1
|
Akolawala Q, Keuning F, Rovituso M, van Burik W, van der Wal E, Versteeg HH, Rondon AMR, Accardo A. Micro-Vessels-Like 3D Scaffolds for Studying the Proton Radiobiology of Glioblastoma-Endothelial Cells Co-Culture Models. Adv Healthc Mater 2024; 13:e2302988. [PMID: 37944591 PMCID: PMC11468971 DOI: 10.1002/adhm.202302988] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Glioblastoma (GBM) is a devastating cancer of the brain with an extremely poor prognosis. While X-ray radiotherapy and chemotherapy remain the current standard, proton beam therapy is an appealing alternative as protons can damage cancer cells while sparing the surrounding healthy tissue. However, the effects of protons on in vitro GBM models at the cellular level, especially when co-cultured with endothelial cells, the building blocks of brain micro-vessels, are still unexplored. In this work, novel 3D-engineered scaffolds inspired by the geometry of brain microvasculature are designed, where GBM cells cluster and proliferate. The architectures are fabricated by two-photon polymerization (2PP), pre-cultured with endothelial cells (HUVECs), and then cultured with a human GBM cell line (U251). The micro-vessel structures enable GBM in vivo-like morphologies, and the results show a higher DNA double-strand breakage in GBM monoculture samples when compared to the U251/HUVECs co-culture, with cells in 2D featuring a larger number of DNA damage foci when compared to cells in 3D. The discrepancy in terms of proton radiation response indicates a difference in the radioresistance of the GBM cells mediated by the presence of HUVECs and the possible induction of stemness features that contribute to radioresistance and improved DNA repair.
Collapse
Affiliation(s)
- Qais Akolawala
- Department of Precision and Microsystems EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyMekelweg 22628 CDDelftThe Netherlands
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Floor Keuning
- Erasmus University CollegeNieuwemarkt 1A, Rotterdam3011 HPRotterdamThe Netherlands
| | - Marta Rovituso
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Wouter van Burik
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Ernst van der Wal
- Holland Proton Therapy Center (HollandPTC)Huismansingel 42629 JHDelftThe Netherlands
| | - Henri H. Versteeg
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Araci M. R. Rondon
- Einthoven Laboratory for Vascular and Regenerative MedicineDivision of Thrombosis and HemostasisDepartment of Internal MedicineLeiden University Medical CenterAlbinusdreef 22333 ZALeidenThe Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems EngineeringFaculty of MechanicalMaritime and Materials EngineeringDelft University of TechnologyMekelweg 22628 CDDelftThe Netherlands
| |
Collapse
|
2
|
Neizer-Ashun F, Dwivedi S, Dey A, Thavathiru E, Berry W, Lees-Miller S, Mukherjee P, Bhattacharya R. KRCC1, a modulator of the DNA damage response. Nucleic Acids Res 2022; 50:11028-11039. [PMID: 36243983 PMCID: PMC9638924 DOI: 10.1093/nar/gkac890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
The lysine-rich coiled-coil 1 (KRCC1) protein is overexpressed in multiple malignancies, including ovarian cancer, and overexpression correlates with poor overall survival. Despite a potential role in cancer progression, the biology of KRCC1 remains elusive. Here, we characterize the biology of KRCC1 and define its role in the DNA damage response and in cell cycle progression. We demonstrate that KRCC1 associates with the checkpoint kinase 1 (CHK1) upon DNA damage and regulates the CHK1-mediated checkpoint. KRCC1 facilitates RAD51 recombinase foci formation and augments homologous recombination repair. Furthermore, KRCC1 is required for proper S-phase progression and subsequent mitotic entry. Our findings uncover a novel component of the DNA damage response and a potential link between cell cycle, associated damage response and DNA repair.
Collapse
Affiliation(s)
- Fiifi Neizer-Ashun
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Elangovan Thavathiru
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - William L Berry
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susan Patricia Lees-Miller
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
3
|
Akolawala Q, Rovituso M, Versteeg HH, Rondon AMR, Accardo A. Evaluation of Proton-Induced DNA Damage in 3D-Engineered Glioblastoma Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20778-20789. [PMID: 35442634 PMCID: PMC9100514 DOI: 10.1021/acsami.2c03706] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Glioblastoma (GBM) is a devastating cancer of the brain with an extremely poor prognosis. For this reason, besides clinical and preclinical studies, novel in vitro models for the assessment of cancer response to drugs and radiation are being developed. In such context, three-dimensional (3D)-engineered cellular microenvironments, compared to unrealistic two-dimensional (2D) monolayer cell culture, provide a model closer to the in vivo configuration. Concerning cancer treatment, while X-ray radiotherapy and chemotherapy remain the current standard, proton beam therapy is an appealing alternative as protons can be efficiently targeted to destroy cancer cells while sparing the surrounding healthy tissue. However, despite the treatment's compelling biological and medical rationale, little is known about the effects of protons on GBM at the cellular level. In this work, we designed novel 3D-engineered scaffolds inspired by the geometry of brain blood vessels, which cover a vital role in the colonization mechanisms of GBM cells. The architectures were fabricated by two-photon polymerization (2PP), cultured with U-251 GBM cells and integrated for the first time in the context of proton radiation experiments to assess their response to treatment. We employed Gamma H2A.X as a fluorescent biomarker to identify the DNA damage induced in the cells by proton beams. The results show a higher DNA double-strand breakage in 2D cell monolayers as compared to cells cultured in 3D. The discrepancy in terms of proton radiation response could indicate a difference in the radioresistance of the GBM cells or in the rate of repair kinetics between 2D cell monolayers and 3D cell networks. Thus, these biomimetic-engineered 3D scaffolds pave the way for the realization of a benchmark tool that can be used to routinely assess the effects of proton therapy on 3D GBM cell networks and other types of cancer cells.
Collapse
Affiliation(s)
- Qais Akolawala
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD Delft, The Netherlands
| | - Marta Rovituso
- Holland
Proton Therapy Center (HollandPTC), Huismansingel 4, 2629 JH Delft, The Netherlands
| | - Henri H. Versteeg
- Einthoven
Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis
and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Araci M. R. Rondon
- Einthoven
Laboratory for Vascular and Regenerative Medicine, Division of Thrombosis
and Hemostasis, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Angelo Accardo
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628
CD Delft, The Netherlands
- . Tel: +31 (0)15 27 81610
| |
Collapse
|
4
|
Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer. Cells 2021; 10:cells10092387. [PMID: 34572036 PMCID: PMC8468328 DOI: 10.3390/cells10092387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is the most common cancer in aging men. Despite recent progress, there are still few effective treatments to cure its aggressive and metastatic stages. A better understanding of the molecular mechanisms driving disease initiation and progression appears essential to support the development of more efficient therapies and improve patient care. To do so, multiple research models, such as cell culture and mouse models, have been developed over the years and have improved our comprehension of the biology of the disease. Recently, a new model has been added with the use of the Drosophila accessory gland. With a high level of conservation of major signaling pathways implicated in human disease, this functional equivalent of the prostate represents a powerful, inexpensive, and rapid in vivo model to study epithelial carcinogenesis. The purpose of this review is to quickly overview the existing prostate cancer models, including their strengths and limitations. In particular, we discuss how the Drosophila accessory gland can be integrated as a convenient complementary model by bringing new understanding in the mechanisms driving prostate epithelial tumorigenesis, from initiation to metastatic formation.
Collapse
|
5
|
A Novel Nanobody Precisely Visualizes Phosphorylated Histone H2AX in Living Cancer Cells under Drug-Induced Replication Stress. Cancers (Basel) 2021; 13:cancers13133317. [PMID: 34282773 PMCID: PMC8267817 DOI: 10.3390/cancers13133317] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary γ-H2AX, a phosphorylated variant of histone H2A, is a widely used biomarker of DNA replication stress. To develop an immunological probe able to detect and track γ-H2AX in live cancer cells, we have isolated single domain antibodies (called nanobodies) that are easily expressed as functional recombinant proteins and here we report the extensive characterization of a novel nanobody that specifically recognizes γ-H2AX. The interaction of this nanobody with the C-terminal end of γ-H2AX was determined by X-ray crystallography. Moreover, the generation of a bivalent nanobody allowed us to precisely detect γ-H2AX foci in drug-treated cells as efficiently as with commercially available conventional antibodies. Furthermore, we tracked γ-H2AX foci in live cells upon intracellular delivery of the bivalent nanobody fused to the red fluorescent protein dTomato, making, consequently, this new cost-effective reagent useful for studying drug-induced replication stress in both fixed and living cancer cells. Abstract Histone H2AX phosphorylated at serine 139 (γ-H2AX) is a hallmark of DNA damage, signaling the presence of DNA double-strand breaks and global replication stress in mammalian cells. While γ-H2AX can be visualized with antibodies in fixed cells, its detection in living cells was so far not possible. Here, we used immune libraries and phage display to isolate nanobodies that specifically bind to γ-H2AX. We solved the crystal structure of the most soluble nanobody in complex with the phosphopeptide corresponding to the C-terminus of γ-H2AX and show the atomic constituents behind its specificity. We engineered a bivalent version of this nanobody and show that bivalency is essential to quantitatively visualize γ-H2AX in fixed drug-treated cells. After labelling with a chemical fluorophore, we were able to detect γ-H2AX in a single-step assay with the same sensitivity as with validated antibodies. Moreover, we produced fluorescent nanobody-dTomato fusion proteins and applied a transduction strategy to visualize with precision γ-H2AX foci present in intact living cells following drug treatment. Together, this novel tool allows performing fast screenings of genotoxic drugs and enables to study the dynamics of this particular chromatin modification in individual cancer cells under a variety of conditions.
Collapse
|
6
|
Alessio N, Acar MB, Demirsoy IH, Squillaro T, Siniscalco D, Bernardo GD, Peluso G, Özcan S, Galderisi U. Obesity is associated with senescence of mesenchymal stromal cells derived from bone marrow, subcutaneous and visceral fat of young mice. Aging (Albany NY) 2020; 12:12609-12621. [PMID: 32634118 PMCID: PMC7377882 DOI: 10.18632/aging.103606] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
White adipose tissue (WAT) is distributed in several depots with distinct metabolic and inflammatory functions. In our body there are subcutaneous (sWAT), visceral (vWAT) and bone marrow (bWAT) fat depots. Obesity affects the size, function and inflammatory state of WATs. In particular, obesity may affect the activity of mesenchymal stromal cells (MSCs) present in WAT. MSCs are a heterogeneous population containing stromal cells, progenitor cells, fibroblasts and stem cells that are able to differentiate among adipocytes, chondrocytes, osteocytes and other mesodermal derivatives.In the first study of this kind, we performed a comparison of the effects of obesity on MSCs obtained from sWAT, vWAT and bWAT. Our study showed that obesity affects mainly the biological functions of MSCs obtained from bone marrow and vWAT by decreasing the proliferation rate, reducing the percentage of cells in S phase and triggering senescence. The onset of senescence was confirmed by expression of genes belonging to RB and P53 pathways.Our study revealed that the negative consequences of obesity on body physiology may also be related to impairment in the functions of the stromal compartment present in the several adipose tissues. This finding provides new insights as to the targets that should be considered for an effective treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Mustafa B. Acar
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Ibrahim H. Demirsoy
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Dario Siniscalco
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
| | | | - Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Luigi Vanvitelli Campania University, Naples, Italy
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
7
|
Yin L, Siracusa JS, Measel E, Guan X, Edenfield C, Liang S, Yu X. High-Content Image-Based Single-Cell Phenotypic Analysis for the Testicular Toxicity Prediction Induced by Bisphenol A and Its Analogs Bisphenol S, Bisphenol AF, and Tetrabromobisphenol A in a Three-Dimensional Testicular Cell Co-culture Model. Toxicol Sci 2020; 173:313-335. [PMID: 31750923 PMCID: PMC6986343 DOI: 10.1093/toxsci/kfz233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Emerging data indicate that structural analogs of bisphenol A (BPA) such as bisphenol S (BPS), tetrabromobisphenol A (TBBPA), and bisphenol AF (BPAF) have been introduced into the market as substitutes for BPA. Our previous study compared in vitro testicular toxicity using murine C18-4 spermatogonial cells and found that BPAF and TBBPA exhibited higher spermatogonial toxicities as compared with BPA and BPS. Recently, we developed a novel in vitro three-dimensional (3D) testicular cell co-culture model, enabling the classification of reproductive toxic substances. In this study, we applied the testicular cell co-culture model and employed a high-content image (HCA)-based single-cell analysis to further compare the testicular toxicities of BPA and its analogs. We also developed a machine learning (ML)-based HCA pipeline to examine the complex phenotypic changes associated with testicular toxicities. We found dose- and time-dependent changes in a wide spectrum of adverse endpoints, including nuclear morphology, DNA synthesis, DNA damage, and cytoskeletal structure in a single-cell-based analysis. The co-cultured testicular cells were more sensitive than the C18 spermatogonial cells in response to BPA and its analogs. Unlike conventional population-averaged assays, single-cell-based assays not only showed the levels of the averaged population, but also revealed changes in the sub-population. Machine learning-based phenotypic analysis revealed that treatment of BPA and its analogs resulted in the loss of spatial cytoskeletal structure, and an accumulation of M phase cells in a dose- and time-dependent manner. Furthermore, treatment of BPAF-induced multinucleated cells, which were associated with altered DNA damage response and impaired cellular F-actin filaments. Overall, we demonstrated a new and effective means to evaluate multiple toxic endpoints in the testicular co-culture model through the combination of ML and high-content image-based single-cell analysis. This approach provided an in-depth analysis of the multi-dimensional HCA data and provided an unbiased quantitative analysis of the phenotypes of interest.
Collapse
Affiliation(s)
- Lei Yin
- ReproTox Biotech LLC, Athens, Georgia 30602
| | - Jacob Steven Siracusa
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia
| | - Emily Measel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia
| | | | - Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia
| | - Shenxuan Liang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia
| | - Xiaozhong Yu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia
| |
Collapse
|
8
|
Geißler D, Wegmann M, Jochum T, Somma V, Sowa M, Scholz J, Fröhlich E, Hoffmann K, Niehaus J, Roggenbuck D, Resch-Genger U. An automatable platform for genotoxicity testing of nanomaterials based on the fluorometric γ-H2AX assay reveals no genotoxicity of properly surface-shielded cadmium-based quantum dots. NANOSCALE 2019; 11:13458-13468. [PMID: 31287475 DOI: 10.1039/c9nr01021a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The large number of nanomaterial-based applications emerging in the materials and life sciences and the foreseeable increasing use of these materials require methods that evaluate and characterize the toxic potential of these nanomaterials to keep safety risks to people and environment as low as possible. As nanomaterial toxicity is influenced by a variety of parameters like size, shape, chemical composition, and surface chemistry, high throughput screening (HTS) platforms are recommended for assessing cytotoxicity. Such platforms are not yet available for genotoxicity testing. Here, we present first results obtained for application-relevant nanomaterials using an automatable genotoxicity platform that relies on the quantification of the phosphorylated histone H2AX (γ-H2AX) for detecting DNA double strand breaks (DSBs) and the automated microscope system AKLIDES® for measuring integral fluorescence intensities at different excitation wavelengths. This platform is used to test the genotoxic potential of 30 nm-sized citrate-stabilized gold nanoparticles (Au-NPs) as well as micellar encapsulated iron oxide nanoparticles (FeOx-NPs) and different cadmium (Cd)-based semiconductor quantum dots (QDs), thereby also searching for positive and negative controls as reference materials. In addition, the influence of the QD shell composition on the genotoxic potential of these Cd-based QDs was studied, using CdSe cores as well as CdSe/CdS core/shell and CdSe/CdS/ZnS core/shell/shell QDs. Our results clearly revealed the genotoxicity of the Au-NPs and its absence in the FeOx-NPs. The genotoxicity of the Cd-QDs correlates with the shielding of their Cd-containing core, with the core/shell/shell architecture preventing genotoxicity risks. The fact that none of these nanomaterials showed cytotoxicity at the chosen particle concentrations in a conventional cell viability assay underlines the importance of genotoxicity studies to assess the hazardous potential of nanomaterials.
Collapse
Affiliation(s)
- D Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - M Wegmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany. and MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - T Jochum
- Fraunhofer-Zentrum für Angewandte Nanotechnologie CAN, Grindelallee 117, 20146 Hamburg, Germany
| | - V Somma
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - M Sowa
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - J Scholz
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany
| | - E Fröhlich
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - K Hoffmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - J Niehaus
- Medizinische Universität Graz, Zentrum für Medizinische Forschung (ZMF), Stiftingtalstrasse 24, 8010 Graz, Austria
| | - D Roggenbuck
- MEDIPAN GmbH, Ludwig-Erhard-Ring 3, 15827 Dahlewitz, Germany and Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology, Germany
| | - U Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Division 1.2 Biophotonics, Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| |
Collapse
|
9
|
Squillaro T, Alessio N, Capasso S, Di Bernardo G, Melone MAB, Peluso G, Galderisi U. Senescence Phenomena and Metabolic Alteration in Mesenchymal Stromal Cells from a Mouse Model of Rett Syndrome. Int J Mol Sci 2019; 20:ijms20102508. [PMID: 31117273 PMCID: PMC6567034 DOI: 10.3390/ijms20102508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/17/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
Chromatin modifiers play a crucial role in maintaining cell identity through modulation of gene expression patterns. Their deregulation can have profound effects on cell fate and functions. Among epigenetic regulators, the MECP2 protein is particularly attractive. Mutations in the Mecp2 gene are responsible for more than 90% of cases of Rett syndrome (RTT), a progressive neurodevelopmental disorder. As a chromatin modulator, MECP2 can have a key role in the government of stem cell biology. Previously, we showed that deregulated MECP2 expression triggers senescence in mesenchymal stromal cells (MSCs) from (RTT) patients. Over the last few decades, it has emerged that senescent cells show alterations in the metabolic state. Metabolic changes related to stem cell senescence are particularly detrimental, since they contribute to the exhaustion of stem cell compartments, which in turn determine the falling in tissue renewal and functionality. Herein, we dissect the role of impaired MECP2 function in triggering senescence along with other senescence-related aspects, such as metabolism, in MSCs from a mouse model of RTT. We found that MECP2 deficiencies lead to senescence and impaired mitochondrial energy production. Our results support the idea that an alteration in mitochondria metabolic functions could play an important role in the pathogenesis of RTT.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Advanced Medical and Surgical Sciences, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy.
| | - Nicola Alessio
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy.
| | - Stefania Capasso
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy.
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy.
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, Center for Rare Diseases and Inter University Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", via Sergio Pansini, 5, 80131 Naples, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, BioLife Building (015-00)1900 North 12th Street, Temple University, Philadelphia, PA 19122-6078, USA.
| | - Gianfranco Peluso
- USA Research Institute on Terrestrial Ecosystems, National Research Council, via Pietro Castellino, 111, 80131 Naples, Italy.
| | - Umberto Galderisi
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, BioLife Building (015-00)1900 North 12th Street, Temple University, Philadelphia, PA 19122-6078, USA.
| |
Collapse
|
10
|
Moeglin E, Desplancq D, Conic S, Oulad-Abdelghani M, Stoessel A, Chiper M, Vigneron M, Didier P, Tora L, Weiss E. Uniform Widespread Nuclear Phosphorylation of Histone H2AX Is an Indicator of Lethal DNA Replication Stress. Cancers (Basel) 2019; 11:E355. [PMID: 30871194 PMCID: PMC6468890 DOI: 10.3390/cancers11030355] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphorylated histone H2AX (γ-H2AX), a central player in the DNA damage response (DDR), serves as a biomarker of DNA double-strand break repair. Although DNA damage is generally visualized by the formation of γ-H2AX foci in injured nuclei, it is unclear whether the widespread uniform nuclear γ-H2AX (called pan-nuclear) pattern occurring upon intense replication stress (RS) is linked to DDR. Using a novel monoclonal antibody that binds exclusively to the phosphorylated C-terminus of H2AX, we demonstrate that H2AX phosphorylation is systematically pan-nuclear in cancer cells stressed with RS-inducing drugs just before they die. The pan-nuclear γ-H2AX pattern is abolished by inhibition of the DNA-PK kinase. Cell death induction of cancer cells treated with increasing combinations of replication and kinase (ATR and Chk1) inhibitory drugs was proportional to the appearance of pan-nuclear γ-H2AX pattern. Delivery of labeled anti-γ-H2AX Fabs in stressed cells demonstrated at a single cell level that pan-nuclear γ-H2AX formation precedes irreversible cell death. Moreover, we show that H2AX is not required for RS-induced cell death in HeLa cells. Thus, the nuclear-wide formation of γ-H2AX is an incident of RS-induced cell death and, thus, the pan nuclear H2AX pattern should be regarded as an indicator of lethal RS-inducing drug efficacy.
Collapse
Affiliation(s)
- Eric Moeglin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS/Université de Strasbourg, Boulevard S. Brant, 67412 Illlkirch, France.
| | - Dominique Desplancq
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS/Université de Strasbourg, Boulevard S. Brant, 67412 Illlkirch, France.
| | - Sascha Conic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.
- Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.
- Université de Strasbourg, UMR 7104, 67404 Illkirch, France.
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.
- Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.
- Université de Strasbourg, UMR 7104, 67404 Illkirch, France.
| | - Audrey Stoessel
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS/Université de Strasbourg, Boulevard S. Brant, 67412 Illlkirch, France.
| | - Manuela Chiper
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS/Université de Strasbourg, Boulevard S. Brant, 67412 Illlkirch, France.
| | - Marc Vigneron
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS/Université de Strasbourg, Boulevard S. Brant, 67412 Illlkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7213, CNRS/Université de Strasbourg, Route du Rhin, 67401 Illkirch, France.
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.
- Centre National de la Recherche Scientifique, UMR 7104, 67404 Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France.
- Université de Strasbourg, UMR 7104, 67404 Illkirch, France.
| | - Etienne Weiss
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS/Université de Strasbourg, Boulevard S. Brant, 67412 Illlkirch, France.
| |
Collapse
|
11
|
Alessio N, Squillaro T, Özcan S, Di Bernardo G, Venditti M, Melone M, Peluso G, Galderisi U. Stress and stem cells: adult Muse cells tolerate extensive genotoxic stimuli better than mesenchymal stromal cells. Oncotarget 2018; 9:19328-19341. [PMID: 29721206 PMCID: PMC5922400 DOI: 10.18632/oncotarget.25039] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/17/2018] [Indexed: 01/28/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are not a homogenous population but comprehend several cell types, such as stem cells, progenitor cells, fibroblasts, and other types of cells. Among these is a population of pluripotent stem cells, which represent around 1–3% of MSCs. These cells, named multilineage-differentiating stress enduring (Muse) cells, are stress-tolerant cells. Stem cells may undergo several rounds of intrinsic and extrinsic stresses due to their long life and must have a robust and effective DNA damage checkpoint and DNA repair mechanism, which, following a genotoxic episode, promote the complete recovery of cells rather than triggering senescence and/or apoptosis. We evaluated how Muse cells can cope with DNA damaging stress in comparison with MSCs. We found that Muse cells were resistant to chemical and physical genotoxic stresses better than non-Muse cells. Indeed, the level of senescence and apoptosis was lower in Muse cells. Our results proved that the DNA damage repair system (DDR) was properly activated following injury in Muse cells. While in non-Muse cells some anomalies may have occurred because, in some cases, the activation of the DDR persisted by 48 hr post damage, in others no activation took place. In Muse cells, the non-homologous end joining (NHEJ) enzymatic activity increases compared to other cells, while single-strand repair activity (NER, BER) does not. In conclusion, the high ability of Muse cells to cope with genotoxic stress is related to their quick and efficient sensing of DNA damage and activation of DNA repair systems.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli," Naples, Italy
| | - Tiziana Squillaro
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli," Naples, Italy
| | - Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli," Naples, Italy
| | - Massimo Venditti
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli," Naples, Italy
| | - Mariarosa Melone
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA.,2nd Division of Neurology, Center for Rare Diseases & InterUniversity Center for Research in Neurosciences, Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | | | - Umberto Galderisi
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Department of Experimental Medicine, Campania University "Luigi Vanvitelli," Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Squillaro T, Alessio N, Di Bernardo G, Özcan S, Peluso G, Galderisi U. Stem Cells and DNA Repair Capacity: Muse Stem Cells Are Among the Best Performers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:103-113. [PMID: 30484225 DOI: 10.1007/978-4-431-56847-6_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stem cells persist for long periods in the body and experience many intrinsic and extrinsic stresses. For this reason, they present a powerful and effective DNA repair system in order to properly fix DNA damage and avoid the onset of a degenerative process, such as neoplastic transformation or aging. In this chapter, we compare the DNA repair ability of pluripotent stem cells (ESCs, iPSCs, and Muse cells) and other adult stem cells. We also describe personal investigations showing a robust and effective capacity of Muse cells in sensing and repairing DNA following chemical and physical stress. Muse cells can repair DNA through base and nucleotide excision repair mechanisms, BER and NER, respectively. Furthermore, they present a pronounced capacity in repairing double-strand breaks by the nonhomologous end joining (NHEJ) process. The studies addressing the role of DNA damage repair in the biology of stem cells are of paramount importance for comprehension of their functions and, also, for setting up effective and safe stem cell-based therapy.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | - Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Gianfranco Peluso
- Institute of Agro-Environmental and Forest Biology, CNR, Naples, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy.
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Alessio N, Esposito G, Galano G, De Rosa R, Anello P, Peluso G, Tabocchini MA, Galderisi U. Irradiation of Mesenchymal Stromal Cells With Low and High Doses of Alpha Particles Induces Senescence and/or Apoptosis. J Cell Biochem 2017; 118:2993-3002. [PMID: 28252222 DOI: 10.1002/jcb.25961] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/28/2017] [Indexed: 12/25/2022]
Abstract
The use of high-linear energy transfer charged particles is gaining attention as a medical tool because of the emission of radiations with an efficient cell-killing ability. Considerable interest has developed in the use of targeted alpha-particle therapy for the treatment of micrometastases. Moreover, the use of helium beams is gaining momentum, especially for treating pediatric tumors. We analyzed the effects of alpha particles on bone marrow mesenchymal stromal cells (MSCs), which have a subpopulation of stem cells capable of generating adipocytes, chondrocytes, and osteocytes. Further, these cells contribute toward maintenance of homeostasis in the body. MSCs were irradiated with low and high doses of alpha particles or X-rays and a comparative biological analysis was performed. At a low dose (40 mGy), alpha particles exhibited a limited negative effect on the biology of MSCs compared with X-rays. No significant perturbation of cell cycle was observed, and a minimal increase in apoptosis or senescence was detected. Self-renewal was preserved as revealed by the CFU assay. On the contrary, with 2000 mGy alpha particles, we observed adverse effects on the vitality, functionality, and stemness of MSCs. These results are the consequence of different proportion of cells targeted by alpha particles or X-rays and the quality of induced DNA damage. The present study suggests that radiotherapy with alpha particles may spare healthy stem cells more efficaciously than X-ray treatments, an observation that should be taken into consideration by physicians while planning irradiation of tumor areas close to stem cell niches, such as bone marrow. J. Cell. Biochem. 118: 2993-3002, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Esposito
- Technology and Health Department, National Institute of Health, Rome, Italy.,National Institute of Nuclear Physics, Section Roma 1, Rome, Italy
| | - Giovanni Galano
- PSI Napoli Est - Laboratory UO, ASL Napoli 1 Centro, Naples, Italy
| | - Roberto De Rosa
- PSI Napoli Est - Radiology UO, ASL Napoli 1 Centro, Naples, Italy
| | - Pasquale Anello
- Technology and Health Department, National Institute of Health, Rome, Italy
| | - Gianfranco Peluso
- Institute of Agro-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
| | - Maria Antonella Tabocchini
- Technology and Health Department, National Institute of Health, Rome, Italy.,National Institute of Nuclear Physics, Section Roma 1, Rome, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Campania University "Luigi Vanvitelli", Naples, Italy.,Institute of Agro-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Squillaro T, Antonucci I, Alessio N, Esposito A, Cipollaro M, Melone MAB, Peluso G, Stuppia L, Galderisi U. Impact of lysosomal storage disorders on biology of mesenchymal stem cells: Evidences from in vitro silencing of glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes. J Cell Physiol 2017; 232:3454-3467. [PMID: 28098348 DOI: 10.1002/jcp.25807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/27/2022]
Abstract
Lysosomal storage disorders (LDS) comprise a group of rare multisystemic diseases resulting from inherited gene mutations that impair lysosomal homeostasis. The most common LSDs, Gaucher disease (GD), and Fabry disease (FD) are caused by deficiencies in the lysosomal glucocerebrosidase (GBA) and alpha-galactosidase A (GLA) enzymes, respectively. Given the systemic nature of enzyme deficiency, we hypothesized that the stem cell compartment of GD and FD patients might be also affected. Among stem cells, mesenchymal stem cells (MSCs) are a commonly investigated population given their role in hematopoiesis and the homeostatic maintenance of many organs and tissues. Since the impairment of MSC functions could pose profound consequences on body physiology, we evaluated whether GBA and GLA silencing could affect the biology of MSCs isolated from bone marrow and amniotic fluid. Those cell populations were chosen given the former's key role in organ physiology and the latter's intriguing potential as an alternative stem cell model for human genetic disease. Our results revealed that GBA and GLA deficiencies prompted cell cycle arrest along with the impairment of autophagic flux and an increase of apoptotic and senescent cell percentages. Moreover, an increase in ataxia-telangiectasia-mutated staining 1 hr after oxidative stress induction and a return to basal level at 48 hr, along with persistent gamma-H2AX staining, indicated that MSCs properly activated DNA repair signaling, though some damages remained unrepaired. Our data therefore suggest that MSCs with reduced GBA or GLA activity are prone to apoptosis and senescence due to impaired autophagy and DNA repair capacity.
Collapse
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Bioscience and Bioresources, National Research Council, Naples, Italy
| | - Ivana Antonucci
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
| | - Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Esposito
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging; Division of Neurology and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gianfranco Peluso
- Institute of Bioscience and Bioresources, National Research Council, Naples, Italy
| | - Liborio Stuppia
- Laboratory of Molecular Genetics, Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, G. d'Annunzio University, Chieti-Pescara, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
15
|
Yadav AK, Srikrishna S, Gupta SC. Cancer Drug Development Using Drosophila as an in vivo Tool: From Bedside to Bench and Back. Trends Pharmacol Sci 2016; 37:789-806. [PMID: 27298020 DOI: 10.1016/j.tips.2016.05.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
The fruit fly Drosophila melanogaster has been used for modeling cancer and as an in vivo tool for the validation and/or development of cancer therapeutics. The impetus for the use of Drosophila in cancer research stems from the high conservation of its signaling pathways, lower genetic redundancy, short life cycle, genetic amenability, and ease of maintenance. Several cell signaling pathways in Drosophila have been used for cancer drug development. The efficacy of combination therapy and uptake/bioavailability of drugs have also been studied. Drosophila has been validated using several FDA-approved drugs, suggesting a potential application of this model in drug repurposing. The model is emerging as a powerful tool for high-throughput screening and should significantly reduce the cost and time associated with drug development. In this review we discuss the applications of Drosophila in cancer drug development. The advantages and limitations of the model are discussed.
Collapse
Affiliation(s)
- Amarish Kumar Yadav
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India
| | - Saripella Srikrishna
- Cancer and Neurobiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
16
|
Alessio N, Del Gaudio S, Capasso S, Di Bernardo G, Cappabianca S, Cipollaro M, Peluso G, Galderisi U. Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process. Oncotarget 2016; 6:8155-66. [PMID: 25544750 PMCID: PMC4480742 DOI: 10.18632/oncotarget.2692] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/02/2014] [Indexed: 12/20/2022] Open
Abstract
Low doses of radiation may have profound effects on cellular function. Individuals may be exposed to low doses of radiation either intentionally for medical purposes or accidentally, such as those exposed to radiological terrorism or those who live near illegal radioactive waste dumpsites.We studied the effects of low dose radiation on human bone marrow mesenchymal stromal cells (MSC), which contain a subpopulation of stem cells able to differentiate in bone, cartilage, and fat; support hematopoiesis; and contribute to body's homeostasis.The main outcome of low radiation exposure, besides reduction of cell cycling, is the triggering of senescence, while the contribution to apoptosis is minimal. We also showed that low radiation affected the autophagic flux. We hypothesize that the autophagy prevented radiation deteriorative processes, and its decline contributed to senescence.An increase in ATM staining one and six hours post-irradiation and return to basal level at 48 hours, along with persistent gamma-H2AX staining, indicated that MSC properly activated the DNA repair signaling, though some damages remained unrepaired, mainly in non-cycling cells. This suggested that the impaired DNA repair capacity of irradiated MSC seemed mainly related to the reduced activity of a non-homologous end-joining (NHEJ) system rather than HR (homologous recombination).
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples 80138, Italy
| | - Stefania Del Gaudio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples 80138, Italy
| | - Stefania Capasso
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples 80138, Italy
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples 80138, Italy
| | - Salvatore Cappabianca
- Department "F. Magrassi - A. Lanzara" Second University of Naples, Naples 80138, Italy
| | - Marilena Cipollaro
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples 80138, Italy
| | | | - Umberto Galderisi
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19107, USA.,Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples 80138, Italy.,Institute of Bioscience and Bioresources, CNR, Naples 80138, Italy
| |
Collapse
|
17
|
Alessio N, Capasso S, Di Bernardo G, Cappabianca S, Casale F, Calarco A, Cipollaro M, Peluso G, Galderisi U. Mesenchymal stromal cells having inactivated RB1 survive following low irradiation and accumulate damaged DNA: Hints for side effects following radiotherapy. Cell Cycle 2016; 16:251-258. [PMID: 27124644 DOI: 10.1080/15384101.2016.1175798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Following radiotherapy, bone sarcomas account for a significant percentage of recurring tumors. This risk is further increased in patients with hereditary retinoblastoma that undergo radiotherapy. We analyzed the effect of low and medium dose radiation on mesenchymal stromal cells (MSCs) with inactivated RB1 gene to gain insights on the molecular mechanisms that can induce second malignant neoplasm in cancer survivors. MSC cultures contain subpopulations of mesenchymal stem cells and committed progenitors that can differentiate into mesodermal derivatives: adipocytes, chondrocytes, and osteocytes. These stem cells and committed osteoblast precursors are the cell of origin in osteosarcoma, and RB1 gene mutations have a strong role in its pathogenesis. Following 40 and 2000 mGy X-ray exposure, MSCs with inactivated RB1 do not proliferate and accumulate high levels of unrepaired DNA as detected by persistence of gamma-H2AX foci. In samples with inactivated RB1 the radiation treatment did not increase apoptosis, necrosis or senescence versus untreated cells. Following radiation, CFU analysis showed a discrete number of cells with clonogenic capacity in cultures with silenced RB1. We extended our analysis to the other members of retinoblastoma gene family: RB2/P130 and P107. Also in the MSCs with silenced RB2/P130 and P107 we detected the presence of cells with unrepaired DNA following X-ray irradiation. Cells with unrepaired DNA may represent a reservoir of cells that may undergo neoplastic transformation. Our study suggests that, following radiotherapy, cancer patients with mutations of retinoblastoma genes may be under strict controls to evaluate onset of secondary neoplasms following radiotherapy.
Collapse
Affiliation(s)
- Nicola Alessio
- a Department of Experimental Medicine , Biotechnology and Molecular Biology Section, Second University of Naples , Naples , Italy
| | - Stefania Capasso
- a Department of Experimental Medicine , Biotechnology and Molecular Biology Section, Second University of Naples , Naples , Italy
| | - Giovanni Di Bernardo
- a Department of Experimental Medicine , Biotechnology and Molecular Biology Section, Second University of Naples , Naples , Italy
| | - Salvatore Cappabianca
- b Department "F. Magrassi - A. Lanzara" Second University of Naples , Naples , Italy
| | - Fiorina Casale
- c Dipartimento della Donna , del Bambino e di Chirurgia Generale e Specialistica, Second University of Naples , Naples , Italy
| | - Anna Calarco
- d Institute of Bioscience and Bioresources, CNR , Naples , Italy
| | - Marilena Cipollaro
- a Department of Experimental Medicine , Biotechnology and Molecular Biology Section, Second University of Naples , Naples , Italy
| | - Gianfranco Peluso
- b Department "F. Magrassi - A. Lanzara" Second University of Naples , Naples , Italy
| | - Umberto Galderisi
- a Department of Experimental Medicine , Biotechnology and Molecular Biology Section, Second University of Naples , Naples , Italy
| |
Collapse
|
18
|
Siddiqui MS, François M, Fenech MF, Leifert WR. Persistent γH2AX: A promising molecular marker of DNA damage and aging. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:1-19. [PMID: 26596544 DOI: 10.1016/j.mrrev.2015.07.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022]
Abstract
One of the earliest cellular responses to DNA double strand breaks (DSBs) is the phosphorylation of the core histone protein H2AX (termed γH2AX). Persistent γH2AX is the level of γH2AX above baseline, measured at a given time-point beyond which DNA DSBs are normally expected to be repaired (usually persist for days to months). This review summarizes the concept of persistent γH2AX in the context of exogenous source induced DNA DSBs (e.g. ionizing radiation (IR), chemotherapeutic drugs, genotoxic agents), and endogenous γH2AX levels in normal aging and accelerated aging disorders. Summary of the current literature demonstrates the following (i) γH2AX persistence is a common phenomenon that occurs in humans and animals; (ii) nuclei retain persistent γH2AX foci for up to several months after IR exposure, allowing for retrospective biodosimetry; (iii) the combination of various radiosensitizing drugs with ionizing radiation exposure leads to persistent γH2AX response, thus enabling the potential for monitoring cancer patients' response to chemotherapy and radiotherapy as well as tailoring cancer treatments; (iv) persistent γH2AX accumulates in telomeric DNA and in cells undergoing cellular senescence; and (v) increased endogenous γH2AX levels may be associated with diseases of accelerated aging. In summary, measurement of persistent γH2AX could potentially be used as a marker of radiation biodosimetry, evaluating sensitivity to therapeutic genotoxins and radiotherapy, and exploring the association of unrepaired DNA DSBs on telomeres with diseases of accelerated aging.
Collapse
Affiliation(s)
- Mohammad Sabbir Siddiqui
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia; University of Adelaide, School of Agriculture, Food & Wine, Urrbrae, South Australia 5064, Australia
| | - Maxime François
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Michael F Fenech
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Wayne R Leifert
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
19
|
Comparative analysis of the cytotoxic effects of okadaic acid-group toxins on human intestinal cell lines. Mar Drugs 2014; 12:4616-34. [PMID: 25196936 PMCID: PMC4145334 DOI: 10.3390/md12084616] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/12/2014] [Accepted: 08/13/2014] [Indexed: 11/16/2022] Open
Abstract
The phycotoxin, okadaic acid (OA) and dinophysistoxin 1 and 2 (DTX-1 and -2) are protein phosphatase PP2A and PP1 inhibitors involved in diarrhetic shellfish poisoning (DSP). Data on the toxicity of the OA-group toxins show some differences with respect to the in vivo acute toxicity between the toxin members. In order to investigate whether OA and congeners DTX-1 and -2 may induce different mechanisms of action during acute toxicity on the human intestine, we compared their toxicological effects in two in vitro intestinal cell models: the colorectal adenocarcinoma cell line, Caco-2, and the intestinal muco-secreting cell line, HT29-MTX. Using a high content analysis approach, we evaluated various cytotoxicity parameters, including apoptosis (caspase-3 activation), DNA damage (phosphorylation of histone H2AX), inflammation (translocation of NF-κB) and cell proliferation (Ki-67 production). Investigation of the kinetics of the cellular responses demonstrated that the three toxins induced a pro-inflammatory response followed by cell cycle disruption in both cell lines, leading to apoptosis. Our results demonstrate that the three toxins induce similar effects, as no major differences in the cytotoxic responses could be detected. However DTX-1 induced cytotoxic effects at five-fold lower concentrations than for OA and DTX-2.
Collapse
|
20
|
Mäbert K, Cojoc M, Peitzsch C, Kurth I, Souchelnytskyi S, Dubrovska A. Cancer biomarker discovery: current status and future perspectives. Int J Radiat Biol 2014; 90:659-77. [PMID: 24524284 DOI: 10.3109/09553002.2014.892229] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Cancer is a multigene disease which arises as a result of mutational and epigenetic changes coupled with activation of complex signaling networks. The use of biomarkers for early cancer detection, staging and individualization of therapy might improve patient care. A few fundamental issues such as tumor heterogeneity, a highly dynamic nature of the intrinsic and extrinsic determinants of radio- and chemoresistance, along with the plasticity and diversity of cancer stem cells (CSC) make biomarker development a challenging task. In this review we outline the preclinical strategies of cancer biomarker discovery including genomic, proteomic, metabolomic and microRNomic profiling, comparative genome hybridization (CGH), single nucleotide polymorphism (SNP) analysis, high throughput screening (HTS) and next generation sequencing (NGS). Other promising approaches such as assessment of circulating tumor cells (CTC), analysis of CSC-specific markers and cell-free circulating tumor DNA (ctDNA) are also discussed. CONCLUSIONS The emergence of powerful proteomic and genomic technologies in conjunction with advanced bioinformatic tools allows the simultaneous analysis of thousands of biological molecules. These techniques yield the discovery of new tumor signatures, which are sensitive and specific enough for early cancer detection, for monitoring disease progression and for proper treatment selection, paving the way to individualized cancer treatment.
Collapse
Affiliation(s)
- Katrin Mäbert
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Dresden Carl Gustav Carus , TU Dresden , Germany
| | | | | | | | | | | |
Collapse
|
21
|
Singh S, Carpenter AE, Genovesio A. Increasing the Content of High-Content Screening: An Overview. ACTA ACUST UNITED AC 2014; 19:640-50. [PMID: 24710339 PMCID: PMC4230961 DOI: 10.1177/1087057114528537] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/31/2013] [Indexed: 01/17/2023]
Abstract
Target-based high-throughput screening (HTS) has recently been critiqued for its relatively poor yield compared to phenotypic screening approaches. One type of phenotypic screening, image-based high-content screening (HCS), has been seen as particularly promising. In this article, we assess whether HCS is as high content as it can be. We analyze HCS publications and find that although the number of HCS experiments published each year continues to grow steadily, the information content lags behind. We find that a majority of high-content screens published so far (60−80%) made use of only one or two image-based features measured from each sample and disregarded the distribution of those features among each cell population. We discuss several potential explanations, focusing on the hypothesis that data analysis traditions are to blame. This includes practical problems related to managing large and multidimensional HCS data sets as well as the adoption of assay quality statistics from HTS to HCS. Both may have led to the simplification or systematic rejection of assays carrying complex and valuable phenotypic information. We predict that advanced data analysis methods that enable full multiparametric data to be harvested for entire cell populations will enable HCS to finally reach its potential.
Collapse
Affiliation(s)
- Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Auguste Genovesio
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA École Normale Supérieure, 45, Rue d'Ulm, 75005 Paris
| |
Collapse
|
22
|
Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A. Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 2013; 108:378-87. [PMID: 23830195 DOI: 10.1016/j.radonc.2013.06.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/31/2013] [Accepted: 06/05/2013] [Indexed: 12/23/2022]
Abstract
Tumors are known to be heterogeneous containing a dynamic mixture of phenotypically and functionally different tumor cells. The two concepts attempting to explain the origin of intratumor heterogeneity are the cancer stem cell hypothesis and the clonal evolution model. The stochastic model argues that tumors are biologically homogenous and all cancer cells within the tumor have equal ability to propagate the tumor growth depending on continuing mutations and selective pressure. By contrast, the stem cells model suggests that cancer heterogeneity is due to the hierarchy that originates from a small population of cancer stem cells (CSCs) which are biologically distinct from the bulk tumor and possesses self-renewal, tumorigenic and multilineage potential. Although these two hypotheses have been discussed for a long time as mutually exclusive explanations of tumor heterogeneity, they are easily reconciled serving as a driving force of cancer evolution and diversity. Recent discovery of the cancer cell plasticity and heterogeneity makes the CSC population a moving target that could be hard to track and eradicate. Understanding the signaling mechanisms regulating CSCs during the course of cancer treatment can be indispensable for the optimization of current treatment strategies.
Collapse
Affiliation(s)
- Claudia Peitzsch
- OncoRay National Center for Radiation Research in Oncology, University Hospital/Medical Faculty Carl Gustav Carus, TU Dresden, Germany
| | | | | | | | | |
Collapse
|
23
|
Wang Y, Wang H, Zhang W, Shao C, Xu P, Shi CH, Shi JG, Li YM, Fu Q, Xue W, Lei YH, Gao JY, Wang JY, Gao XP, Li JQ, Yuan JL, Zhang YT. Genistein sensitizes bladder cancer cells to HCPT treatment in vitro and in vivo via ATM/NF-κB/IKK pathway-induced apoptosis. PLoS One 2013; 8:e50175. [PMID: 23365634 PMCID: PMC3554754 DOI: 10.1371/journal.pone.0050175] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/22/2012] [Indexed: 11/18/2022] Open
Abstract
Bladder cancer is the most common malignant urological disease in China. Hydroxycamptothecin (HCPT) is a DNA topoisomerase I inhibitor, which has been utilized in chemotherapy for bladder cancer for nearly 40 years. Previous research has demonstrated that the isoflavone, genistein, can sensitize multiple cancer cell lines to HCPT treatment, such as prostate and cervical cancer. In this study, we investigated whether genistein could sensitize bladder cancer cell lines and bladder epithelial cell BDEC cells to HCPT treatment, and investigated the possible underlying molecular mechanisms. Genistein could significantly and dose-dependently sensitize multiple bladder cancer cell lines and BDEC cells to HCPT-induced apoptosis both in vitro and in vivo. Genistein and HCPT synergistically inhibited bladder cell growth and proliferation, and induced G2/M phase cell cycle arrest and apoptosis in TCCSUP bladder cancer cell and BDEC cell. Pretreatment with genistein sensitized BDEC and bladder cancer cell lines to HCPT-induced DNA damage by the synergistic activation of ataxia telangiectasia mutated (ATM) kinase. Genistein significantly attenuated the ability of HCPT to induce activation of the anti-apoptotic NF-κB pathway both in vitro and in vivo in a bladder cancer xenograft model, and thus counteracted the anti-apoptotic effect of the NF-κB pathway. This study indicates that genistein could act as a promising non-toxic agent to improve efficacy of HCPT bladder cancer chemotherapy.
Collapse
Affiliation(s)
- Yong Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen Shao
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peng Xu
- Department of Medical and Training Department, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chang Hong Shi
- Department of Experimental Animal, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jian Guo Shi
- Department of Cancer Research Institute, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Mei Li
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiang Fu
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Xue
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yong Hua Lei
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jing Yu Gao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Juan Ying Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiao Ping Gao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jin Qing Li
- Department of Plastic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (JQL); (JLY); (YTZ)
| | - Jian Lin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (JQL); (JLY); (YTZ)
| | - Yun Tao Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (JQL); (JLY); (YTZ)
| |
Collapse
|
24
|
Darzynkiewicz Z, Zhao H, Halicka HD, Rybak P, Dobrucki J, Wlodkowic D. DNA damage signaling assessed in individual cells in relation to the cell cycle phase and induction of apoptosis. Crit Rev Clin Lab Sci 2012; 49:199-217. [PMID: 23137030 DOI: 10.3109/10408363.2012.738808] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reviewed are the phosphorylation events reporting activation of protein kinases and the key substrates critical for the DNA damage signaling (DDS). These DDS events are detected immunocytochemically using phospho-specific Abs; flow cytometry or image-assisted cytometry provide the means to quantitatively assess them on a cell by cell basis. The multiparameter analysis of the data is used to correlate these events with each other and relate to the cell cycle phase, DNA replication and induction of apoptosis. Expression of γH2AX as a possible marker of induction of DNA double strand breaks is the most widely studied event of DDS. Reviewed are applications of this multiparameter approach to investigate constitutive DDS reporting DNA damage by endogenous oxidants byproducts of oxidative phosphorylation. Also reviewed are its applications to detect and explore mechanisms of DDS induced by variety of exogenous agents targeting DNA such as exogenous oxidants, ionizing radiation, radiomimetic drugs, UV light, DNA topoisomerase I and II inhibitors, DNA crosslinking drugs and variety of environmental genotoxins. Analysis of DDS induced by these agents provides often a wealth of information about mechanism of induction and the type of DNA damage (lesion) and is reviewed in the context of cell cycle phase specificity, DNA replication, and induction of apoptosis or cell senescence. Critically assessed is interpretation of the data as to whether the observed DDS events report induction of a particular type of DNA lesion.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|