1
|
Oh HM, Lee JH, Choi A, Yang SH, Shin GH, Kang SG, Cho JC, Kim HJ, Kwon KK. Effect of Light Regime on Candidatus Puniceispirillum marinum IMCC1322 in Nutrient-Replete Conditions. J Microbiol Biotechnol 2024; 35:e2410034. [PMID: 39809517 PMCID: PMC11813361 DOI: 10.4014/jmb.2410.10034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025]
Abstract
Previous studies showed no improvement in bacterial biomass for Candidatus Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322. Light regimes affected IMCC1322 cultures in stationary/death phases, where cellular ATP levels ranged from 0.0331 to 1.74 mM, with ATP/cell ranging from 13.9 to 367 zeptomoles. In nutrient-depleted conditions, strain IMCC1322 may suffer from excessive protons generated by proteorhodopsin under light conditions. IMCC1322 may tolerate excessive periplasmic protons through ATP-dependent proton pumping and protonation of augmented amino acids. Meanwhile, acid stress could also be mitigated by refining membrane permeability through unsaturation and cyclopropanation of phospholipids. Oceanic bacteria such as IMCC1322 and SAR11 preferred anaplerotic TCA cycles over glycolysis and rely on the Entner-Doudoroff (ED) pathway for growth. Although ATP generation is less efficient in the ED pathway, it offers advantages during rapid growth owing to its strong thermodynamic driving force. The metabolism of IMCC1322 favors gluconeogenesis over glycolysis, aligning with the metabolism of SAR11 reported in previous studies. However, the additional light-driven, PR-dependent ATP synthesis in IMCC1322 is expected to be insufficient to support protein turnover after the log phase, as well as in nutrient-limited conditions. Stable isotope measurements showed no significant differences in the inorganic carbon assimilation between constant light and constant dark cultures in late log phase.
Collapse
Affiliation(s)
- Hyun-Myung Oh
- Institute of Liberal Arts Education, Pukyong National University, Busan 48547, Republic of Korea
| | - Ji Hyen Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul 07804, Republic of Korea
| | - Ahyoung Choi
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sung-Hyun Yang
- Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | | | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Jang-Cheon Cho
- Division of Biology and Ocean Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, Busan 48547, Republic of Korea
| | | |
Collapse
|
2
|
Kondo K, Ohtake R, Nakano S, Terashima M, Kojima H, Fukui M, Demura M, Kikukawa T, Tsukamoto T. Contribution of Proteorhodopsin to Light-Dependent Biological Responses in Hymenobacter nivis P3 T Isolated from Red Snow in Antarctica. Biochemistry 2024; 63:2257-2265. [PMID: 39196915 DOI: 10.1021/acs.biochem.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Proteorhodopsin (PR) is a major family of microbial rhodopsins that function as light-driven outward proton pumps. PR is now widely recognized for its ecological importance as a molecule responsible for solar energy flow in various ecosystems on the earth. However, few concrete examples of the actual use of light by natural microorganisms via PR have been demonstrated experimentally. This study reveals one example of that in a cryophilic bacterium Hymenobacter nivis P3T isolated from red snow in Antarctica. The results demonstrate light-dependent biochemical and biological responses in H. nivis cells, such as the proton pump activity of H. nivis PR (HnPR), which leads to the production of proton motive force, cellular ATP production, and cell growth. In addition, the results of this study demonstrate the photochemical properties of a PR, namely, HnPR, in the membrane of a natural host bacterium. The photocycle of HnPR was much faster than other PRs even at 5 °C, indicating that the proton pump function of HnPR has adapted to the low-temperature environment of Antarctica. Although it is well-known that PR helps natural host microorganisms to use light energy, this study provides another concrete example for understanding the biological role of PR by demonstrating the link between the molecular functions of PR and the light-dependent biochemical and biological responses of a PR-bearing host.
Collapse
Affiliation(s)
- Kaori Kondo
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ryouhei Ohtake
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shunsuke Nakano
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mia Terashima
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | - Makoto Demura
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takashi Tsukamoto
- Division of Soft Matter, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
3
|
Lee JH, Oh HM. Effects of Light and Dark Conditions on the Transcriptome of Aging Cultures of Candidatus Puniceispirillum marinum IMCC1322. J Microbiol 2024; 62:297-314. [PMID: 38662311 DOI: 10.1007/s12275-024-00125-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 04/26/2024]
Abstract
To elucidate the function of proteorhodopsin in Candidatus Puniceispirillum marinum strain IMCC1322, a cultivated representative of SAR116, we produced RNA-seq data under laboratory conditions. We examined the transcriptomes of six different cultures, including sets of expression changes under constant dark (DD), constant light (LL), and diel-cycled (LD; 14 h light: 10 h dark) conditions at the exponential and stationary/death phases. Prepared mRNA extracted from the six samples was analyzed on the Solexa Genome Analyzer with 36 cycles. Differentially expressed genes on the IMCC1322 genome were distinguished as four clusters by K-mean clustering and each CDS (n = 2546) was annotated based on the KEGG BRITE hierarchy. Cluster 0 (n = 1573) covered most constitutive genes including proteorhodopsin, retinoids, and glycolysis/TCA cycle. Cluster 1 genes (n = 754) were upregulated in stationary/death phase under constant dark conditions and included genes associated with bacterial defense, membrane transporters, nitrogen metabolism, and senescence signaling. Cluster 2 genes (n = 197) demonstrated upregulation in exponential phase cultures and included genes involved in genes for oxidative phosphorylation, translation factors, and transcription machinery. Cluster 3 (n = 22) contained light-stimulated upregulated genes expressed under stationary/phases. Stringent response genes belonged to cluster 2, but affected genes spanned various cellular processes such as amino acids, nucleotides, translation, transcription, glycolysis, fatty acids, and cell wall components. The coordinated expression of antagonistic stringent genes, including mazG, ppx/gppA, and spoT/relA may provide insight into the controlled cultural response observed between constant light and constant dark conditions in IMCC1322 cultures, regardless of cell numbers and biomass.
Collapse
Affiliation(s)
- Ji Hyen Lee
- Department of Pediatrics, Ewha Womans University School of Medicine, Seoul, 07804, Republic of Korea
| | - Hyun-Myung Oh
- Institute of Liberal Arts Education, Pukyong National University, Busan, 48547, Republic of Korea.
| |
Collapse
|
4
|
Orel N, Fadeev E, Herndl GJ, Turk V, Tinta T. Recovering high-quality bacterial genomes from cross-contaminated cultures: a case study of marine Vibrio campbellii. BMC Genomics 2024; 25:146. [PMID: 38321410 PMCID: PMC10845552 DOI: 10.1186/s12864-024-10062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Environmental monitoring of bacterial pathogens is critical for disease control in coastal marine ecosystems to maintain animal welfare and ecosystem function and to prevent significant economic losses. This requires accurate taxonomic identification of environmental bacterial pathogens, which often cannot be achieved by commonly used genetic markers (e.g., 16S rRNA gene), and an understanding of their pathogenic potential based on the information encoded in their genomes. The decreasing costs of whole genome sequencing (WGS), combined with newly developed bioinformatics tools, now make it possible to unravel the full potential of environmental pathogens, beyond traditional microbiological approaches. However, obtaining a high-quality bacterial genome, requires initial cultivation in an axenic culture, which is a bottleneck in environmental microbiology due to cross-contamination in the laboratory or isolation of non-axenic strains. RESULTS We applied WGS to determine the pathogenic potential of two Vibrio isolates from coastal seawater. During the analysis, we identified cross-contamination of one of the isolates and decided to use this dataset to evaluate the possibility of bioinformatic contaminant removal and recovery of bacterial genomes from a contaminated culture. Despite the contamination, using an appropriate bioinformatics workflow, we were able to obtain high quality and highly identical genomes (Average Nucleotide Identity value 99.98%) of one of the Vibrio isolates from both the axenic and the contaminated culture. Using the assembled genome, we were able to determine that this isolate belongs to a sub-lineage of Vibrio campbellii associated with several diseases in marine organisms. We also found that the genome of the isolate contains a novel Vibrio plasmid associated with bacterial defense mechanisms and horizontal gene transfer, which may offer a competitive advantage to this putative pathogen. CONCLUSIONS Our study shows that, using state-of-the-art bioinformatics tools and a sufficient sequencing effort, it is possible to obtain high quality genomes of the bacteria of interest and perform in-depth genomic analyses even in the case of a contaminated culture. With the new isolate and its complete genome, we are providing new insights into the genomic characteristics and functional potential of this sub-lineage of V. campbellii. The approach described here also highlights the possibility of recovering complete bacterial genomes in the case of non-axenic cultures or obligatory co-cultures.
Collapse
Affiliation(s)
- Neža Orel
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
| | - Eduard Fadeev
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | - Valentina Turk
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia
| | - Tinkara Tinta
- Marine Biology Station Piran, National Institute of Biology, Piran, Slovenia.
| |
Collapse
|
5
|
Jiang Z, Liu S, Zhang D, Sha Z. The Diversity and Metabolism of Culturable Nitrate-Reducing Bacteria from the Photic Zone of the Western North Pacific Ocean. MICROBIAL ECOLOGY 2023; 86:2781-2789. [PMID: 37552473 PMCID: PMC10640468 DOI: 10.1007/s00248-023-02284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
To better understand bacterial communities and metabolism under nitrogen deficiency, 154 seawater samples were obtained from 5 to 200 m at 22 stations in the photic zone of the Western North Pacific Ocean. Total 634 nitrate-utilizing bacteria were isolated using selective media and culture-dependent methods, and 295 of them were positive for nitrate reduction. These nitrate-reducing bacteria belonged to 19 genera and 29 species and among them, Qipengyuania flava, Roseibium aggregatum, Erythrobacter aureus, Vibrio campbellii, and Stappia indica were identified from all tested seawater layers of the photic zone and at almost all stations. Twenty-nine nitrate-reducing strains representing different species were selected for further the study of nitrogen, sulfur, and carbon metabolism. All 29 nitrate-reducing isolates contained genes encoding dissimilatory nitrate reduction or assimilatory nitrate reduction. Six nitrate-reducing isolates can oxidize thiosulfate based on genomic analysis and activity testing, indicating that nitrate-reducing thiosulfate-oxidizing bacteria exist in the photic zone. Five nitrate-reducing isolates obtained near the chlorophyll a-maximum layer contained a dimethylsulfoniopropionate synthesis gene and three of them contained both dimethylsulfoniopropionate synthesis and cleavage genes. This suggests that nitrate-reducing isolates may participate in dimethylsulfoniopropionate synthesis and catabolism in photic seawater. The presence of multiple genes for chitin degradation and extracellular peptidases may indicate that almost all nitrate-reducing isolates (28/29) can use chitin and proteinaceous compounds as important sources of carbon and nitrogen. Collectively, these results reveal culturable nitrate-reducing bacterial diversity and have implications for understanding the role of such strains in the ecology and biogeochemical cycles of nitrogen, sulfur, and carbon in the oligotrophic marine photic zone.
Collapse
Affiliation(s)
- Zhichen Jiang
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sizhen Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dechao Zhang
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laoshan Laboratory, Qingdao, 266237, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhongli Sha
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laoshan Laboratory, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Bar-Shalom R, Rozenberg A, Lahyani M, Hassanzadeh B, Sahoo G, Haber M, Burgsdorf I, Tang X, Squatrito V, Gomez-Consarnau L, Béjà O, Steindler L. Rhodopsin-mediated nutrient uptake by cultivated photoheterotrophic Verrucomicrobiota. THE ISME JOURNAL 2023:10.1038/s41396-023-01412-1. [PMID: 37120702 DOI: 10.1038/s41396-023-01412-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
Rhodopsin photosystems convert light energy into electrochemical gradients used by the cell to produce ATP, or for other energy-demanding processes. While these photosystems are widespread in the ocean and have been identified in diverse microbial taxonomic groups, their physiological role in vivo has only been studied in few marine bacterial strains. Recent metagenomic studies revealed the presence of rhodopsin genes in the understudied Verrucomicrobiota phylum, yet their distribution within different Verrucomicrobiota lineages, their diversity, and function remain unknown. In this study, we show that more than 7% of Verrucomicrobiota genomes (n = 2916) harbor rhodopsins of different types. Furthermore, we describe the first two cultivated rhodopsin-containing strains, one harboring a proteorhodopsin gene and the other a xanthorhodopsin gene, allowing us to characterize their physiology under laboratory-controlled conditions. The strains were isolated in a previous study from the Eastern Mediterranean Sea and read mapping of 16S rRNA gene amplicons showed the highest abundances of these strains at the deep chlorophyll maximum (source of their inoculum) in winter and spring, with a substantial decrease in summer. Genomic analysis of the isolates suggests that motility and degradation of organic material, both energy demanding functions, may be supported by rhodopsin phototrophy in Verrucomicrobiota. Under culture conditions, we show that rhodopsin phototrophy occurs under carbon starvation, with light-mediated energy generation supporting sugar transport into the cells. Overall, this study suggests that photoheterotrophic Verrucomicrobiota may occupy an ecological niche where energy harvested from light enables bacterial motility toward organic matter and supports nutrient uptake.
Collapse
Affiliation(s)
- Rinat Bar-Shalom
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Andrey Rozenberg
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Matan Lahyani
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Babak Hassanzadeh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gobardhan Sahoo
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
- Department of Ecology and Environmental Sciences, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
- Institute of Hydrobiology, Biology Centre CAS, Na Sadkach 7, 37005, Ceske Budejovice, Czechia
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Xinyu Tang
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Valeria Squatrito
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Laura Gomez-Consarnau
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
- Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, BC, México
| | - Oded Béjà
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
7
|
Soto W. Emerging Research Topics in the Vibrionaceae and the Squid- Vibrio Symbiosis. Microorganisms 2022; 10:microorganisms10101946. [PMID: 36296224 PMCID: PMC9607633 DOI: 10.3390/microorganisms10101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
The Vibrionaceae encompasses a cosmopolitan group that is mostly aquatic and possesses tremendous metabolic and genetic diversity. Given the importance of this taxon, it deserves continued and deeper research in a multitude of areas. This review outlines emerging topics of interest within the Vibrionaceae. Moreover, previously understudied research areas are highlighted that merit further exploration, including affiliations with marine plants (seagrasses), microbial predators, intracellular niches, and resistance to heavy metal toxicity. Agarases, phototrophy, phage shock protein response, and microbial experimental evolution are also fields discussed. The squid-Vibrio symbiosis is a stellar model system, which can be a useful guiding light on deeper expeditions and voyages traversing these "seas of interest". Where appropriate, the squid-Vibrio mutualism is mentioned in how it has or could facilitate the illumination of these various subjects. Additional research is warranted on the topics specified herein, since they have critical relevance for biomedical science, pharmaceuticals, and health care. There are also practical applications in agriculture, zymology, food science, and culinary use. The tractability of microbial experimental evolution is explained. Examples are given of how microbial selection studies can be used to examine the roles of chance, contingency, and determinism (natural selection) in shaping Earth's natural history.
Collapse
Affiliation(s)
- William Soto
- Integrated Science Center Rm 3035, Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA 23185, USA
| |
Collapse
|
8
|
Genome Sequence and Characterization of a Xanthorhodopsin-Containing, Aerobic Anoxygenic Phototrophic Rhodobacter Species, Isolated from Mesophilic Conditions at Yellowstone National Park. Microorganisms 2022; 10:microorganisms10061169. [PMID: 35744687 PMCID: PMC9231093 DOI: 10.3390/microorganisms10061169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022] Open
Abstract
The genus Rhodobacter consists of purple nonsulfur photosynthetic alphaproteobacteria known for their diverse metabolic capabilities. Here, we report the genome sequence and initial characterization of a novel Rhodobacter species, strain M37P, isolated from Mushroom hot spring runoff in Yellowstone National Park at 37 °C. Genome-based analyses and initial growth characteristics helped to define the differentiating characteristics of this species and identified it as an aerobic anoxygenic phototroph (AAP). This is the first AAP identified in the genus Rhodobacter. Strain M37P has a pinkish-red pigmentation that is present under aerobic dark conditions but disappears under light incubation. Whole genome-based analysis and average nucleotide identity (ANI) comparison indicate that strain M37P belongs to a specific clade of recently identified species that are genetically and physiologically unique from other representative Rhodobacter species. The genome encodes a unique xanthorhodopsin, not found in any other Rhodobacter species, which may be responsible for the pinkish-red pigmentation. These analyses indicates that strain M37P is a unique species that is well-adapted to optimized growth in the Yellowstone hot spring runoff, for which we propose the name Rhodobacter calidifons sp. nov.
Collapse
|
9
|
Proteome Expression and Survival Strategies of a Proteorhodopsin-Containing Vibrio Strain under Carbon and Nitrogen Limitation. mSystems 2022; 7:e0126321. [PMID: 35384695 PMCID: PMC9040609 DOI: 10.1128/msystems.01263-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Photoheterotrophy is a widespread mode of microbial metabolism, notably in the oligotrophic surface ocean, where microbes experience chronic nutrient limitation. One especially widespread form of photoheterotrophy is based on proteorhodopsin (PR), which uses light to generate proton motive force that can drive ATP synthesis, flagellar movement, or nutrient uptake. To clarify the physiological benefits conferred by PR under nutrient stress conditions, we quantified protein-level gene expression of Vibrio campbellii CAIM 519 under both carbon and nitrogen limitation and under both light and dark conditions. Using a novel membrane proteomics strategy, we determined that PR expression is higher under C limitation than N limitation but is not light regulated. Despite expression of PR photosystems, V. campbellii does not exhibit any growth or survival advantages in the light and only a few proteins show significant expression differences between light and dark conditions. While protein-level proteorhodopsin expression in V. campbellii is clearly responsive to nutrient limitation, photoheterotrophy does not appear to play a central role in the survival physiology of this organism under these nutrient stress conditions. C limitation and N limitation, however, result in very different survival responses: under N-limited conditions, viability declines, cultivability is lost rapidly, central carbon flux through the Entner-Doudoroff pathway is increased, and ammonium is assimilated via the GS-GOGAT pathway. In contrast, C limitation drives cell dwarfing with maintenance of viability, as well as utilization of the glyoxylate shunt, glutamate dehydrogenase and anaplerotic C fixation, and a stringent response mediated by the Pho regulon. IMPORTANCE Understanding the nutrient stress responses of proteorhodopsin-bearing microbes like Vibrio campbellii yields insights into microbial contributions to nutrient cycling, lifestyles of emerging pathogens in aquatic environments, and protein-level adaptations implemented during times of nutrient limitation. In addition to its broad taxonomic and geographic prevalence, the physiological role of PR is diverse, so we developed a novel proteomics strategy to quantify its expression at the protein level. We found that proteorhodopsin expression levels in this wild-type photoheterotroph under these experimental conditions, while higher under C than under N limitation, do not afford measurable light-driven growth or survival advantages. Additionally, this work links differential protein expression patterns between C- and N-limited cultures to divergent stationary-phase survival phenotypes.
Collapse
|
10
|
The Role of Selected Wavelengths of Light in the Activity of Photosystem II in Gloeobacter violaceus. Int J Mol Sci 2021; 22:ijms22084021. [PMID: 33924720 PMCID: PMC8069770 DOI: 10.3390/ijms22084021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023] Open
Abstract
Gloeobacter violaceus is a cyanobacteria species with a lack of thylakoids, while photosynthetic antennas, i.e., phycobilisomes (PBSs), photosystem II (PSII), and I (PSI), are located in the cytoplasmic membrane. We verified the hypothesis that blue–red (BR) light supplemented with a far-red (FR), ultraviolet A (UVA), and green (G) light can affect the photosynthetic electron transport chain in PSII and explain the differences in the growth of the G. violaceus culture. The cyanobacteria were cultured under different light conditions. The largest increase in G. violaceus biomass was observed only under BR + FR and BR + G light. Moreover, the shape of the G. violaceus cells was modified by the spectrum with the addition of G light. Furthermore, it was found that both the spectral composition of light and age of the cyanobacterial culture affect the different content of phycobiliproteins in the photosynthetic antennas (PBS). Most likely, in cells grown under light conditions with the addition of FR and G light, the average antenna size increased due to the inactivation of some reaction centers in PSII. Moreover, the role of PSI and gloeorhodopsin as supplementary sources of metabolic energy in the G. violaceus growth is discussed.
Collapse
|
11
|
Koedooder C, Van Geersdaële R, Guéneuguès A, Bouget FY, Obernosterer I, Blain S. The interplay between iron limitation, light and carbon in the proteorhodopsin-containing Photobacterium angustum S14. FEMS Microbiol Ecol 2020; 96:5847691. [DOI: 10.1093/femsec/fiaa103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/25/2020] [Indexed: 01/01/2023] Open
Abstract
ABSTRACTIron (Fe) limitation is known to affect heterotrophic bacteria within the respiratory electron transport chain, therefore strongly impacting the overall intracellular energy production. We investigated whether the gene expression pattern of the light-sensitive proton pump, proteorhodopsin (PR), is influenced by varying light, carbon and Fe concentrations in the marine bacterium Photobacterium angustum S14 and whether PR can alleviate the physiological processes associated with Fe starvation. Our results show that the gene expression of PR increases as cells enter the stationary phase, irrespective of Fe-replete or Fe-limiting conditions. This upregulation is coupled to a reduction in cell size, indicating that PR gene regulation is associated with a specific starvation-stress response. We provide experimental evidence that PR gene expression does not result in an increased growth rate, cell abundance, enhanced survival or ATP concentration within the cell in either Fe-replete or Fe-limiting conditions. However, independent of PR gene expression, the presence of light did influence bacterial growth rates and maximum cell abundances under varying Fe regimes. Our observations support previous results indicating that PR phototrophy seems to play an important role within the stationary phase for several members of the Vibrionaceae family, but that the exact role of PR in Fe limitation remains to be further explored.
Collapse
Affiliation(s)
- Coco Koedooder
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls/mer, France
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rémy Van Geersdaële
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls/mer, France
| | - Audrey Guéneuguès
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls/mer, France
| | - François-Yves Bouget
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls/mer, France
| | - Ingrid Obernosterer
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls/mer, France
| | - Stéphane Blain
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Banyuls/mer, France
| |
Collapse
|
12
|
Leung PM, Bay SK, Meier DV, Chiri E, Cowan DA, Gillor O, Woebken D, Greening C. Energetic Basis of Microbial Growth and Persistence in Desert Ecosystems. mSystems 2020; 5:e00495-19. [PMID: 32291352 PMCID: PMC7159902 DOI: 10.1128/msystems.00495-19] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial life is surprisingly abundant and diverse in global desert ecosystems. In these environments, microorganisms endure a multitude of physicochemical stresses, including low water potential, carbon and nitrogen starvation, and extreme temperatures. In this review, we summarize our current understanding of the energetic mechanisms and trophic dynamics that underpin microbial function in desert ecosystems. Accumulating evidence suggests that dormancy is a common strategy that facilitates microbial survival in response to water and carbon limitation. Whereas photoautotrophs are restricted to specific niches in extreme deserts, metabolically versatile heterotrophs persist even in the hyper-arid topsoils of the Atacama Desert and Antarctica. At least three distinct strategies appear to allow such microorganisms to conserve energy in these oligotrophic environments: degradation of organic energy reserves, rhodopsin- and bacteriochlorophyll-dependent light harvesting, and oxidation of the atmospheric trace gases hydrogen and carbon monoxide. In turn, these principles are relevant for understanding the composition, functionality, and resilience of desert ecosystems, as well as predicting responses to the growing problem of desertification.
Collapse
Affiliation(s)
- Pok Man Leung
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Sean K Bay
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Dimitri V Meier
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Eleonora Chiri
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, Victoria, Australia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Sde Boker, Israel
| | - Dagmar Woebken
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Ellis GA, Tschirhart T, Spangler J, Walper SA, Medintz IL, Vora GJ. Exploiting the Feedstock Flexibility of the Emergent Synthetic Biology Chassis Vibrio natriegens for Engineered Natural Product Production. Mar Drugs 2019; 17:E679. [PMID: 31801279 PMCID: PMC6950413 DOI: 10.3390/md17120679] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/21/2022] Open
Abstract
A recent goal of synthetic biology has been to identify new chassis that provide benefits lacking in model organisms. Vibrio natriegens is a marine Gram-negative bacterium which is an emergent synthetic biology chassis with inherent benefits: An extremely fast growth rate, genetic tractability, and the ability to grow on a variety of carbon sources ("feedstock flexibility"). Given these inherent benefits, we sought to determine its potential to heterologously produce natural products, and chose beta-carotene and violacein as test cases. For beta-carotene production, we expressed the beta-carotene biosynthetic pathway from the sister marine bacterium Vibrio campbellii, as well as the mevalonate biosynthetic pathway from the Gram-positive bacterium Lactobacillus acidophilus to improve precursor abundance. Violacein was produced by expressing a biosynthetic gene cluster derived from Chromobacterium violaceum. Not only was V. natriegens able to heterologously produce these compounds in rich media, illustrating its promise as a new chassis for small molecule drug production, but it also did so in minimal media using a variety of feedstocks. The ability for V. natriegens to produce natural products with multiple industrially-relevant feedstocks argues for continued investigations into the production of more complex natural products in this chassis.
Collapse
Affiliation(s)
- Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (G.A.E.); (S.A.W.); (I.L.M.)
| | - Tanya Tschirhart
- American Society for Engineering Education, Postdoctoral Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Joseph Spangler
- National Academy of Sciences, National Research Council, Postdoctoral Research Associate, U.S. Naval Research Laboratory, Washington, DC 20375, USA;
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (G.A.E.); (S.A.W.); (I.L.M.)
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (G.A.E.); (S.A.W.); (I.L.M.)
| | - Gary J. Vora
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (G.A.E.); (S.A.W.); (I.L.M.)
| |
Collapse
|
14
|
Chen Q, Arents J, Schuurmans JM, Ganapathy S, de Grip WJ, Cheregi O, Funk C, Branco Dos Santos F, Hellingwerf KJ. Functional Expression of Gloeobacter Rhodopsin in PSI-Less Synechocystis sp. PCC6803. Front Bioeng Biotechnol 2019; 7:67. [PMID: 30984754 PMCID: PMC6450040 DOI: 10.3389/fbioe.2019.00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/11/2019] [Indexed: 01/30/2023] Open
Abstract
The approach of providing an oxygenic photosynthetic organism with a cyclic electron transfer system, i.e., a far-red light-driven proton pump, is widely proposed to maximize photosynthetic efficiency via expanding the absorption spectrum of photosynthetically active radiation. As a first step in this approach, Gloeobacter rhodopsin was expressed in a PSI-deletion strain of Synechocystis sp. PCC6803. Functional expression of Gloeobacter rhodopsin, in contrast to Proteorhodopsin, did not stimulate the rate of photoheterotrophic growth of this Synechocystis strain, analyzed with growth rate measurements and competition experiments. Nevertheless, analysis of oxygen uptake and—production rates of the Gloeobacter rhodopsin-expressing strains, relative to the ΔPSI control strain, confirm that the proton-pumping Gloeobacter rhodopsin provides the cells with additional capacity to generate proton motive force. Significantly, expression of the Gloeobacter rhodopsin did modulate levels of pigment formation in the transgenic strain.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.,Center of Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jos Arents
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - J Merijn Schuurmans
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | | | | | - Filipe Branco Dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Srinivasan K, Buys EM. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 2019; 59:3211-3226. [PMID: 30638045 DOI: 10.1080/10408398.2018.1546670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant efforts have been made to address the hidden hunger challenges due to iron, zinc, iodine, and vitamin A since the beginning of the 21st century. Prioritizing the vitamin A deficiency (VAD) disorders, many countries are looking for viable alternative strategies such as biofortification. One of the leading causes of VAD is the poor bioconversion of β-carotene into retinoids. This review is focused on the opportunities of bacterial biosynthesis of retinoids, in particular, through the gut microbiota. The proposed hypothesis starts with the premise that an animal can able to store and timely convert carotenoids into retinoids in the liver and intestinal tissues. This theory is experimental with many scientific insights. The syntrophic metabolism, potential crosstalk of bile acids, lipocalins and lipopolysaccharides of gut microbiota are reported to contribute significantly to the retinoid biosynthesis. The gut bacteria respond to these kinds of factors by genetic restructuring driven mainly by events like horizontal gene transfer. A phylogenetic analysis of β-carotene 15, 15'-mono (di) oxygenase enzymes among a selected group of prokaryotes and eukaryotes was carried out to validate the hypotheses. Shedding light on the probiotic strategies through non-genetically modified organism such as gut bacteria capable of synthesizing vitamin A would address the VAD disorders.
Collapse
Affiliation(s)
- K Srinivasan
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
16
|
Ramesh C, Vinithkumar N, Kirubagaran R. Marine pigmented bacteria: A prospective source of antibacterial compounds. J Nat Sci Biol Med 2019. [DOI: 10.4103/jnsbm.jnsbm_201_18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Maresca JA, Miller KJ, Keffer JL, Sabanayagam CR, Campbell BJ. Distribution and Diversity of Rhodopsin-Producing Microbes in the Chesapeake Bay. Appl Environ Microbiol 2018; 84:e00137-18. [PMID: 29703736 PMCID: PMC6007120 DOI: 10.1128/aem.00137-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
Although sunlight is an abundant source of energy in surface environments, less than 0.5% of the available photons are captured by (bacterio)chlorophyll-dependent photosynthesis in plants and bacteria. Metagenomic data indicate that 30 to 60% of the bacterial genomes in some environments encode rhodopsins, retinal-based photosystems found in heterotrophs, suggesting that sunlight may provide energy for more life than previously suspected. However, quantitative data on the number of cells that produce rhodopsins in environmental systems are limited. Here, we use total internal reflection fluorescence microscopy to show that the number of free-living microbes that produce rhodopsins increases along the salinity gradient in the Chesapeake Bay. We correlate this functional data with environmental data to show that rhodopsin abundance is positively correlated with salinity and with indicators of active heterotrophy during the day. Metagenomic and metatranscriptomic data suggest that the microbial rhodopsins in the low-salinity samples are primarily found in Actinobacteria and Bacteroidetes, while those in the high-salinity samples are associated with SAR-11 type AlphaproteobacteriaIMPORTANCE Microbial rhodopsins are common light-activated ion pumps in heterotrophs, and previous work has proposed that heterotrophic microbes use them to conserve energy when organic carbon is limiting. If this hypothesis is correct, rhodopsin-producing cells should be most abundant where nutrients are most limited. Our results indicate that in the Chesapeake Bay, rhodopsin gene abundance is correlated with salinity, and functional rhodopsin production is correlated with nitrate, bacterial production, and chlorophyll a We propose that in this environment, where carbon and nitrogen are likely not limiting, heterotrophs do not need to use rhodopsins to supplement ATP synthesis. Rather, the light-generated proton motive force in nutrient-rich environments could be used to power energy-dependent membrane-associated processes, such as active transport of organic carbon and cofactors, enabling these organisms to more efficiently utilize exudates from primary producers.
Collapse
Affiliation(s)
- Julia A Maresca
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelsey J Miller
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Jessica L Keffer
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | | | - Barbara J Campbell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
18
|
Olson DK, Yoshizawa S, Boeuf D, Iwasaki W, DeLong EF. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME JOURNAL 2018; 12:1047-1060. [PMID: 29476140 PMCID: PMC5864233 DOI: 10.1038/s41396-018-0074-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/21/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022]
Abstract
Proteorhodopsin is a light-activated retinal-containing proton pump found in many marine bacteria. These photoproteins are globally distributed in the ocean’s photic zone and are capable of generating a proton motive force across the cell membrane. We investigated the phylogenetic diversity, distribution, and abundance of proteorhodopsin encoding genes in free-living bacterioplankton in the North Pacific Subtropical Gyre, leveraging a gene catalog derived from metagenomic samples from the ocean’s surface to 1000 m depth. Proteorhodopsin genes were identified at all depths sampled, but were most abundant at depths shallower than 200 m. The majority of proteorhodopsin gene sequences (60.9%) belonged to members of the SAR11 lineage, with remaining sequences distributed among other diverse taxa. We observed variations in the conserved residues involved in ion pumping and spectral tuning, and biochemically confirmed four different proton pumping proteorhodopsin motifs, including one unique to deep-water SAR11. We also identified a new group of putative proteorhodopsins having unknown function. Our results reveal a broad organismal and unexpected depth distribution for different proteorhodopsin types, as well as substantial within-taxon variability. These data provide a framework for exploring the ecological relevance of proteorhodopsins and their spatiotemporal variation and function in heterotrophic bacteria in the open ocean.
Collapse
Affiliation(s)
- Daniel K Olson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawaii, Honolulu, HI, 96822, USA
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Dominique Boeuf
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawaii, Honolulu, HI, 96822, USA
| | - Wataru Iwasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Edward F DeLong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, University of Hawaii, Honolulu, HI, 96822, USA.
| |
Collapse
|
19
|
Chen Q, Arents J, Ganapathy S, de Grip WJ, Hellingwerf KJ. Functional Expression of Gloeobacter Rhodopsin inSynechocystissp. PCC6803. Photochem Photobiol 2017; 93:772-781. [DOI: 10.1111/php.12745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/07/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Jos Arents
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry; Leiden Institute of Chemistry; Leiden University; Leiden The Netherlands
| | - Willem J. de Grip
- Biophysical Organic Chemistry; Leiden Institute of Chemistry; Leiden University; Leiden The Netherlands
| | - Klaas J. Hellingwerf
- Molecular Microbial Physiology; Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
20
|
Yang Q, Pande GSJ, Wang Z, Lin B, Rubin RA, Vora GJ, Defoirdt T. Indole signalling and (micro)algal auxins decrease the virulence of Vibrio campbellii, a major pathogen of aquatic organisms. Environ Microbiol 2017; 19:1987-2004. [PMID: 28251783 DOI: 10.1111/1462-2920.13714] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/25/2017] [Indexed: 12/23/2022]
Abstract
Vibrios belonging to the Harveyi clade are major pathogens of marine vertebrates and invertebrates, causing major losses in wild and cultured organisms. Despite their significant impact, the pathogenicity mechanisms of these bacteria are not yet completely understood. In this study, the impact of indole signalling on the virulence of Vibrio campbellii was investigated. Elevated indole levels significantly decreased motility, biofilm formation, exopolysaccharide production and virulence to crustacean hosts. Indole furthermore inhibited the three-channel quorum sensing system of V. campbellii, a regulatory mechanism that is required for full virulence of the pathogen. Further, indole signalling was found to interact with the stress sigma factor RpoS. Together with the observations that energy-consuming processes (motility and bioluminescence) are downregulated, and microarray-based transcriptomics demonstrating that indole decreases the expression of genes involved in energy and amino acid metabolism, the data suggest that indole is a starvation signal in V. campbellii. Finally, it was found that the auxins indole-3-acetic acid and indole-3-acetamide, which were produced by various (micro)algae sharing the aquatic environment with V. campbellii, have a similar effect as observed for indole. Auxins might, therefore, have a significant impact on the interactions between vibrios, (micro)algae and higher organisms, with major ecological and practical implications.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium
| | | | - Zheng Wang
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Baochuan Lin
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Robert A Rubin
- Mathematics Department, Whittier College, Whittier, CA, USA
| | - Gary J Vora
- Center for Bio/Molecular Science & Engineering, Naval Research Laboratory, Washington, DC, USA
| | - Tom Defoirdt
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Gent, Belgium.,Center for Microbial Ecology and Technology (cmet), Ghent University, Gent, Belgium
| |
Collapse
|
21
|
Abstract
Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotrophic waters. Mixotrophic phytoflagellates and dinoflagellates are often dominant components of the plankton during seasonal stratification. Many of the microzooplankton grazers, including ciliates and Rhizaria, are mixotrophic owing to their retention of functional algal organelles or maintenance of algal endosymbionts. Phototrophy among the microzooplankton may increase gross growth efficiency and carbon transfer through the microzooplankton to higher trophic levels. Characteristic assemblages of mixotrophs are associated with warm, temperate, and cold seas and with stratification, fronts, and upwelling zones. Modeling has indicated that mixotrophy has a profound impact on marine planktonic ecosystems and may enhance primary production, biomass transfer to higher trophic levels, and the functioning of the biological carbon pump.
Collapse
Affiliation(s)
- Diane K Stoecker
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, Maryland 21613;
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, 3000 Helsingør, Denmark;
| | - David A Caron
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0371;
| | - Aditee Mitra
- Department of Biosciences, Swansea University, Swansea SA2 8PP, United Kingdom;
| |
Collapse
|
22
|
Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology. Microbiol Mol Biol Rev 2016; 80:929-54. [PMID: 27630250 DOI: 10.1128/mmbr.00003-16] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.
Collapse
|
23
|
Chen Q, van der Steen JB, Dekker HL, Ganapathy S, de Grip WJ, Hellingwerf KJ. Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803. Metab Eng 2016; 35:83-94. [PMID: 26869136 DOI: 10.1016/j.ymben.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/11/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023]
Abstract
Retinal-based photosynthesis may contribute to the free energy conversion needed for growth of an organism carrying out oxygenic photosynthesis, like a cyanobacterium. After optimization, this may even enhance the overall efficiency of phototrophic growth of such organisms in sustainability applications. As a first step towards this, we here report on functional expression of the archetype proteorhodopsin in Synechocystis sp. PCC 6803. Upon use of the moderate-strength psbA2 promoter, holo-proteorhodopsin is expressed in this cyanobacterium, at a level of up to 10(5) molecules per cell, presumably in a hexameric quaternary structure, and with approximately equal distribution (on a protein-content basis) over the thylakoid and the cytoplasmic membrane fraction. These results also demonstrate that Synechocystis sp. PCC 6803 has the capacity to synthesize all-trans-retinal. Expressing a substantial amount of a heterologous opsin membrane protein causes a substantial growth retardation Synechocystis, as is clear from a strain expressing PROPS, a non-pumping mutant derivative of proteorhodopsin. Relative to this latter strain, proteorhodopsin expression, however, measurably stimulates its growth.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B van der Steen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Kwon YM, Kim S, Jung K, Kim S. Diversity and functional analysis of light-driven pumping rhodopsins in marine Flavobacteria. Microbiologyopen 2015; 5:212-23. [PMID: 26663527 PMCID: PMC4831467 DOI: 10.1002/mbo3.321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022] Open
Abstract
The aims of this study are the description of diversity for proteorhodopsin (PR)-containing flavobacteria in marine environments, the finding of novel photoreceptive membrane proteins, and the elucidation of the effect of light on the growth of three rhodopsin genes containing flavobacterium. We investigated novel sodium ion rhodopsin (NaR) and halorhodopsin (HR) genes from PR-containing flavobacteria that were previously isolated from diverse aquatic sites, mainly from tidal flat sediment (62.5%). In 16 PR-containing isolates, three new types of genes were found. Among these three isolates, one (Nonlabens sp. YIK11 isolated from sediment) contained both the NaR and chloride ion rhodopsin (ClR) - HR type of gene. The sequences showed that the DTE (proton pump), NDQ (sodium ion pump) and NTQ (chloride ion pump) motifs corresponding to the D85, T89, and D96 positions in bacteriorhodopsin (BR) were well conserved. Phylogenetic analysis indicated that three NaR and one ClR grouped within the same clade, as previously reported. Illumination of cell suspensions showed the change in proton pump activity, supporting that one or more rhodopsins are functional. The qRT-PCR study revealed that three rhodopsin genes, especially NaR, are highly induced when they are incubated in the presence of light or in the absence of sufficient nutrients. The expression levels of the DTE, NDQ, and NTQ motif-containing rhodopsin genes in YIK11 correlate positively with illumination, but negatively with nutrient levels. Based on those results, we concluded that light has a positive impact on the relative expression levels of the three rhodopsin genes in the flavobacterium, Nonlabens sp. YIK11, but with no apparent positive impact on growth. Consequently, light did not stimulate the growth of YIK11 as determined by cell numbers in a nutrient-limited or -enriched medium, although it contains and induces three rhodopsins.
Collapse
Affiliation(s)
- Yong Min Kwon
- Marine Biotechnology Research CenterKorea Institute of Ocean Science & Technology787 HaeanroAnsan426‐744Korea
| | - So‐Young Kim
- Department of Life Science and Institute of Biological ScienceSogang University35 Baekbeom‐RoMapo‐GuSeoul121‐742Korea
| | - Kwang‐Hwan Jung
- Department of Life Science and Institute of Biological ScienceSogang University35 Baekbeom‐RoMapo‐GuSeoul121‐742Korea
| | - Sang‐Jin Kim
- Marine Biotechnology Research CenterKorea Institute of Ocean Science & Technology787 HaeanroAnsan426‐744Korea
- Marine Biodiversity Institute of KoreaSeocheon325‐902Korea
| |
Collapse
|
25
|
Proteorhodopsin light-enhanced growth linked to vitamin-B1 acquisition in marine Flavobacteria. ISME JOURNAL 2015; 10:1102-12. [PMID: 26574687 DOI: 10.1038/ismej.2015.196] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 09/11/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
Proteorhodopsins (PR) are light-driven proton pumps widely distributed in bacterioplankton. Although they have been thoroughly studied for more than a decade, it is still unclear how the proton motive force (pmf) generated by PR is used in most organisms. Notably, very few PR-containing bacteria show growth enhancement in the light. It has been suggested that the presence of specific functions within a genome may define the different PR-driven light responses. Thus, comparing closely related organisms that respond differently to light is an ideal setup to identify the mechanisms involved in PR light-enhanced growth. Here, we analyzed the transcriptomes of three PR-harboring Flavobacteria strains of the genus Dokdonia: Dokdonia donghaensis DSW-1(T), Dokdonia MED134 and Dokdonia PRO95, grown in identical seawater medium in light and darkness. Although only DSW-1(T) and MED134 showed light-enhanced growth, all strains expressed their PR genes at least 10 times more in the light compared with dark. According to their genomes, DSW-1(T) and MED134 are vitamin-B1 auxotrophs, and their vitamin-B1 TonB-dependent transporters (TBDT), accounted for 10-18% of all pmf-dependent transcripts. In contrast, the expression of vitamin-B1 TBDT was 10 times lower in the prototroph PRO95, whereas its vitamin-B1 synthesis genes were among the highest expressed. Our data suggest that light-enhanced growth in DSW-1(T) and MED134 derives from the use of PR-generated pmf to power the uptake of vitamin-B1, essential for central carbon metabolism, including the TCA cycle. Other pmf-generating mechanisms available in darkness are probably insufficient to power transport of enough vitamin-B1 to support maximum growth of these organisms.
Collapse
|
26
|
Courties A, Riedel T, Rapaport A, Lebaron P, Suzuki MT. Light-driven increase in carbon yield is linked to maintenance in the proteorhodopsin-containing Photobacterium angustum S14. Front Microbiol 2015. [PMID: 26217320 PMCID: PMC4498439 DOI: 10.3389/fmicb.2015.00688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A type of photoheterotrophic bacteria contain a transmembrane light-driven proton pump called proteorhodopsins (PRs). Due to the prevalence of these organisms in the upper water column of the World's Ocean, and their potential for light-driven ATP generation, they have been suggested to significantly influence energy and matter flows in the biosphere. To date, evidence for the significance of the light-driven metabolism of PR-containing prokaryotes has been obtained by comparing growth in batch culture, under light versus dark conditions, and it appears that responses to light are linked to unfavorable conditions, which so far have not been well parameterized. We studied light responses to carbon yields of the PR-containing Photobacterium angustum S14 using continuous culture conditions and light-dark cycles. We observed significant effects of light-dark cycles compared to dark controls, as well as significant differences between samples after 12 h illumination versus 12 h darkness. However, these effects were only observed under higher cell counts and lower pH associated with higher substrate concentrations. Under these substrate levels Pirt's maintenance coefficient was higher when compared to lower substrate dark controls, and decreased under light-dark cycles. It appears that light responses by P. angustum S14 are induced by the energetic status of the cells rather than by low substrate concentrations.
Collapse
Affiliation(s)
- Alicia Courties
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique , Banyuls-sur-Mer, France
| | - Thomas Riedel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique , Banyuls-sur-Mer, France
| | - Alain Rapaport
- INRA-Supagro, UMR MISTEA , Montpellier, France ; INRA-INRIA, MODEMIC Team , Sophia Antipolis, France
| | - Philippe Lebaron
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique , Banyuls-sur-Mer, France
| | - Marcelino T Suzuki
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique , Banyuls-sur-Mer, France
| |
Collapse
|
27
|
Characterization of an Unconventional Rhodopsin from the Freshwater Actinobacterium Rhodoluna lacicola. J Bacteriol 2015; 197:2704-12. [PMID: 26055118 DOI: 10.1128/jb.00386-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Rhodopsin-encoding microorganisms are common in many environments. However, knowing that rhodopsin genes are present provides little insight into how the host cells utilize light. The genome of the freshwater actinobacterium Rhodoluna lacicola encodes a rhodopsin of the uncharacterized actinorhodopsin family. We hypothesized that actinorhodopsin was a light-activated proton pump and confirmed this by heterologously expressing R. lacicola actinorhodopsin in retinal-producing Escherichia coli. However, cultures of R. lacicola did not pump protons, even though actinorhodopsin mRNA and protein were both detected. Proton pumping in R. lacicola was induced by providing exogenous retinal, suggesting that the cells lacked the retinal cofactor. We used high-performance liquid chromatography (HPLC) and oxidation of accessory pigments to confirm that R. lacicola does not synthesize retinal. These results suggest that in some organisms, the actinorhodopsin gene is constitutively expressed, but rhodopsin-based light capture may require cofactors obtained from the environment. IMPORTANCE Up to 70% of microbial genomes in some environments are predicted to encode rhodopsins. Because most microbial rhodopsins are light-activated proton pumps, the prevalence of this gene suggests that in some environments, most microorganisms respond to or utilize light energy. Actinorhodopsins were discovered in an analysis of freshwater metagenomic data and subsequently identified in freshwater actinobacterial cultures. We hypothesized that actinorhodopsin from the freshwater actinobacterium Rhodoluna lacicola was a light-activated proton pump and confirmed this by expressing actinorhodopsin in retinal-producing Escherichia coli. Proton pumping in R. lacicola was induced only after both light and retinal were provided, suggesting that the cells lacked the retinal cofactor. These results indicate that photoheterotrophy in this organism and others may require cofactors obtained from the environment.
Collapse
|
28
|
Functional consequences of the oligomeric assembly of proteorhodopsin. J Mol Biol 2015; 427:1278-1290. [PMID: 25597999 PMCID: PMC4374980 DOI: 10.1016/j.jmb.2015.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/21/2014] [Accepted: 01/08/2015] [Indexed: 11/24/2022]
Abstract
The plasma membrane is the crucial interface between the cell and its exterior, packed with embedded proteins experiencing simultaneous protein-protein and protein-membrane interactions. A prominent example of cell membrane complexity is the assembly of transmembrane proteins into oligomeric structures, with potential functional consequences that are not well understood. From the study of proteorhodopsin (PR), a prototypical seven-transmembrane light-driven bacterial proton pump, we find evidence that the inter-protein interaction modulated by self-association yields functional changes observable from the protein interior. We also demonstrate that the oligomer is likely a physiologically relevant form of PR, as crosslinking of recombinantly expressed PR reveals an oligomeric population within the Escherichia coli membrane (putatively hexameric). Upon chromatographic isolation of oligomeric and monomeric PR in surfactant micelles, the oligomer exhibits distinctly different optical absorption properties from monomeric PR, as reflected in a prominent decrease in the pKa of the primary proton acceptor residue (D97) and slowing of the light-driven conformational change. These functional effects are predominantly determined by specific PR-PR contacts over nonspecific surfactant interactions. Interestingly, varying the surfactant type alters the population of oligomeric states and the proximity of proteins within an oligomer, as determined by sparse electron paramagnetic resonance distance measurements. Nevertheless, the dynamic surfactant environment retains the key function-tuning property exerted by oligomeric contacts. A potentially general design principle for transmembrane protein function emerges from this work, one that hinges on specific oligomeric contacts that can be modulated by protein expression or membrane composition.
Collapse
|
29
|
Guo Z, Zhang H, Lin S. Light-promoted rhodopsin expression and starvation survival in the marine dinoflagellate Oxyrrhis marina. PLoS One 2014; 9:e114941. [PMID: 25506945 PMCID: PMC4266641 DOI: 10.1371/journal.pone.0114941] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 11/16/2014] [Indexed: 11/18/2022] Open
Abstract
The discovery of microbial rhodopsins in marine proteobacteria changed the dogma that photosynthesis is the only pathway to use the solar energy for biological utilization in the marine environment. Although homologs of these rhodopsins have been identified in dinoflagellates, the diversity of the encoding genes and their physiological roles remain unexplored. As an initial step toward addressing the gap, we conducted high-throughput transcriptome sequencing on Oxyrrhis marina to retrieve rhodopsin transcripts, rapid amplification of cDNA ends to isolate full-length cDNAs of dominant representatives, and quantitative reverse-transcription PCR to investigate their expression under varying conditions. Our phylogenetic analyses showed that O. marina contained both the proton-pumping type (PR) and sensory type (SR) rhodopsins, and the transcriptome data showed that the PR type dominated over the SR type. We compared rhodopsin gene expression for cultures kept under light: dark cycle and continuous darkness in a time course of 24 days without feeding. Although both types of rhodopsin were expressed under the two conditions, the expression levels of PR were much higher than SR, consistent with the transcriptomic data. Furthermore, relative to cultures kept in the dark, rhodopsin expression levels and cell survival rate were both higher in cultures grown in the light. This is the first report of light-dependent promotion of starvation survival and concomitant promotion of PR expression in a eukaryote. While direct evidence needs to come from functional test on rhodopsins in vitro or gene knockout/knockdown experiments, our results suggest that the proton-pumping rhodopsin might be responsible for the light-enhanced survival of O. marina, as previously demonstrated in bacteria.
Collapse
Affiliation(s)
- Zhiling Guo
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States of America
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States of America
- Department of Environmental Science, Ocean University of China, Qingdao, Shandong 266100, China
- * E-mail: (SL); (HZ)
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States of America
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China
- * E-mail: (SL); (HZ)
| |
Collapse
|
30
|
Soto W, Nishiguchi MK. Microbial experimental evolution as a novel research approach in the Vibrionaceae and squid-Vibrio symbiosis. Front Microbiol 2014; 5:593. [PMID: 25538686 PMCID: PMC4260504 DOI: 10.3389/fmicb.2014.00593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/20/2014] [Indexed: 12/21/2022] Open
Abstract
The Vibrionaceae are a genetically and metabolically diverse family living in aquatic habitats with a great propensity toward developing interactions with eukaryotic microbial and multicellular hosts (as either commensals, pathogens, and mutualists). The Vibrionaceae frequently possess a life history cycle where bacteria are attached to a host in one phase and then another where they are free from their host as either part of the bacterioplankton or adhered to solid substrates such as marine sediment, riverbeds, lakebeds, or floating particulate debris. These two stages in their life history exert quite distinct and separate selection pressures. When bound to solid substrates or to host cells, the Vibrionaceae can also exist as complex biofilms. The association between bioluminescent Vibrio spp. and sepiolid squids (Cephalopoda: Sepiolidae) is an experimentally tractable model to study bacteria and animal host interactions, since the symbionts and squid hosts can be maintained in the laboratory independently of one another. The bacteria can be grown in pure culture and the squid hosts raised gnotobiotically with sterile light organs. The partnership between free-living Vibrio symbionts and axenic squid hatchlings emerging from eggs must be renewed every generation of the cephalopod host. Thus, symbiotic bacteria and animal host can each be studied alone and together in union. Despite virtues provided by the Vibrionaceae and sepiolid squid-Vibrio symbiosis, these assets to evolutionary biology have yet to be fully utilized for microbial experimental evolution. Experimental evolution studies already completed are reviewed, along with exploratory topics for future study.
Collapse
Affiliation(s)
- William Soto
- BEACON Center for the Study of Evolution in Action, Michigan State UniversityEast Lansing, MI, USA
| | | |
Collapse
|
31
|
Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria. Proc Natl Acad Sci U S A 2014; 111:E3650-8. [PMID: 25136122 DOI: 10.1073/pnas.1402617111] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proteorhodopsin (PR) is present in half of surface ocean bacterioplankton, where its light-driven proton pumping provides energy to cells. Indeed, PR promotes growth or survival in different bacteria. However, the metabolic pathways mediating the light responses remain unknown. We analyzed growth of the PR-containing Dokdonia sp. MED134 (where light-stimulated growth had been found) in seawater with low concentrations of mixed [yeast extract and peptone (YEP)] or single (alanine, Ala) carbon compounds as models for rich and poor environments. We discovered changes in gene expression revealing a tightly regulated shift in central metabolic pathways between light and dark conditions. Bacteria showed relatively stronger light responses in Ala compared with YEP. Notably, carbon acquisition pathways shifted toward anaplerotic CO2 fixation in the light, contributing 31 ± 8% and 24 ± 6% of the carbon incorporated into biomass in Ala and YEP, respectively. Thus, MED134 was a facultative double mixotroph, i.e., photo- and chemotrophic for its energy source and using both bicarbonate and organic matter as carbon sources. Unexpectedly, relative expression of the glyoxylate shunt genes (isocitrate lyase and malate synthase) was >300-fold higher in the light--but only in Ala--contributing a more efficient use of carbon from organic compounds. We explored these findings in metagenomes and metatranscriptomes and observed similar prevalence of the glyoxylate shunt compared with PR genes and highest expression of the isocitrate lyase gene coinciding with highest solar irradiance. Thus, regulatory interactions between dissolved organic carbon quality and central metabolic pathways critically determine the fitness of surface ocean bacteria engaging in PR phototrophy.
Collapse
|
32
|
Culligan EP, Sleator RD, Marchesi JR, Hill C. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15'-monooxygenase. PLoS One 2014; 9:e103318. [PMID: 25058308 PMCID: PMC4110020 DOI: 10.1371/journal.pone.0103318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/29/2014] [Indexed: 12/30/2022] Open
Abstract
The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.
Collapse
Affiliation(s)
- Eamonn P. Culligan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Roy D. Sleator
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- * E-mail: (CH); (RDS); (JRM)
| | - Julian R. Marchesi
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Department of Hepatology and Gastroenterology, Imperial College London, London, United Kingdom
- * E-mail: (CH); (RDS); (JRM)
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- * E-mail: (CH); (RDS); (JRM)
| |
Collapse
|
33
|
Jimenez-Infante F, Ngugi DK, Alam I, Rashid M, Baalawi W, Kamau AA, Bajic VB, Stingl U. Genomic differentiation among two strains of the PS1 clade isolated from geographically separated marine habitats. FEMS Microbiol Ecol 2014; 89:181-97. [PMID: 24785133 DOI: 10.1111/1574-6941.12348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/20/2014] [Accepted: 04/12/2014] [Indexed: 12/18/2022] Open
Abstract
Using dilution-to-extinction cultivation, we isolated a strain affiliated with the PS1 clade from surface waters of the Red Sea. Strain RS24 represents the second isolate of this group of marine Alphaproteobacteria after IMCC14465 that was isolated from the East (Japan) Sea. The PS1 clade is a sister group to the OCS116 clade, together forming a putatively novel order closely related to Rhizobiales. While most genomic features and most of the genetic content are conserved between RS24 and IMCC14465, their average nucleotide identity (ANI) is < 81%, suggesting two distinct species of the PS1 clade. Next to encoding two different variants of proteorhodopsin genes, they also harbor several unique genomic islands that contain genes related to degradation of aromatic compounds in IMCC14465 and in polymer degradation in RS24, possibly reflecting the physicochemical differences in the environment they were isolated from. No clear differences in abundance of the genomic content of either strain could be found in fragment recruitment analyses using different metagenomic datasets, in which both genomes were detectable albeit as minor part of the communities. The comparative genomic analysis of both isolates of the PS1 clade and the fragment recruitment analysis provide first insights into the ecology of this group.
Collapse
Affiliation(s)
- Francy Jimenez-Infante
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bamann C, Bamberg E, Wachtveitl J, Glaubitz C. Proteorhodopsin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:614-25. [PMID: 24060527 DOI: 10.1016/j.bbabio.2013.09.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 10/26/2022]
Abstract
Proteorhodopsins are the most abundant retinal based photoreceptors and their phototrophic function might be relevant in marine ecosystems. Here, we describe their remarkable molecular properties with a special focus on the green absorbing variant. Its distinct features include a high pKa value of the primary proton acceptor stabilized through an interaction with a conserved histidine, a long-range interaction between the cytoplasmic EF loop and the chromophore entailing a particular mode of color tuning and a variable proton pumping vectoriality with complex voltage-dependence. The proteorhodopsin family represents a profound example for structure-function relationships. Especially the development of a biophysical understanding of green proteorhodopsin is an excellent example for the unique opportunities offered by a combined approach of advanced spectroscopic and electrophysiological methods. This article is part of a Special Issue entitled: Retinal Proteins-You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Christian Bamann
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany.
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Johann Wolfgang Goethe University, Institute for Physical and Theoretical Chemistry, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Johann Wolfgang Goethe University, Institute for Biophysical Chemistry & Centre for Biomolecular Magnetic Resonance, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
35
|
Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, Kandori H. A light-driven sodium ion pump in marine bacteria. Nat Commun 2013; 4:1678. [DOI: 10.1038/ncomms2689] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/01/2013] [Indexed: 11/09/2022] Open
|
36
|
Riedel T, Gómez-Consarnau L, Tomasch J, Martin M, Jarek M, González JM, Spring S, Rohlfs M, Brinkhoff T, Cypionka H, Göker M, Fiebig A, Klein J, Goesmann A, Fuhrman JA, Wagner-Döbler I. Genomics and physiology of a marine flavobacterium encoding a proteorhodopsin and a xanthorhodopsin-like protein. PLoS One 2013; 8:e57487. [PMID: 23526944 PMCID: PMC3587595 DOI: 10.1371/journal.pone.0057487] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/22/2013] [Indexed: 01/10/2023] Open
Abstract
Proteorhodopsin (PR) photoheterotrophy in the marine flavobacterium Dokdonia sp. PRO95 has previously been investigated, showing no growth stimulation in the light at intermediate carbon concentrations. Here we report the genome sequence of strain PRO95 and compare it to two other PR encoding Dokdonia genomes: that of strain 4H-3-7-5 which shows the most similar genome, and that of strain MED134 which grows better in the light under oligotrophic conditions. Our genome analysis revealed that the PRO95 genome as well as the 4H-3-7-5 genome encode a protein related to xanthorhodopsins. The genomic environment and phylogenetic distribution of this gene suggest that it may have frequently been recruited by lateral gene transfer. Expression analyses by RT-PCR and direct mRNA-sequencing showed that both rhodopsins and the complete β-carotene pathway necessary for retinal production are transcribed in PRO95. Proton translocation measurements showed enhanced proton pump activity in response to light, supporting that one or both rhodopsins are functional. Genomic information and carbon source respiration data were used to develop a defined cultivation medium for PRO95, but reproducible growth always required small amounts of yeast extract. Although PRO95 contains and expresses two rhodopsin genes, light did not stimulate its growth as determined by cell numbers in a nutrient poor seawater medium that mimics its natural environment, confirming previous experiments at intermediate carbon concentrations. Starvation or stress conditions might be needed to observe the physiological effect of light induced energy acquisition.
Collapse
Affiliation(s)
- Thomas Riedel
- Helmholtz-Centre for Infection Research, Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Akram N, Palovaara J, Forsberg J, Lindh MV, Milton DL, Luo H, González JM, Pinhassi J. Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp. AND4. Environ Microbiol 2013; 15:1400-15. [PMID: 23379752 DOI: 10.1111/1462-2920.12085] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/08/2013] [Indexed: 01/21/2023]
Abstract
Proteorhodopsin (PR), a ubiquitous membrane photoprotein in marine environments, acts as a light-driven proton pump and can provide energy for bacterial cellular metabolism. However, knowledge of factors that regulate PR gene expression in different bacteria remains strongly limited. Here, experiments with Vibrio sp. AND4 showed that PR phototrophy promoted survival only in cells from stationary phase and not in actively growing cells. PR gene expression was tightly regulated, with very low values in exponential phase, a pronounced peak at the exponential/stationary phase intersection, and a marked decline in stationary phase. Thus, PR gene expression at the entry into stationary phase preceded, and could therefore largely explain, the stationary phase light-induced survival response in AND4. Further experiments revealed nutrient limitation, not light exposure, regulated this differential PR expression. Screening of available marine vibrios showed that the PR gene, and thus the potential for PR phototrophy, is found in at least three different clusters in the genus Vibrio. In an ecological context, our findings suggest that some PR-containing bacteria adapted to the exploitation of nutrient-rich micro-environments rely on a phase of relatively slowly declining resources to mount a cellular response preparing them for adverse conditions dispersed in the water column.
Collapse
Affiliation(s)
- Neelam Akram
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, SE-39182, Kalmar, Sweden
| | | | | | | | | | | | | | | |
Collapse
|