1
|
Deng Z, Zhang Y, Wang S, Xie X, Wang L, Ding Q, Ni X, Li X. Homology-based characterization of the cis-regulatory elements modulate flavone induction of CYP321A1 in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106081. [PMID: 39277394 DOI: 10.1016/j.pestbp.2024.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 09/17/2024]
Abstract
Xenobiotic response element (XRE) to flavone was the cis- regulatory elements that mediates the induction of the allelochemical-metabolizing CYP321A1 gene from Helicoverpa zea. However, it was unknown whether the XRE-Fla element existed in other species. Recently we have identified and cloned the CYP321A1 gene with promoter region in a related species, Helicoverpa armigera. Sequence similarity of two orthologous CYP321A1 genes was 97.27%, but the promoter sequence similarity was only 56.32%. Sequence alignment showed the XRE-Fla like element owns three mutations in H. armigera compared with H. zea. Progressive 5' deletions and internal mutation indicated that H. armigera XRE-Fla was the essential element of CYP321A1 gene in response to flavone. XRE-Fla mutations and EMSA analysis confirmed that the H. armigera XRE-Fla element binding factor was stronger than H. zea. The findings indicate the XRE element mutations mainly contribute to the differences between the flavone-induced expressions of two CYP321A1 genes, which improve the flexibility and adaptability for allelochemical response of H. armigera.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuting Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shan Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingcheng Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Lixiang Wang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qian Ding
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, GA 31793-0748, USA
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
2
|
Liu Z, Liao C, Zou L, Jin M, Shan Y, Quan Y, Yao H, Zhang L, Wang P, Liu Z, Wang N, Li A, Liu K, Tabashnik BE, Heckel DG, Wu K, Xiao Y. Retrotransposon-mediated disruption of a chitin synthase gene confers insect resistance to Bacillus thuringiensis Vip3Aa toxin. PLoS Biol 2024; 22:e3002704. [PMID: 38954724 PMCID: PMC11249258 DOI: 10.1371/journal.pbio.3002704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/15/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
The vegetative insecticidal protein Vip3Aa from Bacillus thuringiensis (Bt) has been produced by transgenic crops to counter pest resistance to the widely used crystalline (Cry) insecticidal proteins from Bt. To proactively manage pest resistance, there is an urgent need to better understand the genetic basis of resistance to Vip3Aa, which has been largely unknown. We discovered that retrotransposon-mediated alternative splicing of a midgut-specific chitin synthase gene was associated with 5,560-fold resistance to Vip3Aa in a laboratory-selected strain of the fall armyworm, a globally important crop pest. The same mutation in this gene was also detected in a field population. Knockout of this gene via CRISPR/Cas9 caused high levels of resistance to Vip3Aa in fall armyworm and 2 other lepidopteran pests. The insights provided by these results could help to advance monitoring and management of pest resistance to Vip3Aa.
Collapse
Affiliation(s)
- Zhenxing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chongyu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Luming Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yudong Quan
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, China
| | - Hui Yao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhuangzhuang Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Na Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Anjing Li
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Bruce E. Tabashnik
- Department of Entomology, University of Arizona, Tucson, Arizona, United States of America
| | - David G. Heckel
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing, China
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
3
|
Yang F, Head GP, Kerns DD, Jurat-Fuentes JL, Santiago-González JC, Kerns DL. Diverse genetic basis of Vip3Aa resistance in five independent field-derived strains of Helicoverpa zea in the US. PEST MANAGEMENT SCIENCE 2024; 80:2796-2803. [PMID: 38327120 DOI: 10.1002/ps.7988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Practical resistance of Helicoverpa zea to Cry proteins has become widespread in the US, making Vip3Aa the only effective Bacillus thuringiensis (Bt) protein for controlling this pest. Understanding the genetic basis of Vip3Aa resistance in H. zea is essential in sustaining the long-term efficacy of Vip3Aa. The objectives of this study were to characterize the inheritance of Vip3Aa resistance in four distinct field-derived H. zea strains (M1-RR, AC4-RR, R2-RR and R15-RR), and to test for shared genetic basis among these strains and a previously characterized Texas resistant strain (LT#70-RR). RESULTS Maternal effects and sex linkage were absent, and the effective dominance level (DML) was 0.0 across Vip3Aa39 concentrations ranging from 1.0 to 31.6 μg cm-2, in all H. zea resistant strains. Mendelian monogenic model tests indicated that Vip3Aa resistance in each of the four strains was controlled by a single gene. However, interstrain complementation tests indicated that three distinct genetic loci are involved in Vip3Aa resistance in the five resistant H. zea strains: one shared by M1-RR and LT#70-RR; another shared by R2-RR and R15-RR; and a distinct one for AC4-RR. CONCLUSION Results of this study indicate that Vip3Aa resistance in all H. zea strains was controlled by a single, recessive and autosomal gene. However, there were three distinct genetic loci associated with Vip3Aa resistance in the five resistant H. zea strains. The information generated from this study is valuable for exploring mechanisms of Vip3Aa resistance, monitoring the evolution of Vip3Aa resistance, and devising effective strategies for managing Vip3Aa resistance in H. zea. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, USA
| | | | - Dawson D Kerns
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee, USA
| | | | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Jin M, Shan Y, Peng Y, Wang W, Zhang H, Liu K, Heckel DG, Wu K, Tabashnik BE, Xiao Y. Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm. Proc Natl Acad Sci U S A 2023; 120:e2306932120. [PMID: 37874855 PMCID: PMC10622909 DOI: 10.1073/pnas.2306932120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Wenhui Wang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Huihui Zhang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, JenaD-07745, Germany
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | | | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| |
Collapse
|
5
|
Carrière Y, Degain B, Unnithan GC, Tabashnik BE. Inheritance and fitness cost of laboratory-selected resistance to Vip3Aa in Helicoverpa zea (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1804-1811. [PMID: 37555261 DOI: 10.1093/jee/toad145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
The polyphagous pest Helicoverpa zea (Lepidoptera: Noctuidae) has evolved practical resistance to transgenic corn and cotton producing Cry1 and Cry2 crystal proteins from Bacillus thuringiensis (Bt) in several regions of the United States. However, the Bt vegetative insecticidal protein Vip3Aa produced by Bt corn and cotton remains effective against this pest. To advance knowledge of resistance to Vip3Aa, we selected a strain of H. zea for resistance to Vip3Aa in the laboratory. After 28 generations of continuous selection, the resistance ratio was 267 for the selected strain (GA-R3) relative to a strain not selected with Vip3Aa (GA). Resistance was autosomal and almost completely recessive at a concentration killing all individuals from GA. Declines in resistance in heterogeneous strains containing a mixture of susceptible and resistant individuals reared in the absence of Vip3Aa indicate a fitness cost was associated with resistance. Previously reported cases of laboratory-selected resistance to Vip3Aa in lepidopteran pests often show partially or completely recessive resistance at high concentrations and fitness costs. Abundant refuges of non-Bt host plants can maximize the benefits of such costs for sustaining the efficacy of Vip3Aa against target pests.
Collapse
Affiliation(s)
- Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Ben Degain
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
6
|
Xue B, Wang M, Wang Z, Shu C, Geng L, Zhang J. Analysis of Synergism between Extracellular Polysaccharide from Bacillus thuringensis subsp. kurstaki HD270 and Insecticidal Proteins. Toxins (Basel) 2023; 15:590. [PMID: 37888621 PMCID: PMC10610938 DOI: 10.3390/toxins15100590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Bacillus thuringiensis (Bt) is the most widely used biopesticide worldwide and can produce several insecticidal crystal proteins and vegetative insecticidal proteins (Vips) at different growth stages. In our previous study, extracellular polysaccharides (EPSs) of Bt strain HD270 were found to enhance the insecticidal activity of Cry1Ac protoxin against Plutella xylostella (L.) and promote the binding of Cry1Ac to the intestinal brush border membrane vesicles (BBMVs). Whether the synergistic activity of Bt EPSs is common to other Cry1-type or Vip proteins is unclear, as is the potential synergistic mechanism. In this study, crude EPS-HD270 was found to increase the toxicity of Cry1-type toxins and Vip3Aa11 against different lepidopteran pests by approximately 2-fold. The purified EPS-HD270 also possessed synergistic activity against the toxicity of Cry1Ac and Vip3Aa11 against Spodoptera frugiperda (J.E. Smith) and Helicoverpa armigera (Hübner). Furthermore, we found that EPS-HD270 had a strong binding ability with Vip3Aa11 and promoted the binding of Vip3Aa11 to the BBMVs of H. armigera and S. frugiperda. Bt EPS-HD270 also protected Vip3Aa11 from proteolytic processing in larval midgut juice. Bt EPSs had universal synergistic effects on Cry1-type or Vip toxins against S. frugiperda and H. armigera. Bt EPS-HD270 exhibited synergistic activity with Vip3Aa through promotion of binding to BBMVs and protection from digestion by midgut protease. The results indicated that synergistic activity with Bt toxins was an important function of Bt EPSs, which was very different from other Bacillus spp.
Collapse
Affiliation(s)
- Bai Xue
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meiling Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Tay WT, Rane RV, James W, Gordon KHJ, Downes S, Kim J, Kuniata L, Walsh TK. Resistance Bioassays and Allele Characterization Inform Analysis of Spodoptera frugiperda (Lepidoptera: Noctuidae) Introduction Pathways in Asia and Australia. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1790-1805. [PMID: 36515109 PMCID: PMC9748595 DOI: 10.1093/jee/toac151] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 06/16/2023]
Abstract
The fall armyworm (FAW) Spodoptera frugiperda (Smith; Lepidoptera: Noctuidae) is present in over 70 countries in Africa, Asia, and Oceania. Its rapid dispersal since 2016 when it was first reported in western Africa, and associated devastation to agricultural productivity, highlight the challenges posed by this pest. Currently, its management largely relies on insecticide sprays and transgenic Bacillus thuringiensis toxins, therefore understanding their responses to these agents and characteristics of any resistance genes enables adaptive strategies. In Australia, S. frugiperda was reported at the end of January 2020 in northern Queensland and by March 2020, also in northern Western Australia. As an urgent first response we undertook bioassays on two Australian populations, one each from these initial points of establishment. To assist with preliminary sensitivity assessment, two endemic noctuid pest species, Helicoverpa armigera (Hübner; Lepidoptera, Noctuidae) and Spodoptera litura (Fabricius; Lepidoptera, Noctuidae), were concurrently screened to obtain larval LC50 estimates against various insecticides. We characterized known resistance alleles from the VGSC, ACE-1, RyR, and ABCC2 genes to compare with published allele frequencies and bioassay responses from native and invasive S. frugiperda populations. An approximately 10× LC50 difference for indoxacarb was detected between Australian populations, which was approximately 28× higher than that reported from an Indian population. Characterization of ACE-1 and VGSC alleles provided further evidence of multiple introductions in Asia, and multiple pathways involving genetically distinct individuals in Australia. The preliminary bioassay results and resistance allele patterns from invasive S. frugiperda populations suggest multiple introductions have contributed to the pest's spread and challenge the axiom of its rapid 'west-to-east' spread.
Collapse
Affiliation(s)
- W T Tay
- CSIRO Black Mountain Laboratories, Clunies Ross Street, Acton, ACT 2601, Australia
- Applied BioSciences, Macquarie University, Sydney, NSW 2100, Australia
| | - R V Rane
- Applied BioSciences, Macquarie University, Sydney, NSW 2100, Australia
- CSIRO, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - W James
- CSIRO Black Mountain Laboratories, Clunies Ross Street, Acton, ACT 2601, Australia
| | - K H J Gordon
- CSIRO Black Mountain Laboratories, Clunies Ross Street, Acton, ACT 2601, Australia
| | - S Downes
- CSIRO McMaster Laboratories, New England Highway, Armidale, NSW 2350, Australia
| | - J Kim
- College of Agriculture and Life Science, Kangwon National University, Republic of Korea
| | | | - T K Walsh
- CSIRO Black Mountain Laboratories, Clunies Ross Street, Acton, ACT 2601, Australia
- Applied BioSciences, Macquarie University, Sydney, NSW 2100, Australia
| |
Collapse
|
8
|
Tabashnik BE, Unnithan GC, Yelich AJ, Fabrick JA, Dennehy TJ, Carrière Y. Responses to Bt toxin Vip3Aa by pink bollworm larvae resistant or susceptible to Cry toxins. PEST MANAGEMENT SCIENCE 2022; 78:3973-3979. [PMID: 35633103 DOI: 10.1002/ps.7016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Transgenic crops that make insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized management of some pests. However, evolution of resistance to Bt toxins by pests diminishes the efficacy of Bt crops. Resistance to crystalline (Cry) Bt toxins has spurred adoption of crops genetically engineered to produce the Bt vegetative insecticidal protein Vip3Aa. Here we used laboratory diet bioassays to evaluate responses to Vip3Aa by pink bollworm (Pectinophora gossypiella), one of the world's most damaging pests of cotton. RESULTS Against pink bollworm larvae susceptible to Cry toxins, Vip3Aa was less potent than Cry1Ac or Cry2Ab. Conversely, Vip3Aa was more potent than Cry1Ac or Cry2Ab against laboratory strains highly resistant to those Cry toxins. Five Cry-susceptible field populations were less susceptible to Vip3Aa than a Cry-susceptible laboratory strain (APHIS-S). Relative to APHIS-S, significant resistance to Vip3Aa did not occur in strains selected in the laboratory for > 700-fold resistance to Cry1Ac or both Cry1Ac and Cry2Ab. CONCLUSIONS Resistance to Cry1Ac and Cry2Ab did not cause strong cross-resistance to Vip3Aa in pink bollworm, which is consistent with predictions based on the lack of shared midgut receptors between these toxins and previous results from other lepidopterans. Comparison of the Bt toxin concentration in plants relative to the median lethal concentration (LC50 ) from bioassays may be useful for estimating efficacy. The moderate potency of Vip3Aa against Cry1Ac- and Cry2Ab-resistant and susceptible pink bollworm larvae suggests that Bt cotton producing this toxin together with novel Cry toxins might be useful as one component of integrated pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Jeffrey A Fabrick
- USDA ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | | | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Wang Y, Yang J, Zhang T, Bai S, Wang Z, He K. Inheritance and Fitness Costs of Vip3Aa19 Resistance in Mythimna separata. Toxins (Basel) 2022; 14:toxins14060388. [PMID: 35737049 PMCID: PMC9227183 DOI: 10.3390/toxins14060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
The “high-dose/refuge” strategy is expected to work most effectively when resistance is inherited as a functionally recessive trait and the fitness costs associated with resistance are present. In the present study, a laboratory selected Mythimna separata strain that have evolved >634.5-fold resistance to Vip3Aa19 was used to determine the mode of inheritance. To determine if fitness costs were associated with the resistance, life history parameters (larva stage, pupa stage, pupal weight, adult longevity and fecundity) of resistant (RR), -susceptible (SS) and heterozygous (R♂S♀ and R♀S♂) strains on nontoxic diet were assayed. The LC50 values of R♀S♂ were significantly higher than that of R♂S♀ (254.58 μg/g vs. 14.75 μg/g), suggesting that maternal effects or sex linkage were present. The effective dominance h of F1 offspring decreased as concentration increased, suggesting the resistance was functionally dominant at low concentration and recessive at high concentration. The analysis of observed and expected mortality of the progeny from a backcross suggested that more than one locus is involved in conferring Vip3Aa19 resistance. The results showed that significant differences in many life history traits were observed among the four insect genotypes. In short, resistance to Vip3Aa19 in M. separata was inherited as maternal and multigene and the resistance in the strain was associated with significant fitness costs. The results described here provide useful information for understanding resistance evolution and for developing resistance management strategies.
Collapse
Affiliation(s)
- Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (S.B.); (Z.W.); (K.H.)
- Correspondence:
| | - Jing Yang
- Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China;
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (S.B.); (Z.W.); (K.H.)
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (S.B.); (Z.W.); (K.H.)
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (S.B.); (Z.W.); (K.H.)
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (T.Z.); (S.B.); (Z.W.); (K.H.)
| |
Collapse
|
10
|
Walsh TK, Heckel DG, Wu Y, Downes S, Gordon KHJ, Oakeshott JG. Determinants of Insecticide Resistance Evolution: Comparative Analysis Among Heliothines. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:387-406. [PMID: 34995087 DOI: 10.1146/annurev-ento-080421-071655] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is increasingly clear that pest species vary widely in their propensities to develop insecticide resistance. This review uses a comparative approach to analyze the key pest management practices and ecological and biochemical or genetic characteristics of the target that contribute to this variation. We focus on six heliothine species, three of which, Helicoverpa armigera, Heliothis virescens, and Helicoverpa zea, have developed resistances to many pesticide classes. The three others, Helicoverpa punctigera, Helicoverpa assulta, and Helicoverpa gelotopoeon, also significant pests, have developed resistance to very few pesticide classes. We find that host range and movement between alternate hosts are key ecological traits that influence effective selection intensities for resistance. Operational issues are also critical; area-wide, cross-pesticide management practices that account for these ecological factors are key to reducing selection intensity. Without such management, treatment using broad-spectrum chemicals serves to multiply the effects of host plant preference, preadaptive detoxification ability, and high genetic diversity to create a pesticide treadmill for the three high-propensity species.Without rigorous ongoing management, such a treadmill could still develop for newer, more selective chemistries and insecticidal transgenic crops.
Collapse
Affiliation(s)
- T K Walsh
- CSIRO Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia;
- Applied BioSciences, Macquarie University, Sydney, New South Wales, Australia
| | - D G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Yidong Wu
- Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - S Downes
- CSIRO McMaster Laboratories, Armidale, New South Wales, Australia
| | - K H J Gordon
- CSIRO Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia;
| | - J G Oakeshott
- CSIRO Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia;
- Applied BioSciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Knight KM, Head GP, Rogers DJ. Successful development and implementation of a practical proactive resistance management plan for Bt cotton in Australia. PEST MANAGEMENT SCIENCE 2021; 77:4262-4273. [PMID: 34041838 DOI: 10.1002/ps.6490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/24/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
This article describes the design and > 20 years of effective implementation of a proactive resistance-management plan for transgenic Bacillus thuringiensis (Bt) cotton that targets Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) in Australia, considering pest biology and ecology, insights from resistance-evolution modelling, and the importance of the human component to effective implementation. This is placed in the context of processes associated with adaptive resource management. Bt cotton has provided Australian cotton growers with technology to manage Helicoverpa species that previously challenged the industry's viability, while at the same time resulting in no detectable changes in the resistance allele frequency in field populations of either Helicoverpa species in eastern Australia. This is the most long-lived and successful global example of a proactive resistance management plan for an insect pest. Six key learnings important to the successful development and implementation of a proactive transgenic-crop resistance management plan are: the programme has to have a strong science base; there has to be broad stakeholder support at all levels; there has to be a strong implementation programme; the plan needs to be supported by auditing and enforced remediation of deviations from the mandated resistance management plan; A programme of rigorous and on-going resistance allele monitoring; an attitude of continuous improvement for all aspects of the resistance management plan. The lessons learnt from the deployment of Bt cotton in Australia are relevant globally and provide important guidelines for the deployment of transgenic crops for insect control wherever they are grown. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - D John Rogers
- Research Connections and Consulting, St Lucia, Australia
| |
Collapse
|
12
|
Critical domains in the specific binding of radiolabelled Vip3Af insecticidal protein to brush border membrane vesicles from Spodoptera spp. and cultured insect cells. Appl Environ Microbiol 2021; 87:e0178721. [PMID: 34586902 DOI: 10.1128/aem.01787-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vegetative insecticidal proteins (Vip3) from Bacillus thuringiensis have been used, in combination with Cry proteins, to better control insect pests and as a strategy to delay the evolution of resistance to Cry proteins in Bt crops (crops protected from insect attack by the expression of proteins from B. thuringiensis). In this study, we have set up the conditions to analyze the specific binding of 125I-Vip3Af to Spodoptera frugiperda and Spodoptera exigua brush border membrane vesicles (BBMV). Heterologous competition binding experiments revealed that Vip3Aa shares the same binding sites with Vip3Af, but that Vip3Ca does not recognize all of them. As expected, Cry1Ac and Cry1F did not compete for Vip3Af binding sites. By trypsin treatment of selected alanine-mutants, we were able to generate truncated versions of Vip3Af. Their use as competitors with 125I-Vip3Af indicated that only those molecules containing domains I to III (DI-III and DI-IV) were able to compete with the trypsin-activated Vip3Af protein for binding, and that molecules only containing either domain IV or domains IV and V (DIV and DIV-V) were unable to compete with Vip3Af. These results were further confirmed with competition binding experiments using 125I-DI-III. In addition, the truncated protein 125I-DI-III also bound specifically to Sf21 cells. Cell viability assays showed that the truncated proteins DI-III and DI-IV were as toxic to Sf21 cells as the activated Vip3Af, suggesting that domains IV and V are not necessary for the toxicity to Sf21 cells, in contrast to their requirement in vivo. IMPORTANCE This study shows that Vip3Af binding sites are fully shared with Vip3Aa, only partially shared with Vip3Ca, and not shared with Cry1Ac and Cry1F in two Spodoptera spp. Truncated versions of Vip3Af revealed that only domains I to III were necessary for the specific binding, most likely because they can form the functional tetrameric oligomer and because domain III is supposed to contain the binding epitopes. In contrast to results obtained in vivo (bioassays against larvae), domains IV and V are not necessary for the ex vivo toxicity to Sf21 cells.
Collapse
|
13
|
Quan Y, Yang J, Wang Y, Hernández-Martínez P, Ferré J, He K. The Rapid Evolution of Resistance to Vip3Aa Insecticidal Protein in Mythimna separata (Walker) Is Not Related to Altered Binding to Midgut Receptors. Toxins (Basel) 2021; 13:toxins13050364. [PMID: 34065247 PMCID: PMC8190635 DOI: 10.3390/toxins13050364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Laboratory selection for resistance of field populations is a well-known and useful tool to understand the potential of insect populations to evolve resistance to insecticides. It provides us with estimates of the frequency of resistance alleles and allows us to study the mechanisms by which insects developed resistance to shed light on the mode of action and optimize resistance management strategies. Here, a field population of Mythimna separata was subjected to laboratory selection with either Vip3Aa, Cry1Ab, or Cry1F insecticidal proteins from Bacillus thuringiensis. The population rapidly evolved resistance to Vip3Aa reaching, after eight generations, a level of >3061-fold resistance, compared with the unselected insects. In contrast, the same population did not respond to selection with Cry1Ab or Cry1F. The Vip3Aa resistant population did not show cross resistance to either Cry1Ab or Cry1F. Radiolabeled Vip3Aa was tested for binding to brush border membrane vesicles from larvae from the susceptible and resistant insects. The results did not show any qualitative or quantitative difference between both insect samples. Our data, along with previous results obtained with other Vip3Aa-resistant populations from other insect species, suggest that altered binding to midgut membrane receptors is not the main mechanism of resistance to Vip3Aa.
Collapse
Affiliation(s)
- Yudong Quan
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain; (Y.Q.); (P.H.-M.)
| | - Jing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; (J.Y.); (Y.W.)
| | - Yueqin Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; (J.Y.); (Y.W.)
| | - Patricia Hernández-Martínez
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain; (Y.Q.); (P.H.-M.)
| | - Juan Ferré
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100 Burjassot, Spain; (Y.Q.); (P.H.-M.)
- Correspondence: (J.F.); (K.H.)
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2, West Yuanmingyuan Road, Beijing 100193, China; (J.Y.); (Y.W.)
- Correspondence: (J.F.); (K.H.)
| |
Collapse
|
14
|
Windus LCE, Jones AM, Downes S, Walsh T, Knight K, Kinkema M. HearNPV susceptibility in Helicoverpa armigera and Helicoverpa punctigera strains resistant to Bt toxins Cry1Ac, Cry2Ab, and Vip3Aa. J Invertebr Pathol 2021; 183:107598. [PMID: 33957131 DOI: 10.1016/j.jip.2021.107598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
Genetically engineered crops expressing insecticidal toxins from Bacillus thuringiensis (Bt) have improved the management of targeted lepidopteran pests and reduced the use of insecticide sprays. These benefits explain an increasing adoption of Bt crops worldwide, intensifying the selection pressure on target species and the risk of resistance. Nucleopolyhedroviruses (NPVs) are effective bioinsecticides against numerous important lepidopteran pests. If Bt-resistant insects are shown to be susceptible to NPVs then these bioinsecticides could be a valuable component of Insecticide Resistance Management (IRM) strategies for Bt crops. We assessed the effectiveness of a Helicoverpa nucleopolyhedrovirus (HearNPV) against several different Bt-resistant strains. Utilising a droplet feeding bioassay we confirmed susceptibility to HearNPV in Helicoverpa punctigera and Helicoverpa armigera larvae resistant to the Bt toxins Cry1Ac, Cry2Ab, and Vip3A. Dual resistant H. punctigera, (Cry1Ac/Cry2Ab, and Cry2Ab/Vip3A) and dual resistant H. armigera (Cry2Ab/Vip3A) were also susceptible to HearNPV. Regardless of their specific resistance profile, Bt-resistant larvae displayed statistically similar lethal concentration (LC50) and lethal time (LT50) responses to HearNPV when compared to Bt-sensitive control insects. These results indicate that Bt-resistant H. armigera and H. punctigera are not cross-resistant to HearNPV. Consequently, the use of HearNPV against these pests may be a valuable tool to an IRM strategy for controlling Bt-resistant populations.
Collapse
Affiliation(s)
| | - Adele M Jones
- AgBiTech, 8 Rocla Court, Glenvale, QLD 4350, Australia
| | - Sharon Downes
- CSIRO Agriculture and Food, Australian Cotton Research Institute, 21888 Kamilaroi Highway, Narrabri, NSW 2390, Australia
| | - Tom Walsh
- CSIRO Land and Water, Black Mountain Laboratories, Clunies Ross Street, Black Mountain, ACT 2601, Australia
| | - Kristen Knight
- Bayer Crop Science, McDougall Street, Glenvale, QLD 4350, Australia
| | - Mark Kinkema
- AgBiTech, 14401 Sovereign Rd, Fort Worth, TX 76155, USA.
| |
Collapse
|
15
|
Yang F, Santiago González JC, Sword GA, Kerns DL. Genetic basis of resistance to the Vip3Aa Bt protein in Helicoverpa zea. PEST MANAGEMENT SCIENCE 2021; 77:1530-1535. [PMID: 33201547 DOI: 10.1002/ps.6176] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Helicoverpa zea is a destructive pest and target of maize and cotton expressing Cry and Vip3Aa proteins in North America. The efficacy of Cry proteins against H. zea in the USA has been largely compromised by resistance. A rapid shift towards planting Bt cotton and maize producing Vip3Aa will accelerate evolution of resistance to Vip3Aa in H. zea. Research on the genetic basis of Vip3Aa resistance in H. zea is urgently needed, and can provide fundamental information for managing resistance in this pest. Here, we characterize the inheritance of Vip3Aa resistance in H. zea. RESULTS Susceptibility of a Vip3Aa-susceptible strain (SS), a resistant strain (RR), and progeny from different crosses against Vip3Aa39 was determined. RR was established from an F2 screening of a population from Texas sampled in 2019. RR had a resistance ratio of 45194.1-fold against Vip3Aa39 relative to SS. Maternal effects and sex linkage were absent in RR. The dominance D value, calculated based on median lethal concentration (LC50 ) values, was -1.0 and the effective dominance (DML ), calculated based on a given Vip3Aa39 concentration, was ≤0.0 at concentrations of 0.1-31.6 μg cm-2 . The test using a monogenic mode of inheritance showed that resistance to Vip3Aa in H. zea was largely due to a single gene. CONCLUSION Results of this study indicate that Vip3Aa resistance in H. zea is monogenic, autosomal, and recessive. This information is valuable for studying the mechanism of Vip3Aa resistance, monitoring of resistance development, and designing appropriate strategies for preventive management of Vip3Aa resistance. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
16
|
Jurat-Fuentes JL, Heckel DG, Ferré J. Mechanisms of Resistance to Insecticidal Proteins from Bacillus thuringiensis. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:121-140. [PMID: 33417820 DOI: 10.1146/annurev-ento-052620-073348] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) are used in sprayable formulations or produced in transgenic crops as the most successful alternatives to synthetic pesticides. The most relevant threat to sustainability of Bt insecticidal proteins (toxins) is the evolution of resistance in target pests. To date, high-level resistance to Bt sprays has been limited to one species in the field and another in commercial greenhouses. In contrast, there are currently seven lepidopteran and one coleopteran species that have evolved practical resistance to transgenic plants producing insecticidal Bt proteins. In this article, we present a review of the current knowledge on mechanisms of resistance to Bt toxins, with emphasis on key resistance genes and field-evolved resistance, to support improvement of Bt technology and its sustainability.
Collapse
Affiliation(s)
- Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, Tennessee 37996, USA;
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany;
| | - Juan Ferré
- ERI of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot 46100, Spain;
| |
Collapse
|
17
|
Coates BS, Abel CA, Swoboda-Bhattarai KA, Palmquist DE, Montezano DG, Zukoff SN, Wang Y, Bradshaw JD, DiFonzo CD, Shields E, Tilmon KJ, Hunt TE, Peterson JA. Geographic Distribution of Bacillus thuringiensis Cry1F Toxin Resistance in Western Bean Cutworm (Lepidoptera: Noctuidae) Populations in the United States. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2465-2472. [PMID: 32740653 DOI: 10.1093/jee/toaa136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 06/11/2023]
Abstract
The western bean cutworm (WBC), Striacosta albicosta (Lepidoptera: Noctuidae), can be a severe pest of transgenic corn in the western Plains and Great Lakes regions of North America, including on hybrids expressing the Bacillus thuringiensis (Bt) Cry1F toxin. The level and geographic distribution of Cry1F resistance are not completely known. Neonate S. albicosta from 10 locations between Nebraska and New York state were subjected to dose-response trypsin-activated native Cry1F toxin overlay bioassays. In 2017, the mean estimated lethal concentration causing 50% larval mortality (LC50) ranged from 15.1 to 18.4 µg Cry1F cm-2, and were not significantly different among locations. In 2018, LC50 estimates at Scottsbluff, NE (22.0 µg Cry1F cm-2) and Watertown, NY (21.7 µg Cry1F cm-2) were significantly higher when compared to locations in Michigan (15.8 µg Cry1F cm-2). Significantly lower 14-day larval weight among survivors was correlated with higher Cry1F dose. Results from this study indicate that S. albicosta survivorship on purified Bt Cry1F toxin shows a relatively even distribution across the native and range expansion areas where seasonal field infestations typically occur.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA
| | - Craig A Abel
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA
| | - Katharine A Swoboda-Bhattarai
- University of Nebraska-Lincoln, Department of Entomology, West Central Research and Extension Center, North Platte, NE
| | | | - Débora G Montezano
- University of Nebraska-Lincoln, Department of Entomology, West Central Research and Extension Center, North Platte, NE
| | - Sarah N Zukoff
- Kansas State University, Department of Entomology, Southwest Research and Extension Center, Garden City, KS
| | - Yangzhou Wang
- Jilin Academy of Agricultural Sciences, Plant Protection Institute, Changchun, Jilin Province, China
| | - Jeffrey D Bradshaw
- University of Nebraska-Lincoln, Department of Entomology, Panhandle Research and Extension Center, Scottsbluff, NE
| | | | - Elson Shields
- Cornell University, Department of Entomology, Ithaca, NY
| | | | - Thomas E Hunt
- University of Nebraska-Lincoln, Department of Entomology, Haskell Agricultural Laboratory, Concord, NE
| | - Julie A Peterson
- University of Nebraska-Lincoln, Department of Entomology, West Central Research and Extension Center, North Platte, NE
| |
Collapse
|
18
|
Current Insights on Vegetative Insecticidal Proteins (Vip) as Next Generation Pest Killers. Toxins (Basel) 2020; 12:toxins12080522. [PMID: 32823872 PMCID: PMC7472478 DOI: 10.3390/toxins12080522] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 02/01/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a Gram negative soil bacterium. This bacterium secretes various proteins during different growth phases with an insecticidal potential against many economically important crop pests. One of the important families of Bt proteins is vegetative insecticidal proteins (Vip), which are secreted into the growth medium during vegetative growth. There are three subfamilies of Vip proteins. Vip1 and Vip2 heterodimer toxins have an insecticidal activity against many Coleopteran and Hemipteran pests. Vip3, the most extensively studied family of Vip toxins, is effective against Lepidopteron. Vip proteins do not share homology in sequence and binding sites with Cry proteins, but share similarities at some points in their mechanism of action. Vip3 proteins are expressed as pyramids alongside Cry proteins in crops like maize and cotton, so as to control resistant pests and delay the evolution of resistance. Biotechnological- and in silico-based analyses are promising for the generation of mutant Vip proteins with an enhanced insecticidal activity and broader spectrum of target insects.
Collapse
|
19
|
The Tripartite Interaction of Host Immunity- Bacillus thuringiensis Infection-Gut Microbiota. Toxins (Basel) 2020; 12:toxins12080514. [PMID: 32806491 PMCID: PMC7472377 DOI: 10.3390/toxins12080514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Bacillus thuringiensis (Bt) is an important cosmopolitan bacterial entomopathogen, which produces various protein toxins that have been expressed in transgenic crops. The evolved molecular interaction between the insect immune system and gut microbiota is changed during the Bt infection process. The host immune response, such as the expression of induced antimicrobial peptides (AMPs), the melanization response, and the production of reactive oxygen species (ROS), varies with different doses of Bt infection. Moreover, B. thuringiensis infection changes the abundance and structural composition of the intestinal bacteria community. The activated immune response, together with dysbiosis of the gut microbiota, also has an important effect on Bt pathogenicity and insect resistance to Bt. In this review, we attempt to clarify this tripartite interaction of host immunity, Bt infection, and gut microbiota, especially the important role of key immune regulators and symbiotic bacteria in the Bt killing activity. Increasing the effectiveness of biocontrol agents by interfering with insect resistance and controlling symbiotic bacteria can be important steps for the successful application of microbial biopesticides.
Collapse
|
20
|
da Silva FR, Trujillo D, Bernardi O, Verle Rodrigues JC, Bailey WD, Gilligan TM, Carrillo D. Comparative Toxicity of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) to Selected Insecticides. INSECTS 2020; 11:E431. [PMID: 32664300 PMCID: PMC7412147 DOI: 10.3390/insects11070431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 11/27/2022]
Abstract
Until recently, the Old World bollworm (OWB) Helicoverpa armigera (Hübner) and the corn earworm Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) were geographically isolated. Both species are major pests of agricultural commodities that are known to develop insecticide resistance, and they now coexist in areas where H. armigera invaded the Americas. This is the first study to compare the susceptibility of the two species to conventional insecticides. The susceptibility of third instar H. armigera and H. zea larvae to indoxacarb, methomyl, spinetoram, and spinosad was determined using a diet-overlay bioassay in a quarantine laboratory in Puerto Rico. Mortality was assessed at 48 h after exposure for up to eight concentrations per insecticide. Spinetoram exhibited the highest acute toxicity against H. armigera, with a median lethal concentration (LC50) of 0.11 µg a.i./cm2, followed by indoxacarb and spinosad (0.17 µg a.i./cm2 for both) and methomyl (0.32 µg a.i./cm2). Spinetoram was also the most toxic to H. zea (LC50 of 0.08 µg a.i./cm2), followed by spinosad (0.17 µg a.i./cm2) and methomyl (0.18 µg a.i./cm2). Indoxacarb was the least toxic to H. zea, with an LC50 of 0.21 µg a.i./cm2. These findings could serve as a comparative reference for monitoring the susceptibility of H. armigera and H. zea to indoxacarb, methomyl, spinetoram, and spinosad in Puerto Rico, and may facilitate the detection of field-selected resistance for these two species and their potential hybrids in areas recently invaded by H. armigera.
Collapse
Affiliation(s)
- Fernando R. da Silva
- Tropical Research and Education Center, University of Florida, 18905 SW 280th, St. Homestead, FL 33031, USA;
- Center for Excellence in Quarantine & Invasive Species, University of Puerto Rico (UPR), San Juan, PR 00926-1118, USA; (D.T.); (J.C.V.R.)
| | - Dario Trujillo
- Center for Excellence in Quarantine & Invasive Species, University of Puerto Rico (UPR), San Juan, PR 00926-1118, USA; (D.T.); (J.C.V.R.)
| | - Oderlei Bernardi
- Department of Plant Protection, Federal University of Santa Maria, CCR-Building 42-Room 3233, Campus-Camobi, Santa Maria 9710590, RS, Brazil;
| | - Jose Carlos Verle Rodrigues
- Center for Excellence in Quarantine & Invasive Species, University of Puerto Rico (UPR), San Juan, PR 00926-1118, USA; (D.T.); (J.C.V.R.)
| | - Woodward D. Bailey
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Miami, FL 33158, USA;
| | - Todd M. Gilligan
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science and Technology, Fort Collins, CO 80526, USA;
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, 18905 SW 280th, St. Homestead, FL 33031, USA;
| |
Collapse
|
21
|
Pinos D, Chakroun M, Millán-Leiva A, Jurat-Fuentes JL, Wright DJ, Hernández-Martínez P, Ferré J. Reduced Membrane-Bound Alkaline Phosphatase Does Not Affect Binding of Vip3Aa in a Heliothis virescens Resistant Colony. Toxins (Basel) 2020; 12:toxins12060409. [PMID: 32575644 PMCID: PMC7354626 DOI: 10.3390/toxins12060409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
The Vip3Aa insecticidal protein from Bacillus thuringiensis (Bt) is produced by specific transgenic corn and cotton varieties for efficient control of target lepidopteran pests. The main threat to this technology is the evolution of resistance in targeted insect pests and understanding the mechanistic basis of resistance is crucial to deploy the most appropriate strategies for resistance management. In this work, we tested whether alteration of membrane receptors in the insect midgut might explain the >2000-fold Vip3Aa resistance phenotype in a laboratory-selected colony of Heliothis virescens (Vip-Sel). Binding of 125I-labeled Vip3Aa to brush border membrane vesicles (BBMV) from 3rd instar larvae from Vip-Sel was not significantly different from binding in the reference susceptible colony. Interestingly, BBMV from Vip-Sel larvae showed dramatically reduced levels of membrane-bound alkaline phosphatase (mALP) activity, which was further confirmed by a strong downregulation of the membrane-bound alkaline phosphatase 1 (HvmALP1) gene. However, the involvement of HvmALP1 as a receptor for the Vip3Aa protein was not supported by results from ligand blotting and viability assays with insect cells expressing HvmALP1.
Collapse
Affiliation(s)
- Daniel Pinos
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Maissa Chakroun
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Anabel Millán-Leiva
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA;
| | - Denis J. Wright
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berks SL5 7PY, UK;
| | - Patricia Hernández-Martínez
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
| | - Juan Ferré
- Department of Genetics, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, 46100 Burjassot, Spain; (D.P.); (M.C.); (A.M.-L.); (P.H.-M.)
- Correspondence:
| |
Collapse
|
22
|
Chakrabarty S, Jin M, Wu C, Chakraborty P, Xiao Y. Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest Lepidoptera. PEST MANAGEMENT SCIENCE 2020; 76:1612-1617. [PMID: 32103608 DOI: 10.1002/ps.5804] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/19/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Vip3A proteins are widely used for controlling pest Lepidoptera. Different binding sites with different receptors in the insect midgut membrane and lack of cross-resistance with crystal (Cry) proteins enhance their applicability, as both single proteins and proteins pyramided with Cry proteins in transgenic Bt crops. Vip3A proteins are effective but there is relatively little information about their structure, function, activation, specificity, and mode of action. In addition, the mechanism of insect resistance to these proteins is unknown. Phylogenetic analysis and multiple sequence alignment showed that Vip3A proteins are genetically distant from Cry proteins. The mode of action and insecticidal activity of Vip3A proteins are discussed in this review. This review also provides detailed information about the Vip3A protein family that may aid in the design of more efficient pest management strategies in response to insect resistance to insecticidal proteins. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Swapan Chakrabarty
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Minghui Jin
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chao Wu
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Panchali Chakraborty
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yutao Xiao
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
23
|
Tabashnik BE, Carrière Y. Evaluating Cross-resistance Between Vip and Cry Toxins of Bacillus thuringiensis. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:553-561. [PMID: 31821498 DOI: 10.1093/jee/toz308] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 05/27/2023]
Abstract
Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have revolutionized control of some major pests. Some recently introduced Bt crops make Vip3Aa, a vegetative insecticidal protein (Vip), which reportedly does not share binding sites or structural homology with the crystalline (Cry) proteins of Bt used widely in transgenic crops for more than two decades. Field-evolved resistance to Bt crops with practical consequences for pest control includes 21 cases that collectively reduce the efficacy of nine Cry proteins, but such practical resistance has not been reported yet for any Vip. Here, we review previously published data to evaluate cross-resistance between Vip and Cry toxins. We analyzed 31 cases based on 48 observations, with each case based on one to five observations assessing cross-resistance from pairwise comparisons between 21 resistant strains and 13 related susceptible strains of eight species of lepidopteran pests. Confirming results from previous analyses of smaller data sets, we found weak, statistically significant cross-resistance between Vip3 and Cry1 toxins, with a mean of 1.5-fold cross-resistance in 21 cases (range: 0.30-4.6-fold). Conversely, we did not detect significant positive cross-resistance between Vip3 toxins and Cry2Ab. Distinguishing between weak, significant cross-resistance, and no cross-resistance may be useful for better understanding mechanisms of resistance and effectively managing pest resistance to Bt crops.
Collapse
Affiliation(s)
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ
| |
Collapse
|
24
|
Yang F, González JCS, Little N, Reisig D, Payne G, Dos Santos RF, Jurat-Fuentes JL, Kurtz R, Kerns DL. First documentation of major Vip3Aa resistance alleles in field populations of Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) in Texas, USA. Sci Rep 2020; 10:5867. [PMID: 32246037 PMCID: PMC7125131 DOI: 10.1038/s41598-020-62748-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/17/2020] [Indexed: 11/18/2022] Open
Abstract
The corn earworm, Helicoverpa zea, is a major target pest of the insecticidal Vip3Aa protein used in pyramided transgenic Bt corn and cotton with Cry1 and Cry2 proteins in the U.S. The widespread resistance to Cry1 and Cry2 proteins in H. zea will challenge the long-term efficacy of Vip3Aa technology. Determining the frequency of resistant alleles to Vip3Aa in field populations of H. zea is critically important for resistance management. Here, we provided the first F2 screen study to estimate the resistance allele frequency for Vip3Aa in H. zea populations in Texas, U.S. In 2019, 128 H. zea neonates per isofamily for a total of 114 F2 families were screened with a diagnostic concentration of 3.0 μg/cm2 of Vip3Aa39 protein in diet-overlay bioassays. The F2 screen detected two families carrying a major Vip3Aa resistance allele. The estimated frequency of major resistance alleles against Vip3Aa39 in H. zea in Texas from this study was 0.0065 with a 95% CI of 0.0014-0.0157. A Vip3Aa-resistant strain (RR) derived from the F2 screen showed a high level of resistance to Vip3Aa39 protein, with a resistance ratio of >588.0-fold relative to a susceptible population (SS) based on diet-overlay bioassays. We provide the first documentation of a major resistance allele conferring high levels of Vip3Aa resistance in a field-derived strain of H. zea in the U.S. Data generated from this study contribute to development of management strategies for the sustainable use of the Vip3Aa technology to control H. zea in the U.S.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| | | | - Nathan Little
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS, 38776, USA
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, 207 Research Station Road, Plymouth, NC, 27962, USA
| | - Gregory Payne
- Department of Biology, State University of West Georgia, Carrolton, GA, 30118, USA
| | | | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996-4560, USA
| | - Ryan Kurtz
- Cotton Incorporated, 6399 Weston Parkway, Cary, NC, 27513, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| |
Collapse
|
25
|
Amaral FSA, Guidolin AS, Salmeron E, Kanno RH, Padovez FEO, Fatoretto JC, Omoto C. Geographical distribution of Vip3Aa20 resistance allele frequencies in Spodoptera frugiperda (Lepidoptera: Noctuidae) populations in Brazil. PEST MANAGEMENT SCIENCE 2020; 76:169-178. [PMID: 31106516 DOI: 10.1002/ps.5490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The use of Bt plants has been the main strategy for controlling the fall armyworm Spodoptera frugiperda (J. E. Smith) in Brazil. However, many resistance cases were already registered. The resistance of S. frugiperda to the Vip3Aa20 protein was recently characterized under laboratory conditions but it is still efficient under field conditions. Here, resistance monitoring studies were conducted using phenotypic (purified protein and Bt maize leaves) and genotypic (F1 and F2 screen) methods to support insect resistance management (IRM) programs and preserve Vip3Aa20 technology on maize. RESULTS Phenotypic monitoring with purified protein showed two populations significantly different from the susceptible strain on the second crop season in 2016. This number increased for the first and second crop seasons in 2017 in several regions. The genotypic monitoring estimated a mean frequency of the resistance allele of 0.0027 for the F1 screen and 0.0033 for the F2 screen. Three new resistant strains to Vip3Aa20 were selected from F2 screen assays. Complementation tests on these new resistant strains were positive with the previous resistant strain. CONCLUSION Here we showed that the resistance allele of S. frugiperda to Vip3Aa20 protein is widely distributed in maize-producing regions in Brazil and its frequency increases throughout crop seasons. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernando S A Amaral
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, 13418-900, Brazil
| | - Aline S Guidolin
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, 13418-900, Brazil
| | - Eloisa Salmeron
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, 13418-900, Brazil
| | - Rubens H Kanno
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, 13418-900, Brazil
| | - Fernando E O Padovez
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, 13418-900, Brazil
| | - Júlio C Fatoretto
- Syngenta Crop Protection, Av. Nações Unidas 18001 São Paulo, SP, Brazil
| | - Celso Omoto
- Department of Entomology and Acarology, University of Sao Paulo, Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
26
|
Caprio MA, Kurtz R, Catchot A, Kerns D, Reisig D, Gore J, Reay-Jones FPF. The Corn-Cotton Agroecosystem in the Mid-Southern United States: What Insecticidal Event Pyramids Should be Used in Each Crop to Extend Vip3A Durability. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2894-2906. [PMID: 31375824 DOI: 10.1093/jee/toz208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 06/10/2023]
Abstract
Recent studies suggest that resistance in Helicoverpa zea (Boddie) (Lepidoptera, Noctuidae) to Cry1A(b/c) and Cry2Ab2 toxins from the bacterium Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) has increased and field efficacy is impacted in transgenic corn and cotton expressing these toxins. A third toxin, Vip3A, is available in pyramids expressing two or more Bt toxins in corn hybrids and cotton varieties, but uncertainty exists regarding deployment strategies. During a growing season, H. zea infests corn and cotton, and debate arises over use of Vip3A toxin in corn where H. zea is not an economic pest. We used a three-locus, spatially explicit simulation model to evaluate when using Vip3A in corn might hasten evolution of resistance to Vip3A, with implications in cotton where H. zea is a key pest. When using a conventional refuge in corn and initial resistance allele frequencies of Cry1A and Cry2A were 10%, transforming corn with Vip3A slowed resistance to these toxins and delayed resistance evolution to the three-toxin pyramid as a whole. When Cry resistance allele frequencies exceeded 30%, transforming corn with Vip3A hastened the evolution of resistance to the three-toxin pyramid in cotton. When using a seed blend refuge strategy, resistance was delayed longest when Vip3A was not incorporated into corn and used only in cotton. Simulations of conventional refuges were generally more durable than seed blends, even when 75% of the required refuge was not planted. Extended durability of conventional refuges compared to other models of resistance evolution are discussed as well as causes for unusual survivorship in seed blends.
Collapse
Affiliation(s)
- Michael A Caprio
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS
| | | | - Angus Catchot
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS
| | - David Kerns
- Department of Entomology, Texas A&M University, TAMU, College Station, TX
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, Plymouth, NC
| | - Jeff Gore
- Delta Research & Extension Center, Mississippi State University, Stoneville, MS
| | - Francis P F Reay-Jones
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC
| |
Collapse
|
27
|
Wei J, Zhang Y, An S. The progress in insect cross-resistance among Bacillus thuringiensis toxins. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21547. [PMID: 30864250 DOI: 10.1002/arch.21547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Bt crop pyramids produce two or more Bt proteins active to broaden the spectrum of action and to delay the development of resistance in exposed insect populations. The cross-resistance between Bt toxins is a vital restriction factor for Bt crop pyramids, which may reduce the effect of pyramid strategy. In this review, the status of the cross-resistance among more than 20 Bt toxins that are most commonly used against 13 insect pests was analyzed. The potential mechanisms of cross-resistance are discussed. The corresponding measures, including pyramid RNA interference and Bt toxin, "high dose/refuge," and so on are advised to be taken for adopting the pyramided strategy to delay the Bt evolution of resistance and control the target pest insect.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yaling Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
28
|
Umina PA, McDonald G, Maino J, Edwards O, Hoffmann AA. Escalating insecticide resistance in Australian grain pests: contributing factors, industry trends and management opportunities. PEST MANAGEMENT SCIENCE 2019; 75:1494-1506. [PMID: 30506966 DOI: 10.1002/ps.5285] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 05/24/2023]
Abstract
Insecticide resistance is an ever-increasing problem that threatens food production globally. Within Australia, the grain industry has a renewed focus on resistance due to diminishing chemical options available to farmers and the increasing prevalence and severity of resistance encountered in the field. Chemicals are too often used as the major tool for arthropod pest management, ignoring the potent evolutionary forces from chemical selection pressures that lead to resistance. A complex array of factors (biological, social, economic, political, climatic) have contributed to current trends in insecticide usage and resistance in the Australian grain industry. We review the status of insecticide resistance and provide a context for how resistance is currently managed. We discuss emerging technologies and research that could be applied to improve resistance management. This includes generating baseline sensitivity data for insecticides before they are launched, developing genetic diagnostics for the full complement of known resistances, expanding resistance monitoring programs, and utilizing new technologies. Additional benefits are likely to be achieved through a combination of industry awareness and engagement, risk modeling, adoption of integrated pest management tactics, greater collaboration between industry stakeholders, and policy changes around chemical use and record keeping. The Australian grain context provides lessons for other agricultural industries. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Paul A Umina
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
- CESAR, 293 Royal Parade, Parkville, VIC, Australia
| | - Garrick McDonald
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
| | - James Maino
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
- CESAR, 293 Royal Parade, Parkville, VIC, Australia
| | - Owain Edwards
- CSIRO Land & Water, Underwood Ave, Floreat, WA 6014 Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
29
|
Bird LJ, Walker PW. Baseline Susceptibility of Helicoverpa punctigera (Lepidoptera: Noctuidae) to Indoxacarb, Emamectin Benzoate, and Chlorantraniliprole. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:818-826. [PMID: 30566638 DOI: 10.1093/jee/toy389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Indexed: 06/09/2023]
Abstract
Susceptibility in Helicoverpa punctigera (Wallengren) to emamectin benzoate, chlorantraniliprole, and indoxacarb was established from feeding assays on insecticide-incorporated artificial diet in the laboratory. The variation in dose responses was examined in H. punctigera field populations collected in eastern Australia between September 2013 and January 2016 and compared with a laboratory strain. Chlorantraniliprole was the most toxic insecticide with an average LC50 of 3.7 µg of insecticide per liter of diet (n = 12 field strains). The average LC50 for emamectin benzoate was 5.6 µg of insecticide per liter of diet (n = 11 field strains), whereas indoxacarb had the lowest toxicity with an average LC50 of 172 µg of insecticide per liter of diet (n = 14 field strains). Variation in susceptibility between field strains was low at 1.9-, 2.4-, and 2-fold for chlorantraniliprole, emamectin benzoate, and indoxacarb, respectively. Narrow ranges of intra-specific tolerance, high slopes, and goodness-of-fit to a probit binomial model suggested feeding bioassays using insecticide-incorporated diet were a more effective laboratory method for measuring dose responses of these insecticides in H. punctigera than traditional topical bioassays. We propose discriminating concentrations of 0.032, 0.026, and 4 µg of insecticide/ml of diet for chlorantraniliprole, emamectin benzoate, and indoxacarb, respectively, to monitor insecticide resistance in H. punctigera. Although the potential for H. punctigera to develop insecticide resistance is considered low based on historical records, recent changes in population dynamics of this species in eastern Australia may have increased the risk of resistance development.
Collapse
Affiliation(s)
- Lisa J Bird
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Calala, Australia
| | - Paul W Walker
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Calala, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia
| |
Collapse
|
30
|
Yang F, González JCS, Williams J, Cook DC, Gilreath RT, Kerns ADL. Occurrence and Ear Damage of Helicoverpa zea on Transgenic Bacillus thuringiensis Maize in the Field in Texas, U.S. and Its Susceptibility to Vip3A Protein. Toxins (Basel) 2019; 11:toxins11020102. [PMID: 30744120 PMCID: PMC6416581 DOI: 10.3390/toxins11020102] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/04/2023] Open
Abstract
The corn earworm, Helicoverpa zea (Boddie), is a major pest of Bacillus thuringiensis (Bt) maize and cotton in the U.S. Reduced efficacy of Bt plants expressing Cry1 and Cry2 against H. zea has been reported in some areas of the U.S. In this study, we evaluated the occurrence and ear damage of H. zea on transgenic Bt maize expressing Cry proteins or a combination of Vip3A and Cry proteins in the field in Texas in 2018. We found that the occurrence of H. zea larvae and the viable kernel damage area on the ear were not different between non-Bt maize and Bt maize expressing Cry1A.105+Cry2Ab2 and Cry1Ab+Cry1F proteins. A total of 67.5% of the pyramided Bt maize expressing Cry1Ab+Cry1F+Vip3A was damaged by 2nd–4th instar larvae of H. zea. Diet bioassays showed that the resistance ratio against Vip3Aa51 for H. zea obtained from Cry1Ab+Cry1F+Vip3A maize was 20.4 compared to a field population collected from Cry1F+Cry1A.105+Cry2Ab2 maize. Leaf tissue bioassays showed that 7-day survivorship on WideStrike3 (Cry1F+Cry1Ac+Vip3A) cotton leaves was significantly higher for the H. zea population collected from Cry1Ab+Cry1F+Vip3A maize than for a Bt-susceptible laboratory population. The results generated from this study suggest that H. zea has evolved practical resistance to Cry1 and Cry2 proteins. Therefore, it is crucial to ensure the sustainable use of the Vip3A technology in Bt maize and cotton.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA.
| | | | | | - Donald C Cook
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, USA.
| | - Ryan T Gilreath
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA.
| | - And David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA.
| |
Collapse
|
31
|
Kahn TW, Chakroun M, Williams J, Walsh T, James B, Monserrate J, Ferré J. Efficacy and Resistance Management Potential of a Modified Vip3C Protein for Control of Spodoptera frugiperda in Maize. Sci Rep 2018; 8:16204. [PMID: 30385802 PMCID: PMC6212501 DOI: 10.1038/s41598-018-34214-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/15/2018] [Indexed: 11/08/2022] Open
Abstract
A modified Vip3C protein has been developed that has a spectrum of activity that has the potential to be commercially useful for pest control, and shows good efficacy against Spodoptera frugiperda in insect bioassays and field trials. For the first time Vip3A and Vip3C proteins have been compared to Cry1 and Cry2 proteins in a complete set of experiments from insect bioassays to competition binding assays to field trials, and the results of these complementary experiments are in agreement with each other. Binding assays with radiolabelled toxins and brush border membrane vesicles from S. frugiperda and Helicoverpa armigera show that the modified Vip3C protein shares binding sites with Vip3A, and does not share sites with Cry1F or Cry2A. In agreement with the resulting binding site model, Vip3A-resistant insects were also cross-resistant to the modified Vip3C protein. Furthermore, maize plants expressing the modified Vip3C protein, but not those expressing Cry1F protein, were protected against Cry1F-resistant S. frugiperda in field trials.
Collapse
Affiliation(s)
- Theodore W Kahn
- BASF Agricultural Solutions Seed US LLC, 3500 Paramount Parkway, Morrisville, NC, 27560, USA
| | - Maissa Chakroun
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain
- Centre de Biotechnologie de Sfax (CBS), Sfax, Tunisia
| | - Jayme Williams
- BASF Agricultural Solutions Seed US LLC, 3500 Paramount Parkway, Morrisville, NC, 27560, USA
| | - Tom Walsh
- CSIRO, Black Mountain, Clunies Ross St., Acton, 2601, ACT, Australia
| | - Bill James
- CSIRO, Black Mountain, Clunies Ross St., Acton, 2601, ACT, Australia
| | - Jessica Monserrate
- BASF Agricultural Solutions Seed US LLC, 3500 Paramount Parkway, Morrisville, NC, 27560, USA
| | - Juan Ferré
- ERI de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
32
|
Yang F, Morsello S, Head GP, Sansone C, Huang F, Gilreath RT, Kerns DL. F 2 screen, inheritance and cross-resistance of field-derived Vip3A resistance in Spodoptera frugiperda (Lepidoptera: Noctuidae) collected from Louisiana, USA. PEST MANAGEMENT SCIENCE 2018; 74:1769-1778. [PMID: 29193722 DOI: 10.1002/ps.4805] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/23/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Fall armyworm, Spodoptera frugiperda, is a target pest of the Vip3A protein used in pyramided Bt corn and cotton in the USA. In this study, we provide the first documentation of a resistance allele conferring Vip3A resistance in a field-derived population of S. frugiperda from the USA, and characterize its inheritance and cross-resistance. RESULTS An F2 screen with 104 two-parent families generated from a field collection of S. frugiperda in Louisiana, USA, resulted in one family carrying a Vip3A resistance allele. The Vip3A-resistant strain (RR) derived from the two-parent family showed a high level of resistance to Vip3A in both diet and whole-plant bioassays, with a resistance ratio of >632.0-fold relative to a susceptible population (SS) based on diet-overlay bioassays. The inheritance of Vip3A resistance was monogenic, autosomal and recessive. Furthermore, the Vip3A resistance conferred no cross-resistance to Cry1F, Cry2Ab2 or Cry2Ae purified proteins, with resistance ratios of 3.5, 5.0 and 1.1, respectively. CONCLUSION These findings provide valuable information for characterizing Vip3A resistance, resistance monitoring, and developing effective resistance management strategies for the sustainable use of the Vip3A technology. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | | | | | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Ryan T Gilreath
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
33
|
Gao M, Wang X, Yang Y, Tabashnik BE, Wu Y. Epistasis confers resistance to Bt toxin Cry1Ac in the cotton bollworm. Evol Appl 2018; 11:809-819. [PMID: 29875821 PMCID: PMC5979638 DOI: 10.1111/eva.12598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/10/2018] [Indexed: 01/06/2023] Open
Abstract
Evolution of resistance by insect pests reduces the benefits of extensively cultivated transgenic crops that produce insecticidal proteins from Bacillus thuringiensis (Bt). Previous work showed that resistance to Bt toxin Cry1Ac, which is produced by transgenic cotton, can be conferred by mutations disrupting a cadherin protein that binds this Bt toxin in the larval midgut. However, the potential for epistatic interactions between the cadherin gene and other genes has received little attention. Here, we report evidence of epistasis conferring resistance to Cry1Ac in the cotton bollworm, Helicoverpa armigera, one of the world's most devastating crop pests. Resistance to Cry1Ac in strain LF256 originated from a field-captured male and was autosomal, recessive, and 220-fold relative to susceptible strain SCD. We conducted complementation tests for allelism by crossing LF256 with a strain in which resistance to Cry1Ac is conferred by a recessive allele at the cadherin locus HaCad. The resulting F1 offspring were resistant, suggesting that resistance to Cry1Ac in LF256 is also conferred by resistance alleles at this locus. However, the HaCad amino acid sequence in LF256 lacked insertions and deletions, and did not differ consistently between LF256 and a susceptible strain. In addition, most of the cadherin alleles in LF256 were not derived from the field-captured male. Moreover, Cry1Ac resistance was not genetically linked with the HaCad locus in LF256. Furthermore, LF256 and the susceptible strain were similar in levels of HaCad transcript, cadherin protein, and binding of Cry1Ac to cadherin. Overall, the results imply that epistasis between HaCad and an unknown second locus in LF256 yielded the observed resistance in the F1 progeny from the complementation test. The observed epistasis has important implications for interpreting results of the F1 screen used widely to monitor and analyze resistance, as well as the potential to accelerate evolution of resistance.
Collapse
Affiliation(s)
- Meijing Gao
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Ximeng Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Yihua Yang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | | | - Yidong Wu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
34
|
Analysis of cross-resistance to Vip3 proteins in eight insect colonies, from four insect species, selected for resistance to Bacillus thuringiensis insecticidal proteins. J Invertebr Pathol 2018; 155:64-70. [DOI: 10.1016/j.jip.2018.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 11/20/2022]
|
35
|
Tessnow AE, Behmer ST, Walsh TK, Sword GA. Protein-carbohydrate regulation in Helicoverpa amigera and H. punctigera and how diet protein-carbohydrate content affects insect susceptibility to Bt toxins. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:88-95. [PMID: 28733239 DOI: 10.1016/j.jinsphys.2017.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 06/27/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
Many animals, including insects, demonstrate a remarkable ability to regulate their intake of key macronutrients (e.g., soluble protein and digestible carbohydrates), which allows them to optimize fitness and performance. Additionally, regulating the intake of these two macronutrients enhances an animal's ability to defend itself against pathogens, mitigate the effects of secondary plant metabolites, and decrease susceptibility to toxins. In this study, we first compared how Bt-resistant and -susceptible lines of Helicoverpa armigera and Helicoverpa punctigera regulate their intake of protein (p) and digestible carbohydrates (c). We found that there was no difference in the self-selected protein-carbohydrate intake target between resistant and susceptible genotypes of either species. We then explored the extent to which food protein-carbohydrate content altered the susceptibility of these species to three Bt toxins: Cry1Ac, Cry2Ab, and Vip3Aa. We found that H. armigera on diets that had protein-carbohydrate profiles that matched their self-selected protein-carbohydrate intake target were significantly less susceptible to Cry1Ac. In contrast, diet protein-carbohydrate content did not affect H. punctigera susceptibility to Cry1Ac. For both H. armigera and H. punctigera, susceptibility to Cry2Ab and Vip3Aa toxins did not change as a function of diet protein-carbohydrate profile. These results, when combined with earlier work on H. zea, suggest food protein-carbohydrate content can modify susceptibility to some Bt toxins, but not others. An increased understanding of how the nutritional environment can modify susceptibility to different Bt toxins could help improve pest management and resistance management practices.
Collapse
Affiliation(s)
- Ashley E Tessnow
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA.
| | - Spencer T Behmer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
| | - Tom K Walsh
- CSIRO, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA; Ecology and Evolutionary Biology Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
36
|
Leite NA, Pereira RM, Durigan MR, Amado D, Fatoretto J, Medeiros FCL, Omoto C. Susceptibility of Brazilian Populations of Helicoverpa armigera and Helicoverpa zea (Lepidoptera: Noctuidae) to Vip3Aa20. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:399-404. [PMID: 29272429 DOI: 10.1093/jee/tox336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Indexed: 06/07/2023]
Abstract
Transgenic maize expressing the insecticidal protein Vip3Aa20 is increasingly being adopted in Brazil. In this study, we determined the baseline susceptibility of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) to Vip3Aa20, as part of an Insect Resistance Management (IRM) program. Diet-overlay bioassays were conducted with neonates exposed to Vip3Aa20 for 7 d. The baseline susceptibility data were obtained for seven field populations of H. armigera and six of H. zea collected from major soybean-, cotton-, and maize-producing areas in Brazil. To validate the diagnostic concentration, 11 field populations of H. zea were tested from 2014 to 2015. The LC50 for H. armigera populations ranged from 2.97 to 8.41 µg Vip3Aa20/cm2 (threefold variation), and for H. zea populations from 0.04 to 0.21 µg Vip3Aa20/cm2 (fivefold variation). The EC50 for H. armigera ranged from 0.099 to 0.455 µg Vip3Aa20/cm2 (fivefold variation), and for H. zea from 0.004 to 0.020 µg Vip3Aa20/cm2 (fivefold variation). H. armigera was more tolerant to Vip3Aa20 protein than was H. zea (≈40- to 75-fold, based on LC50). Based on the LC99 value, the concentration of 6.4 µg Vip3Aa20/cm2 was defined as a diagnostic concentration for susceptibility monitoring in H. zea, and >44 µg Vip3Aa20/cm2 for H. armigera. Our baseline susceptibility data for Vip3Aa20 in H. armigera and H. zea populations will be useful in IRM programs in Brazil.
Collapse
Affiliation(s)
- N A Leite
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ/USP), Piracicaba, SP, Brazil
| | - R M Pereira
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ/USP), Piracicaba, SP, Brazil
| | - M R Durigan
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ/USP), Piracicaba, SP, Brazil
| | - D Amado
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ/USP), Piracicaba, SP, Brazil
| | - J Fatoretto
- Syngenta Crop Protection, São Paulo, SP, Brazil
| | | | - C Omoto
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura "Luiz de Queiroz" (ESALQ/USP), Piracicaba, SP, Brazil
| |
Collapse
|
37
|
Walsh T, James B, Chakroun M, Ferré J, Downes S. Isolating, characterising and identifying a Cry1Ac resistance mutation in field populations of Helicoverpa punctigera. Sci Rep 2018; 8:2626. [PMID: 29422629 PMCID: PMC5805676 DOI: 10.1038/s41598-018-21012-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 11/09/2022] Open
Abstract
Transgenic cotton expressing insecticidal proteins from Bacillus thuringiensis (Bt) has been grown in Australia for over 20 years and resistance remains the biggest threat. The native moth, Helicoverpa punctigera is a significant pest of cotton. A genotype causing resistance to Cry1Ac in H. punctigera was isolated from the field and a homozygous line established. The phenotype is recessive and homozygous individuals possess 113 fold resistance to Cry1Ac. Individuals that carry Cry1Ac resistance genes are rare in Australia with a frequency of 0.033 being detected in field populations. RNAseq, RT-PCR and DNA sequencing reveals a single nucleotide polymorphism at a splice site in the cadherin gene as the causal mutation, resulting in the partial transcription of the intron and a premature stop codon. Analysis of Cry1Ac binding to H. punctigera brush border membrane vesicles showed that it is unaffected by the disrupted cadherin gene. This suggests that the major Cry1Ac target is not cadherin but that this molecule plays a key role in resistance and therefore the mode of action. This work adds to our knowledge of resistance mechanisms in H. punctigera and the growing literature around the role of cadherin in the mode of action of Cry1 type Bt proteins.
Collapse
Affiliation(s)
- Tom Walsh
- CSIRO, Black Mountain Laboratories, Canberra, ACT, 2601, Australia.
| | - Bill James
- CSIRO, Black Mountain Laboratories, Canberra, ACT, 2601, Australia
| | - Maissa Chakroun
- ERI of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, 46100, Spain
| | - Juan Ferré
- ERI of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, 46100, Spain
| | - Sharon Downes
- CSIRO, Myall Vale Laboratories, Kamilaroi Highway, Narrabri, NSW 2390, Australia
| |
Collapse
|
38
|
Wilson LJ, Whitehouse MEA, Herron GA. The Management of Insect Pests in Australian Cotton: An Evolving Story. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:215-237. [PMID: 29324044 DOI: 10.1146/annurev-ento-020117-043432] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The Australian cotton industry progressively embraced integrated pest management (IPM) to alleviate escalating insecticide resistance issues. A systems IPM approach was used with core principles that were built around pest ecology/biology and insecticide resistance management; together, these were integrated into a flexible, year-round approach that facilitated easy incorporation of new science, strategies, and pests. The approach emphasized both strategic and tactical elements to reduce pest abundance and rationalize decisions about pest control, with insecticides as a last resort. Industry involvement in developing the approach was vital to embedding IPM within the farming system. Adoption of IPM was facilitated by the introduction of Bt cotton, availability of selective insecticides, economic validation, and an industry-wide extension campaign. Surveys indicate IPM is now embedded in industry, confirming the effectiveness of an industry-led, backed-by-science approach. The amount of insecticide active ingredient applied per hectare against pests has also declined dramatically. Though challenges remain, pest management has transitioned from reactively attempting to eradicate pests from fields to proactively managing them year-round, considering the farm within the wider landscape.
Collapse
Affiliation(s)
- Lewis J Wilson
- CSIRO Agriculture and Food, Narrabri, New South Wales 2390, Australia;
| | | | - Grant A Herron
- New South Wales Department of Primary Industries, Narellan, New South Wales 2567, Australia;
| |
Collapse
|
39
|
Estimating the landscape distribution of eggs by Helicoverpa spp., with implications for Bt resistance management. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Transgenic cotton co-expressing chimeric Vip3AcAa and Cry1Ac confers effective protection against Cry1Ac-resistant cotton bollworm. Transgenic Res 2017; 26:763-774. [DOI: 10.1007/s11248-017-0048-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/21/2017] [Indexed: 11/25/2022]
|
41
|
Surge in insect resistance to transgenic crops and prospects for sustainability. Nat Biotechnol 2017; 35:926-935. [DOI: 10.1038/nbt.3974] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
|
42
|
|
43
|
Pearce SL, Clarke DF, East PD, Elfekih S, Gordon KHJ, Jermiin LS, McGaughran A, Oakeshott JG, Papanicolaou A, Perera OP, Rane RV, Richards S, Tay WT, Walsh TK, Anderson A, Anderson CJ, Asgari S, Board PG, Bretschneider A, Campbell PM, Chertemps T, Christeller JT, Coppin CW, Downes SJ, Duan G, Farnsworth CA, Good RT, Han LB, Han YC, Hatje K, Horne I, Huang YP, Hughes DST, Jacquin-Joly E, James W, Jhangiani S, Kollmar M, Kuwar SS, Li S, Liu NY, Maibeche MT, Miller JR, Montagne N, Perry T, Qu J, Song SV, Sutton GG, Vogel H, Walenz BP, Xu W, Zhang HJ, Zou Z, Batterham P, Edwards OR, Feyereisen R, Gibbs RA, Heckel DG, McGrath A, Robin C, Scherer SE, Worley KC, Wu YD. Genomic innovations, transcriptional plasticity and gene loss underlying the evolution and divergence of two highly polyphagous and invasive Helicoverpa pest species. BMC Biol 2017; 15:63. [PMID: 28756777 PMCID: PMC5535293 DOI: 10.1186/s12915-017-0402-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/04/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Helicoverpa armigera and Helicoverpa zea are major caterpillar pests of Old and New World agriculture, respectively. Both, particularly H. armigera, are extremely polyphagous, and H. armigera has developed resistance to many insecticides. Here we use comparative genomics, transcriptomics and resequencing to elucidate the genetic basis for their properties as pests. RESULTS We find that, prior to their divergence about 1.5 Mya, the H. armigera/H. zea lineage had accumulated up to more than 100 more members of specific detoxification and digestion gene families and more than 100 extra gustatory receptor genes, compared to other lepidopterans with narrower host ranges. The two genomes remain very similar in gene content and order, but H. armigera is more polymorphic overall, and H. zea has lost several detoxification genes, as well as about 50 gustatory receptor genes. It also lacks certain genes and alleles conferring insecticide resistance found in H. armigera. Non-synonymous sites in the expanded gene families above are rapidly diverging, both between paralogues and between orthologues in the two species. Whole genome transcriptomic analyses of H. armigera larvae show widely divergent responses to different host plants, including responses among many of the duplicated detoxification and digestion genes. CONCLUSIONS The extreme polyphagy of the two heliothines is associated with extensive amplification and neofunctionalisation of genes involved in host finding and use, coupled with versatile transcriptional responses on different hosts. H. armigera's invasion of the Americas in recent years means that hybridisation could generate populations that are both locally adapted and insecticide resistant.
Collapse
Affiliation(s)
- S L Pearce
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - D F Clarke
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - P D East
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - S Elfekih
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - K H J Gordon
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia.
| | - L S Jermiin
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - A McGaughran
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - J G Oakeshott
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia.
| | - A Papanicolaou
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Hawksbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - O P Perera
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS, USA
| | - R V Rane
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - S Richards
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| | - W T Tay
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - T K Walsh
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - A Anderson
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - C J Anderson
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Biological and Environmental Sciences, University of Stirling, Stirling, UK
| | - S Asgari
- School of Biological Sciences, University of Queensland, Brisbane St Lucia, QLD, Australia
| | - P G Board
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | | - P M Campbell
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - T Chertemps
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris, Paris, France
- National Institute for Agricultural Research (INRA), Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | | | - C W Coppin
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | | | - G Duan
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - C A Farnsworth
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - R T Good
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - L B Han
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Y C Han
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - K Hatje
- Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - I Horne
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - Y P Huang
- Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - D S T Hughes
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - E Jacquin-Joly
- National Institute for Agricultural Research (INRA), Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - W James
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - S Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - M Kollmar
- Max Planck Institute for Biophysical Chemistry, Gottingen, Germany
| | - S S Kuwar
- Max Planck Institute of Chemical Ecology, Jena, Germany
| | - S Li
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - N-Y Liu
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, 650224, China
| | - M T Maibeche
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris, Paris, France
- National Institute for Agricultural Research (INRA), Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - J R Miller
- J. Craig Venter Institute, Rockville, MD, USA
| | - N Montagne
- Sorbonnes Universités, UPMC Université Paris 06, Institute of Ecology and Environmental Sciences of Paris, Paris, France
| | - T Perry
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - J Qu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - S V Song
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - G G Sutton
- J. Craig Venter Institute, Rockville, MD, USA
| | - H Vogel
- Max Planck Institute of Chemical Ecology, Jena, Germany
| | - B P Walenz
- J. Craig Venter Institute, Rockville, MD, USA
| | - W Xu
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - H-J Zhang
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Z Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - P Batterham
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | | | - R Feyereisen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej, Denmark
| | - R A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - D G Heckel
- Max Planck Institute of Chemical Ecology, Jena, Germany
| | - A McGrath
- CSIRO Black Mountain, GPO Box 1700, Canberra, ACT, 2600, Australia
| | - C Robin
- School of Biological Sciences, University of Melbourne, Parkville, Vic, Australia
| | - S E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - K C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Y D Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Bacillus thuringiensis Vip3Aa Toxin Resistance in Heliothis virescens (Lepidoptera: Noctuidae). Appl Environ Microbiol 2017; 83:AEM.03506-16. [PMID: 28213547 DOI: 10.1128/aem.03506-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 02/13/2017] [Indexed: 11/20/2022] Open
Abstract
Laboratory selection with Vip3Aa of a field-derived population of Heliothis virescens produced >2,040-fold resistance in 12 generations of selection. The Vip3Aa-selected (Vip-Sel)-resistant population showed little cross-resistance to Cry1Ab and no cross-resistance to Cry1Ac. Resistance was unstable after 15 generations without exposure to the toxin. F1 reciprocal crosses between Vip3Aa-unselected (Vip-Unsel) and Vip-Sel insects indicated a strong paternal influence on the inheritance of resistance. Resistance ranged from almost completely recessive (mean degree of dominance [h] = 0.04 if the resistant parent was female) to incompletely dominant (mean h = 0.53 if the resistant parent was male). Results from bioassays on the offspring from backcrosses of the F1 progeny with Vip-Sel insects indicated that resistance was due to more than one locus. The results described in this article provide useful information for the insecticide resistance management strategies designed to overcome the evolution of resistance to Vip3Aa in insect pests.IMPORTANCEHeliothis virescens is an important pest that has the ability to feed on many plant species. The extensive use of Bacillus thuringiensis (Bt) crops or spray has already led to the evolution of insect resistance in the field for some species of Lepidoptera and Coleoptera. The development of resistance in insect pests is the main threat to Bt crops. The effective resistance management strategies are very important to prolong the life of Bt plants. Lab selection is the key step to test the assumption and predictions of management strategies prior to field evaluation. Resistant insects offer useful information to determine the inheritance of resistance and the frequency of resistance alleles and to study the mechanism of resistance to insecticides.
Collapse
|
45
|
Wei Y, Wu S, Yang Y, Wu Y. Baseline Susceptibility of Field Populations of Helicoverpa armigera to Bacillus thuringiensis Vip3Aa Toxin and Lack of Cross-Resistance between Vip3Aa and Cry Toxins. Toxins (Basel) 2017; 9:toxins9040127. [PMID: 28379206 PMCID: PMC5408201 DOI: 10.3390/toxins9040127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/02/2022] Open
Abstract
The cotton bollworm Helicoverpa armigera (Hübner) is one of the most damaging cotton pests worldwide. In China, control of this pest has been dependent on transgenic cotton producing a single Bacillus thuringiensis (Bt) protein Cry1Ac since 1997. A small, but significant, increase in H. armigera resistance to Cry1Ac was detected in field populations from Northern China. Since Vip3Aa has a different structure and mode of action than Cry proteins, Bt cotton pyramids containing Vip3Aa are considered as ideal successors of Cry1Ac cotton in China. In this study, baseline susceptibility of H. armigera to Vip3Aa was evaluated in geographic field populations collected in 2014 from major cotton-producing areas of China. The LC50 values of 12 field populations ranged from 0.053 to 1.311 μg/cm2, representing a 25-fold range of natural variation among populations. It is also demonstrated that four laboratory strains of H. armigera with high levels of resistance to Cry1Ac or Cry2Ab have no cross-resistance to Vip3Aa protein. The baseline susceptibility data established here will serve as a comparative reference for detection of field-evolved resistance to Vip3Aa in H. armigera after future deployment of Bt cotton pyramids in China.
Collapse
Affiliation(s)
- Yiyun Wei
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
46
|
Baker GH, Tann CR. Long-term changes in the numbers of Helicoverpa punctigera (Lepidoptera: Noctuidae) in a cotton production landscape in northern New South Wales, Australia. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:174-187. [PMID: 27829483 DOI: 10.1017/s0007485316000821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Two noctuid moths, Helicoverpa punctigera and Helicoverpa armigera, are pests of several agricultural crops in Australia, most notably cotton. Cotton is a summer crop, grown predominantly in eastern Australia. The use of transgenic (Bt) cotton has reduced the damage caused by Helicoverpa spp., but the development of Bt resistance in these insects remains a threat. In the past, large populations of H. punctigera have built up in inland Australia, following autumn-winter rains. Moths have then migrated to the cropping regions in spring, when their inland host plants dried off. To determine if there have been any long-term changes in this pattern, pheromone traps were set for H. punctigera throughout a cropping landscape in northern New South Wales from 1992 to 2015. At least three generations of moths were caught from spring to autumn. The 1st generation (mostly spring migrants) was the most numerous. Trap captures varied between sites and decreased in time, especially for moths in the 1st generation. Nearby habitat type influenced the size of catch and there was some evidence that local weather also influenced the numbers of moths caught. There was no correlation between trap catches in the cropping region and rainfall in the inland. In addition, there was little evidence that Bt cotton has reduced the abundance of H. punctigera at landscape scale. The apparent decline in the number of presumably Bt susceptible moths arriving each spring in the cropping regions from inland habitats is of concern in relation to the management of Bt resistance.
Collapse
Affiliation(s)
- G H Baker
- CSIRO Agriculture and Food,GPO Box 1700,Canberra,A.C.T. 2601,Australia
| | - C R Tann
- CSIRO Agriculture and Food, Locked Bag 59,Narrabri,N.S.W. 2390,Australia
| |
Collapse
|
47
|
Baker GH, Tann CR. Broad-scale suppression of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), associated with Bt cotton crops in Northern New South Wales, Australia. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:188-199. [PMID: 27876099 DOI: 10.1017/s0007485316000912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The cotton bollworm, Helicoverpa armigera, is a major pest of many agricultural crops in several countries, including Australia. Transgenic cotton, expressing a single Bt toxin, was first used in the 1990s to control H. armigera and other lepidopteran pests. Landscape scale or greater pest suppression has been reported in some countries using this technology. However, a long-term, broad-scale pheromone trapping program for H. armigera in a mixed cropping region in eastern Australia caught more moths during the deployment of single Bt toxin cotton (Ingard®) (1996-2004) than in previous years. This response can be attributed, at least in part, to (1) a precautionary cap (30% of total cotton grown, by area) being applied to Ingard® to restrict the development of Bt resistance in the pest, and (2) during the Ingard® era, cotton production greatly increased (as did that of another host plant, sorghum) and H. armigera (in particular the 3rd and older generations) responded in concert with this increase in host plant availability. However, with the replacement of Ingard® with Bollgard II® cotton (containing two different Bt toxins) in 2005, and recovery of the cotton industry from prevailing drought, H. armigera failed to track increased host-plant supply and moth numbers decreased. Greater toxicity of the two gene product, introduction of no cap on Bt cotton proportion, and an increase in natural enemy abundance are suggested as the most likely mechanisms responsible for the suppression observed.
Collapse
Affiliation(s)
- G H Baker
- CSIRO Agriculture & Food,GPO Box 1700, Canberra,ACT 2601,Australia
| | - C R Tann
- CSIRO Agriculture & Food,Locked Bag 59, Narrabri,NSW 2390,Australia
| |
Collapse
|
48
|
Xu L, Pan ZZ, Zhang J, Liu B, Zhu YJ, Chen QX. Proteolytic Activation of Bacillus thuringiensis Cry2Ab through a Belt-and-Braces Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7195-7200. [PMID: 27598769 DOI: 10.1021/acs.jafc.6b03111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteolytic processing of Bacillus thuringiensis (Bt) crystal toxins by insect midgut proteases plays an essential role in their insecticidal toxicities against target insects. In the present study, proteolysis of Bt crystal toxin Cry2Ab by Plutella xylostella L. midgut proteases (PxMJ) was evaluated. Both trypsin and chymotrypsin were identified involving the proteolytic activation of Cry2Ab and cleaving Cry2Ab at Arg(139) and Leu(144), respectively. Three Cry2Ab mutants (R139A, L144A, and R139A-L144A) were constructed by replacing residues Arg(139), Leu(144), and Arg(139)-Leu(144) with alanine. Proteolysis assays revealed that mutants R139A and L144A but not R139A-L144A could be cleaved into 50 kDa activated toxins by PxMJ. Bioassays showed that mutants R139A and L144A were highly toxic against P. xylostella larvae, while mutant R139A-L144A was almost non-insecticidal. Those results demonstrated that proteolysis by PxMJ was associated with the toxicity of Cry2Ab against P. xylostella. It also revealed that either trypsin or chymotrypsin was enough to activate Cry2Ab protoxin. This characteristic was regarded as a belt-and-braces approach and might contribute to the control of resistance development in target insects. Our studies characterized the proteolytic processing of Cry2Ab and provided new insight into the activation of this Bt toxin.
Collapse
Affiliation(s)
- Lian Xu
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University , Xiamen, Fujian 361005, People's Republic of China
| | - Zhi-Zhen Pan
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences , Fuzhou, Fujian 350003, People's Republic of China
| | - Jing Zhang
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University , Xiamen, Fujian 361005, People's Republic of China
| | - Bo Liu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences , Fuzhou, Fujian 350003, People's Republic of China
| | - Yu-Jing Zhu
- Agricultural Bio-Resources Research Institute, Fujian Academy of Agricultural Sciences , Fuzhou, Fujian 350003, People's Republic of China
| | - Qing-Xi Chen
- State Key Laboratory of Cellular Stress Biology, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University , Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
49
|
Bernardi O, Bernardi D, Horikoshi RJ, Okuma DM, Miraldo LL, Fatoretto J, Medeiros FC, Burd T, Omoto C. Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda. PEST MANAGEMENT SCIENCE 2016; 72:1794-1802. [PMID: 26733182 DOI: 10.1002/ps.4223] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/20/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Spodoptera frugiperda is one the main target pests of maize events expressing Vip3Aa20 protein from Bacillus thuringiensis (Bt) in Brazil. In this study, we selected a resistant strain of S. frugiperda on Bt maize expressing Vip3Aa20 protein and characterized the inheritance and fitness costs of the resistance. RESULTS The resistance ratio of the Vip3Aa20-resistant strain of S. frugiperda was >3200-fold. Neonates of the Vip3Aa20-resistant strain were able to survive and emerge as fertile adults on Vip3Aa20 maize, while larvae from susceptible and heterozygous strains did not survive. The inheritance of Vip3Aa20 resistance was autosomal recessive and monogenic. Life history studies to investigate fitness cost revealed an 11% reduction in the survival rate until adult stage and a ∼50% lower reproductive rate of the Vip3Aa20-resistant strain compared with susceptible and heterozygous strains. CONCLUSION This is the first characterization of S. frugiperda resistance to Vip3Aa protein. Our results provide useful information for resistance management programs designed to prevent or delay resistance evolution to Vip3Aa proteins in S. frugiperda. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Oderlei Bernardi
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Daniel Bernardi
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Renato J Horikoshi
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Daniela M Okuma
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Leonardo L Miraldo
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | | | | | - Tony Burd
- Syngenta Crop Protection, Greensboro, NC, USA
| | - Celso Omoto
- Department of Entomology and Acarology, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
50
|
Downes S, Walsh T, Tay WT. Bt resistance in Australian insect pest species. CURRENT OPINION IN INSECT SCIENCE 2016; 15:78-83. [PMID: 27436735 DOI: 10.1016/j.cois.2016.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/18/2016] [Accepted: 04/10/2016] [Indexed: 06/06/2023]
Abstract
Bt cotton was initially deployed in Australia in the mid-1990s to control the polyphagous pest Helicoverpa armigera (Hübner) which was intractably resistant to synthetic chemistries. A conservative strategy was enforced and resistance to first generation single toxin technology was managed. A decade later, shortly after the release of dual toxin cotton, high baseline frequencies of alleles conferring resistance to one of its components prompted a reassessment of the thinking behind the potential risks to this technology. Several reviews detail the characteristics of this resistance and the nuances of deploying first and second generation Bt cotton in Australia. Here we explore recent advances and future possibilities to estimate Bt resistance in Australian pest species and define what we see as the critical data for enabling effective pre-emptive strategies. We also foreshadow the imminent deployment of three toxin (Cry1Ac, Cry2Ab, Vip3A) Bollgard 3 cotton, and examine aspects of resistance to its novel component, Vip3A, that we believe may impact on its stewardship.
Collapse
Affiliation(s)
- Sharon Downes
- CSIRO, Myall Vale Laboratories, Kamilaroi Highway, Narrabri, NSW 2390, Australia.
| | - Tom Walsh
- CSIRO, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Wee Tek Tay
- CSIRO, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| |
Collapse
|