1
|
Alam MS, Maowa Z, Hasan MN. Phthalates toxicity in vivo to rats, mice, birds, and fish: A thematic scoping review. Heliyon 2025; 11:e41277. [PMID: 39811286 PMCID: PMC11731458 DOI: 10.1016/j.heliyon.2024.e41277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Background Phthalates, a large group of endocrine disruptors, are ubiquitous in the environment and detrimental to human health. This scoping review aimed to summarize the effects of phthalates on laboratory animals relevant to humans, assess toxicity, and analyze mechanisms of toxicity for public health concerns. Methods Articles were retrieved from Google Scholar, PubMed, ScienceDirect, and Web of Science search engines. The search used the term "toxicity of phthalates in vivo, animals or birds or fish." Original research articles published between 2010 and 2024 describing in vivo toxicity in rat, mouse, bird, and fish models, were included. Conversely, articles that did not meet the above criteria were excluded from this scoping review. Two authors independently extracted data using data extraction tools based on themes, while a third arbitrated if consensus was not met. A senior researcher developed the themes, which were further refined through discussions. Data analysis involved quantitative (percentage of studies) and qualitative (content analysis) methods. Results Of the 8180 articles screened, 153 met the inclusion criteria. Most of them were published after 2015 (74.50 %). The scoping review showed that DEHP (56.20 %) and DBP (21.57 %) were the most studied phthalates followed by BBP, DiBP, DMP, DEP, BBOP, and DiNP. Scarce data were available on DnOP, DPHP, DPeP, DUDP, DTDP, DMiP, and DiOP. Interestingly, studies of combinations of two or more phthalates were also present. The main laboratory animals employed were rats (48.37 %) and mice (39.87 %), while the least studied were birds (5.22 %) and fish (6.53 %). Most studies related to testicular toxicity (37.60 %), hepatotoxicity (23.53 %), and ovarian toxicity (18.30 %) investigations, while the rest consisted of neurotoxicity (6.88 %), renal toxicity (6.53 %), and thyroid toxicity studies (4.57 %). Studies focused on oxidative stress (34.64 %), apoptosis (22.22 %), steroid hormone deprivation (20.26 %), lipid metabolism disorder (11.76 %), and immunotoxicity (5.88 %) as mechanisms of toxicity. The most commonly used techniques were H&E, RT-qPCR, ROS assay, WB, IHC, ELISA, RIA, TUNEL, TEM, IFM, FCM, and RNA-seq. Conclusions DEHP and DBP are the most toxic and studied phthalates, while BBP, DiNP, DiBP, DiDP, BBOP, DMP, and DiOP and their combinations require more accurate studies to confirm their toxic effects on human health and mechanisms of action. These will assist policymakers in adopting strategies to minimize public exposure and adverse effects.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Zannatul Maowa
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mohammad Nazmol Hasan
- Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
2
|
Merrill SM, Letourneau N, Giesbrecht GF, Edwards K, MacIsaac JL, Martin JW, MacDonald AM, Kinniburgh DW, Kobor MS, Dewey D, England-Mason G, The APrON Study Team. Sex-Specific Associations between Prenatal Exposure to Di(2-ethylhexyl) Phthalate, Epigenetic Age Acceleration, and Susceptibility to Early Childhood Upper Respiratory Infections. EPIGENOMES 2024; 8:3. [PMID: 38390895 PMCID: PMC10885049 DOI: 10.3390/epigenomes8010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a common plasticizer that can affect immune system development and susceptibility to infection. Aging processes (measured as epigenetic age acceleration (EAA)) may mediate the immune-related effects of prenatal exposure to DEHP. This study's objective was to examine associations between prenatal DEHP exposure, EAA at three months of age, and the number of upper respiratory infections (URIs) from 12 to 18 months of age using a sample of 69 maternal-child pairs from a Canadian pregnancy cohort. Blood DNA methylation data were generated using the Infinium HumanMethylation450 BeadChip; EAA was estimated using Horvath's pan-tissue clock. Robust regressions examined overall and sex-specific associations. Higher prenatal DEHP exposure (B = 6.52, 95% CI = 1.22, 11.81) and increased EAA (B = 2.98, 95% CI = 1.64, 4.32) independently predicted more URIs. In sex-specific analyses, some similar effects were noted for boys, and EAA mediated the association between prenatal DEHP exposure and URIs. In girls, higher prenatal DEHP exposure was associated with decreased EAA, and no mediation was noted. Higher prenatal DEHP exposure may be associated with increased susceptibility to early childhood URIs, particularly in boys, and aging biomarkers such as EAA may be a biological mechanism. Larger cohort studies examining the potential developmental immunotoxicity of phthalates are needed.
Collapse
Affiliation(s)
- Sarah M Merrill
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School at Brown University, Providence, RI 02903, USA
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Nicole Letourneau
- Faculty of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
| | - Gerald F Giesbrecht
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Psychology, Faculty of Arts, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Karlie Edwards
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Julia L MacIsaac
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael S Kobor
- Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V6H 0B3, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Deborah Dewey
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
- Hotchkiss Brain Institute, Calgary, AB T2N 4N1, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Gillian England-Mason
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Owerko Centre, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - The APrON Study Team
- University of Calgary, Calgary, AB T2N 1N4, Canada
- University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
3
|
Shah A, Miller RL. Synthetic Chemicals: What We Have Learned and Still Need to Learn About Their Associations with Childhood Allergy and Asthma. Curr Environ Health Rep 2023; 10:459-468. [PMID: 37770759 PMCID: PMC11836913 DOI: 10.1007/s40572-023-00411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 09/30/2023]
Abstract
PURPOSE OF REVIEW Prenatal and childhood exposure to synthetic chemicals, such as phenols and phthalates, have been linked to asthma and allergy, but the extent of this association and the underlying mechanisms are not fully understood. Here we provide an up-to-date review of the evidence linking phenol and phthalate exposure with childhood asthma and allergy and of proposed mechanistic pathways. RECENT FINDINGS Five experimental and 12 epidemiological studies that examined associations between exposures to synthetic chemicals to asthma and allergic diseases were included. An additional 14 studies provided mechanistic support for the importance of immune modification through epigenetic regulation, induction of pro-allergic T2 expression, and endocrine disruption. While recent studies have provided further experimental and epidemiological evidence for how these chemical exposures may induce childhood asthma and allergy, the recent literature remains limited. However, emerging mechanistic studies have identified chemical-induced alterations in DNA methylation of genes implicated in allergic inflammation and endocrine disruption as potential pathways. In addition, barriers to decrease exposure to synthetic chemicals at the individual level (facilitated through education) and areas for further action at the organizational and governmental levels are suggested. The latter includes transferring some of the onus from the individual to organizations and legislation to restrict marketing and access to products containing potentially harmful chemicals and provide alternative products. We also suggest future research that focuses on further elucidating pathways between exposure to disease development and identifying strategies to reduce exposure at the population level.
Collapse
Affiliation(s)
- Ami Shah
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Rachel L Miller
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
4
|
Chen Y, Wu J, Li R, Kang W, Zhao A, Yin Y, Tong S, Yuan J, Li S. Individual and joint association of phenols, parabens, and phthalates with childhood lung function: Exploring the mediating role of peripheral immune responses. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131457. [PMID: 37099904 DOI: 10.1016/j.jhazmat.2023.131457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
The functioning of the respiratory system can be interfered with by exposure to mixtures of environmental chemicals, however, the evidence is still ambiguous. We evaluated the association of exposure to mixtures of 14 chemicals, including 2 phenols, 2 parabens, and 10 phthalates, with four major lung function metrics. Based on data from the National Health and Nutrition Examination Survey 2007-2012, this analysis was conducted among 1462 children aged 6-19 years. Linear regression, Bayesian kernel machine regression, quantile-based g-computation regression, and a generalized additive model were performed to estimate the associations. Mediation analyses were performed to investigate plausible biological pathways mediated by immune cells. Our results indicated that the phenols, parabens, and phthalates mixture was negatively related to lung function parameters. And BPA and PP were identified as important contributors to negative associations with FEV1, FVC, and PEF, with non-linear relationships observed between BPA and those outcomes. The most influential factor for a probable FEF25-75 % decline was MCNP. BPA, and MCNP had an interaction effect on FEF25-75 %. The association of PP with FVC and FEV1 has been postulated to be mediated by neutrophils and monocytes. The findings offer insights into the associations of chemical mixtures with respiratory health and the possible driving mechanism, which would be of significance in adding novel evidence of the role of peripheral immune responses, as well as calling for remediation actions to be prioritized during childhood.
Collapse
Affiliation(s)
- Yiting Chen
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Wu
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Kang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anda Zhao
- Department of Nutrition, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Yin
- Department of Respiratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shilu Tong
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biostatistics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Jiajun Yuan
- Child Health Advocacy Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shenghui Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Quirós-Alcalá L, Belz DC, Woo H, Lorizio W, Putcha N, Koehler K, McCormack MC, Hansel NN. A cross sectional pilot study to assess the role of phthalates on respiratory morbidity among patients with chronic obstructive pulmonary disease. ENVIRONMENTAL RESEARCH 2023; 225:115622. [PMID: 36894111 PMCID: PMC10580394 DOI: 10.1016/j.envres.2023.115622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) affects ∼16 million U.S. adults. Phthalates, synthetic chemicals in consumer products, may adversely impact pulmonary function and airway inflammation; however, their role on COPD morbidity remains unknown. OBJECTIVE We examined associations between phthalate exposures and respiratory morbidity among 40 COPD patients who were former smokers. METHODS We quantified 11 phthalate biomarkers in urine samples collected at baseline in a 9-month prospective cohort study in Baltimore, Maryland. COPD baseline morbidity measures included: health status and quality of life measures (CAT: COPD Assessment Test, CCQ: Clinical COPD Questionnaire, SGRQ: St. George's Respiratory Questionnaire; mMRC: Modified Medical Research Council Dyspnea Scale), and lung function. Information on prospective exacerbation data was monitored monthly during the 9-month longitudinal follow-up period. To examine associations between morbidity measures and phthalate exposures, we used multivariable linear and Poisson regression models for continuous and count outcomes, respectively, adjusting for age, sex, race/ethnicity, education, and smoking pack-years. RESULTS Higher mono-n-butyl phthalate (MBP) concentrations were associated with increased CAT(β, 2.41; 95%CI, 0.31-4.51), mMRC (β, 0.33; 95%CI 0.11-0.55), and SGRQ (β, 7.43; 95%CI 2.70-12.2) scores at baseline. Monobenzyl phthalate (MBzP) was also positively associated with CCQ and SGRQ scores at baseline. Higher concentrations of the molar sum of Di (2-ethylhexyl) phthalate (DEHP) were associated with increased incidence of exacerbations during the follow-up period (incidence rate ratio, IRR = 1.73; 95%CI 1.11, 2.70 and IRR = 1.94; 95%CI 1.22, 3.07, for moderate and severe exacerbations, respectively). MEP concentrations were inversely associated with incidence of exacerbations during the follow-up period. CONCLUSIONS We found that exposure to select phthalates was associated with respiratory morbidity among COPD patients. Findings warrant further examination in larger studies given widespread phthalate exposures and potential implications for COPD patients should relationships observed be causal.
Collapse
Affiliation(s)
- Lesliam Quirós-Alcalá
- Department of Environmental Health & Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Daniel C Belz
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Han Woo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wendy Lorizio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kirsten Koehler
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meredith C McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Wang JQ, Liang CM, Hu YB, Xia X, Li ZJ, Gao H, Sheng J, Huang K, Wang SF, Zhu P, Hao JH, Tao FB. The effect of phthalates exposure during pregnancy on asthma in infants aged 0 to 36 months: a birth cohort study. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1951-1974. [PMID: 35751763 DOI: 10.1007/s10653-022-01320-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
This cohort study sought to investigate the effects of phthalates exposure during pregnancy on offspring asthma and its association with placental stress and inflammatory factor mRNA expression levels. A total of 3474 pregnant women from the China Ma'anshan birth cohort participated in this study. Seven phthalate metabolites were detected in urine samples during pregnancy by solid phase extraction-high-performance liquid chromatography tandem mass spectrometry. Placenta stress and inflammation mRNA expression were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). Early pregnancy may be the critical period when phthalates exposure increases the risk of asthma in infants and young children, and there is a certain gender difference in the risk of asthma in infants and young children. Moreover, through the placenta stress and inflammatory factor associated with infant asthma found anti-inflammatory factor of interleukin-10 (IL-10) mRNA expression will reduce the risk of 36-month-old male infant asthma. The expression of interleukin-4(IL-4) and macrophage (M2) biomarker cluster of differentiation 206(CD206) mRNA reduced the risk of asthma in 18-month-old female infants. Placental stress and inflammatory response were analyzed using mediating effects. Tumor necrosis factor-α (TNFα) showed a complete mediating effect between mono-benzyl phthalate (MBzP) exposure in early pregnancy and asthma in 12-month-old males, and IL-10 also showed a complete mediating effect between mono-n-butyl phthalate (MBP) exposure in early and late pregnancy and asthma in 36-month-old males. In summary, exposure to phthalates during pregnancy may contribute to the development of asthma in infants, which may be associated with placental stress and inflammation.
Collapse
Affiliation(s)
- Jian-Qing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
| | - Chun-Mei Liang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ya-Bin Hu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xun Xia
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhi-Juan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Jie Sheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Su-Fang Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Zhao Y, Sun Y, Zhu C, Zhang Y, Hou J, Zhang Q, Ataei Y. Phthalate Metabolites in Urine of Chinese Children and Their Association with Asthma and Allergic Symptoms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14083. [PMID: 36360961 PMCID: PMC9654528 DOI: 10.3390/ijerph192114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are ubiquitous 'modern' chemical compounds with potential negative impacts on children's health. A nested case-control study was designed to investigate associations of phthalate exposure with children's asthma and allergic symptoms. We collected 243 first morning urine samples from 4-8-year-old children in Tianjin, China. Eight metabolites (i.e., mono-ethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), mono-benzyl phthalate (MBzP) and mono-2-ethylhexyl phthalate (MEHP), mono-(2-ethyl-5-carboxylpentyl) phthalate (MECPP), mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP)) of five phthalates were analyzed using HPLC-MS. MiBP, MnBP and MECPP were the dominant phthalate metabolites in urine of children in Tianjin with median concentrations of 31.6 μg/L, 26.24 μg/L and 46.12 μg/L, respectively. We found significantly positive associations of diagnosed asthma with MnBP (adjusted odds ratios (AOR): 1.96; 95% confidence intervals (CIs): 1.07-3.61), MEHHP (AOR: 2.00; 95% CI: 1.08-3.71) and MEOHP (AOR: 2.09; 95% CI: 1.06-4.10). Our study indicates that phthalate exposure in childhood, especially to di-n-butyl phthalate (DnBP) and di(2-ethylhexyl) phthalate (DEHP), may be a risk factor for children's asthma.
Collapse
Affiliation(s)
- Yuxuan Zhao
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuexia Sun
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Changqi Zhu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jing Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qinghao Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yeganeh Ataei
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
8
|
Chang JW, Chen HC, Hu HZ, Chang WT, Huang PC, Wang IJ. Phthalate Exposure and Oxidative/Nitrosative Stress in Childhood Asthma: A Nested Case-Control Study with Propensity Score Matching. Biomedicines 2022; 10:biomedicines10061438. [PMID: 35740459 PMCID: PMC9219890 DOI: 10.3390/biomedicines10061438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Whether low-dose phthalate exposure triggers asthma among children, and its underlying mechanisms, remain debatable. Here, we evaluated the individual and mixed effects of low-dose phthalate exposure on children with asthma and five (oxidative/nitrosative stress/lipid peroxidation) mechanistic biomarkers—8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-nitroguanine (8-NO2Gua), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), 8-isoprostaglandin F2α (8-isoPF2α), and malondialdehyde (MDA)—using a propensity score-matched case-control study (case vs. control = 41 vs. 111). The median monobenzyl phthalate (MBzP) concentrations in the case group were significantly higher than those in the control group (3.94 vs. 2.52 ng/mL, p = 0.02), indicating that dust could be an important source. After adjustment for confounders, the associations of high monomethyl phthalate (MMP) (75th percentile) with 8-NO2Gua (adjusted odds ratio (aOR): 2.66, 95% confidence interval (CI): 1.03–6.92) and 8-isoPF2α (aOR: 4.04, 95% CI: 1.51–10.8) and the associations of mono-iso-butyl phthalate (MiBP) with 8-isoPF2α (aOR: 2.96, 95% CI: 1.13–7.79) were observed. Weighted quantile sum regression revealed that MBzP contributed more than half of the association (56.8%), followed by MiBP (26.6%) and mono-iso-nonyl phthalate (MiNP) (8.77%). Our findings supported the adjuvant effect of phthalates in enhancing the immune system response.
Collapse
Affiliation(s)
- Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (J.-W.C.); (H.-Z.H.)
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung 407224, Taiwan;
| | - Heng-Zhao Hu
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (J.-W.C.); (H.-Z.H.)
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35042, Taiwan;
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35042, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli 36003, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (I-J.W.); (P.-C.H.); Tel.: +886-222-765-566 (ext. 2532) (I-J.W.); +886-37-206166 (ext. 38507) (P.-C.H.)
| | - I-Jen Wang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (J.-W.C.); (H.-Z.H.)
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35042, Taiwan;
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei 10341, Taiwan
- College of Public Health, China Medical University, Taichung 406040, Taiwan
- Correspondence: (I-J.W.); (P.-C.H.); Tel.: +886-222-765-566 (ext. 2532) (I-J.W.); +886-37-206166 (ext. 38507) (P.-C.H.)
| |
Collapse
|
9
|
Tseng HH, Li CY, Wu ST, Su HH, Wong TH, Wu HE, Chang YW, Huang SK, Tsai EM, Suen JL. Di-(2-ethylhexyl) Phthalate Promotes Allergic Lung Inflammation by Modulating CD8α + Dendritic Cell Differentiation via Metabolite MEHP-PPARγ Axis. Front Immunol 2022; 13:581854. [PMID: 35663974 PMCID: PMC9160748 DOI: 10.3389/fimmu.2022.581854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a common plasticizer, is a ubiquitous environmental pollutant that can disrupt endocrine function. Epidemiological studies suggest that chronic exposure to DEHP in the environment is associated with the prevalence of childhood allergic diseases; however, the underlying causal relationship and immunological mechanism remain unclear. This study explored the immunomodulatory effect of DEHP on allergic lung inflammation, while particularly focusing on the impact of DEHP and its metabolite on dendritic cell differentiation and activity of peroxisome proliferator-activated receptor gamma (PPARγ). The results showed that exposure to DEHP at a human tolerable daily intake dose exacerbated allergic lung inflammation in mice. Ex vivo flow cytometric analysis revealed that DEHP-exposed mice displayed a significantly decreased number of CD8α+ dendritic cells (DCs) in spleens and DC progenitors in the bone marrow, as well as, less interleukin-12 production in splenic DCs and increased T helper 2 polarization. Pharmacological experiments showed that mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP, significantly hampered the differentiation of CD8α+ DCs from Fms-like tyrosine kinase 3 ligand-differentiated bone marrow culture, by modulating PPARγ activity. These results suggested that chronic exposure to DEHP at environmentally relevant levels, promotes allergic lung inflammation, at least in part, by altering DC differentiation through the MEHP-PPARγ axis. This study has crucial implications for the interaction(s) between environmental pollutants and innate immunity, with respect to the development of allergic asthma.
Collapse
Affiliation(s)
- Hsin-Han Tseng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shin-Ting Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Han Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Hsuan Wong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsin-En Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Wei Chang
- Department of Laboratory, Taitung Hospital, Ministry of Health and Welfare, Taitung, Taiwan
| | - Shau-Ku Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Taiwan.,Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Eing Mei Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jau-Ling Suen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Meng Y, Xu X, Xie G, Zhang Y, Chen S, Qiu Y, Zhu Z, Zhang H, Yin D. Alkyl organophosphate flame retardants (OPFRs) induce lung inflammation and aggravate OVA-simulated asthmatic response via the NF-кB signaling pathway. ENVIRONMENT INTERNATIONAL 2022; 163:107209. [PMID: 35358787 DOI: 10.1016/j.envint.2022.107209] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Alkyl organophosphate flame retardants (OPFRs), tri-n-butyl phosphate (TnBP) and tris(2-butoxyethyl) phosphate (TBOEP), are ubiquitously detected in indoor and outdoor environments and their inhalation may result in lung damage. This study examined pulmonary toxicity after exposure to TnBP or TBOEP and investigated aggravation of inflammation and immunoreaction by TnBP in an ovalbumin (OVA)-induced mice model. Transcriptomics were used to further reveal the underlying mechanism. Exposure to TnBP or TBOEP resulted in pathological damage, including edema and thickened alveolar septum. In comparison with the control, enhanced levels of superoxide dismutase (SOD) (p < 0.01 in TnBP (High) group and p < 0.05 in TBOEP (High) group), glutathione peroxidase (GSH-px) (p < 0.05), malondialdehyde (MDA) (p < 0.01), and cytokines under a dose-dependent relationship were noted, and the expression of the Fkbp5/Nos3/MAPK/NF-кB signaling pathway (p < 0.01) was upregulated in the TnBP and TBOEP groups. Moreover, the combined exposure of TnBP and OVA exacerbated the allergic inflammatory response, including airway hyperresponsiveness, leukocytosis, cellular exudation and infiltration, secretion of inflammatory mediators, and higher expression of IgE (p < 0.01). Transcriptomics results demonstrated that the PI3K/Akt/NF-кB signal pathway was involved in TnBP-aggravated asthmatic mice. Exposure to TnBP or TBOEP resulted in oxidative damage and leukocyte-induced lung injury. TnBP can further facilitate OVA-induced asthma through an inflammatory response. This study is the first to reveal the pulmonary toxicity and potential mechanism induced by OPFRs through an in-vivo model.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Guangming Xie
- Tongji University School of Medicine, Shanghai 200092, China
| | - Yunwei Zhang
- Tongji University School of Medicine, Shanghai 200092, China
| | - Shiyan Chen
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
11
|
Maestre-Batlle D, Nygaard UC, Huff RD, Alexis NE, Tebbutt SJ, Turvey SE, Carlsten C, Kocbach Bølling A. Dibutyl phthalate exposure alters T-cell subsets in blood from allergen-sensitized volunteers. INDOOR AIR 2022; 32:e13026. [PMID: 35481934 DOI: 10.1111/ina.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/04/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Phthalates are ubiquitous environmental contaminants associated with allergic disease in epidemiological and animal studies. This investigation aims to support these associations by interrogating systemic immune effects in allergen-sensitized volunteers after controlled indoor air exposure to a known concentration of dibutyl phthalate (DBP). The phthalate-allergen immune response (PAIR) study enrolled 16 allergen-sensitized participants to a double-blinded, randomized, crossover exposure to two conditions (DBP or control air for 3 hr), each followed immediately by inhaled allergen challenge. Peripheral blood immune cell composition and activation along with inflammatory mediators were measured before and after exposure. DBP exposure prior to the inhaled allergen challenge increased the percentage of CD4+ T helper cells and decreased the percentage of regulatory T cells (3 hr and 20 hr post-exposure), while only modest overall effects were observed for inflammatory mediators. The cells and mediators affected by the phthalate exposure were generally not overlapping with the endpoints affected by allergen inhalation alone. Thus, in distinction to our previously published effects on lung function, DBP appears to alter endpoints in peripheral blood that are not necessarily enhanced by allergen alone. Further studies are needed to clarify the role of phthalate-induced systemic effects in disease pathogenesis.
Collapse
Affiliation(s)
- Danay Maestre-Batlle
- Department of Medicine, Air Pollution Exposure Lab and Legacy for Airway Health, University of British Columbia and Vancouver Coastal Health, Vancouver, Canada
| | - Unni C Nygaard
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ryan D Huff
- Department of Medicine, Air Pollution Exposure Lab and Legacy for Airway Health, University of British Columbia and Vancouver Coastal Health, Vancouver, Canada
| | - Neil E Alexis
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott J Tebbutt
- Department of Medicine, PROOF Centre of Excellence, & Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, Canada
| | - Christopher Carlsten
- Department of Medicine, Air Pollution Exposure Lab and Legacy for Airway Health, University of British Columbia and Vancouver Coastal Health, Vancouver, Canada
| | | |
Collapse
|
12
|
Ketema RM, Ait Bamai Y, Miyashita C, Saito T, Kishi R, Ikeda-Araki A. Phthalates mixture on allergies and oxidative stress biomarkers among children: The Hokkaido study. ENVIRONMENT INTERNATIONAL 2022; 160:107083. [PMID: 35051840 DOI: 10.1016/j.envint.2022.107083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to individual phthalates and the mediation effect of oxidative stress in association with asthma and allergic symptoms have been studied previously. Little is known about the mixture effect of phthalates on health outcomes. Thus, we investigated the effect of a mixture of ten phthalate metabolites in association with wheeze, rhino-conjunctivitis, and eczema. The mediating effect of three oxidative stress biomarkers was also assessed. METHODS Levels of 10 phthalate metabolites and 3 oxidative stress biomarkers were measured in 386 urine samples from 7-year-old children. Parents reported demographic and allergic symptoms using ISAAC questionnaires. Logistic regression for individual metabolites and mixture analysis weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) were fitted to examine the association between phthalate metabolite exposure and health outcomes. Baron and Kenny's regression approach was used for mediation analysis. RESULTS In logistic regression model showed mono (2-ethyl-5-carboxypentyl) phthalate (MECPP) (OR = 1.41, 95% CI 1.02-1.97) and mono carboxy-isononyl phthalate (cx-MINP) (OR = 1.40, 95% CI 1.07-1.86) were associated with wheeze. The WQS index had a significant association (OR = 1.46, 95% CI 1.09-1.96) with wheeze and (OR = 1.40, 95% CI 1.07-1.82) with eczema. Mono-isononyl phthalate (MINP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) were the most highly weighted metabolites. In the BKMR model, diisononyl phthalate (DINP) metabolites showed the highest group posterior inclusion probability (PIP). Among DINP metabolites, MINP in wheeze, cx-MINP in rhino-conjunctivitis and OH-MINP in eczema showed the highest conditional PIPs. The overall metabolites mixture effect was associated with eczema. We did not find any mediation of oxidative stress in the association between phthalates and symptoms. No significant association between phthalate metabolites and oxidative stress was observed in this study. CONCLUSION Mixture of phthalate metabolites were associated with wheeze and eczema. The main contributors to the association were DEHP and DINP metabolites. No mediation of oxidative stress was observed.
Collapse
Affiliation(s)
- Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan; Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takeshi Saito
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
13
|
Yasuda A, Inoue KI, Sanbongi C, Suzuki W, Takano H. Dietary supplementation with fructooligosaccharides ameliorates allergy development following DEHP exposure in mice. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1952934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Akiko Yasuda
- Meiji Co., Ltd., Nutritionals & Provisions Team, Tokyo, Japan
| | - Ken-ichiro Inoue
- School of Nursing, University of Shizuoka, Shizuoka, Suruga, Japan
| | - Chiaki Sanbongi
- Meiji Co., Ltd., Nutritionals & Provisions Team, Tokyo, Japan
| | - Wakako Suzuki
- School of Nursing, University of Shizuoka, Shizuoka, Suruga, Japan
| | - Hirohisa Takano
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Japan
| |
Collapse
|
14
|
Zhao B, Yang J, He B, Li X, Yan H, Liu S, Yang Y, Zhou D, Liu B, Fan X, Zhong M, Zhang E, Zhang F, Zhang Y, Chen YQ, Jiang S, Yan H. A safe and effective mucosal RSV vaccine in mice consisting of RSV phosphoprotein and flagellin variant. Cell Rep 2021; 36:109401. [PMID: 34289371 DOI: 10.1016/j.celrep.2021.109401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of serious acute lower respiratory tract infection in infants and the elderly. The lack of a licensed RSV vaccine calls for the development of vaccines with other targets and vaccination strategies. Here, we construct a recombinant protein, designated P-KFD1, comprising RSV phosphoprotein (P) and the E.-coli-K12-strain-derived flagellin variant KFD1. Intranasal immunization with P-KFD1 inhibits RSV replication in the upper and lower respiratory tract and protects mice against lung disease without vaccine-enhanced disease (VED). The P-specific CD4+ T cells provoked by P-KFD1 intranasal (i.n.) immunization either reside in or migrate to the respiratory tract and mediate protection against RSV infection. Single-cell RNA sequencing (scRNA-seq) and carboxyfluorescein succinimidyl ester (CFSE)-labeled cell transfer further characterize the Th1 and Th17 responses induced by P-KFD1. Finally, we find that anti-viral protection depends on either interferon-γ (IFN-γ) or interleukin-17A (IL-17A). Collectively, P-KFD1 is a promising safe and effective mucosal vaccine candidate for the prevention of RSV infection.
Collapse
Affiliation(s)
- Bali Zhao
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jingyi Yang
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bing He
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xian Li
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hu Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shuning Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Dihan Zhou
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bowen Liu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xuxu Fan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maohua Zhong
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Fan Zhang
- The Core Facility and Technical Support, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yue Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shibo Jiang
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Huimin Yan
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China; Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
15
|
Wang G, Zhu G, Chen C, Zheng Y, Ma F, Zhao J, Lee YK, Zhang H, Chen W. Lactobacillus strains derived from human gut ameliorate metabolic disorders via modulation of gut microbiota composition and short-chain fatty acids metabolism. Benef Microbes 2021; 12:267-281. [PMID: 34109894 DOI: 10.3920/bm2020.0148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regulation on gut microbiota and short-chain fatty acids (SCFAs) are believed to be a pathway to suppress the development of metabolic syndrome. In this study, three Lactobacillus strains derived from the human gut were investigated for their effects on alleviation of metabolic disorders. These strains were individually administered to metabolic disorder rats induced by high-fat-high-sucrose (HFHS) diet. Each strain exhibited its own characteristics in attenuating the impaired glucose-insulin homeostasis, hepatic oxidative damage and steatosis. Correlation analysis between SCFAs and host metabolic parameters suggested that Lactobacillus protective effects on metabolic disorders are partly mediated by recovery of SCFAs production, especially the faecal acetic acid. Correspondingly, it indicated that probiotics restore the gut microbiota dysbiosis in different extent, thereby protect against metabolic disorders in a manner that is associated with microbiota, but not totally reverse the changed composition of microbiota to the normal state. Thus, Lactobacillus strains partly protect against diet-induced metabolic syndrome by microbiota modulation and acetate elevation.
Collapse
Affiliation(s)
- G Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - G Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - C Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R
| | - Y Zheng
- Infinitus (China) company Ltd., Guangzhou 510623, China P.R
| | - F Ma
- Infinitus (China) company Ltd., Guangzhou 510623, China P.R
| | - J Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China P.R.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China P.R
| | - Y-K Lee
- Department of Microbiology and Immunology, National University of Singapore, Singapore 117597, Singapore
| | - H Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China P.R.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China P.R
| | - W Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, China P.R.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China P.R.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China P.R
| |
Collapse
|
16
|
Wang CW, Chen SC, Wu DW, Chen HC, Lin HH, Su H, Shiea JT, Lin WY, Hung CH, Kuo CH. Effect of dermal phthalate levels on lung function tests in residential area near a petrochemical complex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27333-27344. [PMID: 33511527 DOI: 10.1007/s11356-020-12322-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Phthalates can leach into indoor and outdoor airborne particulate matter and dust, which can then be ingested or absorbed and induce lung injury. Dermal phthalate levels can be used as a matrix for exposure direct absorption from air, particle deposition, and contact with contaminated products. However, the association between dermal phthalate levels in skin wipes and lung function tests remains unknown. A total of 397 participants were included. Spirometry measurements of forced expiratory volume in 1 s (FEV1, L) and forced vital capacity (FVC, L) were calculated. Dermal phthalate levels of diethyl phthalate (DMP), diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), butyl benzyl phthalate (BBzP), di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), and diisodecyl phthalate (DiDP) on forehead skin wipes were detected. The one-unit increases in logarithm (log) dermal DnBP (β = - 0.08; 95% CI - 0.16, - 0.003, p = 0.041), BBzP (β = - 0.09; 95% CI - 0.16, - 0.02, p = 0.009), DEHP (β = - 0.07; 95% CI - 0.14, - 0.003, p = 0.042), and DiNP (β = - 0.08; 95% CI - 0.15, - 0.02, p = 0.017) were significantly associated with decreases in FVC. For elderly participants, one-unit increases in log dermal DnBP (β = - 0.25; 95% CI - 0.46, - 0.04, p = 0.021), BBzP (β = - 0.17; 95% CI - 0.33, - 0.01, p = 0.042), and DiDP (β = - 0.19; 95% CI - 0.39, < 0.01, p = 0.052) were associated with decreases in FEV1. In conclusion, dermal phthalate levels were significantly associated with decreases in lung function tests.
Collapse
Affiliation(s)
- Chih-Wen Wang
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Da-Wei Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Hsun Lin
- Department of Laboratory Technology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| | - Hung Su
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jen-Taie Shiea
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Yi Lin
- Department of Occupational Medicine, Health Management Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Wang WR, Chen NT, Hsu NY, Kuo IY, Chang HW, Wang JY, Su HJ. Associations among phthalate exposure, DNA methylation of TSLP, and childhood allergy. Clin Epigenetics 2021; 13:76. [PMID: 33836808 PMCID: PMC8035749 DOI: 10.1186/s13148-021-01061-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Dysregulation of thymic stromal lymphopoietin (TSLP) expressions is linked to asthma and allergic disease. Exposure to phthalate esters, a widely used plasticizer, is associated with respiratory and allergic morbidity. Dibutyl phthalate (DBP) causes TSLP upregulation in the skin. In addition, phthalate exposure is associated with changes in environmentally induced DNA methylation, which might cause phenotypic heterogeneity. This study examined the DNA methylation of the TSLP gene to determine the potential mechanism between phthalate exposure and allergic diseases. RESULTS Among all evaluated, only benzyl butyl phthalate (BBzP) in the settled dusts were negatively correlated with the methylation levels of TSLP and positively associated with children's respiratory symptoms. The results revealed that every unit increase in BBzP concentration in the settled dust was associated with a 1.75% decrease in the methylation level on upstream 775 bp from the transcription start site (TSS) of TSLP (β = - 1.75, p = 0.015) after adjustment for child's sex, age, BMI, parents' smoking status, allergic history, and education levels, PM2.5, formaldehyde, temperature; and relative humidity. Moreover, every percentage increase in the methylation level was associated with a 20% decrease in the risk of morning respiratory symptoms in the children (OR 0.80, 95% CI 0.65-0.99). CONCLUSIONS Exposure to BBzP in settled dust might increase children's respiratory symptoms in the morning through decreasing TSLP methylation. Therefore, the exposure to BBzP should be reduced especially for the children already having allergic diseases.
Collapse
Affiliation(s)
- Wan-Ru Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - Nai-Tzu Chen
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan, Taiwan
| | - Nai-Yun Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Wen Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan
| | - Jiu-Yao Wang
- Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Cheng-Hsing Campus, No. 1, University Road, Tainan City, Taiwan.
| |
Collapse
|
18
|
Maestre-Batlle D, Huff RD, Schwartz C, Alexis NE, Tebbutt SJ, Turvey S, Bølling AK, Carlsten C. Dibutyl Phthalate Augments Allergen-induced Lung Function Decline and Alters Human Airway Immunology. A Randomized Crossover Study. Am J Respir Crit Care Med 2020; 202:672-680. [PMID: 32320637 DOI: 10.1164/rccm.201911-2153oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rationale: Phthalates are a group of chemicals used in common commercial products. Epidemiological studies suggest that phthalate exposure is associated with development or worsening of allergic diseases such as asthma. However, effects of dibutyl phthalate (DBP) or other phthalates found in high concentrations in indoor air have never been examined in allergic individuals in a controlled exposure setting.Objectives: To investigate the airway effects in humans caused by inhalation of a known concentration of a single phthalate, DBP.Methods: In a randomized crossover study, 16 allergen-sensitized participants were exposed to control air or DBP for 3 hours in an environmental chamber followed immediately by an allergen inhalation challenge. Bronchoalveolar wash and lavage were obtained 24 hours after exposure. Lung function, early allergic response, airway responsiveness, inflammation, immune mediators, and immune cell phenotypes were assessed after DBP exposure.Measurements and Main Results: DBP exposure increased the early allergic response (21.4% decline in FEV1 area under the curve, P = 0.03). Airway responsiveness was increased by 48.1% after DBP exposure in participants without baseline hyperresponsiveness (P = 0.01). DBP increased the recruitment of BAL total macrophages by 4.6% (P = 0.07), whereas the M2 macrophage phenotype increased by 46.9% (P = 0.04). Airway immune mediator levels were modestly affected by DBP.Conclusions: DBP exposure augmented allergen-induced lung function decline, particularly in those without baseline hyperresponsiveness, and exhibited immunomodulatory effects in the airways of allergic individuals. This is the first controlled human exposure study providing biological evidence for phthalate-induced effects in the airways.Clinical trial registered with www.clinicaltrials.gov (NCT02688478).
Collapse
Affiliation(s)
| | | | | | - Neil E Alexis
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| | | | - Stuart Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anette K Bølling
- Department of Air Pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | | |
Collapse
|
19
|
Effect of di-(2-ethylhexyl) phthalate (DEHP) on allergic rhinitis. Sci Rep 2020; 10:14625. [PMID: 32884073 PMCID: PMC7471965 DOI: 10.1038/s41598-020-71517-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/13/2020] [Indexed: 11/08/2022] Open
Abstract
Allergic rhinitis (AR) is a common chronic inflammatory disease of the upper respiratory tract. Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer and belongs to environmental endocrine disruptors (EDCs). It can be entered the human body which is harmful to health. The relationship between DEHP and AR is still inconclusive. This study aims to investigate the effect of environmental pollutants DEHP on AR. By examining DEHP metabolites in the urine of AR patients and building an AR model. 24 BALB/c mice were used as the study subjects, and ovalbumin (OVA) and DEHP (3 mg/kg/body) were used for intragastric administration. They were divided into control group, DEHP group, OVA group and OVA + DEHP group. Examination, behavioral scoring, inflammatory factor testing, oxidative stress testing, detection of aryl hydrocarbon receptor (AhR) and signaling pathways CYP1A1 and CYP1B1 related proteins and mRNA. The concentrations of 3 metabolites of DEHP (MEHHP, MEOHP, and MEHP) in urine of AR patients were higher. And HE-staining showed that for the control group, many chronic inflammatory cell infiltration and nasal mucosal destruction were observed in the OVA + DEHP group and were more severe than the OVA group. Allergic symptom scores were obtained from sneezing, scratching, number of scratching, and nose flow. The scores of the OVA group and the OVA + DEHP group were higher than 7 points. Serum ELISA and nasal mucosal oxidative stress tests are more serious in the OVA + DEHP group. The expression of AhR protein and its mRNA was increased in the DEHP group, OVA group and OVA + DEHP group. The OVA + DEHP group was more significant in the OVA group and DEHP group. And the mRNAs of the AhR-related signaling pathways CYP1A1 and CYP1B1 were also more prominent in the OVA + DEHP group. DEHP may aggravate its inflammatory response through the AhR pathway closely related to the environment. When combined with OVA, DEHP can further aggravate the OVA-induced nasal inflammatory response and make the nasal cavity have undergone severe changes, and many inflammatory cells have infiltrated. DEHP has shown an adjuvant effect, and the AhR-related signaling pathways CYP1A1 and CYP1B1 may be critical.
Collapse
|
20
|
Segovia-Mendoza M, Nava-Castro KE, Palacios-Arreola MI, Garay-Canales C, Morales-Montor J. How microplastic components influence the immune system and impact on children health: Focus on cancer. Birth Defects Res 2020; 112:1341-1361. [PMID: 32767490 DOI: 10.1002/bdr2.1779] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND As a result of human socioeconomic activity, industrial wastes have increased distressingly. Plastic pollution is globally distributed across the world due to its properties of buoyancy and durability. A big health hazard is the sorption of toxicants to plastic while traveling through the environment. Two broad classes of plastic-related chemicals are of critical concern for human health-bisphenols and phthalates. Bisphenol A (BPA) is an endocrine-disruptor compound (EDC) with estrogenic activity. It is used in the production of materials that are used daily. The endocrine modulating activity of BPA and its effects on reproductive health has been widely studied. BPA also has effects on the immune system; however, they are poorly investigated and the available data are inconclusive. Phthalates are also EDCs used as plasticizers in a wide array of daily-use products. Since these compounds are not covalently bound to the plastic matrix, they easily leach out from it, leading to high human exposure. These compounds exert several cell effects through modulating different endocrine pathways, such as estrogen, androgen, peroxisome proliferator-activated receptor gamma, and arylhydrocarbon receptor pathways. The exposure to both classes of plastic derivatives during critical periods has detrimental effects on human health. METHODS In this review, we have compiled the most important of their perinatal effects on the function of the immune system and their relationship to the development of different types of cancer. RESULTS/CONCLUSION The administration of bisphenols and phthalates during critical stages of development affects important immune system components, and the immune function; which might be related to the development of different diseases including cancer.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Karen E Nava-Castro
- Laboratorio de Genotoxicología y Mutagénesis Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Margarita I Palacios-Arreola
- Laboratorio de Genotoxicología y Mutagénesis Ambiental, Departamento de Ciencias Ambientales, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Claudia Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
21
|
Li C, Song P, Lei F, Lu S, Xu D, Zheng G, Yang X, Wu Y, Ma P. The synergistic or adjuvant effect of DINP combined with OVA as a possible mechanism to promote an immune response. Food Chem Toxicol 2020; 140:111275. [PMID: 32209354 DOI: 10.1016/j.fct.2020.111275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 10/24/2022]
Abstract
Diisononyl phthalate (DINP) is commonly used as a plasticizer in industrial and consumer product applications. Several studies have suggested a possible link between exposure to DINP and the development of allergic asthma, and the synergistic effect of DINP combined with Ovalbumin (OVA) is a possible way to promote an immune response. These findings are still speculative, since there is insufficient evidence to assess the ability of DINP to influence "allergic asthma pathology". This study was designed to determine any effects of OVA/DINP exposure on airway reactivity, particularly when combined with allergen exposure. Experiments to determine these effects were conducted after 15 days of combined exposure and a subsequent challenge with aerosolized ovalbumin for one week. Airway hyper-responsiveness (lung function), lung tissue pathology, cytokines and oxidative stress biomarkers were investigated. We showed that oral exposure to OVA/DINP could induce airway hyper-responsiveness (AHR), and aggravate airway wall remodeling, and that this deterioration was concomitant with increased immunoglobulin-E and Th2 cytokines secretion. The data also demonstrated that DINP could promote oxidative damage in the lung. In summary, this study showed that DINP has an adjuvant effect on allergic asthma affecting lung function, lung histopathology, immune molecules and causes oxidative damage.
Collapse
Affiliation(s)
- Chongyao Li
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China; School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Peng Song
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China; School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Fan Lei
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China; School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, China
| | - Si Lu
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China
| | - Dongting Xu
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China
| | - Guangwei Zheng
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xu Yang
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China
| | - Yang Wu
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Ping Ma
- Laboratory of Environment-Immunological and Neurological Diseases, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
22
|
Silano V, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mortensen A, Rivière G, Steffensen I, Tlustos C, Van Loveren H, Vernis L, Zorn H, Cravedi J, Fortes C, Tavares Poças MDF, Waalkens‐Berendsen I, Wölfle D, Arcella D, Cascio C, Castoldi AF, Volk K, Castle L. Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials. EFSA J 2019; 17:e05838. [PMID: 32626195 PMCID: PMC7008866 DOI: 10.2903/j.efsa.2019.5838] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP Panel) was asked by the European Commission to update its 2005 risk assessments of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl)phthalate (DEHP), di-isononylphthalate (DINP) and di-isodecylphthalate (DIDP), which are authorised for use in plastic food contact material (FCM). Dietary exposure estimates (mean and high (P95)) were obtained by combining literature occurrence data with consumption data from the EFSA Comprehensive Database. The highest exposure was found for DINP, ranging from 0.2 to 4.3 and from 0.4 to 7.0 μg/kg body weight (bw) per day for mean and high consumers, respectively. There was not enough information to draw conclusions on how much migration from plastic FCM contributes to dietary exposure to phthalates. The review of the toxicological data focused mainly on reproductive effects. The CEP Panel derived the same critical effects and individual tolerable daily intakes (TDIs) (mg/kg bw per day) as in 2005 for all the phthalates, i.e. reproductive effects for DBP (0.01), BBP (0.5), DEHP (0.05), and liver effects for DINP and DIDP (0.15 each). Based on a plausible common mechanism (i.e. reduction in fetal testosterone) underlying the reproductive effects of DEHP, DBP and BBP, the Panel considered it appropriate to establish a group-TDI for these phthalates, taking DEHP as index compound as a basis for introducing relative potency factors. The Panel noted that DINP also affected fetal testosterone levels at doses around threefold higher than liver effects and therefore considered it conservative to include it within the group-TDI which was established to be 50 μg/kg bw per day, expressed as DEHP equivalents. The aggregated dietary exposure for DBP, BBP, DEHP and DINP was estimated to be 0.9-7.2 and 1.6-11.7 μg/kg bw per day for mean and high consumers, respectively, thus contributing up to 23% of the group-TDI in the worst-case scenario. For DIDP, not included in the group-TDI, dietary exposure was estimated to be always below 0.1 μg/kg bw per day and therefore far below the TDI of 150 μg/kg bw per day. This assessment covers European consumers of any age, including the most sensitive groups. Based on the limited scope of the mandate and the uncertainties identified, the Panel considered that the current assessment of the five phthalates, individually and collectively, should be on a temporary basis.
Collapse
|
23
|
Zheng M, Guo X, Pan R, Gao J, Zang B, Jin M. Hydroxysafflor Yellow A Alleviates Ovalbumin-Induced Asthma in a Guinea Pig Model by Attenuateing the Expression of Inflammatory Cytokines and Signal Transduction. Front Pharmacol 2019; 10:328. [PMID: 31024302 PMCID: PMC6459898 DOI: 10.3389/fphar.2019.00328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022] Open
Abstract
Hydroxysafflor yellow A (HSYA) is an effective ingredient of the Chinese herb Carthamus tinctorius L. In this study, we aimed to evaluate the effects of HSYA on ovalbumin (OVA)-induced asthma in guinea pigs, and to elucidate the underlying mechanisms. We established a guinea pig asthma model by intraperitoneal injection and atomized administration OVA. Guinea pigs were injected intraperitoneally with HSYA (50, 75, 112.5 mg/kg) once daily from days 2 to 22 before OVA administration. We examined biomarkers including lung function, pulmonary histopathology, immunoglobulin E (IgE), Th1/Th2 relative inflammatory mediators, and related pathways. Pathological changes in lung tissues were detected by hematoxylin and eosin and periodic acid-Schiff staining. Phosphorylation levels of JNK mitogen-activated protein kinase (MAPK), p38 MAPK, ERK MAPK, and inhibitor of nuclear factor κBα (IκBα) were detected by western blot. plasma levels of total IgE, platelet-activating factor (PAF), and interleukin (IL)-3 were detected by enzyme-linked immunosorbent assay (ELISA). Expression levels of tumor necrosis factor (TNF)-α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-13, and interferon (IFN)-γ were detected by ELISA and real-time quantitative polymerase chain reaction. HSYA significantly reduced airway resistance, improved dynamic lung compliance, and attenuated the pathologic changes. HSYA also inhibited the phosphorylation of JNK MAPK, p38 MAPK, ERK MAPK, and IκBα, and inhibited the OVA-induced elevations of IgE, PAF, IL-1β, IL-6, IL-4, IL-5, and IL-13 and the decreases in TNF-α, IFN-γ, IL-2, and IL-3. These findings suggest that HSYA has a protective effect on OVA-induced asthma through inhibiting the Th1/Th2 cell imbalance and inhibiting activation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Xinjing Guo
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ruiyan Pan
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jianwei Gao
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Baoxia Zang
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ming Jin
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
24
|
Shuang-Huang-Lian Attenuates Airway Hyperresponsiveness and Inflammation in a Shrimp Protein-Induced Murine Asthma Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4827342. [PMID: 30713573 PMCID: PMC6332955 DOI: 10.1155/2019/4827342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/23/2018] [Accepted: 12/03/2018] [Indexed: 12/27/2022]
Abstract
Shuang-Huang-Lian (SHL), an herbal formula of traditional Chinese medicine, is clinically used for bronchial asthma treatment. Our previous study found that SHL prevented basophil activation to suppress Th2 immunity and stabilized mast cells through activating its mitochondrial calcium uniporter. Sporadic clinical reports that SHL was used for the treatment of bronchial asthma can be found. Thus, in this study, we systematically investigated the effects of SHL on asthmatic responses using a shrimp protein (SP)- induced mouse model. SHL significantly inhibited airway inspiratory and expiratory resistance, and histological studies suggested it reduced thickness of airway smooth muscle and infiltration of inflammation cells. It also could alleviate eosinophilic airway inflammation (EAI), including reducing the number of eosinophils and decreasing eotaxin and eosinophil peroxidase levels in the bronchoalveolar lavage fluid (BALF). Further studies indicated that SHL suppressed SP-elevated mouse mast cell protease-1 and IgE levels, prevented Th2 differentiation in mediastinal lymph nodes, and lowered Th2 cytokine (e.g., IL-4, IL-5, and IL-13) production in BALF. In conclusion, SHL attenuates airway hyperresponsiveness and EAI mainly via the inhibition of mast cell activation and Th2 immunity, which may help to elucidate the underlying mechanism of SHL on asthma treatment and support its clinical use.
Collapse
|
25
|
Alfardan AS, Nadeem A, Ahmad SF, Al-Harbi NO, Al-Harbi MM, AlSharari SD. Plasticizer, di(2-ethylhexyl)phthalate (DEHP) enhances cockroach allergen extract-driven airway inflammation by enhancing pulmonary Th2 as well as Th17 immune responses in mice. ENVIRONMENTAL RESEARCH 2018; 164:327-339. [PMID: 29567418 DOI: 10.1016/j.envres.2018.02.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/01/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
In recent decades, there has been a gradual increase in the prevalence of asthma. Various factors including environmental pollutants have contributed to this phenomenon. Plasticizer, di(2-ethylhexyl)phthalate (DEHP) is one of the commonest environmental pollutants due to its association with plastic products. DEHP gets released from plastic products easily leading to respiratory exposure in humans. As a consequence, DEHP is associated with allergic asthma in humans and animals. DEHP is reported to act as an adjuvant in ovalbumin-induced mouse models of asthma at high doses. However, these studies mostly looked into the role of DEHP on Th2 cytokines/eosinophilic inflammation without investigating the role of airway epithelial cells (AECs)/dendritic cells (DCs)/Th17 cells. Its adjuvant activity with natural allergens such as cockroach allergens at tolerable daily intake needs to be explored. Cockroach allergens and DEHP may be inhaled together due to their coexistence in work place as well as household environments. Therefore, effect of DEHP was assessed in cockroach allergens extract (CE)-induced mouse model of asthma. Airway inflammation, histopathology, mucus secretion, and immune responses related to Th2/Th17/DCs and AECs were assessed in mice with DEHP exposure alone and in combination with CE. Our study shows that DEHP converts CE-induced eosinophilic inflammation into mixed granulocytic inflammation by promoting Th2 as well as Th17 immune responses. This was probably due to downregulation of E-cadherin in AECs, and enhancement of costimulatory molecules (MHCII/CD86/CD40)/pro-inflammatory cytokines (IL-6/MCP-1) in DCs by DEHP. This suggests that DEHP facilitates development of mixed granulocytic airway inflammation in the presence of a natural allergen.
Collapse
Affiliation(s)
- Ali S Alfardan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia.
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif O Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad M Al-Harbi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Shakir D AlSharari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
Shu H, Wikstrom S, Jönsson BA, Lindh CH, Svensson Å, Nånberg E, Bornehag CG. Prenatal phthalate exposure was associated with croup in Swedish infants. Acta Paediatr 2018; 107:1011-1019. [PMID: 29385277 DOI: 10.1111/apa.14245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 10/24/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
AIM This study examined whether prenatal phthalate exposure was associated with lower or upper airway inflammation in infants. METHODS From 2007 to 2010, we used liquid chromatography-tandem mass spectrometry, adjusted for creatinine, to analyse 14 phthalate metabolites and one phthalate replacement in the urine of 1062 Swedish mothers at a median of 10 weeks of pregnancy. This was used to determine any associations between prenatal phthalate exposure and croup, wheezing or otitis in their offspring until 12 months of age, using logistic regression, adjusted for potential confounders. RESULTS There were significant associations between phthalate metabolites of butyl-benzyl phthalate (BBzP) and di-ethyl-hexyl phthalate (DEHP) concentrations in maternal prenatal urine and croup in 1062 infants during the first year of life, when adjusted for potential confounders. A dose-response relationship was found between prenatal phthalates exposure and maternal reported croup in the children, with a significant association in boys. There was no clear indication with regard to associations between prenatal phthalate exposure and wheezing or otitis media in the children during the first year of life. CONCLUSION Our analysis suggests that exposure to BBzP and DEHP phthalates was associated with maternal reports of croup in infants up to 12 months of age.
Collapse
Affiliation(s)
- Huan Shu
- Department of Health Sciences; Karlstad University; Karlstad Sweden
| | - Sverre Wikstrom
- School of Medical Sciences; Örebro University; Örebro Sweden
| | - Bo A.G. Jönsson
- Division of Occupational and Environmental Medicine; Lund University; Lund Sweden
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine; Lund University; Lund Sweden
| | - Åke Svensson
- Department of Dermatology; Lund University; Lund Sweden
| | - Eewa Nånberg
- Department of Health Sciences; Karlstad University; Karlstad Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences; Karlstad University; Karlstad Sweden
- Department of Preventive Medicine; Icahn School of Medicine at Mount Sinai; New York NY USA
| |
Collapse
|
27
|
Strassle PD, Smit LAM, Hoppin JA. Endotoxin enhances respiratory effects of phthalates in adults: Results from NHANES 2005-6. ENVIRONMENTAL RESEARCH 2018; 162:280-286. [PMID: 29407759 DOI: 10.1016/j.envres.2018.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/06/2017] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Phthalates have been associated with respiratory symptoms in adults; they may enhance effects of inflammatory compounds. To assess the potential interactions of phthalates and endotoxin on respiratory and allergic symptoms in adults, we used cross-sectional information from the 1091 adults with complete data on urinary phthalates and house dust endotoxin from NHANES 2005-2006. We used multivariable logistic regression to assess whether endotoxin levels modified the association between nine phthalate metabolites and four current allergic symptoms (asthma, wheeze, hay fever, and rhinitis). Endotoxin was classified into tertiles (<10, 10-25, >25EU/mg dust). Urinary phthalate and dust endotoxin levels were not correlated (r < |0.02|). Under low endotoxin conditions, no associations between phthalates and respiratory outcomes were observed. Under medium or high endotoxin conditions, exposure-response relationships were observed between specific phthalates and wheeze and asthma. For wheeze, three phthalates (mono-benzyl phthalate (MBzP), mono(carboxyoctyl) phthalate (MCOP), and di-ethylhexyl phthalate (DEHP) had significant interactions with endotoxin); for asthma, two phthalates (MCOP and mono(carboxyoctyl) phthalate (MCNP)) had significant interactions. Endotoxin did not modify the associations between phthalates and hay fever or rhinitis. These results are consistent with the hypothesis that endotoxin enhances the respiratory toxicity of phthalates; however this cross-sectional study cannot address key temporal issues. The lack of an association between wheeze or asthma and phthalates when endotoxin exposure was low suggests that phthalates alone may not increase these symptoms.
Collapse
Affiliation(s)
- Paula D Strassle
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Jane A Hoppin
- Center for Human Health and the Environment, North Carolina State University, Campus Box 7633, Raleigh 27695-7633, NC, United States; Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
28
|
Ginsberg GL, Belleggia G. Use of Monte Carlo analysis in a risk-based prioritization of toxic constituents in house dust. ENVIRONMENT INTERNATIONAL 2017; 109:101-113. [PMID: 28890219 DOI: 10.1016/j.envint.2017.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 06/07/2023]
Abstract
Many chemicals have been detected in house dust with exposures to the general public and particularly young children of potential health concern. House dust is also an indicator of chemicals present in consumer products and the built environment that may constitute a health risk. The current analysis compiles a database of recent house dust concentrations from the United States and Canada, focusing upon semi-volatile constituents. Seven constituents from the phthalate and flame retardant categories were selected for risk-based screening and prioritization: diethylhexyl phthalate (DEHP), butyl benzyl phthalate (BBzP), diisononyl phthalate (DINP), a pentabrominated diphenyl ether congener (BDE-99), hexabromocyclododecane (HBCDD), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroethyl) phosphate (TCEP). Monte Carlo analysis was used to represent the variability in house dust concentration as well as the uncertainty in the toxicology database in the estimation of children's exposure and risk. Constituents were prioritized based upon the percentage of the distribution of risk results for cancer and non-cancer endpoints that exceeded a hazard quotient (HQ) of 1. The greatest percent HQ exceedances were for DEHP (cancer and non-cancer), BDE-99 (non-cancer) and TDCIPP (cancer). Current uses and the potential for reducing levels of these constituents in house dust are discussed. Exposure and risk for other phthalates and flame retardants in house dust may increase if they are used to substitute for these prioritized constituents. Therefore, alternative assessment and green chemistry solutions are important elements in decreasing children's exposure to chemicals of concern in the indoor environment.
Collapse
Affiliation(s)
- Gary L Ginsberg
- Department of Community Medicine, MPH Program, University of Connecticut Health Center School of Medicine, Farmington, CT, USA.
| | - Giuliana Belleggia
- Department of Community Medicine, MPH Program, University of Connecticut Health Center School of Medicine, Farmington, CT, USA
| |
Collapse
|
29
|
Li MC, Chen CH, Guo YL. Phthalate esters and childhood asthma: A systematic review and congener-specific meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:655-660. [PMID: 28692937 DOI: 10.1016/j.envpol.2017.06.083] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/25/2017] [Accepted: 06/25/2017] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Exposure to phthalate esters (PAEs) has been associated with childhood asthma, but the congener-specific effects of PAEs on childhood asthma were unclear. We aimed to systematically review and meta-analyze observational studies on the associations between specific effects of PAEs and the risk of childhood asthma. MATERIAL AND METHODS Relevant studies were identified by searching three databases up to October 20, 2016. The reference lists of the retrieved articles were also reviewed. We included observational studies that reported risk estimates with 95% confidence intervals (CIs) for the associations between phthalate exposure and the risk of childhood asthma. Fixed-effects models were generally applied to calculate pooled risk estimates. When heterogeneity was present, random-effects models were applied. RESULTS A total of nine studies featuring 43 data points were included in our final meta-analyses. Results indicated that the benzyl butyl phthalate (BBzP) exposure had a significant association with the risk of childhood asthma. The Odd Ratios (ORs) were from 1.39 to 1.41 for different combination strategies. Subgroup analyses by different exposure period or samples used showed that prenatal exposure to BBzP had a stronger association with the risk of childhood asthma (OR = 1.38, 95% CI = 1.09-1.75), compared to those with postnatal exposure. Besides, the association was evident when the phthalate exposure was measured from dust samples. The OR for the associations between di-2-ethylhexyl phthalate (DEHP) in dust and childhood asthma was 2.71 (95% CI = 1.39-5.28), and 2.08 (95% CI = 1.10-3.92) for BBzP. CONCLUSIONS Our study suggested a positive association between DEHP and BBzP exposure and childhood asthma. Future studies are warranted to identify the underlying mechanisms of the association.
Collapse
Affiliation(s)
- Ming-Chieh Li
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chi-Hsien Chen
- Department of Environmental and Occupational Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan
| | - Yue Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan.
| |
Collapse
|
30
|
Vernet C, Pin I, Giorgis-Allemand L, Philippat C, Benmerad M, Quentin J, Calafat AM, Ye X, Annesi-Maesano I, Siroux V, Slama R. In Utero Exposure to Select Phenols and Phthalates and Respiratory Health in Five-Year-Old Boys: A Prospective Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097006. [PMID: 28934727 PMCID: PMC5915196 DOI: 10.1289/ehp1015] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/12/2017] [Accepted: 01/26/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Phenols and phthalates may have immunomodulatory and proinflammatory effects and thereby adversely affect respiratory health. OBJECTIVE We estimated the associations between gestational exposure to select phthalates and phenols and respiratory health in boys. METHODS Among 587 pregnant women from the EDEN (Etude des Déterminants pré et post natals du développement et de la santé de l'Enfant) cohort who delivered a boy, 9 phenols and 11 phthalates metabolites were quantified in spot pregnancy urine samples. Respiratory outcomes were followed up by questionnaires until age 5, when forced expiratory volume in 1 s (FEV1) was measured by spirometry. Adjusted associations of urinary metabolites log-transformed concentrations with respiratory outcomes and FEV1 in percent predicted (FEV1%) were estimated by survival and linear regression models, respectively. RESULTS No phenol or phthalate metabolite exhibited clear deleterious associations simultaneously with several respiratory outcomes. Ethyl-paraben was associated with increased asthma rate [hazard rate (HR)=1.10; 95% confidence interval (CI): 1.00, 1.21] and tended to be negatively associated with FEV1% (beta=-0.59; 95% CI: -1.24, 0.05); bisphenol A tended to be associated with increased rates of asthma diagnosis (HR=1.23; 95% CI: 0.97, 1.55) and bronchiolitis/bronchitis (HR=1.13; 95% CI: 0.99, 1.30). Isolated trends for deleterious associations were also observed between 2,5-dichlorophenol and wheezing, and between monocarboxynonyl phthalate, a metabolite of di-isodecyl phthalate (DIDP), and wheezing. CONCLUSION Ethyl-paraben, bisphenol A, 2,5-dichlorophenol, and DIDP tended to be associated with altered respiratory health, with ethyl-paraben and bisphenol A exhibiting some consistency across respiratory outcomes. The trends between bisphenol A pregnancy level and increased asthma and bronchiolitis/bronchitis rates in childhood were consistent with a previous cohort study. https://doi.org/10.1289/EHP1015.
Collapse
Affiliation(s)
- Céline Vernet
- Inserm, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Isabelle Pin
- Inserm, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
- Centre Hospitalier Universitaire (CHU), Service de pédiatrie, Grenoble, France
| | - Lise Giorgis-Allemand
- Inserm, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Claire Philippat
- Inserm, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Meriem Benmerad
- Inserm, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Joane Quentin
- Inserm, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
- Centre Hospitalier Universitaire (CHU), Service de pédiatrie, Grenoble, France
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xiaoyun Ye
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Isabella Annesi-Maesano
- Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, INSERM & UPMC Paris 6, Sorbonnes Universités, Paris, France
| | - Valérie Siroux
- Inserm, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Rémy Slama
- Inserm, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| |
Collapse
|
31
|
Wang IJ, Karmaus WJJ. Oxidative Stress-Related Genetic Variants May Modify Associations of Phthalate Exposures with Asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020162. [PMID: 28208751 PMCID: PMC5334716 DOI: 10.3390/ijerph14020162] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/12/2022]
Abstract
Background: Phthalate exposure may increase the risk of asthma. Little is known about whether oxidative-stress related genes may alter this association. First, this motivated us to investigate whether genetic polymorphisms of the oxidative-stress related genes glutathione S-transferase Mu 1 (GSTM1), glutathione S-transferase pi 1 (GSTP1), superoxide dismutase 2 (SOD2), catalase (CAT), myeloperoxidase (MPO), and EPHX1 in children are associated with phthalate urine concentrations. Second, we addressed the question whether these genes may affect the influence of phthalates on asthma. Methods: In a case-control study composed of 126 asthmatic children and 327 controls, urine phthalate metabolites (monoethyl phthalate (MEP), monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), and mono(2-ethyl-5-hydroxyhexyl)phthalate (MEHHP) were measured by UPLC-MS/MS at age 3. Genetic variants were analyzed by TaqMan assay. Information on asthma and environmental exposures was also collected. Analyses of variance and logistic regressions were performed. Results: Urine MEHHP levels were associated with asthma (adjusted OR 1.33, 95% CI (1.11–1.60). Children with the GSTP1 (rs1695) AA and SOD2 (rs5746136) TT genotypes had higher MEHHP levels as compared to GG and CC types, respectively. Since only SOD2 TT genotype was significantly associated with asthma (adjusted OR (95% CI): 2.78 (1.54–5.02)), we estimated whether SOD2 variants modify the association of MEHHP levels and asthma. As MEHHP concentrations were dependent on GSTP1 and SOD2, but the assessment of interaction requires independent variables, we estimated MEHHP residuals and assessed their interaction, showing that the OR for SOD2 TT was further elevated to 3.32 (1.75–6.32) when the residuals of MEHHP were high. Conclusions: Urine phthalate metabolite concentrations are associated with oxidative-stress related genetic variants. Genetic variants of SOD2, considered to be reflect oxidative stress metabolisms, might modify the association of phthalate exposure with asthma.
Collapse
Affiliation(s)
- I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, Taipei 11267, Taiwan.
- Institute of Environmental & Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei 100044, Taiwan.
- Department of Health Risk Management, China Medical University, Taichung 110001, Taiwan.
| | - Wilfried J J Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
32
|
Shang S, Li J, Zhao Y, Xi Z, Lu Z, Li B, Yang X, Li R. Oxidized graphene-aggravated allergic asthma is antagonized by antioxidant vitamin E in Balb/c mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1784-1793. [PMID: 27796986 DOI: 10.1007/s11356-016-7903-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
Nanomaterials have been widely used in a number of applications; however, these nanomaterials may potentially be risky for human health, particularly for the respiratory system. In this study, we used a mouse asthma model to study whether graphene oxide (GO), a promising carbonaceous nanomaterial with unique physicochemical properties, aggravates allergic asthma via the oxidative stress pathway. Mice were sensitized with ovalbumin (OVA) to trigger immune reactions, while vitamin E (Ve) was administered as an antioxidant. Our results showed that GO aggravated OVA-induced allergic asthma in mice, as suggested by increased reactive oxygen species (ROS), elevated total immunoglobulin E (IgE), upregulated Th2 response, and the aggravation of allergic asthma symptoms, such as airway remolding, collagen deposition with mucus hypersecretion, and airway hyperresponsiveness (AHR). The administration of Ve dramatically attenuated all of the above effects. In conclusion, Ve showed anti-allergic properties in antagonizing the exacerbation of allergic asthma induced by GO, providing a new possibility for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Shuai Shang
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China
| | - Jinquan Li
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yun Zhao
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China
| | - Zhuge Xi
- Institute of Health and Environmental Medicine, Dali Road, Heping District, Tianjin, 300050, People's Republic of China
| | - Zhisong Lu
- Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing, 400715, People's Republic of China
| | - Baizhan Li
- National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Xu Yang
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China.
| | - Rui Li
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan, Hubei Province, 430079, China.
| |
Collapse
|
33
|
Zarean M, Keikha M, Poursafa P, Khalighinejad P, Amin M, Kelishadi R. A systematic review on the adverse health effects of di-2-ethylhexyl phthalate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24642-24693. [PMID: 27714658 DOI: 10.1007/s11356-016-7648-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/07/2016] [Indexed: 05/23/2023]
Abstract
Di (ethylhexyl) phthalate (DEHP) is a global environmental pollutant. This study aims to systematically review the literature on health effects of exposure to DEHP including effects on reproductive health, carcinogenesis, pregnancy outcome, and respiratory system. The literature search was done through Scopus, ISI Web of Science, Google Scholar, PubMed, Medline, and the reference lists of previous review articles to identify relevant articles published to June 2016 in each subject area. The inclusion criteria were as follows: original research, cross-sectional studies, case-control studies, cohort studies, interventional studies, and review articles. Both human and animal studies were included. The search was limited to English language papers. Conference papers, editorials, and letters were not included. The systematic review was conducted and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Overall, 152 of the 407 papers met the inclusion criteria. We provided an up-to-date comprehensive and critical assessment of both human and animal studies undertaken to explore the effects of DEHP. It revealed that in experimental studies, exposure to DEHP mainly targeted the reproductive, neurodevelopment, and respiratory systems. Human studies reported that exposure to this contaminant had carcinogenic effects and influenced neurodevelopment in early life. This systematic review underscored the adverse health effects of DEHP for pregnant women and the pediatric age group. It summarizes different response of humans and experimental animals to DEHP exposure, and some suggested underlying mechanisms.
Collapse
Affiliation(s)
- Maryam Zarean
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Keikha
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parinaz Poursafa
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Khalighinejad
- Students' Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Kimia Gostar Saba, Isfahan, Iran
| | - Mohammadmehdi Amin
- Environmental Health Department, Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
You H, Li R, Wei C, Chen S, Mao L, Zhang Z, Yang X. Thymic Stromal Lymphopoietin Neutralization Inhibits the Immune Adjuvant Effect of Di-(2-Ethylhexyl) Phthalate in Balb/c Mouse Asthma Model. PLoS One 2016; 11:e0159479. [PMID: 27467143 PMCID: PMC4965047 DOI: 10.1371/journal.pone.0159479] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a commonly used plasticizer, has an adjuvant effect in combination with ovalbumin (OVA). The adjuvant effect of DEHP has already been verified in our previous studies. In this study, to further investigate whether thymic stromal lymphopoietin (TSLP) was involved in the DEHP-adjuvant effect, DEHP was administered through a daily gavage exposure route. Mice were sensitized with ovalbumin (OVA) to trigger allergic responses, and an anti-TSLP monoclonal antibody was used to neutralize the effect of TSLP. Biomarkers including cytokines in bronchoalveolar lavage fluid (BALF), serum total IgE and TSLP content in the lung were detected. In addition, airway hyperreactivity and lung sections were examined. Collectively, these data indicated a salient Th2 response which was characterized by the upregulation of Th2-type cytokines, such as interleukin 4 (IL-4), IL-5 and IL-13. Moreover, the eosinophil number in BALF and the eosinophil cationic protein (ECP) in the lung were seen to have increased significantly. However, neutralization of TSLP with an anti-TSLP mAb reversed the adjuvant effect of DEHP on airway inflammation, structural alterations in the airway wall and increased airway hyperresponsiveness (AHR) to methacholine induced by the OVA allergen, suggesting that TSLP was an effective target site for suppressing the adjuvant effect of DEHP co-exposure.
Collapse
Affiliation(s)
- Huihui You
- Laboratory of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Rui Li
- Laboratory of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Chenxi Wei
- Key Laboratory of Ecological Safety Monitoring and Evaluation, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shaohui Chen
- Laboratory of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Lin Mao
- Laboratory of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhenye Zhang
- University Hospital, Central China Normal University, Wuhan, China
| | - Xu Yang
- Laboratory of Environmental Biomedicine, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
35
|
The Impact of Bisphenol A and Phthalates on Allergy, Asthma, and Immune Function: a Review of Latest Findings. Curr Environ Health Rep 2016; 2:379-87. [PMID: 26337065 DOI: 10.1007/s40572-015-0066-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, the impact of environmental exposure to chemicals and their immunological effects, including the development of allergy, has been a topic of great interest. Epidemiologic studies indicate that exposure to endocrine-disrupting chemicals produced in high volumes, including bisphenol A (BPA) and phthalates, is ubiquitous. The links between their exposure and the development of allergy, asthma, and immune dysfunction have been studied in vitro, in vivo, and through human cohort studies. The purpose of this review is to examine the current body of research and to highlight deficits and strengths of current findings. Emerging science indicates that deleterious immunologic changes, including increased propensity to develop wheeze, allergy, and asthma after dietary and inhalation exposure to these chemicals, may be occurring.
Collapse
|
36
|
Childhood Atopic Dermatitis in Taiwan. Pediatr Neonatol 2016; 57:89-96. [PMID: 26510770 DOI: 10.1016/j.pedneo.2015.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 12/21/2022] Open
Abstract
The prevalence of atopic dermatitis (AD) appears to have increased dramatically over the past decades. It is generally believed that such rapid increase in prevalence cannot be explained fully by genetic factors. Environmental factors might play a role in such an increment. Children with AD are most likely to suffer considerable school absences, family stress, and health care expenditures. Because the onset of AD occurs relatively early in life, identification of early life risk factors and early management for AD to prevent the development of atopic march are of critical importance. However, there is still no consensus on coordinated prevention and management for AD in Taiwan. In this review, we discuss the specific risk factors of AD and important results of recent articles on AD from Taiwan. The management and prevention strategies of AD for Asian skin are also discussed.
Collapse
|
37
|
|
38
|
Nakamura R, Takanezawa Y, Sone Y, Uraguchi S, Sakabe K, Kiyono M. Immunotoxic Effect of Low-Dose Methylmercury Is Negligible in Mouse Models of Ovalbumin or Mite-Induced Th2 Allergy. Biol Pharm Bull 2016; 39:1353-8. [DOI: 10.1248/bpb.b16-00306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ryosuke Nakamura
- Department of Public Health, School of Pharmacy, Kitasato University
| | | | - Yuka Sone
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Shimpei Uraguchi
- Department of Public Health, School of Pharmacy, Kitasato University
| | - Kou Sakabe
- Department of Human Structure and Function, Tokai University School of Medicine
| | - Masako Kiyono
- Department of Public Health, School of Pharmacy, Kitasato University
| |
Collapse
|
39
|
Zhu Y, Li J, Wu Z, Lu Y, You H, Li R, Li B, Yang X, Duan L. Acute exposure of ozone induced pulmonary injury and the protective role of vitamin E through the Nrf2 pathway in Balb/c mice. Toxicol Res (Camb) 2015; 5:268-277. [PMID: 30090343 DOI: 10.1039/c5tx00259a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/05/2015] [Indexed: 11/21/2022] Open
Abstract
Ozone (O3) in the lower atmosphere is generally derived from various sources of human activity. It has become a major air pollutant in China and has been shown to adversely affect the health of humans and animals. We undertook a study to ascertain the molecular mechanism of ozone induced lung injury in mice and tried to demonstrate the protective mechanism of vitamin E. In this study, mice were exposed to clean air and three different concentrations of ozone. Oxidative stress (reactive oxygen species and malondialdehyde) and Th cytokines in the lung, serum IgE, as well as histopathological examination and the airway hyper-responsiveness (AHR) test were used to reflect inflammation and damage to the lungs of ozone-exposed mice. We then chose an effective concentration of ozone and combined treatment with vitamin E (VE) to explore the underlying mechanism of ozone-induced lung damage. The results of immunological and inflammatory biomarkers (total-immunoglobulin (Ig) E and Th cytokines) as well as histopathological examination and AHR assessment supported the notion that high doses of ozone (>0.5 ppm) could induce inflammation and lung injury in mice and that this induction was counteracted by concurrent administration of VE. The elimination of oxidative stress, the reduced Th2 responses and Ig production, and the relief of lung damage were proposed to explain the molecular mechanism of ozone induced lung injury. We also showed that VE, an antioxidant that enhanced the expression of Nrf2 and up-regulated the antioxidant genes HO-1 and NQO1, could decrease the levels of oxidative stress and alleviate ozone-induced lung injury.
Collapse
Affiliation(s)
- Yuqing Zhu
- College of Public Health , Zhengzhou University , Zhengzhou , China.,Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Jinquan Li
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954.,Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment , Ministry of Education , Chongqing University , Chongqing 400045 , China
| | - Zhuo Wu
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Yu Lu
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Huihui You
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Rui Li
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Baizhan Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment , Ministry of Education , Chongqing University , Chongqing 400045 , China
| | - Xu Yang
- Section of Environmental Biomedicine , Hubei Key Laboratory of Genetic Regulation and Integrative Biology , College of Life Science , Central China Normal University , Wuhan , China . ; Tel: +86-13871361954
| | - Liju Duan
- College of Public Health , Zhengzhou University , Zhengzhou , China.,College of Public Health , Huazhong University of Science and Technology , Wuhan , China . ; Tel: +86-18768869690
| |
Collapse
|
40
|
Ferguson KK, McElrath TF, Mukherjee B, Loch-Caruso R, Meeker JD. Associations between Maternal Biomarkers of Phthalate Exposure and Inflammation Using Repeated Measurements across Pregnancy. PLoS One 2015; 10:e0135601. [PMID: 26317519 PMCID: PMC4552851 DOI: 10.1371/journal.pone.0135601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
Phthalate exposure is prevalent in populations worldwide, including pregnant women. Maternal urinary metabolite concentrations have been associated with adverse reproductive outcomes, but underlying mechanisms remain unclear. Here we investigate inflammation as a possible pathway by examining phthalates in association with inflammation biomarkers, including C-reactive protein (CRP) and a panel of cytokines (IL-1β, IL-6, IL-10, and TNF-α) in a repeated measures analysis of pregnant women (N = 480). Urinary phthalate metabolites and plasma inflammation biomarkers were measured from samples collected at up to four visits per subject during gestation (median 10, 18, 26, and 35 weeks). Associations were examined using mixed models to account for within-individual correlation of measures. Few statistically significant associations or clear trends were observed, although in full models mono-carboxypropyl phthalate (MCPP) was significantly (percent change with interquartile range increase in exposure [%Δ] = 8.89, 95% confidence interval [CI] = 3.28, 14.8), and mono-benzyl phthalate (MBzP) was suggestively (%Δ = 6.79, 95%CI = -1.21, 15.4) associated with IL-6. Overall these findings show little evidence of an association between phthalate exposure and peripheral inflammation in pregnant women. To investigate inflammation as a mechanism of phthalate effects in humans, biomarkers from target tissues or fluids, though difficult to measure in large-scale studies, may be necessary to detect effects.
Collapse
Affiliation(s)
- Kelly K. Ferguson
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, Michigan, United States of America
| | - Thomas F. McElrath
- Brigham and Women’s Hospital, Harvard Medical School, Division of Maternal-Fetal Medicine, Boston, Massachusetts, United States of America
| | - Bhramar Mukherjee
- University of Michigan School of Public Health, Department of Biostatistics, Ann Arbor, Michigan, United States of America
| | - Rita Loch-Caruso
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, Michigan, United States of America
| | - John D. Meeker
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
41
|
Ku HY, Su PH, Wen HJ, Sun HL, Wang CJ, Chen HY, Jaakkola JJK, Wang SL. Prenatal and postnatal exposure to phthalate esters and asthma: a 9-year follow-up study of a taiwanese birth cohort. PLoS One 2015; 10:e0123309. [PMID: 25875379 PMCID: PMC4395154 DOI: 10.1371/journal.pone.0123309] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/02/2015] [Indexed: 11/23/2022] Open
Abstract
Previous studies have shown that phthalate exposure in childhood is associated with the development of respiratory problems. However, few studies have assessed the relative impact of prenatal and postnatal exposure to phthalates on the development of asthma later in childhood. Therefore, we assessed the impact of prenatal and postnatal phthalate exposure on the development of asthma and wheezing using a Taiwanese birth cohort. A total of 430 pregnant women were recruited, and 171 (39.8%) of them had their children followed when they were aged 2, 5, and 8 years. The International Study of Asthma and Allergies in Childhood questionnaire was used to assess asthma and wheezing symptoms and serum total immunoglobulin E levels were measured at 8 years of age. Urine samples were obtained from 136 women during their third trimester of pregnancy, 99 children at 2 years of age, and 110 children at 5 years. Four common phthalate monoester metabolites in maternal and children’s urine were measured using liquid chromatography-electrospray ionization-tandem mass spectrometry. Maternal urinary mono-benzyl phthalate [MBzP] concentrations were associated with an increased occurrence of wheezing in boys at 8 years of age (odds ratio [OR] = 4.95 (95% CI 1.08–22.63)), for upper quintile compared to the others) after controlling for parental allergies and family members' smoking status. Urinary mono-2-ethylhexyl phthalate [MEHP] levels over the quintile at 2-year-old were associated with increased asthma occurrence (adjusted OR = 6.14 (1.17–32.13)) in boys. Similarly, the sum of di-2-ethyl-hexyl phthalate [DEHP] metabolites at 5 years was associated with asthma in boys (adjusted OR = 4.36 (1.01–18.86)). Urinary MEHP in maternal and 5-year-old children urine were significantly associated with increased IgE in allergic children at 8 years. Prenatal and postnatal exposure to phthalate was associated with the occurrence of asthma in children, particularly for boys.
Collapse
Affiliation(s)
- Hsiu Ying Ku
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pen Hua Su
- Division of Genetics, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hui Ju Wen
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hai Lun Sun
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien Jen Wang
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hsiao Yen Chen
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Jouni J. K. Jaakkola
- Center for Environmental and Respiratory Health Research, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu, Finland
| | - Shu-Li Wang
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan
- School of Public Health, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| | | |
Collapse
|
42
|
Sato Y, Sugaya N, Nakagawa T, Morita M. [Analysis of phthalates in aromatic and deodorant aerosol products and evaluation of exposure risk]. YAKUGAKU ZASSHI 2015; 135:631-42. [PMID: 25832843 DOI: 10.1248/yakushi.14-00193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We established an analytical method for the detection of seven phthalates, dimethyl phthalate, diethyl phthalate (DEP), benzyl butyl phthalate, di-i-butyl phthalate, dibutyl phthalate (DBP), diethylhexyl phthalate (DEHP), and di-n-octhyl phthalate, using an ultra high performance liquid chromatograph equipped with a photodiode array detector. This method is quick, with minimal contamination, and was applied to the analysis of aromatic and deodorant aerosol products. Phthalates were detected in 15 of 52 samples purchased from 1999 to 2012 in Yokohama. Three types of phthalate (DEP, DBP, DEHP) were detected, and their concentrations ranged from 0.0085-0.23% DEP in nine samples, 0.012-0.045% DBP in four samples, and 0.012-0.033% DEHP in four samples. No other phthalate esters were detected. Furthermore, we estimated phthalate exposure via breathing in commonly used aromatic and deodorant aerosol products, then evaluated the associated risk. The estimated levels of phthalate exposure were lower than the tolerated daily limit, but the results indicated that aromatic and deodorant aerosol products could be a significant source of phthalate exposure.
Collapse
|
43
|
Wang IJ, Karmaus WJ, Chen SL, Holloway JW, Ewart S. Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Clin Epigenetics 2015; 7:27. [PMID: 25960783 PMCID: PMC4424541 DOI: 10.1186/s13148-015-0060-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/17/2015] [Indexed: 01/01/2023] Open
Abstract
Background Phthalates may increase the asthma risk in children. Mechanisms underlying this association remain to be addressed. This study assesses the effect of phthalate exposures on epigenetic changes and the role of epigenetic changes for asthma. In the first step, urine and blood samples from 256 children of the Childhood Environment and Allergic diseases Study (CEAS) were analyzed. Urine 5OH-MEHP levels were quantified as an indicator of exposure, and asthma information was collected. DNA methylation (DNA-M) was measured by quantitative PCR. In the screening part of step 1, DNA-M of 21 potential human candidate genes suggested by a toxicogenomic data were investigated in 22 blood samples. Then, in the testing part of step 1, positively screened genes were tested in a larger sample of 256 children and then validated by protein measurements. In step 2, we replicated the association between phthalate exposure and gene-specific DNA-M in 54 children in the phthalate contaminated food event. In step 3, the risk of DNA-M for asthma was tested in 256 children from CEAS and corroborated in 270 children from the Isle of Wight (IOW) birth cohort. Results Differential methylation in three genes (AR, TNFα, and IL-4) was identified through screening. Testing in 256 children showed that methylation of the TNFα gene promoter was lower when children had higher urine 5OH-MEHP values (β = −0.138, P = 0.040). Functional validation revealed that TNFα methylation was inversely correlated with TNFα protein levels (β = −0.18, P = 0.041). In an additional sample of 54 children, we corroborated that methylation of the TNFα gene promoter was lower when urine 5OH-MEHP concentrations were higher. Finally, we found that a lower methylation of 5′CGI region of TNFα was associated with asthma in 256 CEAS children (OR = 2.15, 95% CI = 1.01 to 4.62). We replicated this in 270 children from the IOW birth cohort study. Methylation of the CpG site cg10717214 was negatively associated with asthma, when children had ‘AA’ or ‘AG’ genotype of the TNFα single nucleotide rs1800610. Conclusions Effects of phthalate exposure on asthma may be mediated through alterations in DNA methylation. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0060-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, #127, Su-Yuan Road, Hsin-Chuang Dist 242 New Taipei City, Taiwan ; Institute of Environmental and Occupational Health Sciences, College of Medicine, National Yang-Ming University, Taipei, 112 Taiwan ; Department of Health Risk Management, China Medical University, Taichung, 404 Taiwan
| | - Wilfried Jj Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, 38152 USA
| | | | - John W Holloway
- Clinical and Experimental Sciences, Faculty of Medicine, and NIHR Respiratory Biomedical Research Unit, University of Southampton, Southampton, S016 6YD UK ; Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD UK
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, 48824 MI USA
| |
Collapse
|
44
|
Bekö G, Callesen M, Weschler CJ, Toftum J, Langer S, Sigsgaard T, Høst A, Kold Jensen T, Clausen G. Phthalate exposure through different pathways and allergic sensitization in preschool children with asthma, allergic rhinoconjunctivitis and atopic dermatitis. ENVIRONMENTAL RESEARCH 2015; 137:432-439. [PMID: 25625823 DOI: 10.1016/j.envres.2015.01.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/09/2014] [Accepted: 01/14/2015] [Indexed: 06/04/2023]
Abstract
Studies in rodents indicate that phthalates can function as adjuvants, increasing the potency of allergens. Meanwhile, epidemiological studies have produced inconsistent findings regarding relationships between phthalate exposures and allergic disease in humans. The present study examined phthalate exposure and allergic sensitization in a large group of 3-5 year old children: 300 random controls and 200 cases with asthma, rhinoconjunctivitis or atopic dermatitis as reported in questionnaires. The children were clinically examined to confirm their health status. Blood samples were analyzed for IgE sensitization to 20 allergens. Adjusted logistic regressions were used to look for associations between phthalate exposure indicators (mass fractions in dust from children's homes and daycares, metabolites in urine, and estimated daily indoor intakes from dust ingestion, inhalation and dermal absorption) and sensitization and allergic disease. No direct associations were found between phthalate exposures and asthma, rhinoconjunctivitis or atopic dermatitis. However, among children with these diseases, there were significant associations between non-dietary exposures to DnBP, BBzP and DEHP in the indoor environment (mass fractions in dust or daily indoor intakes from dust ingestion, inhalation and dermal absorption) and allergic sensitization. Some exposure pathways were more strongly associated with sensitization than others, although the results are not conclusive and require confirmation. A number of the associations depended on accounting for a child's exposure in more than one environment (i.e., daycare facility as well as home). Significant associations were not observed between phthalate metabolites in urine, which reflected exposure from diet as well as indoor pathways, and allergic sensitization.
Collapse
Affiliation(s)
- Gabriel Bekö
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Allé 402, 2800 Lyngby, Denmark.
| | - Michael Callesen
- Department of Pediatrics, HC Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Charles J Weschler
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Allé 402, 2800 Lyngby, Denmark; Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, United States
| | - Jørn Toftum
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Allé 402, 2800 Lyngby, Denmark
| | - Sarka Langer
- IVL Swedish Environmental Research Institute, P.O. Box 53021, SE-400 14 Göteborg, Sweden
| | - Torben Sigsgaard
- Department of Public Health, Institute of Environmental and Occupational Medicine, University of Aarhus, Bartholins Allé 2, 8000 Aarhus, Denmark
| | - Arne Høst
- Department of Pediatrics, HC Andersen Children's Hospital, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense, Denmark
| | - Tina Kold Jensen
- Department of Environmental Medicine, University of Southern Denmark, J.B. Winsløws Vej 17, 5000 Odense, Denmark
| | - Geo Clausen
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Nils Koppels Allé 402, 2800 Lyngby, Denmark
| |
Collapse
|
45
|
Chen S, You H, Mao L, Yang X. Dibutyl phthalate induced oxidative stress does not lead to a significant adjuvant effect on a mouse asthma model. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00096j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The prevalence of allergic diseases around the world has been increasing dramatically in recent years.
Collapse
Affiliation(s)
- Shaohui Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- School of Life Sciences
- Central China Normal University
- Wuhan
- China
| | - Huihui You
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- School of Life Sciences
- Central China Normal University
- Wuhan
- China
| | - Lin Mao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- School of Life Sciences
- Central China Normal University
- Wuhan
- China
| | - Xu Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology
- School of Life Sciences
- Central China Normal University
- Wuhan
- China
| |
Collapse
|
46
|
Yang SN, Hsieh CC, Kuo HF, Lee MS, Huang MY, Kuo CH, Hung CH. The effects of environmental toxins on allergic inflammation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 6:478-84. [PMID: 25374746 PMCID: PMC4214967 DOI: 10.4168/aair.2014.6.6.478] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/16/2014] [Indexed: 11/20/2022]
Abstract
The prevalence of asthma and allergic disease has increased worldwide over the last few decades. Many common environmental factors are associated with this increase. Several theories have been proposed to account for this trend, especially those concerning the impact of environmental toxicants. The development of the immune system, particularly in the prenatal period, has far-reaching consequences for health during early childhood, and throughout adult life. One underlying mechanism for the increased levels of allergic responses, secondary to exposure, appears to be an imbalance in the T-helper function caused by exposure to the toxicants. Exposure to environmental endocrine-disrupting chemicals can result in dramatic changes in cytokine production, the activity of the immune system, the overall Th1 and Th2 balance, and in mediators of type 1 hypersensitivity mediators, such as IgE. Passive exposure to tobacco smoke is a common risk factor for wheezing and asthma in children. People living in urban areas and close to roads with a high volume of traffic, and high levels of diesel exhaust fumes, have the highest exposure to environmental compounds, and these people are strongly linked with type 1 hypersensitivity disorders and enhanced Th2 responses. These data are consistent with epidemiological research that has consistently detected increased incidences of allergies and asthma in people living in these locations. During recent decades more than 100,000 new chemicals have been used in common consumer products and are released into the everyday environment. Therefore, in this review, we discuss the environmental effects on allergies of indoor and outside exposure.
Collapse
Affiliation(s)
- San-Nan Yang
- Department of Pediatrics, E-DA Hospital, Kaohsiung, Taiwan. ; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chong-Chao Hsieh
- Division of Cardiac Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsuan-Fu Kuo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Min-Sheng Lee
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan. ; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chang-Hung Kuo
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan. ; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. ; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hsing Hung
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. ; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. ; Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan. ; Department of Pediatrics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
47
|
Whyatt RM, Perzanowski MS, Just AC, Rundle AG, Donohue KM, Calafat AM, Hoepner LA, Perera FP, Miller RL. Asthma in inner-city children at 5-11 years of age and prenatal exposure to phthalates: the Columbia Center for Children's Environmental Health Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:1141-6. [PMID: 25230320 PMCID: PMC4181924 DOI: 10.1289/ehp.1307670] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 07/10/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Studies suggest that phthalate exposures may adversely affect child respiratory health. OBJECTIVES We evaluated associations between asthma diagnosed in children between 5 and 11 years of age and prenatal exposures to butylbenzyl phthalate (BBzP), di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), and diethyl phthalate (DEP). METHODS Phthalate metabolites were measured in spot urine collected from 300 pregnant inner-city women. Children were examined by an allergist or pulmonologist based on the first parental report of wheeze, other respiratory symptoms, and/or use of asthma rescue/controller medication in the preceding 12 months on repeat follow-up questionnaires. Standardized diagnostic criteria were used to classify these children as either having or not having current asthma at the time of the physician examination. Children without any report of wheeze or the other asthma-like symptoms were classified as nonasthmatics at the time of the last negative questionnaire. Modified Poisson regression analyses were used to estimate relative risks (RR) controlling for specific gravity and potential confounders. RESULTS Of 300 children, 154 (51%) were examined by a physician because of reports of wheeze, other asthma-like symptoms, and/or medication use; 94 were diagnosed with current asthma and 60 without current asthma. The remaining 146 children were classified as nonasthmatic. Compared with levels in nonasthmatics, prenatal metabolites of BBzP and DnBP were associated with a history of asthma-like symptoms (p < 0.05) and with the diagnosis of current asthma: RR = 1.17 (95% CI: 1.01, 1.35) and RR = 1.25 (95% CI: 1.04, 1.51) per natural log-unit increase, respectively. Risk of current asthma was > 70% higher among children with maternal prenatal BBzP and DnBP metabolite concentrations in the third versus the first tertile. CONCLUSION Prenatal exposure to BBzP and DnBP may increase the risk of asthma among inner-city children. However, because this is the first such finding, results require replication.
Collapse
Affiliation(s)
- Robin M Whyatt
- Department of Environmental Health Sciences, Columbia Center for Children's Environmental Health, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Di-(2-ethylhexyl) phthalate adjuvantly induces imbalanced humoral immunity in ovalbumin-sensitized BALB/c mice ascribing to T follicular helper cells hyperfunction. Toxicology 2014; 324:88-97. [DOI: 10.1016/j.tox.2014.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/21/2022]
|
49
|
You H, Chen S, Mao L, Li B, Yuan Y, Li R, Yang X. The adjuvant effect induced by di-(2-ethylhexyl) phthalate (DEHP) is mediated through oxidative stress in a mouse model of asthma. Food Chem Toxicol 2014; 71:272-81. [PMID: 24953552 DOI: 10.1016/j.fct.2014.06.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 05/28/2014] [Accepted: 06/02/2014] [Indexed: 02/07/2023]
Abstract
Di-(2-ethylhexyl) phthalate, as the most commonly used plasticizer, is considered to be related to the asthma prevalence. There are studies affirming that the DEHP has an adjuvant effect in the pathogenesis of allergy asthma. Oxidative stress is one possible pathway for DEHP-adjuvant effect. Thus, this study explored whether DEHP could induce adjuvant effect in mouse asthma model via oxidative stress pathway. Male BALB/c mice were randomly divided into six groups: (1) saline group, (2) DEHP group, (3) ovalbumin (OVA) group, (4) DEHP+OVA group, (5) OVA+vitamin E (Vit E) group, (6) DEHP+OVA+Vit E group. The exposure dose of DEHP was 30 mg/kg body weight (bw)/day. After 18 days of the exposure protocol. Reactive oxygen species (ROS), glutathione (GSH) and malonaldehyde (MDA) levels and biomarkers related to asthma model were measured. Collectively, these data indicated higher ROS and MDA levels and lower GSH contents in DEHP+OVA group than that in OVA group, while Vit E, an antioxidant, could restore ROS, MDA and GSH levels to control levels and attenuate the DEHP and/or OVA effects. Our observations suggested that there was a relationship between oxidative stress and the adjuvant effect induced by DEHP in this mouse asthma model.
Collapse
Affiliation(s)
- Huihui You
- Huibei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shaohui Chen
- Huibei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Lin Mao
- Huibei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Bing Li
- Huibei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ye Yuan
- Huibei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Rui Li
- Huibei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Xu Yang
- Huibei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
50
|
Wu Y, Li K, Zuo H, Yuan Y, Sun Y, Yang X. Primary neuronal-astrocytic co-culture platform for neurotoxicity assessment of di-(2-ethylhexyl) phthalate. J Environ Sci (China) 2014; 26:1145-1153. [PMID: 25079645 DOI: 10.1016/s1001-0742(13)60504-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/07/2013] [Accepted: 09/03/2013] [Indexed: 06/03/2023]
Abstract
Plastics such as polyvinyl chlorides (PVC) are widely used in many indoor constructed environments; however, their unbound chemicals, such as di-(2-ethylhexyl) phthalates (DEHP), can leach into the surrounding environment. This study focused on DEHP's effect on the central nervous system by determining the precise DEHP content in mice brain tissue after exposure to the chemical, to evaluate the specific exposure range. Primary neuronal-astrocyte co-culture systems were used as in vitro models for chemical hazard identification of DEHP. Oxidative stress was hypothesized as a probable mechanism involved, and therefore the total reactive oxygen species (ROS) concentration was determined as a biomarker of oxidative stress. In addition, NeuriteTracer, a neurite tracing plugin with ImageJ, was used to develop an assay for neurotoxicity to provide quantitative measurements of neurological parameters, such as neuronal number, neuron count and neurite length, all of which could indicate neurotoxic effects. The results showed that with 1 nmol/L DEHP exposure, there was a significant increase in ROS concentrations, indicating that the neuronal-astrocyte cultures were injured due to exposure to DEHP. In response, astrocyte proliferation (gliosis) was initiated, serving as a mechanism to maintain a homeostatic environment for neurons and protect neurons from toxic chemicals. There is a need to assess the cumulative effects of DEHP in animals to evaluate the possible uptake and effects on the human neuronal system from exposure to DEHP in the indoor environment.
Collapse
Affiliation(s)
- Yang Wu
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China; Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Ke Li
- Wuhan Institute of Drug and Food Control, Wuhan 430012, China
| | - Haoxiao Zuo
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Ye Yuan
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Yi Sun
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Xu Yang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|