1
|
MiR-29a Family as a Key Regulator of Skeletal Muscle Dysplasia in a Porcine Model of Intrauterine Growth Retardation. Biomolecules 2022; 12:biom12091193. [PMID: 36139032 PMCID: PMC9496619 DOI: 10.3390/biom12091193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) play an essential role in many biological processes. In this study, miRNAs in the skeletal muscle of normal and intrauterine growth retardation (IUGR) neonatal piglets were identified by sequencing, and canonical miRNAs were functionally validated in vitro. A total of 403 miRNAs were identified in neonatal piglet skeletal muscle, among them 30 and 46 miRNAs were upregulated and downregulated in IUGR pigs, respectively. Upregulated miRNAs were mainly enriched in propanoate metabolism, endocytosis, beta-Alanine metabolism, gap junction, and tumor necrosis factor signaling pathway. Down-regulated miRNAs were mainly enriched in chemical carcinogenesis—receptor activation, endocytosis, MAPK signaling pathway, insulin resistance, and EGFR tyrosine kinase inhibitor resistance. Co-expression network analysis of umbilical cord blood and skeletal muscle miRNAs showed that the miR-29 family is an essential regulator of IUGR pigs. The dual-luciferase reporter system showed that IGF1 and CCND1 were target genes of the miR-29 family. Transfection of IUGR pig umbilical cord blood exosomes and miR-29a mimic significantly inhibited cell proliferation and promoted the expression of cellular protein degradation marker genes Fbxo32 and Trim63. In summary, these results enrich the regulatory network of miRNAs involved in skeletal muscle development in IUGR animals.
Collapse
|
2
|
Expression Characteristics of microRNA in Pig Umbilical Venous Blood and Umbilical Arterial Blood. Animals (Basel) 2021; 11:ani11061563. [PMID: 34071966 PMCID: PMC8228062 DOI: 10.3390/ani11061563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
As the medium of material exchange between mother and fetus, umbilical cord blood is closely connected with fetal development. microRNA (miRNA) has a wide range of biological functions and has high flow characteristics. Small RNA sequencing of pig umbilical venous blood (UVB) and umbilical arterial blood (UAB) revealed that a total of 302 miRNAs were identified, and 106 and 22 miRNAs were specifically expressed in the UVB and UAB, respectively. Using the two methods of differential expression multiple and differential expression percentage, it is found that only 35% of the highly expressed miRNAs in the UVB by the two analysis modes overlap, but 56.25% of the enriched signal pathways are the same. Only 20% of the highly expressed miRNAs in the UAB overlap, but 62.07% of the signal pathways are the same. Further analysis revealed that miR-423 can be used as a characteristic miRNA of UVB and has the potential to treat muscle-related diseases. miR-122-5p can be used as a characteristic miRNA of UAB and may help to improve liver- and brain-related diseases. In summary, these results enrich understanding of miRNA in mother-fetal communication and provide a reference for the development and application of porcine cord blood products.
Collapse
|
3
|
MicroRNA expression profiling reveals potential roles for microRNA in the liver during pigeon (Columba livia) development. Poult Sci 2020; 99:6378-6389. [PMID: 33248553 PMCID: PMC7705055 DOI: 10.1016/j.psj.2020.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/23/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is the central organ for metabolism and influence the growth and development of the animals. To date, little is known about the microRNA (miRNA) in pigeon livers, particularly in different developmental stages. A comprehensive investigation into miRNA transcriptomes in livers across 3 pigeon developmental stages (1, 14, 28 d old) and an adult stage (2 y old) was performed by small RNA sequencing. We identified 312 known miRNA, 433 conserved miRNA, and 192 novel miRNA in pigeon livers. A set of differentially expressed (DE) miRNA in livers were screened out during pigeon development. This set of miRNA might be involved in hepatospecific phenotype and liver development. A Short Time-series Expression Miner analysis indicated significant expression variations in DE miRNA during liver development of pigeons. These DE miRNA with different expression patterns might play essential roles in response to growth factor, cell morphogenesis, and gland development, etc. Protein-protein interaction network and Molecular Complex Detection analysis identified several vital target genes (e.g., TNRC6B, FRS2, PTCH1, etc.) of DE miRNA, which is closely linked in liver development and enriched in PI3K cascade and regulation of growth. Our results expanded the repertoire of pigeon miRNA and may be of help in better understanding the mechanism of squab's rapid development from the perspective of liver development.
Collapse
|
4
|
Xing K, Zhao X, Ao H, Chen S, Yang T, Tan Z, Wang Y, Zhang F, Liu Y, Ni H, Guo Y, Hou Z, Wang C. Transcriptome analysis of miRNA and mRNA in the livers of pigs with highly diverged backfat thickness. Sci Rep 2019; 9:16740. [PMID: 31727987 PMCID: PMC6856533 DOI: 10.1038/s41598-019-53377-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022] Open
Abstract
Fat deposition is very important in pig production, and its mechanism is not clearly understood. MicroRNAs (miRNAs) play critical roles in fat deposition and energy metabolism. In the current study, we investigated the mRNA and miRNA transcriptome in the livers of Landrace pigs with extreme backfat thickness to explore miRNA-mRNA regulatory networks related to lipid deposition and metabolism. A comparative analysis of liver mRNA and miRNA transcriptomes from pigs (four pigs per group) with extreme backfat thickness was performed. We identified differentially expressed genes from RNA-seq data using a Cufflinks pipeline. Seventy-one differentially expressed genes (DEGs), including twenty-eight well annotated on the porcine reference genome genes, were found. The upregulation genes in pigs with higher backfat thickness were mainly involved in fatty acid synthesis, and included fatty acid synthase (FASN), glucokinase (GCK), phosphoglycerate dehydrogenase (PHGDH), and apolipoprotein A4 (APOA4). Cytochrome P450, family 2, subfamily J, polypeptide 34 (CYP2J34) was lower expressed in pigs with high backfat thickness, and is involved in the oxidation of arachidonic acid. Moreover, 13 differentially expressed miRNAs were identified. Seven miRNAs were associated with fatty acid synthesis, lipid metabolism, and adipogenic differentiation. Based on comprehensive analysis of the transcriptome of both mRNAs and miRNAs, an important regulatory network, in which six DEGs could be regulated by differentially expressed miRNAs, was established for fat deposition. The negative correlate in the regulatory network including, miR-545-5p and GRAMD3, miR-338 and FASN, and miR-127, miR-146b, miR-34c, miR-144 and THBS1 indicate that direct suppressive regulation may be involved in lipid deposition and energy metabolism. Based on liver mRNA and miRNA transcriptomes from pigs with extreme backfat thickness, we identified 28 differentially expressed genes and 13 differentially expressed miRNAs, and established an important miRNA-mRNA regulatory network. This study provides new insights into the molecular mechanisms that determine fat deposition in pigs.
Collapse
Affiliation(s)
- Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xitong Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hong Ao
- State Key Laboratory for Animal Nutrition, Key Laboratory for Domestic Animal Genetic Resources and Breeding of the Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shaokang Chen
- Beijing General Station of Animal Husbandry, Beijing, 100125, China
| | - Ting Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhen Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fengxia Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yibing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - HeMin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China.
| | - Zhuocheng Hou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Ponsuksili S, Trakooljul N, Hadlich F, Haack F, Murani E, Wimmers K. Genetic architecture and regulatory impact on hepatic microRNA expression linked to immune and metabolic traits. Open Biol 2018; 7:rsob.170101. [PMID: 29118269 PMCID: PMC5717336 DOI: 10.1098/rsob.170101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
Regulation of microRNA (miRNA) expression contributes to a wide range of target gene expression and phenotypes. The miRNA expression in the liver, the central metabolic organ, was examined in 209 pigs, and integrated with haematological and clinical biomarkers of metabolic and overall health, mRNA-target expression levels and single-nucleotide polymorphism (SNP) genotypes. The expression levels of 426 miRNA species correlated with plasma haematological or biochemical traits (r² = |0.19–0.45|, false discovery rate < 5%). Pairs of these miRNAs and their predicted target mRNAs showing expressing levels associated with the identical traits were examined to understand how immune and metabolic traits are affected by miRNA-mediated regulatory networks derived by mapping miRNA abundance as an expression quantitative trait. In total, 221 miRNA-expression-QTL correspond to 164 SNPs and 108 miRNAs, including miR-34a, miR-30e, miR-148-3p, miR-204, miR-181-5p, miR-143-5p and let-7 g that also correlate with the biomarkers. Sixty-one SNPs were simultaneously associated with 29 miRNA and 41 mRNA species. The expression levels of 13 out of 29 miRNA were correlated with one of the biochemical or haematological traits. For example, the expression levels of miR-34a were correlated with serum phosphorus and cholesterin levels; miR-204, miR-15a and miR-16b were correlated with triglyceride. For haematological traits, the expression levels of miR-652 and miR-204 were correlated with the mean corpuscular haemoglobin concentration, and the expression of miR-143 was correlated with plateletcrit. Pleiotropic association analyses revealed genetic links between mRNA and miRNA on SSC6 for miR-34a, SSC9 for miR-708 and SSC14 for miR-652. Our analysis of miRNA and mRNA transcript profiles, their correlation with clinically important plasma parameters of hepatic functions as well as information on their genetic regulation provide novel regulatory networks and potential new biomarkers for immune and metabolic traits.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Frieder Hadlich
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Fiete Haack
- Research Unit 'Functional Genome Analysis', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Unit 'Genomics', Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany .,Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| |
Collapse
|
6
|
Yao Y, Voillet V, Jegou M, SanCristobal M, Dou S, Romé V, Lippi Y, Billon Y, Père MC, Boudry G, Gress L, Iannucelli N, Mormède P, Quesnel H, Canario L, Liaubet L, Le Huërou-Luron I. Comparing the intestinal transcriptome of Meishan and Large White piglets during late fetal development reveals genes involved in glucose and lipid metabolism and immunity as valuable clues of intestinal maturity. BMC Genomics 2017; 18:647. [PMID: 28830381 PMCID: PMC5568345 DOI: 10.1186/s12864-017-4001-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/01/2017] [Indexed: 11/21/2022] Open
Abstract
Background Maturity of intestinal functions is critical for neonatal health and survival, but comprehensive description of mechanisms underlying intestinal maturation that occur during late gestation still remain poorly characterized. The aim of this study was to investigate biological processes specifically involved in intestinal maturation by comparing fetal jejunal transcriptomes of two representative porcine breeds (Large White, LW; Meishan, MS) with contrasting neonatal vitality and maturity, at two key time points during late gestation (gestational days 90 and 110). MS and LW sows inseminated with mixed semen (from breed LW and MS) gave birth to both purebred and crossbred fetuses. We hypothesized that part of the differences in neonatal maturity between the two breeds results from distinct developmental profiles of the fetal intestine during late gestation. Reciprocal crossed fetuses were used to analyze the effect of parental genome. Transcriptomic data and 23 phenotypic variables known to be associated with maturity trait were integrated using multivariate analysis with expectation of identifying relevant genes-phenotypic variable relationships involved in intestinal maturation. Results A moderate maternal genotype effect, but no paternal genotype effect, was observed on offspring intestinal maturation. Four hundred and four differentially expressed probes, corresponding to 274 differentially expressed genes (DEGs), more specifically involved in the maturation process were further studied. In day 110-MS fetuses, Ingenuity® functional enrichment analysis revealed that 46% of DEGs were involved in glucose and lipid metabolism, cell proliferation, vasculogenesis and hormone synthesis compared to day 90-MS fetuses. Expression of genes involved in immune pathways including phagocytosis, inflammation and defense processes was changed in day 110-LW compared to day 90-LW fetuses (corresponding to 13% of DEGs). The transcriptional regulator PPARGC1A was predicted to be an important regulator of differentially expressed genes in MS. Fetal blood fructose level, intestinal lactase activity and villous height were the best predicted phenotypic variables with probes mostly involved in lipid metabolism, carbohydrate metabolism and cellular movement biological pathways. Conclusions Collectively, our findings indicate that the neonatal maturity of pig intestine may rely on functional development of glucose and lipid metabolisms, immune phagocyte differentiation and inflammatory pathways. This process may partially be governed by PPARGC1A. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4001-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Yao
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Valentin Voillet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Maeva Jegou
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France
| | - Magali SanCristobal
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Samir Dou
- PEGASE, INRA, Agrocampus Ouest, Saint-Gilles, France
| | - Véronique Romé
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | - Gaëlle Boudry
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France
| | - Laure Gress
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Nathalie Iannucelli
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Pierre Mormède
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | | | - Laurianne Canario
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan, France
| | - Isabelle Le Huërou-Luron
- Nutrition Metabolisms and Cancer (NuMeCan), INRA, INSERM, Université de Rennes 1, UBL, Rennes, Saint-Gilles, France.
| |
Collapse
|
7
|
Fan J, Li H, Nie X, Yin Z, Zhao Y, Chen C, Wen Wang D. MiR-30c-5p ameliorates hepatic steatosis in leptin receptor-deficient (db/db) mice via down-regulating FASN. Oncotarget 2017; 8:13450-13463. [PMID: 28088781 PMCID: PMC5355111 DOI: 10.18632/oncotarget.14561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/02/2017] [Indexed: 01/10/2023] Open
Abstract
Approximately 15–40% of the general adult population suffers from non-alcoholic fatty liver disease (NAFLD) worldwide. However, no drug is currently licensed for its treatment. In this study, we observed a significant reduction of miR-30c-5p in the liver of leptin receptor-deficient (db/db) mice. Remarkably, recombinant adeno-associated virus (rAAV)-mediated delivery of miR-30c-5p was sufficient to attenuate triglyceride accumulation and hepatic steatosis in db/db mice. Through computational prediction, KEGG analysis and Ago2 co-immunoprecipitation, we identified that miR-30c-5p directly targeted fatty acid synthase, a key enzyme in fatty acid biosynthesis. Moreover, down-regulation of FASN by siRNA attenuated some key features of NAFLD, including decreased triglyceride accumulate and lipid deposition. Our findings reveal a new role of miR-30c-5p in counterbalancing fatty acid biosynthesis, which is sufficient to attenuate triglyceride accumulation and hepatic steatosis in db/db mice.
Collapse
Affiliation(s)
- Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhongwei Yin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanru Zhao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Luo ZY, Dai XL, Ran XQ, Cen YX, Niu X, Li S, Huang SH, Wang JF. Identification and profile of microRNAs in Xiang pig testes in four different ages detected by Solexa sequencing. Theriogenology 2017; 117:61-71. [PMID: 28683952 DOI: 10.1016/j.theriogenology.2017.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/07/2023]
Abstract
To further understand the role of microRNA (miRNA) during testicular development, we constructed four small RNA libraries from the testes of the Chinese indigenous Xiang pig at four different ages, which were sequenced using high-throughput Solexa deep sequencing methods. It yielded over 23 million high-quality reads and 1,342,579 unique sequences. At two and three months of age, the proportion which represented miRNAs was the most abundant class of small RNAs, but it was gradually replaced by the category that represented piRNAs in adult testes. We identified 543 known and homologous conserved porcine miRNAs and 49 potential novel miRNAs. There were 306 known miRNAs which were co-expressed in four libraries. Six miRNAs and three potential novel miRNAs were validated in testes and sperms of Xiang pig by RT-qPCR method. Many clusters of mature miRNA variants were observed, in which let-7 family was the most abundant one. After comparison among libraries, 204 miRNAs were identified as being differentially expressed and likely involved in the development and spermatogenesis of pig testes. This work presented a general genome-wide expression profile of the testes-expressed small RNAs in different ages of pig testes. Our results suggested that miRNAs performed a role in the regulation of mRNAs in puberty pig testes while piRNAs likely functioned mainly in sexually mature pig testes.
Collapse
Affiliation(s)
- Zhi-Yu Luo
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xin-Lan Dai
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Xue-Qin Ran
- College of Animal Science, Guizhou University, Guiyang, China.
| | - Yong-Xiu Cen
- College of Animal Science, Guizhou University, Guiyang, China
| | - Xi Niu
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Sheng Li
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Shi-Hui Huang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jia-Fu Wang
- Institute of Agro-Bioengineering, Guizhou University, Guiyang, China; Tongren University, Tongren, China.
| |
Collapse
|
9
|
Sun RP, Xi QY, Sun JJ, Cheng X, Zhu YL, Ye DZ, Chen T, Wei LM, Ye RS, Jiang QY, Zhang YL. In low protein diets, microRNA-19b regulates urea synthesis by targeting SIRT5. Sci Rep 2016; 6:33291. [PMID: 27686746 PMCID: PMC5043173 DOI: 10.1038/srep33291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022] Open
Abstract
Ammonia detoxification, which takes place via the hepatic urea cycle, is essential for nitrogen homeostasis and physiological well-being. It has been reported that a reduction in dietary protein reduces urea nitrogen. MicroRNAs (miRNAs) are major regulatory non-coding RNAs that have significant effects on several metabolic pathways; however, little is known on whether miRNAs regulate hepatic urea synthesis. The objective of this study was to assess the miRNA expression profile in a low protein diet and identify miRNAs involved in the regulation of the hepatic urea cycle using a porcine model. Weaned 28-days old piglets were fed a corn-soybean normal protein diet (NP) or a corn-soybean low protein diet (LP) for 30 d. Hepatic and blood samples were collected, and the miRNA expression profile was assessed by sequencing and qRT-PCR. Furthermore, we evaluated the possible role of miR-19b in urea synthesis regulation. There were 25 differentially expressed miRNAs between the NP and LP groups. Six of these miRNAs were predicted to be involved in urea cycle metabolism. MiR-19b negatively regulated urea synthesis by targeting SIRT5, which is a positive regulator of CPS1, the rate limiting enzyme in the urea cycle. Our study presented a novel explanation of ureagenesis regulation by miRNAs.
Collapse
Affiliation(s)
- Rui-Ping Sun
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Qian-Yun Xi
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jia-Jie Sun
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Xiao Cheng
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yan-Ling Zhu
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ding-Ze Ye
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ting Chen
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Li-Min Wei
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Rui-Song Ye
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qing-Yan Jiang
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yong-Liang Zhang
- College of Animal Science, Chinese National Centre of Pig Breeding Technology, ALLTECH-SCAU Animal Nutrition Control Research Alliance, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| |
Collapse
|
10
|
Systematic analysis of the regulatory functions of microRNAs in chicken hepatic lipid metabolism. Sci Rep 2016; 6:31766. [PMID: 27535581 PMCID: PMC4989143 DOI: 10.1038/srep31766] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023] Open
Abstract
Laying performance is an important economic trait in hens, and this physiological process is largely influenced by the liver function. The livers of hens at 20- and 30-week-old stages were investigated using the next generation sequencing to identify the differences of microRNA expression profiles. Compared with the 20-week-old hens, 67 down- and 13 up-regulated microRNAs were verified to be significant differentially expressed (false discovery rate, FDR ≤ 0.05) (SDE) in the 30-week-old. We also identified 13 down- and 6 up-regulated novel differentially expressed (DE) microRNAs. miR-22-3p and miR-146b-5p, which exhibit critical roles in mammalian lipid metabolism, showed the most abundant expression and the highest fold-change, respectively. A total of 648 potential target genes of the SDE microRNAs were identified through an integrated analysis of microRNAs and the DE genes obtained in previous RNA-sequencing, including FADS1, FADS2, ELOVL6 and ACSL5, which are critical lipid metabolism-related regulators. Bioinformatic analyses revealed that target genes were mainly enriched in lipid-related metabolism processes. This work provides the first study of the expression patterns of hepatic microRNAs between 20- and 30-week old hens. The findings may serve as a fundamental resource for understanding the detailed functions of microRNAs in the molecular regulatory systems of lipid metabolism.
Collapse
|
11
|
Hepatic expression of inflammatory genes and microRNAs in pigs with high “cholesteryl ester transfer protein” (CETP) activity. Mamm Genome 2016; 27:503-10. [DOI: 10.1007/s00335-016-9649-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/16/2016] [Indexed: 10/21/2022]
|
12
|
Wang W, Liu W, Liu Q, Li B, An L, Hao R, Zhao J, Liu S, Song J. Coordinated microRNA and messenger RNA expression profiles for understanding sexual dimorphism of gonads and the potential roles of microRNA in the steroidogenesis pathway in Nile tilapia (Oreochromis niloticus). Theriogenology 2015; 85:970-978. [PMID: 26719037 DOI: 10.1016/j.theriogenology.2015.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 12/20/2022]
Abstract
Sexual dimorphism is a widespread phenomenon in animals. However, the potential role of microRNAs (miRNAs) in regulating this dimorphism is not fully understood. In our study, we used an integrated approach to identify functional targets of miRNA by combining the paired expression profiles of miRNAs and messenger RNAs (mRNAs) in ovaries and testes of young Nile tilapia, Oreochromis niloticus. The results revealed that 67 upregulated and nine downregulated miRNAs and 2299 upregulated and 3260 downregulated genes were identified in the ovary compared with those in the testis (P < 0.01). The target genes of differentially expressed miRNAs were predicted and overlapped with the differentially expressed mRNAs. Furthermore, Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted in these coincident genes. By correlating miRNA-mRNA and predicting computational target, two types of negatively regulatory miRNA-mRNA correlations (upregulated or downregulated miRNA and downregulated or upregulated mRNA) were obtained. Seven functional miRNA-target gene pairs, miR-17-5p/DMRT1, miR-20a/DMRT1, miR-138/CYP17A2, miR-338/CYP17A2, miR-200a/CYP17A2, miR-456/AMH, and miR-138/AMH, were predicted at the sequence level and further detected by real-time polymerase chain reaction on the basis of the significantly negative relationships. Our results suggest that the integrated analysis of miRNA and mRNA expression profiling can provide novel insights into the molecular mechanism of sexual dimorphism.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Aquiculture, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China; Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| | - Wenzhong Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China.
| | - Qing Liu
- Department of Aquiculture, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China; Key Laboratory of Freshwater Fish Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Baojun Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| | - Lixia An
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| | - Ruirong Hao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| | - Jinliang Zhao
- Key Laboratory of Freshwater Fish Germplasm Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.
| | - Shaozhen Liu
- Department of Aquiculture, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| | - Jing Song
- Department of Aquiculture, College of Animal Science and Technology, Shanxi Agricultural University, Shanxi, China
| |
Collapse
|
13
|
Li X, Jia Y, Li R, Sun Z, Li X, Sui S, Zhao R. Glucocorticoid receptor is involved in the breed-dependent transcriptional regulation of 3β-hydroxysteroid dehydrogenase in the liver of preweaning piglets. BMC Vet Res 2015; 11:123. [PMID: 26008782 PMCID: PMC4489036 DOI: 10.1186/s12917-015-0441-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/18/2015] [Indexed: 01/04/2023] Open
Abstract
Background Hepatic 3β-hydroxysteroid dehydrogenase (3β-HSD) plays an important role in steroid inactivation and catabolism. Serum concentrations of steroid hormones differ significantly between breeds in pigs, however the molecular mechanism regulating hepatic 3β-HSD expression in different breeds of pigs is poorly understood. In the present study, we used preweaning purebred male Large White (LW) and Erhualian (EHL) piglets as model to investigate the breed difference in the expression and regulation of 3β-HSD gene in porcine liver. Results The hepatic expression of 3β-HSD mRNA was significantly lower (P < 0.01) in EHL piglets compared to that in LW piglets. Significant breed differences were detected for the hepatic expression of transcription factors such as androgen receptor (AR), glucocorticoid receptor (GR), and CCAAT/enhancer binding protein β (C/EBPβ). The nucleoprotein contents of AR (P < 0.05), GR (P < 0.01) and phospho-Ser211GR (P < 0.01) were significantly higher in the liver of EHL piglets. Chromatin immunoprecipitation (ChIP) assay demonstrated significantly lower binding of GR, but not AR or C/EBPβ, to 3β-HSD gene promoter in EHL piglets (P < 0.05). GR was not detected to interact with C/EBPβ or AR in the co-immunoprecipitation analysis. Conclusions These results indicate that GR binding to 3β-HSD promoter is involved in the breed-dependent 3β-HSD expression in the liver of piglets.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Yimin Jia
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Runsheng Li
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Zhiyuan Sun
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Xi Li
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Shiyan Sui
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Ruqian Zhao
- Key Laboratory of Animal Physiology and Biochemistry, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
14
|
Li J, Zhou C, Li J, Su Z, Sang H, Jia E, Si D. Global correlation analysis for microRNA and gene expression profiles in human obesity. Pathol Res Pract 2015; 211:361-8. [PMID: 25701361 DOI: 10.1016/j.prp.2014.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/31/2014] [Accepted: 11/07/2014] [Indexed: 02/01/2023]
Abstract
Obesity is an increasing health problem associated with major adverse consequences for human health. MicroRNAs (miRNAs), small endogenous non-coding RNAs, regulate the expression of genes that play roles in human body via posttranscriptional inhibition. To identify the miRNAs and their target genes involved in obesity, we downloaded the miRNA and gene expression profiles from gene expression omnibus (GEO) database and analyzed the differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) in adipose tissues from obese subjects compared to those from non-obese subjects. Then, we constructed the miRNA-target interaction network and conducted functional enrichment analysis of DEGs, and the targets negatively correlated with DEMs. We identified a total of 16 miRNAs and 192 genes that showed a significantly different expression and 3002 miRNA-target interaction pairs, including 182 regulatory pairs in obesity. Target genes of DEMs were found mainly enriched in several functions, such as collagen fibril organization, extracellular matrix part, and extracellular matrix structural constituent. Moreover, hsa-miR-425 and hsa-miR-126 had a significant number of target genes and hsa-miR-16/COL12A1 and hsa-miR-634/SLC4A4 interaction pairs are significantly co-expressed, suggesting that they might play important roles in the pathogenesis of obesity. Our study provides a bioinformatic basis for further research of molecular mechanism in obesity.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Changyu Zhou
- Digest Department, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | - Jiarui Li
- Pharmacy Department, Tumor Hospital of Jilin Province, Changchun 130012, China
| | - Ziyuan Su
- Research Center of TCM, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, China
| | - Haiyan Sang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Erna Jia
- Digest Department, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| | - Daoyuan Si
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China
| |
Collapse
|
15
|
Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E. Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus. FRONTIERS IN PLANT SCIENCE 2015; 6:741. [PMID: 26442054 PMCID: PMC4585256 DOI: 10.3389/fpls.2015.00741] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/31/2015] [Indexed: 05/03/2023]
Abstract
Biotic and abiotic stresses affect plant development and production through alternation of the gene expression pattern. Gene expression itself is under the control of different regulators such as miRNAs and transcription factors (TFs). MiRNAs are known to play important roles in regulation of stress responses via interacting with their target mRNAs. Here, for the first time, seven conserved miRNAs, associated with drought, heat, salt and cadmium stresses were characterized in sunflower. The expression profiles of miRNAs and their targets were comparatively analyzed between leaves and roots of plants grown under the mentioned stress conditions. Gene ontology analysis of target genes revealed that they are involved in several important pathways such as auxin and ethylene signaling, RNA mediated silencing and DNA methylation processes. Gene regulatory network highlighted the existence of cross-talks between these stress-responsive miRNAs and the other stress responsive genes in sunflower. Based on network analysis, we suggest that some of these miRNAs in sunflower such as miR172 and miR403 may play critical roles in epigenetic responses to stress. It seems that depending on the stress type, theses miRNAs target several pathways and cellular processes to help sunflower to cope with drought, heat, salt and cadmium stress conditions in a tissue-associated manner.
Collapse
Affiliation(s)
| | - Shirin Mirlohi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord UniversityShahrekord, Iran
| | - Fahimeh Khalaji
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord UniversityShahrekord, Iran
| | - Zahra Fakhari
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord UniversityShahrekord, Iran
| | - Behrouz Shiran
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord UniversityShahrekord, Iran
- Department of Agricultural Biotechnology, Institute of Biotechnology, Shahrekord UniversityShahrekord, Iran
- *Correspondence: Behrouz Shiran, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord University, PO Box 115, Shahrekord 8818634141, Iran ;
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi UniversityKermanshah, Iran
| | - Fariba Rafiei
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Shahrekord UniversityShahrekord, Iran
| | - Hikmet Budak
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| | - Esmaeil Ebrahimie
- Faculty of Agriculture, Institute of Biotechnology, Shiraz UniversityShiraz, Iran
- Department of Genetics and Evolution, School of Biological Sciences, University of AdelaideAdelaide, SA, Australia
- School of Biological Sciences, Faculty of Science and Engineering, Flinders UniversityAdelaide, Australia
| |
Collapse
|
16
|
Wang X, Yang L, Wang H, Shao F, Yu J, Jiang H, Han Y, Gong D, Gu Z. Growth hormone-regulated mRNAs and miRNAs in chicken hepatocytes. PLoS One 2014; 9:e112896. [PMID: 25386791 PMCID: PMC4227886 DOI: 10.1371/journal.pone.0112896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/16/2014] [Indexed: 12/02/2022] Open
Abstract
Growth hormone (GH) is a key regulatory factor in animal growth, development and metabolism. Based on the expression level of the GH receptor, the chicken liver is a major target organ of GH, but the biological effects of GH on the chicken liver are not fully understood. In this work we identified mRNAs and miRNAs that are regulated by GH in primary hepatocytes from female chickens through RNA-seq, and analyzed the functional relevance of these mRNAs and miRNAs through GO enrichment analysis and miRNA target prediction. A total of 164 mRNAs were found to be differentially expressed between GH-treated and control chicken hepatocytes, of which 112 were up-regulated and 52 were down-regulated by GH. A total of 225 chicken miRNAs were identified by the RNA-Seq analysis. Among these miRNAs 16 were up-regulated and 1 miRNA was down-regulated by GH. The GH-regulated mRNAs were mainly involved in growth and metabolism. Most of the GH-upregulated or GH-downregulated miRNAs were predicted to target the GH-downregulated or GH-upregulated mRNAs, respectively, involved in lipid metabolism. This study reveals that GH regulates the expression of many mRNAs involved in metabolism in female chicken hepatocytes, which suggests that GH plays an important role in regulating liver metabolism in female chickens. The results of this study also support the hypothesis that GH regulates lipid metabolism in chicken liver in part by regulating the expression of miRNAs that target the mRNAs involved in lipid metabolism.
Collapse
Affiliation(s)
- Xingguo Wang
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P R China
| | - Lei Yang
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
| | - Huijuan Wang
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
| | - Fang Shao
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
| | - JianFeng Yu
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
| | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Yaoping Han
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, P R China
| | - Zhiliang Gu
- Department of Life Science and Technology, Changshu Institute of Technology, Changshu, P R China
- * E-mail:
| |
Collapse
|
17
|
Zheng Y, Chen KL, Zheng XM, Li HX, Wang GL. Identification and bioinformatics analysis of microRNAs associated with stress and immune response in serum of heat-stressed and normal Holstein cows. Cell Stress Chaperones 2014; 19:973-81. [PMID: 24917036 PMCID: PMC4389857 DOI: 10.1007/s12192-014-0521-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022] Open
Abstract
MicroRNAs (miRNAs) are small single-stranded non-coding RNAs that have an important regulatory function in animal growth and developmental processes. However, the differential expression of miRNA and the role of these miRNAs in heat-stressed Holstein cows are still unknown. In this study, the profile of differentially expressed miRNAs and the target genes analysis in the serum of heat-stressed and normal Holstein cows were investigated by a Solexa deep-sequencing approach and bioinformatics. The data identified 52 differentially expressed miRNAs in 486 known miRNAs which were changed significantly between heat-stressed and normal Holstein cows (fold change >2, P < 0.001). Target genes analysis showed that at least 7 miRNAs (miR-19a, miR-19b, miR-146a, miR-30a-5p, miR-345-3p, miR-199a-3p, and miR-1246) were involved in the response to stress, oxidative stress, development of the immune system, and immune response among the identified 52 differentially expressed miRNAs. Five miRNAs (miR-27b, miR-181a, miR-181b, miR-26a, and miR-146b) were involved in stress and immune responses and the expression of five miRNAs was striking (P < 0.001). In addition, RT-qPCR and deep-sequencing methods showed that 8 miRNAs among the 12 selected miRNAs (miR-19a, miR-19b, miR-27b, miR-30a-5p, miR-181a, miR-181b, miR-345-3p, and miR-1246) were highly expressed in the serum of heat-stressed Holstein cows. GO and KEGG pathway analysis showed that these differentially expressed miRNAs were involved in a pathway that may differentially regulate the expression of stress response and immune response genes. Our study provides an overview of miRNAs expression profile and the interaction between miRNAs and their target genes, which will lead to further understanding of the important roles of miRNAs in heat-stressed Holstein cows.
Collapse
Affiliation(s)
- Yue Zheng
- />College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Kun-lin Chen
- />College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiao-min Zheng
- />Key Laboratory of Fertility Preservation and Maintenance Ministry of Education, Key Laboratory of Reproduction and Genetic Heredity of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004 China
- />Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland
| | - Hui-xia Li
- />College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Gen-lin Wang
- />College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
18
|
Li R, Jia Y, Zou H, Zhao R. Breed-specific expression ofDROSHA, DICERandAGO2is regulated by glucocorticoid-mediated miRNAs in the liver of newborn piglets. Anim Genet 2014; 45:817-26. [DOI: 10.1111/age.12232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Runsheng Li
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Yimin Jia
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Huafeng Zou
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| | - Ruqian Zhao
- 1 Weigang; Key Laboratory of Animal Physiology & Biochemistry; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
19
|
Long-term supranutritional supplementation with selenate decreases hyperglycemia and promotes fatty liver degeneration by inducing hyperinsulinemia in diabetic db/db mice. PLoS One 2014; 9:e101315. [PMID: 24983750 PMCID: PMC4077766 DOI: 10.1371/journal.pone.0101315] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/07/2014] [Indexed: 02/07/2023] Open
Abstract
There are conflicting reports on the link between the micronutrient selenium and the prevalence of diabetes. To investigate the possibility that selenium acts as a "double-edged sword" in diabetes, cDNA microarray profiling and two-dimensional differential gel electrophoresis coupled with mass spectrometry were used to determine changes in mRNA and protein expression in pancreatic and liver tissues of diabetic db/db mice in response to dietary selenate supplementation. Fasting blood glucose levels increased continuously in db/db mice administered placebo (DMCtrl), but decreased gradually in selenate-supplemented db/db mice (DMSe) and approached normal levels after termination of the experiment. Pancreatic islet size was increased in DMSe mice compared with DMCtrl mice, resulting in a clear increase in insulin production and a doubling of plasma insulin concentration. Genes that encode proteins involved in key pancreatic β-cell functions, including regulation of β-cell proliferation and differentiation and insulin synthesis, were found to be specifically upregulated in DMSe mice. In contrast, apoptosis-associated genes were downregulated, indicating that islet function was protected by selenate treatment. Conversely, liver fat accumulation increased in DMSe mice together with significant upregulation of lipogenic and inflammatory genes. Genes related to detoxification were downregulated and antioxidant enzymatic activity was reduced, indicating an unexpected reduction in antioxidant defense capacity and exacerbation of fatty liver degeneration. Moreover, proteomic analysis of the liver showed differential expression of proteins involved in glucolipid metabolism and the endoplasmic reticulum assembly pathway. Taken together, these results suggest that dietary selenate supplementation in db/db mice decreased hyperglycemia by increasing insulin production and secretion; however, long-term hyperinsulinemia eventually led to reduced antioxidant defense capacity, which exacerbated fatty liver degeneration.
Collapse
|
20
|
Li X, Li R, Jia Y, Sun Z, Yang X, Sun Q, Zhao R. CCAAT/enhancer-binding protein β is involved in the breed-dependent transcriptional regulation of 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4)-isomerase in adrenal gland of preweaning piglets. J Steroid Biochem Mol Biol 2013; 138:273-80. [PMID: 23831357 DOI: 10.1016/j.jsbmb.2013.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/27/2013] [Accepted: 06/23/2013] [Indexed: 12/24/2022]
Abstract
The enzyme 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4)-isomerase (3β-HSD) catalyzes the biosynthesis of all steroid hormones. The molecular mechanisms regulating porcine adrenal 3β-HSD expression in different breeds are still poorly understood. In this study, we aimed to compare the expression of 3β-HSD between preweaning purebred Large White (LW) and Erhualian (EHL) piglets and to explore the potential factors regulating 3β-HSD transcription. EHL had significantly higher serum levels of cortisol (P<0.01) and testosterone (P<0.01), which were associated with significantly higher expression of 3β-HSD mRNA (P<0.01) and protein (P<0.05) in the adrenal gland, compared with LW piglets. The 5' flanking region of the porcine 3β-HSD gene showed significant sequence variations between breeds, and the sequence of EHL demonstrated an elevated promoter activity (P<0.05) in luciferase reporter gene assay. Higher adrenal expression of 3β-HSD in EHL was accompanied with higher CCAAT/enhancer binding protein β (C/EBPβ) expression (P<0.05), enriched histone H3 acetylation (P<0.05) and C/EBPβ binding to 3β-HSD promoter (P<0.05). In addition, higher androgen receptor (AR) (P=0.06) and lower glucocorticoid receptor (GR) (P<0.05) were detected in EHL. Co-immunoprecipitation analysis revealed interactions of C/EBPβ with both AR and GR. These results indicate that the C/EBPβ binding to 3β-HSD promoter is responsible, at least in part, for the breed-dependent 3β-HSD expression in adrenal gland of piglets. The sequence variations of 3β-HSD promoter and the interactions of AR and/or GR with C/EBPβ may also participate in the regulation.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Li R, Zou H, Jia Y, Zhao R. Glucocorticoid receptor is involved in the breed-dependent transcriptional regulation of mtDNA- and nuclear-encoded mitochondria genes in the liver of newborn piglets. BMC Vet Res 2013; 9:87. [PMID: 23618392 PMCID: PMC3644494 DOI: 10.1186/1746-6148-9-87] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/23/2013] [Indexed: 01/20/2023] Open
Abstract
Background Mitochondria, which are essential for the functionality of eukaryotic cells, are particularly important in metabolically active tissues such as liver. Different breeds of pigs demonstrate distinct metabolic profiles in the liver, yet little is known whether the expression and transcriptional regulation of mitochondrial genes differ between breeds. Results Here we used male newborn Large White (LW) and Erhualian (EHL) piglets to delineate the difference in hepatic mitochondrial gene regulation between breeds. The hepatic content of ATP was significantly higher (p < 0.01) in EHL piglets, which was associated with lower mtDNA copy number (p < 0.05). Most of the mtDNA-encoded genes (10 of 13), however, were more abundantly expressed in EHL compared to LW piglets. We also detected 3 differentially expressed nuclear-encoded mitochondrial genes, among which isocitrate dehydrogenase 2 (IDH2) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit d (ATP5H) were expressed significantly lower, while adenylate kinase 1 (AK1) was significantly over expressed in EHL piglets. Compared to LW, the over expression of mtDNA-encoded genes in EHL was associated with significantly higher (p < 0.01) glucocorticoid receptor (GR) binding to the control region of mtDNA with no alterations in the methylation status. For nuclear-encoded genes, however, a negative correlation was observed between GR binding and mRNA expression of AK1 and ATP5H. Moreover, higher expression of AK1 in EHL piglets was also associated with lower cytosine methylation (p < 0.05) and hydroxymethylation (p < 0.05). In the promoter region. Conclusions These results indicate a role of the GR in the breed-dependent regulation of mitochondrial genes in the liver of newborn piglets.
Collapse
Affiliation(s)
- Runsheng Li
- Key Laboratory of Animal Physiology & Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | | | | | | |
Collapse
|