
- Citrus Research Institute, Southwest University, Chinese Academy of Agricultural Sciences, National Citrus Engineering Research Center, Chongqing 400712, China
| | - Kui Zhang
- Ben May Department for Cancer Research, Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rakesh Kumar Sidu
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India
| | - Rajesh Kumar Sarkar
- Department of Medicine, Division of Biological Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 110017, India
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
5
|
Affiliation(s)
- Cecile Berne
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
6
|
Karlsson ME, Hellström M, Flöhr A, Bergstrand KJ, Alsanius BW. The power of light: Impact on the performance of biocontrol agents under minimal nutrient conditions. Front Microbiol 2023; 14:1087639. [PMID: 36819051 PMCID: PMC9932321 DOI: 10.3389/fmicb.2023.1087639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background The spectral distribution of light (different wavelength) has recently been identified as an important factor in the dynamics and function of leaf-associated microbes. This study investigated the impact of different wavelength on three commercial biocontrol agents (BCA): Bacillus amyloliquefaciens (BA), Pseudomonas chlororaphis (PC), and Streptomyces griseoviridis (SG). Methods The impact of light exposure on sole carbon source utilization, biofilm formation, and biosurfactant production by the selected BCA was studied using phenotypic microarray (PM) including 190 sole carbon sources (OmniLog®, PM panels 1 and 2). The BCA were exposed to five monochromatic light conditions (420, 460, 530, 630, and 660 nm) and darkness during incubation, at an intensity of 50 μmol m-2 s-1. Results Light exposure together with specific carbon source increased respiration in all three BCA. Different wavelengths of light influenced sole carbon utilization for the different BCA, with BA and PC showing increased respiration when exposed to wavelengths within the blue spectrum (420 and 460 nm) while respiration of selected carbon sources by SG increased in the presence of red light (630 and 660 nm). Only one carbon source (capric acid) generated biosurfactant production in all three BCA. A combination of specific wavelength of light and sole carbon source increased biofilm formation in all three BCA. BA showed significantly higher biofilm formation when exposed to blue (460 nm) and green (530 nm) light and propagated in D-sucrose, D-fructose, and dulcitol. PC showed higher biofilm formation when exposed to blue light. Biofilm formation by SG increased when exposed to red light (630 nm) and propagated in citraconic acid. Conclusion To increase attachment and success in BCA introduced into the phyllosphere, a suitable combination of light quality and nutrient conditions could be used.
Collapse
|
7
|
Correia C, Magnani F, Pastore C, Cellini A, Donati I, Pennisi G, Paucek I, Orsini F, Vandelle E, Santos C, Spinelli F. Red and Blue Light Differently Influence Actinidia chinensis Performance and Its Interaction with Pseudomonas syringae pv. Actinidiae. Int J Mol Sci 2022; 23:13145. [PMID: 36361938 PMCID: PMC9658526 DOI: 10.3390/ijms232113145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 03/08/2024] Open
Abstract
Light composition modulates plant growth and defenses, thus influencing plant-pathogen interactions. We investigated the effects of different light-emitting diode (LED) red (R) (665 nm) and blue (B) (470 nm) light combinations on Actinidia chinensis performance by evaluating biometric parameters, chlorophyll a fluorescence, gas exchange and photosynthesis-related gene expression. Moreover, the influence of light on the infection by Pseudomonas syringae pv. actinidiae (Psa), the etiological agent of bacterial canker of kiwifruit, was investigated. Our study shows that 50%R-50%B (50R) and 25%R-75%B (25R) lead to the highest PSII efficiency and photosynthetic rate, but are the least effective in controlling the endophytic colonization of the host by Psa. Monochromatic red light severely reduced ΦPSII, ETR, Pn, TSS and photosynthesis-related genes expression, and both monochromatic lights lead to a reduction of DW and pigments content. Monochromatic blue light was the only treatment significantly reducing disease symptoms but did not reduce bacterial endophytic population. Our results suggest that monochromatic blue light reduces infection primarily by modulating Psa virulence more than host plant defenses.
Collapse
Affiliation(s)
- Cristiana Correia
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
- IB2Lab, LAQV-Requimte, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Federico Magnani
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Chiara Pastore
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Antonio Cellini
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Irene Donati
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Giuseppina Pennisi
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Ivan Paucek
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Francesco Orsini
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Conceição Santos
- IB2Lab, LAQV-Requimte, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Francesco Spinelli
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| |
Collapse
|
8
|
Gallé Á, Czékus Z, Tóth L, Galgóczy L, Poór P. Pest and disease management by red light. PLANT, CELL & ENVIRONMENT 2021; 44:3197-3210. [PMID: 34191305 DOI: 10.1111/pce.14142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 05/22/2023]
Abstract
Light is essential for plant life. It provides a source of energy through photosynthesis and regulates plant growth and development and other cellular processes, such as by controlling the endogenous circadian clock. Light intensity, quality, duration and timing are all important determinants of plant responses, especially to biotic stress. Red light can positively influence plant defence mechanisms against different pathogens, but the molecular mechanism behind this phenomenon is not fully understood. Therefore, we reviewed the impact of red light on plant biotic stress responses against viruses, bacteria, fungi and nematodes, with a focus on the physiological effects of red light treatment and hormonal crosstalk under biotic stress in plants. We found evidence suggesting that exposing plants to red light increases levels of salicylic acid (SA) and induces SA signalling mediating the production of reactive oxygen species, with substantial differences between species and plant organs. Such changes in SA levels could be vital for plants to survive infections. Therefore, the application of red light provides a multidimensional aspect to developing innovative and environmentally friendly approaches to plant and crop disease management.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Liliána Tóth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - László Galgóczy
- Department of Biotechnology, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| |
Collapse
|
9
|
Tano J, Ripa MB, Tondo ML, Carrau A, Petrocelli S, Rodriguez MV, Ferreira V, Siri MI, Piskulic L, Orellano EG. Light modulates important physiological features of Ralstonia pseudosolanacearum during the colonization of tomato plants. Sci Rep 2021; 11:14531. [PMID: 34267245 PMCID: PMC8282871 DOI: 10.1038/s41598-021-93871-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Ralstonia pseudosolanacearum GMI1000 (Rpso GMI1000) is a soil-borne vascular phytopathogen that infects host plants through the root system causing wilting disease in a wide range of agro-economic interest crops, producing economical losses. Several features contribute to the full bacterial virulence. In this work we study the participation of light, an important environmental factor, in the regulation of the physiological attributes and infectivity of Rpso GMI1000. In silico analysis of the Rpso genome revealed the presence of a Rsp0254 gene, which encodes a putative blue light LOV-type photoreceptor. We constructed a mutant strain of Rpso lacking the LOV protein and found that the loss of this protein and light, influenced characteristics involved in the pathogenicity process such as motility, adhesion and the biofilms development, which allows the successful host plant colonization, rendering bacterial wilt. This protein could be involved in the adaptive responses to environmental changes. We demonstrated that light sensing and the LOV protein, would be used as a location signal in the host plant, to regulate the expression of several virulence factors, in a time and tissue dependent way. Consequently, bacteria could use an external signal and Rpsolov gene to know their location within plant tissue during the colonization process.
Collapse
Affiliation(s)
- Josefina Tano
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas (IBR-FBIOyF), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario (CONICET-UNR), Suipacha 531, S2002LRK, Rosario, Argentina
| | - María Belén Ripa
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas (IBR-FBIOyF), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario (CONICET-UNR), Suipacha 531, S2002LRK, Rosario, Argentina
| | - María Laura Tondo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Analía Carrau
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas (IBR-FBIOyF), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario (CONICET-UNR), Suipacha 531, S2002LRK, Rosario, Argentina
| | - Silvana Petrocelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Victoria Rodriguez
- Área Biología Vegetal, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Virginia Ferreira
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - María Inés Siri
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Laura Piskulic
- Área Estadística y Procesamiento de datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Elena Graciela Orellano
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas (IBR-FBIOyF), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Rosario (CONICET-UNR), Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
10
|
Abstract
Bacteria employ two-component systems (TCSs) to sense and respond to changes in their surroundings. At the core of the TCS signaling pathway is the multidomain sensor histidine kinase, where the enzymatic activity of its output domain is allosterically controlled by the input signal perceived by the sensor domain. The ability to sense and respond to environmental cues is essential for adaptation and survival in living organisms. In bacteria, this process is accomplished by multidomain sensor histidine kinases that undergo autophosphorylation in response to specific stimuli, thereby triggering downstream signaling cascades. However, the molecular mechanism of allosteric activation is not fully understood in these important sensor proteins. Here, we report the full-length crystal structure of a blue light photoreceptor LOV histidine kinase (LOV-HK) involved in light-dependent virulence modulation in the pathogenic bacterium Brucella abortus. Joint analyses of dark and light structures determined in different signaling states have shown that LOV-HK transitions from a symmetric dark structure to a highly asymmetric light state. The initial local and subtle structural signal originated in the chromophore-binding LOV domain alters the dimer asymmetry via a coiled-coil rotary switch and helical bending in the helical spine. These amplified structural changes result in enhanced conformational flexibility and large-scale rearrangements that facilitate the phosphoryl transfer reaction in the HK domain.
Collapse
|
11
|
Losi A, Gärtner W. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci 2021; 20:451-473. [PMID: 33721277 DOI: 10.1007/s43630-021-00029-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Bacteria and fungi of the plant microbiota can be phytopathogens, parasites or symbionts that establish mutually advantageous relationships with plants. They are often rich in photoreceptors for UVA-Visible light, and in many cases, they exhibit light regulation of growth patterns, infectivity or virulence, reproductive traits, and production of pigments and of metabolites. In addition to the light-driven effects, often demonstrated via the generation of photoreceptor gene knock-outs, microbial photoreceptors can exert effects also in the dark. Interestingly, some fungi switch their attitude towards plants in dependence of illumination or dark conditions in as much as they may be symbiotic or pathogenic. This review summarizes the current knowledge about the roles of light and photoreceptors in plant-associated bacteria and fungi aiming at the identification of common traits and general working ideas. Still, reports on light-driven infection of plants are often restricted to the description of macroscopically observable phenomena, whereas detailed information on the molecular level, e.g., protein-protein interaction during signal transduction or induction mechanisms of infectivity/virulence initiation remains sparse. As it becomes apparent from still only few molecular studies, photoreceptors, often from the red- and the blue light sensitive groups interact and mutually modulate their individual effects. The topic is of great relevance, even in economic terms, referring to plant-pathogen or plant-symbionts interactions, considering the increasing usage of artificial illumination in greenhouses, the possible light-regulation of the synthesis of plant-growth stimulating substances or herbicides by certain symbionts, and the biocontrol of pests by selected fungi and bacteria in a sustainable agriculture.
Collapse
Affiliation(s)
- Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124, Parma, Italy.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103, Leipzig, Germany
| |
Collapse
|
12
|
Santamaría‐Hernando S, Cerna‐Vargas JP, Martínez‐García PM, de Francisco‐de Polanco S, Nebreda S, Rodríguez‐Palenzuela P, Rodríguez‐Herva JJ, López‐Solanilla E. Blue-light perception by epiphytic Pseudomonas syringae drives chemoreceptor expression, enabling efficient plant infection. MOLECULAR PLANT PATHOLOGY 2020; 21:1606-1619. [PMID: 33029921 PMCID: PMC7694672 DOI: 10.1111/mpp.13001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 06/01/2023]
Abstract
Adaptation and efficient colonization of the phyllosphere are essential processes for the switch to an epiphytic stage in foliar bacterial pathogens. Here, we explore the interplay among light perception and global transcriptomic alterations in epiphytic populations of the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 (PsPto) following contact with tomato leaves. We found that blue-light perception by PsPto on leaf surfaces is required for optimal colonization. Blue light triggers the activation of metabolic activity and increases the transcript levels of five chemoreceptors through the function of light oxygen voltage and BphP1 photoreceptors. The inactivation of PSPTO_1008 and PSPTO_2526 chemoreceptors causes a reduction in virulence. Our results indicate that during PsPto interaction with tomato plants, light perception, chemotaxis, and virulence are highly interwoven processes.
Collapse
Affiliation(s)
- Saray Santamaría‐Hernando
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Jean Paul Cerna‐Vargas
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Pedro Manuel Martínez‐García
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERAvenida Americo VespucioSevilleSpain
| | - Sofía de Francisco‐de Polanco
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Centro de Investigaciones Biológicas Margarita SalasConsejo Superior de Investigaciones Científicas, Avenida Ramiro de MaeztuMadridSpain
| | - Sandra Nebreda
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
| | - Pablo Rodríguez‐Palenzuela
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - José Juan Rodríguez‐Herva
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| | - Emilia López‐Solanilla
- Centro de Biotecnología y Genómica de Plantas CBGPUniversidad Politécnica de Madrid‐Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM Pozuelo de AlarcónMadridSpain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería AgronómicaAlimentaria y de BiosistemasUniversidad Politécnica de MadridMadridSpain
| |
Collapse
|
13
|
An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang JL. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1-32. [PMID: 31578554 PMCID: PMC8042644 DOI: 10.1093/femsre/fuz024] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas is a well-studied genus of bacterial plant pathogens whose members cause a variety of diseases in economically important crops worldwide. Genomic and functional studies of these phytopathogens have provided significant understanding of microbial-host interactions, bacterial virulence and host adaptation mechanisms including microbial ecology and epidemiology. In addition, several strains of Xanthomonas are important as producers of the extracellular polysaccharide, xanthan, used in the food and pharmaceutical industries. This polymer has also been implicated in several phases of the bacterial disease cycle. In this review, we summarise the current knowledge on the infection strategies and regulatory networks controlling virulence and adaptation mechanisms from Xanthomonas species and discuss the novel opportunities that this body of work has provided for disease control and plant health.
Collapse
Affiliation(s)
- Shi-Qi An
- National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn AL36849, USA
| | - Max Dow
- School of Microbiology, Food Science & Technology Building, University College Cork, Cork T12 K8AF, Ireland
| | | | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX75080, USA
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
14
|
de Laia ML, Moreira LM, Gonçalves JF, Ferro MIT, Rodrigues ACP, dos Santos JN, Felestrino ÉB, Ferro JA. Gene expression analysis identifies hypothetical genes that may be critical during the infection process of Xanthomonas citri subsp. citri. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
15
|
Light and Microbial Lifestyle: The Impact of Light Quality on Plant–Microbe Interactions in Horticultural Production Systems—A Review. HORTICULTURAE 2019. [DOI: 10.3390/horticulturae5020041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Horticultural greenhouse production in circumpolar regions (>60° N latitude), but also at lower latitudes, is dependent on artificial assimilation lighting to improve plant performance and the profitability of ornamental crops, and to secure production of greenhouse vegetables and berries all year round. In order to reduce energy consumption and energy costs, alternative technologies for lighting have been introduced, including light-emitting diodes (LED). This technology is also well-established within urban farming, especially plant factories. Different light technologies influence biotic and abiotic conditions in the plant environment. This review focuses on the impact of light quality on plant–microbe interactions, especially non-phototrophic organisms. Bacterial and fungal pathogens, biocontrol agents, and the phyllobiome are considered. Relevant molecular mechanisms regulating light-quality-related processes in bacteria are described and knowledge gaps are discussed with reference to ecological theories.
Collapse
|
16
|
The contribution of the White Collar complex to Cryptococcus neoformans virulence is independent of its light-sensing capabilities. Fungal Genet Biol 2018; 121:56-64. [PMID: 30266690 DOI: 10.1016/j.fgb.2018.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/22/2018] [Accepted: 09/22/2018] [Indexed: 01/09/2023]
Abstract
The White Collar complex is responsible for sensing light and transmitting that signal in many fungal species. In Cryptococcus neoformans and C. deneoformans the complex is involved in protection against damage from ultraviolet (UV) light, repression of mating in response to light, and is also required for virulence. The mechanism by which the Bwc1 photoreceptor contributes to virulence is unknown. In this study, a bwc1 deletion mutant of C. neoformans was transformed with three versions of the BWC1 gene, the wild type, BWC1C605A or BWC1C605S, in which the latter two have the conserved cysteine residue replaced with either alanine or serine within the light-oxygen-voltage (LOV) domain that interacts with the flavin chromophore. The bwc1+ BWC1 strain complemented the UV sensitivity and the repression of mating in the light. The bwc1+ BWC1C605A and bwc1+ BWC1C605S strains were not fully complemented for either of the phenotypes, indicating that these BWC1 alleles impair the light responses for strains with them. Transcript analysis showed that neither of the mutated strains (bwc1+ BWC1C605A and bwc1+ BWC1C605S) showed the light-inducible expression pattern of the HEM15 and UVE1 genes as occurs in the wild type strain. These results indicate that the conserved flavin-binding site in the LOV domain of Bwc1 is required for sensing and responding to light in C. neoformans. In contrast to defects in light responses, the wild type, bwc1+ BWC1, bwc1+ BWC1C605A and bwc1+ BWC1C605S strains were equally virulent, whereas the bwc1 knock out mutant was less virulent. Furthermore, pre-exposure of the strains to light prior to inoculation had no influence on the outcome of infection. These findings define a division in function of the White Collar complex in fungi, in that in C. neoformans the role of Bwc1 in virulence is independent of light sensing.
Collapse
|
17
|
Beattie GA, Hatfield BM, Dong H, McGrane RS. Seeing the Light: The Roles of Red- and Blue-Light Sensing in Plant Microbes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:41-66. [PMID: 29768135 DOI: 10.1146/annurev-phyto-080417-045931] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plants collect, concentrate, and conduct light throughout their tissues, thus enhancing light availability to their resident microbes. This review explores the role of photosensing in the biology of plant-associated bacteria and fungi, including the molecular mechanisms of red-light sensing by phytochromes and blue-light sensing by LOV (light-oxygen-voltage) domain proteins in these microbes. Bacteriophytochromes function as major drivers of the bacterial transcriptome and mediate light-regulated suppression of virulence, motility, and conjugation in some phytopathogens and light-regulated induction of the photosynthetic apparatus in a stem-nodulating symbiont. Bacterial LOV proteins also influence light-mediated changes in both symbiotic and pathogenic phenotypes. Although red-light sensing by fungal phytopathogens is poorly understood, fungal LOV proteins contribute to blue-light regulation of traits, including asexual development and virulence. Collectively, these studies highlight that plant microbes have evolved to exploit light cues and that light sensing is often coupled with sensing other environmental signals.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Bridget M Hatfield
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Haili Dong
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa 50011, USA;
| | - Regina S McGrane
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, Oklahoma 73096, USA
| |
Collapse
|
18
|
Santamaría-Hernando S, Rodríguez-Herva JJ, Martínez-García PM, Río-Álvarez I, González-Melendi P, Zamorano J, Tapia C, Rodríguez-Palenzuela P, López-Solanilla E. Pseudomonas syringae pv. tomato exploits light signals to optimize virulence and colonization of leaves. Environ Microbiol 2018; 20:4261-4280. [PMID: 30058114 DOI: 10.1111/1462-2920.14331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/13/2018] [Accepted: 06/17/2018] [Indexed: 11/30/2022]
Abstract
Light is pervasive in the leaf environment, creating opportunities for both plants and pathogens to cue into light as a signal to regulate plant-microbe interactions. Light enhances plant defences and regulates opening of stomata, an entry point for foliar bacterial pathogens such as Pseudomonas syringae pv. tomato DC3000 (PsPto). The effect of light perception on gene expression and virulence was investigated in PsPto. Light induced genetic reprogramming in PsPto that entailed significant changes in stress tolerance and virulence. Blue light-mediated up-regulation of type three secretion system genes and red light-mediated down-regulation of coronatine biosynthesis genes. Cells exposed to white light, blue light or darkness before inoculation were more virulent when inoculated at dawn than dusk probably due to an enhanced entry through open stomata. Exposure to red light repressed coronatine biosynthesis genes which could lead to a reduced stomatal re-opening and PsPto entry. Photoreceptor were required for the greater virulence of light-treated and dark-treated PsPto inoculated at dawn as compared to dusk, indicating that these proteins sense the absence of light and contribute to priming of virulence in the dark. These results support a model in which PsPto exploits light changes to maximize survival, entry and virulence on plants.
Collapse
Affiliation(s)
- Saray Santamaría-Hernando
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - José J Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Pedro M Martínez-García
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Isabel Río-Álvarez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Jaime Zamorano
- Departamento de Astrofísica y CC. de la Atmósfera, Universidad Complutense, Madrid, Spain
| | - Carlos Tapia
- Departamento de Astrofísica y CC. de la Atmósfera, Universidad Complutense, Madrid, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Campus Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain.,Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Madrid, Spain
| |
Collapse
|
19
|
Gharaie S, Vaas LAI, Rosberg AK, Windstam ST, Karlsson ME, Bergstrand KJ, Khalil S, Wohanka W, Alsanius BW. Light spectrum modifies the utilization pattern of energy sources in Pseudomonas sp. DR 5-09. PLoS One 2017; 12:e0189862. [PMID: 29267321 PMCID: PMC5739431 DOI: 10.1371/journal.pone.0189862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/04/2017] [Indexed: 11/18/2022] Open
Abstract
Despite the overruling impact of light in the phyllosphere, little is known regarding the influence of light spectra on non-phototrophic bacteria colonizing the leaf surface. We developed an in vitro method to study phenotypic profile responses of bacterial pure cultures to different bands of the visible light spectrum using monochromatic (blue: 460 nm; red: 660 nm) and polychromatic (white: 350–990 nm) LEDs, by modification and optimization of a protocol for the Phenotype MicroArray™ technique (Biolog Inc., CA, USA). The new protocol revealed high reproducibility of substrate utilization under all conditions tested. Challenging the non-phototrophic bacterium Pseudomonas sp. DR 5–09 with white, blue, and red light demonstrated that all light treatments affected the respiratory profile differently, with blue LED having the most decisive impact on substrate utilization by impairing respiration of 140 substrates. The respiratory activity was decreased on 23 and 42 substrates under red and white LEDs, respectively, while utilization of one, 16, and 20 substrates increased in the presence of red, blue, and white LEDs, respectively. Interestingly, on four substrates contrasting utilization patterns were found when the bacterium was exposed to different light spectra. Although non-phototrophic bacteria do not rely directly on light as an energy source, Pseudomonas sp. DR 5–09 changed its respiratory activity on various substrates differently when exposed to different lights. Thus, ability to sense and distinguish between different wavelengths even within the visible light spectrum must exist, and leads to differential regulation of substrate usage. With these results, we hypothesize that different light spectra might be a hitherto neglected key stimulus for changes in microbial lifestyle and habits of substrate usage by non-phototrophic phyllospheric microbiota, and thus might essentially stratify leaf microbiota composition and diversity.
Collapse
Affiliation(s)
- Samareh Gharaie
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | | | - Anna Karin Rosberg
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Sofia T. Windstam
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
- State University of New York, Department of Biological Sciences, Oswego, New York, United States of America
| | - Maria E. Karlsson
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Karl-Johan Bergstrand
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Sammar Khalil
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
| | - Walter Wohanka
- Geisenheim University, Department of Phytomedicine, Geisenheim, Germany
| | - Beatrix W. Alsanius
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Microbial Horticulture Unit, Alnarp, Sweden
- * E-mail:
| |
Collapse
|
20
|
Sebastián M, Lira-Navarrete E, Serrano A, Marcuello C, Velázquez-Campoy A, Lostao A, Hurtado-Guerrero R, Medina M, Martínez-Júlvez M. The FAD synthetase from the human pathogen Streptococcus pneumoniae: a bifunctional enzyme exhibiting activity-dependent redox requirements. Sci Rep 2017; 7:7609. [PMID: 28790457 PMCID: PMC5548840 DOI: 10.1038/s41598-017-07716-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/28/2017] [Indexed: 11/12/2022] Open
Abstract
Prokaryotic bifunctional FAD synthetases (FADSs) catalyze the biosynthesis of FMN and FAD, whereas in eukaryotes two enzymes are required for the same purpose. FMN and FAD are key cofactors to maintain the flavoproteome homeostasis in all type of organisms. Here we shed light to the properties of the hitherto unstudied bacterial FADS from the human pathogen Streptococcus pneumoniae (SpnFADS). As other members of the family, SpnFADS catalyzes the three typical activities of prokaryotic FADSs: riboflavin kinase (RFK), ATP:FMN:adenylyltransferase (FMNAT), and FAD pyrophosphorylase (FADpp). However, several SpnFADS biophysical properties differ from those of other family members. In particular; i) the RFK activity is not inhibited by the riboflavin (RF) substrate, ii) the FMNAT and FADSpp activities require flavin substrates in the reduced state, iii) binding of adenine nucleotide ligands is required for the binding of flavinic substrates/products and iv) the monomer is the preferred state. Collectively, our results add interesting mechanistic differences among the few prokaryotic bifunctional FADSs already characterized, which might reflect the adaptation of the enzyme to relatively different environments. In a health point of view, differences among FADS family members provide us with a framework to design selective compounds targeting these enzymes for the treatment of diverse infectious diseases.
Collapse
Affiliation(s)
- María Sebastián
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain
| | - Erandi Lira-Navarrete
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Ana Serrano
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040, Madrid, Spain
| | - Carlos Marcuello
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), and Fundación INA, Universidad de Zaragoza, Zaragoza, Spain.,Univ Reims, Lab Rech Nanosci, EA4682, F-51100 Reims and INRA, FARE Lab, F-51100, Reims, France
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.,Fundación ARAID, Diputación General de Aragón, Aragón, Spain.,Aragon Institute for Health Research (IIS Aragon), Zaragoza, 50009, Spain
| | - Anabel Lostao
- Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA), and Fundación INA, Universidad de Zaragoza, Zaragoza, Spain.,Fundación ARAID, Diputación General de Aragón, Aragón, Spain
| | - Ramón Hurtado-Guerrero
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.,Fundación ARAID, Diputación General de Aragón, Aragón, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain. .,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain. .,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) and GBsC-CSIC and BIFI-CSIC Joint Units, Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
21
|
Kraiselburd I, Moyano L, Carrau A, Tano J, Orellano EG. Bacterial Photosensory Proteins and Their Role in Plant-pathogen Interactions. Photochem Photobiol 2017; 93:666-674. [DOI: 10.1111/php.12754] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/19/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Ivana Kraiselburd
- Instituto de Biología Molecular y Celular de Rosario; Consejo Nacional de Investigaciones Científicas y Técnicas; Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | - Laura Moyano
- Instituto de Biología Molecular y Celular de Rosario; Consejo Nacional de Investigaciones Científicas y Técnicas; Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | - Analía Carrau
- Instituto de Biología Molecular y Celular de Rosario; Consejo Nacional de Investigaciones Científicas y Técnicas; Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | - Josefina Tano
- Instituto de Biología Molecular y Celular de Rosario; Consejo Nacional de Investigaciones Científicas y Técnicas; Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | - Elena G. Orellano
- Instituto de Biología Molecular y Celular de Rosario; Consejo Nacional de Investigaciones Científicas y Técnicas; Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| |
Collapse
|
22
|
Preston GM. Profiling the extended phenotype of plant pathogens: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:443-456. [PMID: 28026146 PMCID: PMC6638297 DOI: 10.1111/mpp.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 05/18/2023]
Abstract
One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens during natural infections?
Collapse
Affiliation(s)
- Gail M. Preston
- Department of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| |
Collapse
|
23
|
Losi A, Gärtner W. Solving Blue Light Riddles: New Lessons from Flavin-binding LOV Photoreceptors. Photochem Photobiol 2017; 93:141-158. [PMID: 27861974 DOI: 10.1111/php.12674] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/22/2016] [Indexed: 12/15/2022]
Abstract
Detection of blue light (BL) via flavin-binding photoreceptors (Fl-Blues) has evolved throughout all three domains of life. Although the main BL players, that is light, oxygen and voltage (LOV), blue light sensing using flavins (BLUF) and Cry (cryptochrome) proteins, have been characterized in great detail with respect to structure and function, still several unresolved issues at different levels of complexity remain and novel unexpected findings were reported. Here, we review the most prevailing riddles of LOV-based photoreceptors, for example: the relevance of water and/or small metabolites for the dynamics of the photocycle; molecular details of light-to-signal transduction events; the interplay of BL sensing by LOV domains with other environmental stimuli, such as BL plus oxygen-mediating photodamage and its impact on microbial lifestyles; the importance of the cell or chromophore redox state in determining the fate of BL-driven reactions; the evolutionary pathways of LOV-based BL sensing and associated functions through the diverse phyla. We will discuss major novelties emerged during the last few years on these intriguing aspects of LOV proteins by presenting paradigmatic examples from prokaryotic photosensors that exhibit the largest complexity and richness in associated functions.
Collapse
Affiliation(s)
- Aba Losi
- Department of Physics and Earth Sciences, University of Parma, Parma, Italy
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim, Germany
| |
Collapse
|
24
|
Petrocelli S, Arana MR, Cabrini MN, Casabuono AC, Moyano L, Beltramino M, Moreira LM, Couto AS, Orellano EG. Deletion of pilA, a Minor Pilin-Like Gene, from Xanthomonas citri subsp. citri Influences Bacterial Physiology and Pathogenesis. Curr Microbiol 2016; 73:904-914. [PMID: 27664015 DOI: 10.1007/s00284-016-1138-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
Abstract
Type IV pili (Tfp) are widely distributed adhesins of bacterial surfaces. In plant pathogenic bacteria, Tfp are involved in host colonization and pathogenesis. Xanthomonas citri subsp. citri (Xcc) is the phytopathogen responsible for citrus canker disease. In this work, three Tfp structural genes, fimA, fimA1, and pilA from Xcc were studied. A pilA mutant strain from Xcc (XccΔpilA) was constructed and differences in physiological features, such as motilities, adhesion, and biofilm formation, were observed. A structural study of the purified Tfp fractions from Xcc wild-type and Xcc∆pilA showed that pilins are glycosylated in both strains and that FimA and FimA1 are the main structural components of the pili. Furthermore, smaller lesion symptoms and reduced bacterial growth were produced by Xcc∆pilA in orange plants compared to the wild-type strain. These results indicate that the minor pilin-like gene, pilA, is involved in Tfp performance during the infection process.
Collapse
Affiliation(s)
- Silvana Petrocelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Maite R Arana
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Marcela N Cabrini
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Hidratos de Carbono, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Adriana C Casabuono
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Hidratos de Carbono, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Laura Moyano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Matías Beltramino
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Leandro M Moreira
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Alicia S Couto
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Hidratos de Carbono, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Elena G Orellano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
25
|
Bonomi HR, Toum L, Sycz G, Sieira R, Toscani AM, Gudesblat GE, Leskow FC, Goldbaum FA, Vojnov AA, Malamud F. Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. EMBO Rep 2016; 17:1565-1577. [PMID: 27621284 DOI: 10.15252/embr.201541691] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 08/02/2016] [Indexed: 11/09/2022] Open
Abstract
Phytochromes constitute a major photoreceptor family found in plants, algae, fungi, and prokaryotes, including pathogens. Here, we report that Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot disease which affects cruciferous crops worldwide, codes for a functional bacteriophytochrome (XccBphP). XccBphP possesses an N-terminal PAS2-GAF-PHY photosensory domain triad and a C-terminal PAS9 domain as its output module. Our results show that illumination of Xcc, prior to plant infection, attenuates its virulence in an XccBphP-dependent manner. Moreover, in response to light, XccBphP downregulates xanthan exopolysaccharide production and biofilm formation, two known Xcc virulence factors. Furthermore, the XccbphP null mutant shows enhanced virulence, similar to that of dark-adapted Xcc cultures. Stomatal aperture regulation and callose deposition, both well-established plant defense mechanisms against bacterial pathogens, are overridden by the XccbphP strain. Additionally, an RNA-Seq analysis reveals that far-red light or XccBphP overexpression produces genomewide transcriptional changes, including the inhibition of several Xcc virulence systems. Our findings indicate that Xcc senses light through XccBphP, eliciting bacterial virulence attenuation via downregulation of bacterial virulence factors. The capacity of XccBphP to respond to light both in vitro and in vivo was abolished by a mutation on the conserved Cys13 residue. These results provide evidence for a novel bacteriophytochrome function affecting an infectious process.
Collapse
Affiliation(s)
- Hernán R Bonomi
- Fundación Instituto Leloir - IIBBA CONICET, Buenos Aires, Argentina
| | - Laila Toum
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Buenos Aires, Argentina
| | - Gabriela Sycz
- Fundación Instituto Leloir - IIBBA CONICET, Buenos Aires, Argentina
| | - Rodrigo Sieira
- Fundación Instituto Leloir - IIBBA CONICET, Buenos Aires, Argentina
| | - Andrés M Toscani
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo E Gudesblat
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Buenos Aires, Argentina
| | - Federico C Leskow
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Adrián A Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Buenos Aires, Argentina
| | - Florencia Malamud
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Buenos Aires, Argentina .,UNSAM Campus Miguelete IIB - Instituto de Investigaciones Biotecnológicas, Buenos Aires, Argentina
| |
Collapse
|
26
|
Jacques MA, Arlat M, Boulanger A, Boureau T, Carrère S, Cesbron S, Chen NWG, Cociancich S, Darrasse A, Denancé N, Fischer-Le Saux M, Gagnevin L, Koebnik R, Lauber E, Noël LD, Pieretti I, Portier P, Pruvost O, Rieux A, Robène I, Royer M, Szurek B, Verdier V, Vernière C. Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:163-87. [PMID: 27296145 DOI: 10.1146/annurev-phyto-080615-100147] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.
Collapse
Affiliation(s)
- Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Matthieu Arlat
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Alice Boulanger
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Tristan Boureau
- Université Angers, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Sébastien Carrère
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
| | - Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas W G Chen
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Stéphane Cociancich
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Armelle Darrasse
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas Denancé
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Marion Fischer-Le Saux
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Lionel Gagnevin
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Ralf Koebnik
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Emmanuelle Lauber
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Laurent D Noël
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Isabelle Pieretti
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Perrine Portier
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Adrien Rieux
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Isabelle Robène
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Monique Royer
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Boris Szurek
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Valérie Verdier
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Christian Vernière
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| |
Collapse
|
27
|
Shah R, Pathak G, Drepper T, Gärtner W. Selective Photoreceptor Gene Knock-out Reveals a Regulatory Role for the Growth Behavior ofPseudomonas syringae. Photochem Photobiol 2016; 92:571-8. [DOI: 10.1111/php.12610] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/06/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Rashmi Shah
- Max-Planck-Institute for Chemical Energy Conversion; Mülheim Germany
| | - Gopal Pathak
- Max-Planck-Institute for Chemical Energy Conversion; Mülheim Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology; Heinrich Heine University Düsseldorf; Forschungszentrum Jülich; Jülich Germany
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion; Mülheim Germany
| |
Collapse
|
28
|
Sena-Vélez M, Redondo C, Graham JH, Cubero J. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range. PLoS One 2016; 11:e0156695. [PMID: 27248687 PMCID: PMC4889101 DOI: 10.1371/journal.pone.0156695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/18/2016] [Indexed: 12/23/2022] Open
Abstract
Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures.
Collapse
Affiliation(s)
- Marta Sena-Vélez
- Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Cristina Redondo
- Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - James H. Graham
- Citrus Research and Education Center (CREC), University of Florida, Lake Alfred, Florida, United States of America
| | - Jaime Cubero
- Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
29
|
Otero LH, Klinke S, Rinaldi J, Velázquez-Escobar F, Mroginski MA, Fernández López M, Malamud F, Vojnov AA, Hildebrandt P, Goldbaum FA, Bonomi HR. Structure of the Full-Length Bacteriophytochrome from the Plant Pathogen Xanthomonas campestris Provides Clues to its Long-Range Signaling Mechanism. J Mol Biol 2016; 428:3702-20. [PMID: 27107635 DOI: 10.1016/j.jmb.2016.04.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 11/25/2022]
Abstract
Phytochromes constitute a major superfamily of light-sensing proteins that are reversibly photoconverted between a red-absorbing (Pr) and a far-red-absorbing (Pfr) state. Bacteriophytochromes (BphPs) are found among photosynthetic and non-photosynthetic bacteria, including pathogens. To date, several BphPs have been biophysically characterized. However, it is still not fully understood how structural changes are propagated from the photosensory module to the output module during the signal transduction event. Most phytochromes share a common architecture consisting of an N-terminal photosensor that includes the PAS2-GAF-PHY domain triad and a C-terminal variable output module. Here we present the crystal structure of the full-length BphP from the plant pathogen Xanthomonas campestris pv. campestris (XccBphP) bearing its photosensor and its complete output module, a PAS9 domain. In the crystals, the protein was found to be in the Pr state, whereas diffraction data together with resonance Raman spectroscopic and theoretical results indicate a ZZZssa and a ZZEssa chromophore configuration corresponding to a mixture of Pr and Meta-R state, the precursor of Pfr. The XccBphP quaternary assembly reveals a head-to-head dimer in which the output module contributes to the helical dimer interface. The photosensor, which is shown to be a bathy-like BphP, is influenced in its dark reactions by the output module. Our structural analyses suggest that the photoconversion between the Pr and Pfr states in the full-length XccBphP may involve changes in the relative positioning of the output module. This work contributes to understand the light-induced structural changes propagated from the photosensor to the output modules in phytochrome signaling.
Collapse
Affiliation(s)
- Lisandro Horacio Otero
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Sebastián Klinke
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Francisco Velázquez-Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - María Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - María Fernández López
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - Florencia Malamud
- UNSAM Campus Miguelete IIB-Instituto de Investigaciones Biotecnológicas, Av. 25 de Mayo y Francia (B1650KNA), Buenos Aires, Argentina
| | - Adrián Alberto Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468 (C1440FFX), Buenos Aires, Argentina
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135 (10623), Berlin, Germany
| | - Fernando Alberto Goldbaum
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina
| | - Hernán Ruy Bonomi
- Fundación Instituto Leloir-IIBBA-CONICET, Av. Patricias Argentinas 435 (C1405BWE), Buenos Aires, Argentina.
| |
Collapse
|
30
|
Tondo ML, Delprato ML, Kraiselburd I, Fernández Zenoff MV, Farías ME, Orellano EG. KatG, the Bifunctional Catalase of Xanthomonas citri subsp. citri, Responds to Hydrogen Peroxide and Contributes to Epiphytic Survival on Citrus Leaves. PLoS One 2016; 11:e0151657. [PMID: 26990197 PMCID: PMC4807922 DOI: 10.1371/journal.pone.0151657] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/02/2016] [Indexed: 12/19/2022] Open
Abstract
Xanthomonas citri subsp. citri (Xcc) is the bacterium responsible for citrus canker. This bacterium is exposed to reactive oxygen species (ROS) at different points during its life cycle, including those normally produced by aerobic respiration or upon exposition to ultraviolet (UV) radiation. Moreover, ROS are key components of the host immune response. Among enzymatic ROS-detoxifying mechanisms, catalases eliminate H2O2, avoiding the potential damage caused by this specie. Xcc genome includes four catalase genes. In this work, we studied the physiological role of KatG, the only bifunctional catalase of Xcc, through the construction and characterization of a modified strain (XcckatG), carrying an insertional mutation in the katG gene. First, we evaluated the involvement of KatG in the bacterial adaptive response to H2O2. XcckatG cultures exhibited lower catalase activity than those of the wild-type strain, and this activity was not induced upon treatment with sub-lethal doses of H2O2. Moreover, the KatG-deficient mutant exhibited decreased tolerance to H2O2 toxicity compared to wild-type cells and accumulated high intracellular levels of peroxides upon exposure to sub-lethal concentrations of H2O2. To further study the role of KatG in Xcc physiology, we evaluated bacterial survival upon exposure to UV-A or UV-B radiation. In both conditions, XcckatG showed a high mortality in comparison to Xcc wild-type. Finally, we studied the development of bacterial biofilms. While structured biofilms were observed for the Xcc wild-type, the development of these structures was impaired for XcckatG. Based on these results, we demonstrated that KatG is responsible for Xcc adaptive response to H2O2 and a key component of the bacterial response to oxidative stress. Moreover, this enzyme plays an important role during Xcc epiphytic survival, being essential for biofilm formation and UV resistance.
Collapse
Affiliation(s)
- María Laura Tondo
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - María Laura Delprato
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Ivana Kraiselburd
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - María Verónica Fernández Zenoff
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán, Argentina
| | - María Eugenia Farías
- Planta Piloto de Procesos Industriales Microbiológicos, Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Tucumán, Argentina
| | - Elena G. Orellano
- Molecular Biology Division, Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- * E-mail:
| |
Collapse
|
31
|
Zheng D, Yao X, Duan M, Luo Y, Liu B, Qi P, Sun M, Ruan L. Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression. Sci Rep 2016; 6:22768. [PMID: 26957113 PMCID: PMC4783713 DOI: 10.1038/srep22768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/19/2016] [Indexed: 01/17/2023] Open
Abstract
Two-component signal transduction systems (TCSs) are widely used by bacteria to adapt to the environment. In the present study, StoS (stress tolerance-related oxygen sensor) and SreKRS (salt response kinase, regulator, and sensor) were found to positively regulate extracellular polysaccharide (EPS) production and swarming in the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). Surprisingly, the absence of stoS or sreKRS did not attenuate virulence. To better understand the intrinsic functions of StoS and SreKRS, quantitative proteomics isobaric tags for relative and absolute quantitation (iTRAQ) was employed. Consistent with stoS and sreK mutants exhibiting a similar phenotype, the signalling circuits of StoS and SreKRS overlapped. Carbohydrate metabolism proteins and chemotaxis proteins, which could be responsible for EPS and swarming regulation, respectively, were reprogrammed in stoS and sreK mutants. Moreover, StoS and SreKRS demonstrated moderate expression of the major virulence factor, hypersensitive response and pathogenicity (Hrp) proteins through the HrpG-HrpX circuit. Most importantly, Xoo equipped with StoS and SreKRS outcompetes strains without StoS or SreKRS in co-infected rice and grows outside the host. Therefore, we propose that StoS and SreKRS adopt a novel strategy involving the moderation of Hrp protein expression and the promotion of EPS and motility to adapt to the environment.
Collapse
Affiliation(s)
- Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaoyan Yao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Meng Duan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yufeng Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Biao Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Pengyuan Qi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
32
|
Dunger G, Llontop E, Guzzo CR, Farah CS. The Xanthomonas type IV pilus. Curr Opin Microbiol 2016; 30:88-97. [PMID: 26874963 DOI: 10.1016/j.mib.2016.01.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023]
Abstract
Type IV pili, a special class of bacterial surface filaments, are key behavioral mediators for many important human pathogens. However, we know very little about the role of these structures in the lifestyles of plant-associated bacteria. Over the past few years, several groups studying the extensive genus of Xanthomonas spp. have gained insights into the roles of played by type IV pili in bacteria-host interactions and pathogenesis, motility, biofilm formation, and interactions with bacteriophages. Protein-protein interaction studies have identified T4P regulators and these, along with structural studies, have begun to reveal some of the possible molecular mechanisms that may control the extension/retraction cycles of these dynamic filaments.
Collapse
Affiliation(s)
- German Dunger
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Edgar Llontop
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Cristiane R Guzzo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, São Paulo, SP CEP 05508-900, Brazil
| | - Chuck S Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
33
|
Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J. Draft genome sequence for virulent and avirulent strains of Xanthomonas arboricola isolated from Prunus spp. in Spain. Stand Genomic Sci 2016; 11:12. [PMID: 26823958 PMCID: PMC4730658 DOI: 10.1186/s40793-016-0132-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/01/2015] [Indexed: 11/10/2022] Open
Abstract
Xanthomonas arboricola is a species in genus Xanthomonas which is mainly comprised of plant pathogens. Among the members of this taxon, X. arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruits and almond, is distributed worldwide although it is considered a quarantine pathogen in the European Union. Herein, we report the draft genome sequence, the classification, the annotation and the sequence analyses of a virulent strain, IVIA 2626.1, and an avirulent strain, CITA 44, of X. arboricola associated with Prunus spp. The draft genome sequence of IVIA 2626.1 consists of 5,027,671 bp, 4,720 protein coding genes and 50 RNA encoding genes. The draft genome sequence of strain CITA 44 consists of 4,760,482 bp, 4,250 protein coding genes and 56 RNA coding genes. Initial comparative analyses reveals differences in the presence of structural and regulatory components of the type IV pilus, the type III secretion system, the type III effectors as well as variations in the number of the type IV secretion systems. The genome sequence data for these strains will facilitate the development of molecular diagnostics protocols that differentiate virulent and avirulent strains. In addition, comparative genome analysis will provide insights into the plant-pathogen interaction during the bacterial spot disease process.
Collapse
Affiliation(s)
| | - Ana Palacio-Bielsa
- />Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain
| | - María M. López
- />Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Jaime Cubero
- />Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
34
|
Ramírez MS, Müller GL, Pérez JF, Golic AE, Mussi MA. More Than Just Light: Clinical Relevance of Light Perception in the Nosocomial PathogenAcinetobacter baumanniiand Other Members of the GenusAcinetobacter. Photochem Photobiol 2015; 91:1291-301. [DOI: 10.1111/php.12523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/21/2015] [Indexed: 12/31/2022]
Affiliation(s)
- María Soledad Ramírez
- Facultad de Ciencias Médicas; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET); Universidad de Buenos Aires; Buenos Aires Argentina
- Department of Biological Science; Center for Applied Biotechnology Studies; California State University Fullerton; Fullerton CA
| | - Gabriela Leticia Müller
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Rosario Argentina
| | - Jorgelina Fernanda Pérez
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | | | - María Alejandra Mussi
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Rosario Argentina
| |
Collapse
|
35
|
Ricci A, Dramis L, Shah R, Gärtner W, Losi A. Visualizing the relevance of bacterial blue- and red-light receptors during plant-pathogen interaction. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:795-802. [PMID: 26147514 DOI: 10.1111/1758-2229.12320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) leads to consistent losses in tomato crops, urging to multiply investigations on the physiological bases for its infectiveness. As other P. syringae pathovars, Pst is equipped with photoreceptors for blue and red light, mimicking the photosensing ability of host plants. In this work we have investigated Pst strains lacking the genes for a blue-light sensing protein (PstLOV), for a bacteriophytochrome (PstBph1) or for heme-oxygenase-1. When grown in culturing medium, all deletion mutants presented a larger growth than wild-type (WT) Pst under all other light conditions, with the exception of blue light which, under our experimental conditions (photon fluence rate = 40 μmol m(-2) s(-1)), completely suppressed the growth of the deletion mutants. Each of the knockout mutants shows stronger virulence towards Arabidopsis thaliana than PstWT, as evidenced by macroscopic damages in the host tissues of infected leaves. Mutated bacteria were also identified in districts distant from the infection site using scanning electron microscopy. These results underscore the importance of Pst photoreceptors in responding to environmental light inputs and the partial protective role that they exert towards host plants during infection, diminishing virulence and invasiveness.
Collapse
Affiliation(s)
- Ada Ricci
- Department of Life Sciences, University of Parma, 43124, Parma, Italy
| | - Lucia Dramis
- Department of Life Sciences, University of Parma, 43124, Parma, Italy
| | - Rashmi Shah
- Max-Planck-Institute for Chemical Energy Conversion, 45470, Mülheim, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, 45470, Mülheim, Germany
| | - Aba Losi
- Department of Physics and Earth Sciences, University of Parma, 43124, Parma, Italy
| |
Collapse
|
36
|
Kraiselburd I, Gutt A, Losi A, Gärtner W, Orellano EG. Functional Characterization of a LOV-Histidine Kinase Photoreceptor from Xanthomonas citri subsp. citri. Photochem Photobiol 2015; 91:1123-32. [PMID: 26172037 DOI: 10.1111/php.12493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/18/2015] [Indexed: 01/30/2023]
Abstract
The blue-light (BL) absorbing protein Xcc-LOV from Xanthomonas citri subsp. citri is composed of a LOV-domain, a histidine kinase (HK) and a response regulator. Spectroscopic characterization of Xcc-LOV identified intermediates and kinetics of the protein's photocycle. Measurements of steady state and time-resolved fluorescence allowed determination of quantum yields for triplet (ΦT = 0.68 ± 0.03) and photoproduct formation (Φ390 = 0.46 ± 0.05). The lifetime for triplet decay was determined as τT = 2.4-2.8 μs. Fluorescence of tryptophan and tyrosine residues was unchanged upon light-to-dark conversion, emphasizing the absence of significant conformational changes. Photochemistry was blocked upon cysteine C76 (C76S) mutation, causing a seven-fold longer lifetime of the triplet state (τT = 16-18.5 μs). Optoacoustic spectroscopy yielded the energy content of the triplet state. Interestingly, Xcc-LOV did not undergo the volume contraction reported for other LOV domains within the observation time window, although the back-conversion into the dark state was accompanied by a volume expansion. A radioactivity-based enzyme function assay revealed a larger HK activity in the lit than in the dark state. The C76S mutant showed a still lower enzyme function, indicating the dark state activity being corrupted by a remaining portion of the long-lived lit state.
Collapse
Affiliation(s)
- Ivana Kraiselburd
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alexander Gutt
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim, Germany
| | - Aba Losi
- Department of Physics and Earth Sciences, University of Parma, Parma, Italy
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim, Germany
| | - Elena G Orellano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
37
|
Losi A, Mandalari C, Gärtner W. The Evolution and Functional Role of Flavin-based Prokaryotic Photoreceptors. Photochem Photobiol 2015; 91:1021-31. [DOI: 10.1111/php.12489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/15/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Aba Losi
- Department of Physics and Earth Sciences; University of Parma; Parma Italy
| | - Carmen Mandalari
- Department of Physics and Earth Sciences; University of Parma; Parma Italy
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion; Mülheim Germany
| |
Collapse
|
38
|
Nagendran R, Lee YH. Green and Red Light Reduces the Disease Severity by Pseudomonas cichorii JBC1 in Tomato Plants via Upregulation of Defense-Related Gene Expression. PHYTOPATHOLOGY 2015; 105:412-8. [PMID: 25536016 DOI: 10.1094/phyto-04-14-0108-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Light influences many physiological processes in most organisms. To investigate the influence of light on plant and pathogen interaction, we challenged tomato seedlings with Pseudomonas cichorii JBC1 by flood inoculation and incubated the seedlings under different light conditions. Tomato seedlings exposed to green or red light showed a significant reduction in disease incidence compared with those grown under white light or dark conditions. To understand the underlying mechanisms, we investigated the effects of each light wavelength on P. cichorii JBC1 and tomato plants. Treatment with various light wavelengths at 120 µmol m(-2) s(-1) revealed no significant difference in growth, swarming motility, or biofilm formation of the pathogen. In addition, when we vacuum-infiltrated P. cichorii JBC1 into tomato plants, green and red light also suppressed disease incidence which indicated that the reduced disease severity was not from direct influence of light on the pathogen. Significant upregulation of the defense-related genes, phenylalanine ammonia-lyase (PAL) and pathogenesis-related protein 1a (PR-1a) was observed in P. cichorii JBC1-infected tomato seedlings grown under green or red light compared with seedlings grown under white light or dark conditions. The results of this study indicate that light conditions can influence plant defense mechanisms. In particular, green and red light increase the resistance of tomato plants to infection by P. cichorii.
Collapse
Affiliation(s)
- Rajalingam Nagendran
- First author: Division of Biotechnology, Chonbuk National University, 194-5 Ma-Dong, Iksan, Jeonbuk 570-752, Republic of Korea; and second author: Advanced Institute of Environment and Bioscience, and Plant Medical Research Center, Chonbuk National University 194-5 Ma-Dong, Iksan, Jeonbuk 570-752, Republic of Korea
| | | |
Collapse
|
39
|
Parker JK, Cruz LF, Evans MR, De La Fuente L. Presence of calcium-binding motifs in PilY1 homologs correlates with Ca-mediated twitching motility and evolutionary history across diverse bacteria. FEMS Microbiol Lett 2014; 362:fnu063. [PMID: 25688068 DOI: 10.1093/femsle/fnu063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Twitching motility, involving type IV pili, is essential for host colonization and virulence of many pathogenic bacteria. Studies of PilY1, a tip-associated type IV pili protein, indicate that PilY1 functions as a switch between pilus extension and retraction, resulting in twitching motility. Recent work detected a calcium-binding motif in PilY1 of some animal bacterial pathogens and demonstrated that binding of calcium to PilY1 with this motif regulates twitching. Though studies of PilY1 in non-animal pathogens are limited, our group demonstrated that twitching motility in the plant pathogen Xylella fastidiosa, which contains three PilY1 homologs, is increased by calcium supplementation. A study was conducted to investigate the phylogenetic relationship between multiple PilY1 homologs, the presence of calcium-binding motifs therein, and calcium-mediated twitching motility across diverse bacteria. Strains analyzed contained one to three PilY1 homologs, but phylogenetic analyses indicated that PilY1 homologs containing the calcium-binding motif Dx[DN]xDGxxD are phylogenetically divergent from other PilY1 homologs. Plant-associated bacteria included in these analyses were then examined for a calcium-mediated twitching response. Results indicate that bacteria must have at least one PilY1 homolog containing the Dx[DN]xDGxxD motif to display a calcium-mediated increase in twitching motility, which likely reflects an adaption to environmental calcium concentrations.
Collapse
Affiliation(s)
- Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Luisa F Cruz
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Michael R Evans
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
40
|
Hung NB, Ramkumar G, Lee YH. An effector gene hopA1 influences on virulence, host specificity, and lifestyles of Pseudomonas cichorii JBC1. Res Microbiol 2014; 165:620-9. [PMID: 25127676 DOI: 10.1016/j.resmic.2014.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 11/30/2022]
Abstract
Pseudomonas cichorii is a devastating pathogen which infects a wide range of ornamental as well as agricultural crops worldwide. Characterization of virulence genes helps to understand pathogens' infection processes, which may lead to development of resistant crops. For functional validation of novel genes, we re-constructed pUCP18 vector with λ phage red operon and sacB gene (pUCP18_RedS), which simplified conventional marker exchange system. The effector gene hopA1 of P. cichorii JBC1 was marker exchanged with PCR product of kanamycin gene flanked by hopA1 flanking region using pUCP18_RedS. The virulence and internal growth of hopA1 defective mutant (ΔhopA1) in tomato seedlings was significantly reduced compared to wild type (WT) and hopA1 complemented strain (ΔhopA1::phopA1). The analysis on role of hopA1 in host range revealed that P. cichorii was hopA1-dependent to infect cabbage, tomato, soybean, hot pepper, and cucumber, but not melon and eggplant. Despite the similarity in growth pattern, the biofilm formation and swarming motility of ΔhopA1 were significantly reduced compared to WT and ΔhopA1::phopA1. The results of this study indicate that hopA1 plays a significant role not only in virulence and host specificity, but also motility and biofilm formation of P. cichorii which may influence the infection processes.
Collapse
Affiliation(s)
- Nguyen Bao Hung
- Division of Biotechnology, Chonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do 570-752, Republic of Korea
| | - Gandhimani Ramkumar
- Division of Biotechnology, Chonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do 570-752, Republic of Korea
| | - Yong Hoon Lee
- Division of Biotechnology, Chonbuk National University, 79 Gobong-ro, Iksan-si, Jeollabuk-do 570-752, Republic of Korea; Advanced Institute of Environment and Bioscience, and Plant Medical Research Center, Chonbuk National University, Republic of Korea.
| |
Collapse
|
41
|
From Plant Infectivity to Growth Patterns: The Role of Blue-Light Sensing in the Prokaryotic World. PLANTS 2014; 3:70-94. [PMID: 27135492 PMCID: PMC4844311 DOI: 10.3390/plants3010070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 01/15/2023]
Abstract
Flavin-based photoreceptor proteins of the LOV (Light, Oxygen, and Voltage) and BLUF (Blue Light sensing Using Flavins) superfamilies are ubiquitous among the three life domains and are essential blue-light sensing systems, not only in plants and algae, but also in prokaryotes. Here we review their biological roles in the prokaryotic world and their evolution pathways. An unexpected large number of bacterial species possess flavin-based photosensors, amongst which are important human and plant pathogens. Still, few cases are reported where the activity of blue-light sensors could be correlated to infectivity and/or has been shown to be involved in the activation of specific genes, resulting in selective growth patterns. Metagenomics and bio-informatic analysis have only recently been initiated, but signatures are beginning to emerge that allow definition of a bona fide LOV or BLUF domain, aiming at better selection criteria for novel blue-light sensors. We also present here, for the first time, the phylogenetic tree for archaeal LOV domains that have reached a statistically significant number but have not at all been investigated thus far.
Collapse
|
42
|
Abstract
After over a century of progress, phototropism research still presents some fascinating challenges.
Collapse
|
43
|
Kraiselburd I, Daurelio LD, Tondo ML, Merelo P, Cortadi AA, Talón M, Tadeo FR, Orellano EG. The LOV protein of Xanthomonas citri subsp. citri plays a significant role in the counteraction of plant immune responses during citrus canker. PLoS One 2013; 8:e80930. [PMID: 24260514 PMCID: PMC3829917 DOI: 10.1371/journal.pone.0080930] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/07/2013] [Indexed: 12/25/2022] Open
Abstract
Pathogens interaction with a host plant starts a set of immune responses that result in complex changes in gene expression and plant physiology. Light is an important modulator of plant defense response and recent studies have evidenced the novel influence of this environmental stimulus in the virulence of several bacterial pathogens. Xanthomonas citri subsp. citri is the bacterium responsible for citrus canker disease, which affects most citrus cultivars. The ability of this bacterium to colonize host plants is influenced by bacterial blue-light sensing through a LOV-domain protein and disease symptoms are considerably altered upon deletion of this protein. In this work we aimed to unravel the role of this photoreceptor during the bacterial counteraction of plant immune responses leading to citrus canker development. We performed a transcriptomic analysis in Citrus sinensis leaves inoculated with the wild type X. citri subsp. citri and with a mutant strain lacking the LOV protein by a cDNA microarray and evaluated the differentially regulated genes corresponding to specific biological processes. A down-regulation of photosynthesis-related genes (together with a corresponding decrease in photosynthesis rates) was observed upon bacterial infection, this effect being more pronounced in plants infected with the lov-mutant bacterial strain. Infection with this strain was also accompanied with the up-regulation of several secondary metabolism- and defense response-related genes. Moreover, we found that relevant plant physiological alterations triggered by pathogen attack such as cell wall fortification and tissue disruption were amplified during the lov-mutant strain infection. These results suggest the participation of the LOV-domain protein from X. citri subsp. citri in the bacterial counteraction of host plant defense response, contributing in this way to disease development.
Collapse
Affiliation(s)
- Ivana Kraiselburd
- Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF - UNR), Rosario, Santa Fe, Argentina
| | - Lucas D. Daurelio
- Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF - UNR), Rosario, Santa Fe, Argentina
| | - María Laura Tondo
- Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF - UNR), Rosario, Santa Fe, Argentina
| | - Paz Merelo
- Centre de Genómica, Institut Valencià d'Investigacions Agràries (IVIA), Montcada (València), Spain
| | - Adriana A. Cortadi
- Área de Biología Vegetal, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Santa Fe, Argentina
| | - Manuel Talón
- Centre de Genómica, Institut Valencià d'Investigacions Agràries (IVIA), Montcada (València), Spain
| | - Francisco R. Tadeo
- Centre de Genómica, Institut Valencià d'Investigacions Agràries (IVIA), Montcada (València), Spain
| | - Elena G. Orellano
- Instituto de Biología Molecular y Celular de Rosario (IBR - CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOYF - UNR), Rosario, Santa Fe, Argentina
- * E-mail:
| |
Collapse
|
44
|
Moriconi V, Sellaro R, Ayub N, Soto G, Rugnone M, Shah R, Pathak GP, Gärtner W, Casal JJ. LOV-domain photoreceptor, encoded in a genomic island, attenuates the virulence of Pseudomonas syringae in light-exposed Arabidopsis leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:322-331. [PMID: 23865633 DOI: 10.1111/tpj.12289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
In Arabidopsis thaliana, light signals modulate the defences against bacteria. Here we show that light perceived by the LOV domain-regulated two-component system (Pst-Lov) of Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) modulates virulence against A. thaliana. Bioinformatic analysis and the existence of an episomal circular intermediate indicate that the locus encoding Pst-Lov is present in an active genomic island acquired by horizontal transfer. Strains mutated at Pst-Lov showed enhanced growth on minimal medium and in leaves of A. thaliana exposed to light, but not in leaves incubated in darkness or buried in the soil. Pst-Lov repressed the expression of principal and alternative sigma factor genes and their downstream targets linked to bacterial growth, virulence and quorum sensing, in a strictly light-dependent manner. We propose that the function of Pst-Lov is to distinguish between soil (dark) and leaf (light) environments, attenuating the damage caused to host tissues while releasing growth out of the host. Therefore, in addition to its direct actions via photosynthesis and plant sensory receptors, light may affect plants indirectly via the sensory receptors of bacterial pathogens.
Collapse
Affiliation(s)
- Victoria Moriconi
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida San Martín 4453, Buenos Aires, 1417, Argentina; Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1405BWE, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Malamud F, Homem RA, Conforte VP, Yaryura PM, Castagnaro AP, Marano MR, do Amaral AM, Vojnov AA. Identification and characterization of biofilm formation-defective mutants of Xanthomonas citri subsp. citri. Microbiology (Reading) 2013; 159:1911-1919. [DOI: 10.1099/mic.0.064709-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Florencia Malamud
- Instituto de Ciencia y Tecnología Dr César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina
| | - Rafael Augusto Homem
- Embrapa Recursos Genéticos e Biotecnología and Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeiropolis, Sao Pablo, Brazil
| | - Valeria Paola Conforte
- Instituto de Ciencia y Tecnología Dr César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina
| | - Pablo Marcelo Yaryura
- Instituto de Ciencia y Tecnología Dr César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina
| | - Atilio Pedro Castagnaro
- Estación Experimental Agroindustrial Obispo Colombres, Av. William Cross 3150, Las Talitas, Tucumán, Argentina
| | - María Rosa Marano
- IBR-Depto Microbiología, Facultad de Ciencias, Bioquímicas y Farmacéuticas, U.N.R. Suipacha 531, S2002LRK Rosario, Argentina
| | - Alexandre Morais do Amaral
- Embrapa Recursos Genéticos e Biotecnología and Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeiropolis, Sao Pablo, Brazil
| | - Adrián Alberto Vojnov
- Instituto de Ciencia y Tecnología Dr César Milstein, Fundación Pablo Cassará, CONICET, Saladillo 2468, C1440FFX Ciudad de Buenos Aires, Argentina
| |
Collapse
|
46
|
Río-Álvarez I, Rodríguez-Herva JJ, Martínez PM, González-Melendi P, García-Casado G, Rodríguez-Palenzuela P, López-Solanilla E. Light regulates motility, attachment and virulence in the plant pathogen Pseudomonas syringae pv tomato DC3000. Environ Microbiol 2013; 16:2072-85. [PMID: 24033935 DOI: 10.1111/1462-2920.12240] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 01/27/2023]
Abstract
Pseudomonas syringae pv tomato DC3000 (Pto) is the causal agent of the bacterial speck of tomato, which leads to significant economic losses in this crop. Pto inhabits the tomato phyllosphere, where the pathogen is highly exposed to light, among other environmental factors. Light represents a stressful condition and acts as a source of information associated with different plant defence levels. Here, we analysed the presence of both blue and red light photoreceptors in a group of Pseudomonas. In addition, we studied the effect of white, blue and red light on Pto features related to epiphytic fitness. While white and blue light inhibit motility, bacterial attachment to plant leaves is promoted. Moreover, these phenotypes are altered in a blue-light receptor mutant. These light-controlled changes during the epiphytic stage cause a reduction in virulence, highlighting the relevance of motility during the entry process to the plant apoplast. This study demonstrated the key role of light perception in the Pto phenotype switching and its effect on virulence.
Collapse
Affiliation(s)
- Isabel Río-Álvarez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Parque Científico y Tecnológico de la UPM. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain; Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, UPM. Avda. Complutense S/N, 28040, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Correa F, Ko WH, Ocasio V, Bogomolni RA, Gardner KH. Blue light regulated two-component systems: enzymatic and functional analyses of light-oxygen-voltage (LOV)-histidine kinases and downstream response regulators. Biochemistry 2013; 52:4656-66. [PMID: 23806044 DOI: 10.1021/bi400617y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Light is an essential environmental cue for diverse organisms. Many prokaryotic blue light photoreceptors use light, oxygen, voltage (LOV) sensory domains to control the activities of diverse output domains, including histidine kinases (HK). Upon activation, these proteins autophosphorylate a histidine residue before subsequently transferring the phosphate to an aspartate residue in the receiver domain of a cognate response regulator (RR). Such phosphorylation activates the output domain of the RR, leading to changes in gene expression, protein-protein interactions, or enzymatic activities. Here, we focus on one such light sensing LOV-HK from the marine bacterium Erythrobacter litoralis HTCC2594 (EL368), seeking to understand how kinase activity and subsequent downstream effects are regulated by light. We found that photoactivation of EL368 led to a significant enhancement in the incorporation of phosphate within the HK domain. Further enzymatic studies showed that the LOV domain affected both the LOV-HK turnover rate (kcat) and Km in a light-dependent manner. Using in vitro phosphotransfer profiling, we identified two target RRs for EL368 and two additional LOV-HKs (EL346 and EL362) encoded within the host genome. The two RRs include a PhyR-type transcriptional regulator (EL_PhyR) and a receiver-only protein (EL_LovR), reminiscent of stress-triggered systems in other bacteria. Taken together, our data provide a biochemical foundation for this light-regulated signaling module of sensors, effectors, and regulators that control bacterial responses to environmental conditions.
Collapse
Affiliation(s)
- Fernando Correa
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center , Dallas, Texas 75390, United States
| | | | | | | | | |
Collapse
|
48
|
Light regulation of swarming motility in Pseudomonas syringae integrates signaling pathways mediated by a bacteriophytochrome and a LOV protein. mBio 2013; 4:e00334-13. [PMID: 23760465 PMCID: PMC3684834 DOI: 10.1128/mbio.00334-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The biological and regulatory roles of photosensory proteins are poorly understood for nonphotosynthetic bacteria. The foliar bacterial pathogen Pseudomonas syringae has three photosensory protein-encoding genes that are predicted to encode the blue-light-sensing LOV (light, oxygen, or voltage) histidine kinase (LOV-HK) and two red/far-red-light-sensing bacteriophytochromes, BphP1 and BphP2. We provide evidence that LOV-HK and BphP1 form an integrated network that regulates swarming motility in response to multiple light wavelengths. The swarming motility of P. syringae B728a deletion mutants indicated that LOV-HK positively regulates swarming motility in response to blue light and BphP1 negatively regulates swarming motility in response to red and far-red light. BphP2 does not detectably regulate swarming motility. The histidine kinase activity of each LOV-HK and BphP1 is required for this regulation based on the loss of complementation upon mutation of residues key to their kinase activity. Surprisingly, mutants lacking both lov and bphP1 were similar in motility to a bphP1 single mutant in blue light, indicating that the loss of bphP1 is epistatic to the loss of lov and also that BphP1 unexpectedly responds to blue light. Moreover, whereas expression of bphP1 did not alter motility under blue light in a bphP1 mutant, it reduced motility in a mutant lacking lov and bphP1, demonstrating that LOV-HK positively regulates motility by suppressing negative regulation by BphP1. These results are the first to show cross talk between the LOV protein and phytochrome signaling pathways in bacteria, and the similarity of this regulatory network to that of photoreceptors in plants suggests a possible common ancestry. IMPORTANCE Photosensory proteins enable organisms to perceive and respond to light. The biological and ecological roles of these proteins in nonphotosynthetic bacteria are largely unknown. This study discovered that a blue-light-sensing LOV (light, oxygen, or voltage) protein and a red/far-red-light-sensing bacteriophytochrome both regulate swarming motility in the foliar pathogen Pseudomonas syringae. These proteins form an integrated signaling network in which the bacteriophytochrome represses swarming motility in response to red, far-red, and blue light, and LOV positively regulates swarming motility by suppressing bacteriophytochrome-mediated blue-light signaling. This is the first example of cross talk between LOV and phytochrome signaling pathways in bacteria, which shows unexpected similarity to photoreceptor signaling in plants.
Collapse
|
49
|
Huang TP, Lu KM, Chen YH. A novel two-component response regulator links rpf with biofilm formation and virulence of Xanthomonas axonopodis pv. citri. PLoS One 2013; 8:e62824. [PMID: 23626857 PMCID: PMC3633832 DOI: 10.1371/journal.pone.0062824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a serious disease that impacts citrus production worldwide, and X. axonopodis pv. citri is listed as a quarantine pest in certain countries. Biofilm formation is important for the successful development of a pathogenic relationship between various bacteria and their host(s). To understand the mechanisms of biofilm formation by X. axonopodis pv. citri strain XW19, the strain was subjected to transposon mutagenesis. One mutant with a mutation in a two-component response regulator gene that was deficient in biofilm formation on a polystyrene microplate was selected for further study. The protein was designated as BfdR for biofilm formation defective regulator. BfdR from strain XW19 shares 100% amino acid sequence identity with XAC1284 of X. axonopodis pv. citri strain 306 and 30-100% identity with two-component response regulators in various pathogens and environmental microorganisms. The bfdR mutant strain exhibited significantly decreased biofilm formation on the leaf surfaces of Mexican lime compared with the wild type strain. The bfdR mutant was also compromised in its ability to cause canker lesions. The wild-type phenotype was restored by providing pbfdR in trans in the bfdR mutant. Our data indicated that BfdR did not regulate the production of virulence-related extracellular enzymes including amylase, lipase, protease, and lecithinase or the expression of hrpG, rfbC, and katE; however, BfdR controlled the expression of rpfF in XVM2 medium, which mimics cytoplasmic fluids in planta. In conclusion, biofilm formation on leaf surfaces of citrus is important for canker development in X. axonopodis pv. citri XW19. The process is controlled by the two-component response regulator BfdR via regulation of rpfF, which is required for the biosynthesis of a diffusible signal factor.
Collapse
Affiliation(s)
- Tzu-Pi Huang
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan.
| | | | | |
Collapse
|
50
|
Mandalari C, Losi A, Gärtner W. Distance-tree analysis, distribution and co-presence of bilin- and flavin-binding prokaryotic photoreceptors for visible light. Photochem Photobiol Sci 2013; 12:1144-57. [DOI: 10.1039/c3pp25404f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|