1
|
Gong S, Gautam S, Coneglio JD, Scinto HB, Ruprecht RM. Antibody Light Chains: Key to Increased Monoclonal Antibody Yields in Expi293 Cells? Antibodies (Basel) 2022; 11:37. [PMID: 35645210 PMCID: PMC9149950 DOI: 10.3390/antib11020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
When constructing isogenic recombinant IgM-IgG pairs, we discovered that μ heavy chains strongly prefer partnering with λ light chains for optimal IgM expression in transiently cotransfected Expi293 cells. When μ chains were paired with κ light chains, IgM yields were low but increased by logs-up to 20,000 X-by using λ chains instead. Switching light chains did not alter epitope specificity. For dimeric IgA2, optimal expression involved pairing with λ chains, whereas light-chain preference varied for other immunoglobulin classes. In summary, recombinant IgM production can be drastically increased by using λ chains, an important finding in the use of IgM for mucosal immunoprophylaxis.
Collapse
Affiliation(s)
- Siqi Gong
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA or (S.G.); (S.G.); (J.D.C.)
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Seijal Gautam
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA or (S.G.); (S.G.); (J.D.C.)
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| | - Joshua D. Coneglio
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA or (S.G.); (S.G.); (J.D.C.)
| | - Hanna B. Scinto
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Ruth M. Ruprecht
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA or (S.G.); (S.G.); (J.D.C.)
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70503, USA
| |
Collapse
|
2
|
Fan P, Chi X, Liu G, Zhang G, Chen Z, Liu Y, Fang T, Li J, Banadyga L, He S, Yu C, Qiu X, Chen W. Potent neutralizing monoclonal antibodies against Ebola virus isolated from vaccinated donors. MAbs 2021; 12:1742457. [PMID: 32213108 PMCID: PMC7153831 DOI: 10.1080/19420862.2020.1742457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ebola virus (EBOV) can cause severe hemorrhagic fever in humans, and no approved treatment is currently available. Although several antibodies have achieved good protection in animal models, the potential emerging isolates of ebolavirus and the unknown effects of experimental antibodies in humans underscore the need to develop additional antibodies to address the threat of Ebola. Here, we isolated a series of memory B cell-derived monoclonal antibodies from healthy Chinese adults vaccinated with Ad5-EBOV. These antibodies were encoded by diverse germline genes and had high levels of somatic hypermutation. Most antibodies were cross-reactive and could bind at least two ebolavirus glycoproteins (GPs). Seven neutralizing antibodies were identified using HIV-EBOV GP-Luc pseudovirus, and they effectively neutralized authentic EBOV. In particular, monoclonal antibody 2G1 exhibited potent cross-neutralization against HIV-EBOV/SUDV/BDBV GP-Luc bearing different ebolavirus GPs. We used truncated GPs, competition assays, and software prediction to analyze seven neutralizing antibodies, which bound four different epitopes on GP. Importantly, three of these antibodies provided complete protection in mice when administered one day post-infection. Our study expands the list of candidate antibodies and the options for successfully treating ebolavirus infection.
Collapse
Affiliation(s)
- Pengfei Fan
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiangyang Chi
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Guodong Liu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Guanying Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhengshan Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yujiao Liu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ting Fang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jianmin Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Logan Banadyga
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Shihua He
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Changming Yu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiangguo Qiu
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Wei Chen
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
3
|
Gong S, Ruprecht RM. Immunoglobulin M: An Ancient Antiviral Weapon - Rediscovered. Front Immunol 2020; 11:1943. [PMID: 32849652 PMCID: PMC7432194 DOI: 10.3389/fimmu.2020.01943] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022] Open
Abstract
Recent discoveries have shed new light onto immunoglobulin M (IgM), an ancient antibody class preserved throughout evolution in all vertebrates. First, IgM – long thought to be a perfect pentamer – was shown to be asymmetric, resembling a quasi-hexamer missing one monomer and containing a gap. Second, this gap allows IgM to serve as carrier of a specific host protein, apoptosis inhibitor of macrophages (AIM), which is released to promote removal of dead-cell debris, cancer cells, or pathogens. Third, recombinant IgM delivered mucosally by passive immunization gave proof-of-concept that this antibody class can prevent mucosal simian-human immunodeficiency virus transmission in non-human primates. Finally, IgM’s role in adaptive immunity goes beyond being only a first defender to respond to pathogen invasion, as long-lived IgM plasma cells have been observed predominantly residing in the spleen. In fact, IgM produced by such cells contained somatic hypermutations and was linked to protection against lethal influenza virus challenge in murine models. Importantly, such long-lived IgM plasma cells had been induced by immunization 1 year before challenge. Together, new data on IgM function raise the possibility that vaccine strategies aimed at preventing virus acquisition could include this ancient weapon.
Collapse
Affiliation(s)
- Siqi Gong
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States.,Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ruth M Ruprecht
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, United States.,Department of Microbiology, Immunology and Molecular Genetics, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
4
|
Ruprecht RM, Marasini B, Thippeshappa R. Mucosal Antibodies: Defending Epithelial Barriers against HIV-1 Invasion. Vaccines (Basel) 2019; 7:vaccines7040194. [PMID: 31771162 PMCID: PMC6963197 DOI: 10.3390/vaccines7040194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/12/2023] Open
Abstract
The power of mucosal anti-HIV-1 envelope immunoglobulins (Igs) to block virus transmission is underappreciated. We used passive immunization, a classical tool to unequivocally prove whether antibodies are protective. We mucosally instilled recombinant neutralizing monoclonal antibodies (nmAbs) of different Ig classes in rhesus macaques (RMs) followed by mucosal simian–human immunodeficiency virus (SHIV) challenge. We gave anti-HIV-1 IgM, IgG, and dimeric IgA (dIgA) versions of the same human nmAb, HGN194 that targets the conserved V3 loop crown. Surprisingly, dIgA1 with its wide-open, flat hinge protected 83% of the RMs against intrarectal R5-tropic SHIV-1157ipEL-p challenge, whereas dIgA2, with its narrow hinge, only protected 17% of the animals—despite identical epitope specificities and in vitro neutralization curves of the two dIgA isotypes (Watkins et al., AIDS 2013 27(9):F13-20). These data imply that factors in addition to neutralization determine in vivo protection. We propose that this underlying protective mechanism is immune exclusion, which involves large nmAb/virion aggregates that prevent virus penetration of mucosal barriers. Future studies need to find biomarkers that predict effective immune exclusion in vivo. Vaccine development strategies against HIV-1 and/or other mucosally transmissible pathogens should include induction of strong mucosal Abs of different Ig classes to defend epithelial barriers against pathogen invasion.
Collapse
Affiliation(s)
- Ruth M. Ruprecht
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA;
- Correspondence:
| | - Bishal Marasini
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA;
| | | |
Collapse
|
5
|
Boonyaratanakornkit J, Taylor JJ. Techniques to Study Antigen-Specific B Cell Responses. Front Immunol 2019; 10:1694. [PMID: 31396218 PMCID: PMC6667631 DOI: 10.3389/fimmu.2019.01694] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Antibodies against foreign antigens are a critical component of the overall immune response and can facilitate pathogen clearance during a primary infection and also protect against subsequent infections. Dysregulation of the antibody response can lead to an autoimmune disease, malignancy, or enhanced infection. Since the experimental delineation of a distinct B cell lineage in 1965, various methods have been developed to understand antigen-specific B cell responses in the context of autoimmune diseases, primary immunodeficiencies, infection, and vaccination. In this review, we summarize the established techniques and discuss new and emerging technologies for probing the B cell response in vitro and in vivo by taking advantage of the specificity of B cell receptor (BCR)-associated and secreted antibodies. These include ELISPOT, flow cytometry, mass cytometry, and fluorescence microscopy to identify and/or isolate primary antigen-specific B cells. We also present our approach to identify rare antigen-specific B cells using magnetic enrichment followed by flow cytometry. Once these cells are isolated, in vitro proliferation assays and adoptive transfer experiments in mice can be used to further characterize antigen-specific B cell activation, function, and fate. Transgenic mouse models of B cells targeting model antigens and of B cell signaling have also significantly advanced our understanding of antigen-specific B cell responses in vivo.
Collapse
Affiliation(s)
- Jim Boonyaratanakornkit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| |
Collapse
|
6
|
Abstract
OBJECTIVE Worldwide, most new HIV infections occur through mucosal exposure. Immunoglobulin M (IgM) is the first antibody class generated in response to infectious agents; IgM is present in the systemic circulation and in mucosal fluids as secretory IgM. We sought to investigate for the first time the role of IgM in preventing AIDS virus acquisition in vivo. DESIGN Recombinant polymeric monoclonal IgM was generated from the neutralizing monoclonal IgG1 antibody 33C6-IgG1, tested in vitro, and given by passive intrarectal immunization to rhesus macaques 30 min before intrarectal challenge with simian-human immunodeficiency virus (SHIV) that carries an HIV-1 envelope gene. RESULTS In vitro, 33C6-IgM captured virions more efficiently and neutralized the challenge SHIV with a 50% inhibitory molar concentration (IC50) that was 1 log lower than that for 33C6-IgG1. The IgM form also exhibited significantly higher affinity and avidity compared with 33C6-IgG1. After intrarectal administration, 33C6-IgM prevented viremia in four out of six rhesus macaques after high-dose intrarectal SHIV challenge. Five out of six rhesus macaques given 33C6-IgG1 were protected at a five times higher molar concentration compared with the IgM form; all untreated controls became highly viremic. Rhesus macaques passively immunized with 33C6-IgM with breakthrough infection had notably early development of autologous neutralizing antibody responses. CONCLUSION Our primate model data provide the first proof-of-concept that mucosal IgM can prevent mucosal HIV transmission and have implications for HIV prevention and vaccine development.
Collapse
|
7
|
Balasubramanian P, Kumar R, Williams C, Itri V, Wang S, Lu S, Hessell AJ, Haigwood NL, Sinangil F, Higgins KW, Liu L, Li L, Nyambi P, Gorny MK, Totrov M, Nadas A, Kong XP, Zolla-Pazner S, Hioe CE. Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination. Vaccine 2017; 35:1464-1473. [PMID: 28185743 DOI: 10.1016/j.vaccine.2016.11.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/22/2016] [Accepted: 11/09/2016] [Indexed: 11/25/2022]
Abstract
The V3 loop in the HIV envelope gp120 is one of the immunogenic sites targeted by Abs. The V3 crown in particular has conserved structural elements recognized by cross-reactive neutralizing Abs, indicating its potential contribution in protection against HIV. Crystallographic analyses of anti-V3 crown mAbs in complex with the V3 peptides have revealed that these mAbs recognize the conserved sites on the V3 crown via two distinct strategies: a cradle-binding mode (V3C) and a ladle-binding (V3L) mode. However, almost all of the anti-V3 crown mAbs studied in the past were isolated from chronically HIV-infected individuals. The extents to which the two types of anti-V3 crown Abs are generated by vaccination are unknown. This study analyzed the prevalence of V3C-type and V3L-type Ab responses in HIV-infected individuals and in HIV envelope-immunized humans and animals using peptide mimotopes that distinguish the two Ab types. The results show that both V3L-type and V3C-type Abs were generated by the vast majority of chronically HIV-infected humans, although the V3L-type were more prevalent. In contrast, only one of the two V3 Ab types was elicited in vaccinated humans or animal models, irrespective of HIV-1 envelope clades, envelope constructs (oligomeric or monomeric), and protocols (DNA plus protein or protein alone) used for vaccinations. The V3C-type Abs were produced by vaccinated humans, macaques, and rabbits, whereas the V3L-type Abs were made by mice. The V3C-type and V3L-type Abs generated by the vaccinations were able to mediate virus neutralization. These data indicate the restricted repertoires and the species-specific differences in the functional V3-specific Ab responses induced by the HIV envelope vaccines. The study implies the need for improving immunogen designs and vaccination strategies to broaden the diversity of Abs in order to target the different conserved epitopes in the V3 loop and, by extension, in the entire HIV envelope.
Collapse
Affiliation(s)
- Preetha Balasubramanian
- The Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY 10016, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajnish Kumar
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Constance Williams
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Vincenza Itri
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shixia Wang
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shan Lu
- University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Faruk Sinangil
- Global Solutions for Infectious Diseases, South San Francisco, CA, USA
| | - Keith W Higgins
- Global Solutions for Infectious Diseases, South San Francisco, CA, USA
| | - Lily Liu
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Liuzhe Li
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Phillipe Nyambi
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Maxim Totrov
- Molsoft LLC, 3366 N Torrey Pines Ct., La Jolla, CA 92037, USA
| | - Arthur Nadas
- Department of Environment Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Susan Zolla-Pazner
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Catarina E Hioe
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; James J. Peters VA Medical Center, Bronx, NY 10468, USA.
| |
Collapse
|
8
|
Meng W, Li L, Xiong W, Fan X, Deng H, Bett AJ, Chen Z, Tang A, Cox KS, Joyce JG, Freed DC, Thoryk E, Fu TM, Casimiro DR, Zhang N, A Vora K, An Z. Efficient generation of monoclonal antibodies from single rhesus macaque antibody secreting cells. MAbs 2016; 7:707-18. [PMID: 25996084 PMCID: PMC4622687 DOI: 10.1080/19420862.2015.1051440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Nonhuman primates (NHPs) are used as a preclinical model for vaccine development, and the antibody profiles to experimental vaccines in NHPs can provide critical information for both vaccine design and translation to clinical efficacy. However, an efficient protocol for generating monoclonal antibodies from single antibody secreting cells of NHPs is currently lacking. In this study we established a robust protocol for cloning immunoglobulin (IG) variable domain genes from single rhesus macaque (Macaca mulatta) antibody secreting cells. A sorting strategy was developed using a panel of molecular markers (CD3, CD19, CD20, surface IgG, intracellular IgG, CD27, Ki67 and CD38) to identify the kinetics of B cell response after vaccination. Specific primers for the rhesus macaque IG genes were designed and validated using cDNA isolated from macaque peripheral blood mononuclear cells. Cloning efficiency was averaged at 90% for variable heavy (VH) and light (VL) domains, and 78.5% of the clones (n = 335) were matched VH and VL pairs. Sequence analysis revealed that diverse IGHV subgroups (for VH) and IGKV and IGLV subgroups (for VL) were represented in the cloned antibodies. The protocol was tested in a study using an experimental dengue vaccine candidate. About 26.6% of the monoclonal antibodies cloned from the vaccinated rhesus macaques react with the dengue vaccine antigens. These results validate the protocol for cloning monoclonal antibodies in response to vaccination from single macaque antibody secreting cells, which have general applicability for determining monoclonal antibody profiles in response to other immunogens or vaccine studies of interest in NHPs.
Collapse
Affiliation(s)
- Weixu Meng
- a Texas Therapeutics Institute; Brown Foundation Institute of Molecular Medicine; University of Texas Health Science Center at Houston ; Houston , TX , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bachler BC, Humbert M, Lakhashe SK, Rasmussen RA, Ruprecht RM. Live-virus exposure of vaccine-protected macaques alters the anti-HIV-1 antibody repertoire in the absence of viremia. Retrovirology 2013; 10:63. [PMID: 23800339 PMCID: PMC3695773 DOI: 10.1186/1742-4690-10-63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We addressed the question whether live-virus challenges could alter vaccine-induced antibody (Ab) responses in vaccinated rhesus macaques (RMs) that completely resisted repeated exposures to R5-tropic simian-human immunodeficiency viruses encoding heterologous HIV clade C envelopes (SHIV-Cs). RESULTS We examined the Ab responses in aviremic RMs that had been immunized with a multi-component protein vaccine (multimeric HIV-1 gp160, HIV-1 Tat and SIV Gag-Pol particles) and compared anti-Env plasma Ab titers before and after repeated live-virus exposures. Although no viremia was ever detected in these animals, they showed significant increases in anti-gp140 Ab titers after they had encountered live SHIVs. When we investigated the dynamics of anti-Env Ab titers during the immunization and challenge phases further, we detected the expected, vaccine-induced increases of Ab responses about two weeks after the last protein immunization. Remarkably, these titers kept rising during the repeated virus challenges, although no viremia resulted. In contrast, in vaccinated RMs that were not exposed to virus, anti-gp140 Ab titers declined after the peak seen two weeks after the last immunization. These data suggest boosting of pre-existing, vaccine-induced Ab responses as a consequence of repeated live-virus exposures. Next, we screened polyclonal plasma samples from two of the completely protected vaccinees by peptide phage display and designed a strategy that selects for recombinant phages recognized only by Abs present after - but not before - any SHIV challenge. With this "subtractive biopanning" approach, we isolated V3 mimotopes that were only recognized after the animals had been exposed to live virus. By detailed epitope mapping of such anti-V3 Ab responses, we showed that the challenges not only boosted pre-existing binding and neutralizing Ab titers, but also induced Abs targeting neo-antigens presented by the heterologous challenge virus. CONCLUSIONS Anti-Env Ab responses induced by recombinant protein vaccination were altered by the multiple, live SHIV challenges in vaccinees that had no detectable viral loads. These data may have implications for the interpretation of "vaccine only" responses in clinical vaccine trials.
Collapse
Affiliation(s)
- Barbara C Bachler
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
10
|
Novel biopanning strategy to identify epitopes associated with vaccine protection. J Virol 2013; 87:4403-16. [PMID: 23388727 DOI: 10.1128/jvi.02888-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Identifying immune correlates of protection is important to develop vaccines against infectious diseases. We designed a novel, universally applicable strategy to profile the antibody (Ab) repertoire of protected vaccine recipients, using recombinant phages encoding random peptide libraries. The new approach, termed "protection-linked (PL) biopanning," probes the Ab paratopes of protected vaccinees versus those with vaccine failure. As proof of concept, we screened plasma samples from vaccinated rhesus macaques (RMs) that had completely resisted multiple mucosal challenges with R5-tropic simian-human immunodeficiency viruses (SHIVs). The animals had been immunized with a multicomponent vaccine (multimeric HIV-1 gp160, HIV-1 Tat, and SIV Gag-Pol particles). After PL biopanning, we analyzed the phagotopes selected for amino acid homologies; in addition to the expected Env mimotopes, one recurring motif reflected the neutralizing Ab epitope at the N terminus (NT) of HIV-1 Tat. Subsequent binding and functional assays indicated that anti-Tat NT Abs were present only in completely or partially protected RMs; peak viremia of the latter was inversely correlated with anti-Tat NT Ab titers. In contrast, highly viremic, unvaccinated controls did not develop detectable Abs against the same epitope. Based upon the protective effect observed in vivo, we suggest that Tat should be included in multicomponent HIV-1 vaccines. Our data highlight the power of the new PL-biopanning strategy to identify Ab responses with significant association to vaccine protection, regardless of the mechanism(s) or targets of the protective Abs. PL biopanning is also unbiased with regard to pathogens or disease model, making it a universal tool.
Collapse
|