1
|
Airways glutathione S-transferase omega-1 and its A140D polymorphism are associated with severity of inflammation and respiratory dysfunction in cystic fibrosis. J Cyst Fibros 2021; 20:1053-1061. [PMID: 33583732 DOI: 10.1016/j.jcf.2021.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme that modulates the S-thiolation status of intracellular factors involved in cancer cell survival or in the inflammatory response. Studies focusing on chronic obstructive pulmonary disease (COPD) have demonstrated that GSTO1-1 is detectable in alveolar macrophages, airway epithelium and in the extracellular compartment, where its functions have not been completely understood. Moreover GSTO1-1 polymorphisms have been associated with an increased risk to develop COPD. Against this background, the aim of this study was to evaluate GSTO1-1 levels and its polymorphisms in cystic fibrosis (CF) patients. METHODS Clinical samples from a previous study published by our groups were analyzed for GSTO1-1 levels and polymorphisms. For comparison, a model of lung inflammation in CFTR-knock out mice was also used. RESULTS Our data document that soluble GSTO1-1 can be found in the airways of CF patients and correlates with inflammatory parameters such as neutrophilic elastase and the chemokine IL-8. A negative correlation was found between GSTO1-1 levels and the spirometric parameter FEV1 and the FEV1/FVC ratio. Additionally, the A140D polymorphism of GSTO1-1 was associated with lower levels of the antiinflammatory mediators PGE2 and 15(S)-HETE, and with lower values of the FEV1/FVC ratio in CF subjects with the homozygous CFTR ΔF508 mutation. CONCLUSIONS Our data suggest that extracellular GSTO1-1 and its polymorphysms could have a biological and clinical significance in CF. Pathophysiological functions of GSTOs are far from being completely understood, and more studies are required to understand the role(s) of extracellular GSTO1-1 in inflamed tissues.
Collapse
|
2
|
Sandri A, Lleo MM, Signoretto C, Boaretti M, Boschi F. Protease inhibitors elicit anti-inflammatory effects in CF mice with Pseudomonas aeruginosa acute lung infection. Clin Exp Immunol 2020; 203:87-95. [PMID: 32946591 DOI: 10.1111/cei.13518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 01/30/2023] Open
Abstract
Pseudomonas aeruginosa is the major respiratory pathogen in patients with cystic fibrosis (CF). P. aeruginosa-secreted proteases, in addition to host proteases, degrade lung tissue and interfere with immune processes. In this study, we aimed at evaluating the possible anti-inflammatory effects of protease inhibitors Marimastat and Ilomastat in the treatment of P. aeruginosa infection. Lung infection with the P. aeruginosa PAO1 strain was established in wild-type and cystic fibrosis transmembrane conductance regulator (CFTR) knock-out C57BL/6 mice expressing a luciferase gene under control of bovine interleukin (IL)-8 promoter. After intratracheal instillation with 150 µM Marimastat and Ilomastat, lung inflammation was monitored by in-vivo bioluminescence imaging and bacterial load in the lungs was assessed. In vitro, the effects of protease inhibitors on PAO1 growth and viability were evaluated. Acute lung infection was established in both wild-type and CFTR knock-out mice. After 24 h, the infection induced IL-8-dependent bioluminescence emission, indicating lung inflammation. In infected mice with ongoing inflammation, intratracheal treatment with 150 µM Marimastat and Ilomastat reduced the bioluminescence signal in comparison to untreated, infected animals. Bacterial load in the lungs was not affected by the treatment, and in vitro the same dose of Marimastat and Ilomastat did not affect PAO1 growth and viability, confirming that these molecules have no additional anti-bacterial activity. Our results show that inhibition of protease activity elicits anti-inflammatory effects in cystic fibrosis (CF) mice with acute P. aeruginosa lung infection. Thus, Marimastat and Ilomastat represent candidate molecules for the treatment of CF patients, encouraging further studies on protease inhibitors and their application in inflammatory diseases.
Collapse
Affiliation(s)
- A Sandri
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - M M Lleo
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - C Signoretto
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - M Boaretti
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Verona, Italy
| | - F Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Dimond A, Van de Pette M, Fisher AG. Illuminating Epigenetics and Inheritance in the Immune System with Bioluminescence. Trends Immunol 2020; 41:994-1005. [PMID: 33036908 DOI: 10.1016/j.it.2020.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022]
Abstract
The remarkable process of light emission by living organisms has fascinated mankind for thousands of years. A recent expansion in the repertoire of catalytic luciferase enzymes, coupled with the discovery of the genes and pathways that encode different luciferin substrates, means that bioluminescence imaging (BLI) is set to revolutionize longitudinal and dynamic studies of gene control within biomedicine, including the regulation of immune responses. In this review article, we summarize recent advances in bioluminescence-based imaging approaches that promise to enlighten our understanding of in vivo gene and epigenetic control within the immune system.
Collapse
Affiliation(s)
- Andrew Dimond
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mathew Van de Pette
- Epigenetic Mechanisms of Toxicity, MRC Toxicology Unit, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Amanda G Fisher
- Lymphocyte Development Group, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
4
|
Ruscitti F, Ravanetti F, Bertani V, Ragionieri L, Mecozzi L, Sverzellati N, Silva M, Ruffini L, Menozzi V, Civelli M, Villetti G, Stellari FF. Quantification of Lung Fibrosis in IPF-Like Mouse Model and Pharmacological Response to Treatment by Micro-Computed Tomography. Front Pharmacol 2020; 11:1117. [PMID: 32792953 PMCID: PMC7385278 DOI: 10.3389/fphar.2020.01117] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive degenerative lung disease leading to respiratory failure and death. Although anti-fibrotic drugs are now available for treating IPF, their clinical efficacy is limited and lung transplantation remains the only modality to prolong survival of IPF patients. Despite its limitations, the bleomycin (BLM) animal model remains the best characterized experimental tool for studying disease pathogenesis and assessing efficacy of novel potential drugs. In the present study, the effects of oropharyngeal (OA) and intratracheal (IT) administration of BLM were compared in C57BL/6 mice. The development of lung fibrosis was followed in vivo for 28 days after BLM administration by micro-computed tomography and ex vivo by histological analyses (bronchoalveolar lavage, histology in the left lung to stage fibrosis severity and hydroxyproline determination in the right lung). In a separate study, the antifibrotic effect of Nintedanib was investigated after oral administration (60 mg/kg for two weeks) in the OA BLM model. Lung fibrosis severity and duration after BLM OA and IT administration was comparable. However, a more homogeneous distribution of fibrotic lesions among lung lobes was apparent after OA administration. Quantification of fibrosis by micro-CT based on % of poorly aerated tissue revealed that this readout correlated significantly with the standard histological methods in the OA model. These findings were further confirmed in a second study in the OA model, evaluating Nintedanib anti-fibrotic effects. Indeed, compared to the BLM group, Nintedanib inhibited significantly the increase in % of poorly aerated areas (26%) and reduced ex vivo histological lesions and hydroxyproline levels by 49 and 41%, respectively. This study indicated that micro-computed tomography is a valuable in vivo technology for lung fibrosis quantification, which will be very helpful in the future to better evaluate new anti-fibrotic drug candidates.
Collapse
Affiliation(s)
| | | | - Valeria Bertani
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Luisa Ragionieri
- Department of Veterinary Science, University of Parma, Parma, Italy
| | - Laura Mecozzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Mario Silva
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Livia Ruffini
- Department Nuclear Medicine, Academic Hospital of Parma, Parma, Italy
| | | | - Maurizio Civelli
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Gino Villetti
- Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | | |
Collapse
|
5
|
Stellari FF, Sala A, Ruscitti F, Buccellati C, Allen A, Risé P, Civelli M, Villetti G. CHF6001 Inhibits NF-κB Activation and Neutrophilic Recruitment in LPS-Induced Lung Inflammation in Mice. Front Pharmacol 2019; 10:1337. [PMID: 31798449 PMCID: PMC6863066 DOI: 10.3389/fphar.2019.01337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Inhibitors of phosphodiesterase 4 (PDE4) are potent anti-inflammatory agents, inhibiting the production of inflammatory mediators through the elevation of intracellular cAMP concentrations. We studied the activity of a novel PDE4 inhibitor, CHF6001, both in vitro in human cells and in vivo, using bioluminescence imaging (BLI) in mice lung inflammation. Mice transiently transfected with the luciferase gene under the control of an NF-κB responsive element (NF-κB-luc) have been used to assess the in vivo anti-inflammatory activity of CHF6001 in lipopolysaccharide (LPS)-induced lung inflammation. BLI as well as inflammatory cells and the concentrations of pro-inflammatory cytokines were monitored in bronchoalveolar lavage fluids (BALF) while testing in vitro its ability to affect the production of leukotriene B4 (LTB4), measured by LC/MS/MS, by LPS/LPS/N-formyl--methionyl--leucyl-phenylalanine (fMLP)-activated human blood. CHF6001 inhibited the production of LTB4 in LPS/fMLP-activated human blood at sub-nanomolar concentrations. LPS-induced an increase of BLI signal in NF-κB-luc mice, and CHF6001 administered by dry powder inhalation decreased in parallel luciferase signal, cell airway infiltration, and pro-inflammatory cytokine concentrations in BALF. The results obtained provide in vitro and in vivo evidence of the anti-inflammatory activity of the potent PDE4 inhibitor CHF6001, showing that with a topical administration that closely mimics inhalation in humans, it efficiently disrupts the NF-κB activation associated with LPS challenge, an effect that may be relevant for the prevention of exacerbation episodes in chronic obstructive pulmonary disease subjects.
Collapse
Affiliation(s)
- Fabio F Stellari
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Angelo Sala
- Department of Pharmaceutical Sciences, School of Drug Sciences, University of Milan, Milan, Italy.,IBIM, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Francesca Ruscitti
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Carola Buccellati
- Department of Pharmaceutical Sciences, School of Drug Sciences, University of Milan, Milan, Italy
| | - Andrew Allen
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Patrizia Risé
- Department of Pharmaceutical Sciences, School of Drug Sciences, University of Milan, Milan, Italy
| | - Maurizio Civelli
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Gino Villetti
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A, Parma, Italy
| |
Collapse
|
6
|
Manni I, de Latouliere L, Gurtner A, Piaggio G. Transgenic Animal Models to Visualize Cancer-Related Cellular Processes by Bioluminescence Imaging. Front Pharmacol 2019; 10:235. [PMID: 30930779 PMCID: PMC6428995 DOI: 10.3389/fphar.2019.00235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Preclinical animal models are valuable tools to improve treatments of malignant diseases, being an intermediate step of experimentation between cell culture and human clinical trials. Among different animal models frequently used in cancer research are mouse and, more recently, zebrafish models. Indeed, most of the cellular pathways are highly conserved between human, mouse and zebrafish, thus rendering these models very attractive. Recently, several transgenic reporter mice and zebrafishes have been generated in which the luciferase reporter gene are placed under the control of a promoter whose activity is strictly related to specific cancer cellular processes. Other mouse models have been generated by the cDNA luciferase knockin in the locus of a gene whose expression/activity has increased in cancer. Using BioLuminescence Imaging (BLI), we have now the opportunity to spatiotemporal visualize cell behaviors, among which proliferation, apoptosis, migration and immune responses, in any body district in living animal in a time frame process. We provide here a review of the available models to visualized cancer and cancer-associated events in living animals by BLI and as they have been successful in identifying new stages of early tumor progression, new interactions between different tissues and new therapeutic responsiveness.
Collapse
Affiliation(s)
- Isabella Manni
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Luisa de Latouliere
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Aymone Gurtner
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Piaggio
- UOSD SAFU, Department of Research, Diagnosis and Innovative Technologies, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
7
|
Sandri A, Ortombina A, Boschi F, Cremonini E, Boaretti M, Sorio C, Melotti P, Bergamini G, Lleo M. Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice. Virulence 2018; 9:1008-1018. [PMID: 29938577 PMCID: PMC6086295 DOI: 10.1080/21505594.2018.1489198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background: Cystic fibrosis (CF) lung infection is a complex condition where opportunistic pathogens and defective immune system cooperate in developing a constant cycle of infection and inflammation. The major pathogen, Pseudomonas aeruginosa, secretes a multitude of virulence factors involved in host immune response and lung tissue damage. In this study, we examined the possible anti-inflammatory effects of molecules inhibiting P. aeruginosa virulence factors. Methods: Pyocyanin, pyoverdine and proteases were measured in bacterial culture supernatant from different P. aeruginosa strains. Inhibition of virulence factors by sub-inhibitory concentrations of clarithromycin and by protease inhibitors was evaluated. Lung inflammatory response was monitored by in vivo bioluminescence imaging in wild-type and CFTR-knockout mice expressing a luciferase gene under the control of a bovine IL-8 promoter. Results: The amount of proteases, pyocyanin and pyoverdine secreted by P. aeruginosa strains was reduced after growth in the presence of a sub-inhibitory dose of clarithromycin. Intratracheal challenge with culture supernatant containing bacteria-released products induced a strong IL-8-mediated response in mouse lungs while lack of virulence factors corresponded to a reduction in bioluminescence emission. Particularly, sole inactivation of proteases by inhibitors Ilomastat and Marimastat also resulted in decreased lung inflammation. Conclusions: Our data support the assumption that virulence factors are involved in P. aeruginosa pro-inflammatory action in CF lungs; particularly, proteases seem to play an important role. Inhibition of virulence factors production and activity resulted in decreased lung inflammation; thus, clarithromycin and protease inhibitors potentially represent additional therapeutic therapies for P. aeruginosa-infected patients.
Collapse
Affiliation(s)
- Angela Sandri
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Alessia Ortombina
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Federico Boschi
- b Department of Computer Science , University of Verona , Verona , Italy
| | - Eleonora Cremonini
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Marzia Boaretti
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| | - Claudio Sorio
- c Department of Medicine , University of Verona , Verona , Italy
| | - Paola Melotti
- d Cystic Fibrosis Center , Azienda Ospedaliera Universitaria Integrata di Verona , Verona , Italy
| | | | - Maria Lleo
- a Department of Diagnostics and Public Health , University of Verona , Verona , Italy
| |
Collapse
|
8
|
Ruscitti F, Ravanetti F, Donofrio G, Ridwan Y, van Heijningen P, Essers J, Villetti G, Cacchioli A, Vos W, Stellari FF. A Multimodal Imaging Approach Based on Micro-CT and Fluorescence Molecular Tomography for Longitudinal Assessment of Bleomycin-Induced Lung Fibrosis in Mice. J Vis Exp 2018. [PMID: 29708527 DOI: 10.3791/56443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by the progressive and irreversible destruction of lung architecture, which causes significant deterioration in lung function and subsequent death from respiratory failure. The pathogenesis of IPF in experimental animal models has been induced by bleomycin administration. In this study, we investigate an IPF-like mouse model induced by a double intratracheal bleomycin instillation. Standard histological assessments used for studying lung fibrosis are invasive terminal procedures. The goal of this work is to monitor lung fibrosis through noninvasive imaging techniques such as Fluorescent Molecular Tomography (FMT) and Micro-CT. These two technologies validated with histology findings could represent a revolutionary functional approach for real time non-invasive monitoring of IPF disease severity and progression. The fusion of different approaches represents a step further for understanding the IPF disease, where the molecular events occurring in a pathological condition can be observed with FMT and the subsequent anatomical changes can be monitored by Micro-CT.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeroen Essers
- Department of Molecular Genetics, Vascular Surgery, Radiation Oncology, Erasmus MC
| | - Gino Villetti
- Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A
| | | | | | | |
Collapse
|
9
|
Suff N, Waddington SN. The power of bioluminescence imaging in understanding host-pathogen interactions. Methods 2017; 127:69-78. [PMID: 28694065 DOI: 10.1016/j.ymeth.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/12/2017] [Accepted: 07/03/2017] [Indexed: 01/06/2023] Open
Abstract
Infectious diseases are one of the leading causes of death worldwide. Modelling and understanding human infection is imperative to developing treatments to reduce the global burden of infectious disease. Bioluminescence imaging is a highly sensitive, non-invasive technique based on the detection of light, produced by luciferase-catalysed reactions. In the study of infectious disease, bioluminescence imaging is a well-established technique; it can be used to detect, localize and quantify specific immune cells, pathogens or immunological processes. This enables longitudinal studies in which the spectrum of the disease process and its response to therapies can be monitored. Light producing transgenic rodents are emerging as key tools in the study of host response to infection. Here, we review the strategies for identifying biological processes in vivo, including the technology of bioluminescence imaging and illustrate how this technique is shedding light on the host-pathogen relationship.
Collapse
Affiliation(s)
- Natalie Suff
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom.
| | - Simon N Waddington
- Gene Transfer Technology Group, Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, United Kingdom
| |
Collapse
|
10
|
Bergamini G, Stellari F, Sandri A, M Lleo M, Donofrio G, Ruscitti F, Boschi F, Sbarbati A, Villetti G, Melotti P, Sorio C. An IL-8 Transiently Transgenized Mouse Model for the In Vivo Long-term Monitoring of Inflammatory Responses. J Vis Exp 2017. [PMID: 28715404 DOI: 10.3791/55499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Airway inflammation is often associated with bacterial infections and represents a major determinant of lung disease. The in vivo determination of the pro-inflammatory capabilities of various factors is challenging and requires terminal procedures, such as bronchoalveolar lavage and the removal of lungs for in situ analysis, precluding longitudinal visualization in the same mouse. Here, lung inflammation is induced through the intratracheal instillation of Pseudomonas aeruginosa culture supernatant (SN) in transiently transgenized mice expressing the luciferase reporter gene under the control of a heterologous IL-8 bovine promoter. Luciferase expression in the lung is monitored by in vivo bioluminescent image (BLI) analysis over a 2.5- to 48-h timeframe following the instillation. The procedure can be repeated multiple times within 2 - 3 months, thus permitting the evaluation of the inflammatory response in the same mice without the need to terminate the animals. This approach permits the monitoring of pro- and anti-inflammatory factors acting in the lung in real time and appears suitable for functional and pharmacological studies.
Collapse
Affiliation(s)
- Gabriella Bergamini
- Department of Medicine, General Pathology Division, Cystic Fibrosis Translational Research Laboratory "D. Lissandrini", University of Verona
| | | | - Angela Sandri
- Department of Diagnostic and Public Health, Microbiology Division, University of Verona
| | - Maria M Lleo
- Department of Diagnostic and Public Health, Microbiology Division, University of Verona
| | | | - Francesca Ruscitti
- Department of Biomedical Biotechnological and Translational Sciences, University of Parma; Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A
| | | | - Andrea Sbarbati
- Department of Neurological, Biomedical and Movement Sciences, University of Verona
| | - Gino Villetti
- Corporate Preclinical R&D, Chiesi Farmaceutici S.p.A
| | | | - Claudio Sorio
- Department of Medicine, General Pathology Division, Cystic Fibrosis Translational Research Laboratory "D. Lissandrini", University of Verona;
| |
Collapse
|
11
|
Stellari FF, Ruscitti F, Pompilio D, Ravanetti F, Tebaldi G, Macchi F, Verna AE, Villetti G, Donofrio G. Heterologous Matrix Metalloproteinase Gene Promoter Activity Allows In Vivo Real-time Imaging of Bleomycin-Induced Lung Fibrosis in Transiently Transgenized Mice. Front Immunol 2017; 8:199. [PMID: 28298912 PMCID: PMC5331072 DOI: 10.3389/fimmu.2017.00199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/10/2017] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a very common interstitial lung disease derived from chronic inflammatory insults, characterized by massive scar tissue deposition that causes the progressive loss of lung function and subsequent death for respiratory failure. Bleomycin is used as the standard agent to induce experimental pulmonary fibrosis in animal models for the study of its pathogenesis. However, to visualize the establishment of lung fibrosis after treatment, the animal sacrifice is necessary. Thus, the aim of this study was to avoid this limitation by using an innovative approach based on a double bleomycin treatment protocol, along with the in vivo images analysis of bleomycin-treated mice. A reporter gene construct, containing the luciferase open reading frame under the matrix metalloproteinase-1 promoter control region, was tested on double bleomycin-treated mice to investigate, in real time, the correlation between bleomycin treatment, inflammation, tissue remodeling and fibrosis. Bioluminescence emitted by the lungs of bleomycin-treated mice, corroborated by fluorescent molecular tomography, successfully allowed real time monitoring of fibrosis establishment. The reporter gene technology experienced in this work could represent an advanced functional approach for real time non-invasive assessment of disease evolution during therapy, in a reliable and translational living animal model.
Collapse
Affiliation(s)
| | | | - Daniela Pompilio
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D, Parma, Italy; Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| | - Francesca Ravanetti
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| | - Giulia Tebaldi
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| | - Francesca Macchi
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| | | | - Gino Villetti
- Chiesi Farmaceutici S.p.A., Corporate Pre-Clinical R&D , Parma , Italy
| | - Gaetano Donofrio
- Dipartimento di Scienze Medico Veterinarie, Università di Parma , Parma , Italy
| |
Collapse
|
12
|
Stellari F, Bergamini G, Ruscitti F, Sandri A, Ravanetti F, Donofrio G, Boschi F, Villetti G, Sorio C, Assael BM, Melotti P, Lleo MM. In vivo monitoring of lung inflammation in CFTR-deficient mice. J Transl Med 2016; 14:226. [PMID: 27468800 PMCID: PMC4964274 DOI: 10.1186/s12967-016-0976-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/13/2016] [Indexed: 12/14/2022] Open
Abstract
Background Experimentally, lung inflammation in laboratory animals is usually detected by the presence of inflammatory markers, such as immune cells and cytokines, in the bronchoalveolar lavage fluid (BALF) of sacrificed animals. This method, although extensively used, is time, money and animal life consuming, especially when applied to genetically modified animals. Thus a new and more convenient approach, based on in vivo imaging analysis, has been set up to evaluate the inflammatory response in the lung of CFTR-deficient (CF) mice, a murine model of cystic fibrosis. Methods Wild type (WT) and CF mice were stimulated with P. aeruginosa LPS, TNF-alpha and culture supernatant derived from P. aeruginosa (strain VR1). Lung inflammation was detected by measuring bioluminescence in vivo in mice transiently transgenized with a luciferase reporter gene under the control of a bovine IL-8 gene promoter. Results Differences in bioluminescence (BLI) signal were revealed by comparing the two types of mice after intratracheal challenge with pro-inflammatory stimuli. BLI increased at 4 h after stimulation with TNF-alpha and at 24 h after administration of LPS and VR1 supernatant in CF mice with respect to untreated animals. The BLI signal was significantly more intense and lasted for longer times in CF animals when compared to WT mice. Analysis of BALF markers: leukocytes, cytokines and histology revealed no significant differences between CF and WT mice. Conclusions In vivo gene delivery technology and non-invasive bioluminescent imaging has been successfully adapted to CFTR-deficient mice. Activation of bIL-8 transgene promoter can be monitored by non-invasive BLI imaging in the lung of the same animal and compared longitudinally in both CF or WT mice, after challenge with pro-inflammatory stimuli. The combination of these technologies and the use of CF mice offer the unique opportunity of evaluating the impact of therapies aimed to control inflammation in a CF background. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0976-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabio Stellari
- Pharmacology & Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici, Largo Belloli, 11/A, 43122, Parma, Italy.
| | | | - Francesca Ruscitti
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università di Parma, Parma, Italy
| | - Angela Sandri
- Dipartimento di Diagnostica e Salute Pubblica, Università di Verona, Verona, Italy
| | - Francesca Ravanetti
- Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| | - Gaetano Donofrio
- Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy
| | - Federico Boschi
- Dipartimento di Informatica, Università di Verona, Verona, Italy
| | - Gino Villetti
- Pharmacology & Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici, Largo Belloli, 11/A, 43122, Parma, Italy
| | - Claudio Sorio
- Dipartimento di Medicina, Università di Verona, Verona, Italy
| | - Barouk M Assael
- Centro Fibrosi Cistica, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Paola Melotti
- Centro Fibrosi Cistica, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Maria M Lleo
- Dipartimento di Diagnostica e Salute Pubblica, Università di Verona, Verona, Italy
| |
Collapse
|
13
|
Stellari F, Bergamini G, Sandri A, Donofrio G, Sorio C, Ruscitti F, Villetti G, Assael BM, Melotti P, Lleo MM. In vivo imaging of the lung inflammatory response to Pseudomonas aeruginosa and its modulation by azithromycin. J Transl Med 2015; 13:251. [PMID: 26239109 PMCID: PMC4522964 DOI: 10.1186/s12967-015-0615-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/21/2015] [Indexed: 01/08/2023] Open
Abstract
Background Chronic inflammation of the airways is a central component in lung diseases and is frequently associated with bacterial infections. Monitoring the pro-inflammatory capability of bacterial virulence factors in vivo is challenging and usually requires invasive methods. Methods Lung inflammation was induced using the culture supernatants from two Pseudomonas aeruginosa clinical strains, VR1 and VR2, isolated from patients affected by cystic fibrosis and showing different phenotypes in terms of motility, colony characteristics and biofilm production as well as pyoverdine and pyocyanine release. More interesting, the strains differ also for the presence in supernatants of metalloproteases, a family of virulence factors with known pro-inflammatory activity. We have evaluated the benefit of using a mouse model, transiently expressing the luciferase reporter gene under the control of an heterologous IL-8 bovine promoter, to detect and monitoring lung inflammation. Results In vivo imaging indicated that VR1 strain, releasing in its culture supernatant metalloproteases and other virulence factors, induced lung inflammation while the VR2 strain presented with a severely reduced pro-inflammatory activity. The bioluminescence signal was detectable from 4 to 48 h after supernatant instillation. The animal model was also used to test the anti-inflammatory activity of azithromycin (AZM), an antibiotic with demonstrated inhibitory effect on the synthesis of bacterial exoproducts. The inflammation signal in mice was in fact significantly reduced when bacteria grew in the presence of a sub-lethal dose of AZM causing inhibition of the synthesis of metalloproteases and other bacterial elements. The in vivo data were further supported by quantification of immune cells and cytokine expression in mouse broncho-alveolar lavage samples. Conclusions This experimental animal model is based on the transient transduction of the bovine IL-8 promoter, a gene representing a major player during inflammation, essential for leukocytes recruitment to the inflamed tissue. It appears to be an appropriate molecular read-out for monitoring the activation of inflammatory pathways caused by bacterial virulence factors. The data presented indicate that the model is suitable to functionally monitor in real time the lung inflammatory response facilitating the identification of bacterial factors with pro-inflammatory activity and the evaluation of the anti-inflammatory activity of old and new molecules for therapeutic use.
Collapse
Affiliation(s)
- Fabio Stellari
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A. Parma, Largo Belloli, 11/A, 43122, Parma, Italy.
| | - Gabriella Bergamini
- Dipartimento di Patologia e Diagnostica, Università di Verona, Verona, Italy.
| | - Angela Sandri
- Dipartimento di Patologia e Diagnostica, Università di Verona, Verona, Italy.
| | - Gaetano Donofrio
- Dipartimento di Scienze Medico Veterinarie, Università di Parma, Parma, Italy.
| | - Claudio Sorio
- Dipartimento di Patologia e Diagnostica, Università di Verona, Verona, Italy.
| | - Francesca Ruscitti
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Università di Parma, Parma, Italy.
| | - Gino Villetti
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A. Parma, Largo Belloli, 11/A, 43122, Parma, Italy.
| | - Barouk M Assael
- Centro Regionale Fibrosi Cistica, AOUI Verona, Verona, Italy.
| | - Paola Melotti
- Centro Regionale Fibrosi Cistica, AOUI Verona, Verona, Italy.
| | - Maria M Lleo
- Dipartimento di Patologia e Diagnostica, Università di Verona, Verona, Italy.
| |
Collapse
|
14
|
Franceschi V, Jacca S, Sassu EL, Stellari FF, van Santen VL, Donofrio G. Generation and characterization of the first immortalized alpaca cell line suitable for diagnostic and immunization studies. PLoS One 2014; 9:e105643. [PMID: 25140515 PMCID: PMC4139384 DOI: 10.1371/journal.pone.0105643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023] Open
Abstract
Raising of alpacas as exotic livestock for wool and meat production and as companion animals is growing in importance in the United States, Europe and Australia. Furthermore the alpaca, as well as the rest of the camelids, possesses the peculiarity of producing single-chain antibodies from which nanobodies can be generated. Nanobodies, due to their structural simplicity and reduced size, are very versatile in terms of manipulation and bio-therapeutic exploitation. In fact the biotech companies involved in nanobody production and application continue to grow in number and size. Hence, the development of reagents and tools to assist in the further growth of this new scientific and entrepreneurial reality is becoming a necessity. These are needed mainly to address alpaca disease diagnosis and prophylaxis, and to develop alpaca immunization strategies for nanobody generation. For instance an immortalized alpaca cell line would be extremely valuable. In the present work the first stabilized alpaca cell line from alpaca skin stromal cells (ASSCs) was generated and characterized. This cell line was shown to be suitable for replication of viruses bovine herpesvirus-1, bovine viral diarrhea virus and caprine herpesvirus-1 and the endocellular parasite Neospora caninum. Moreover ASSCs were easy to transfect and transduce by several methods. These two latter characteristics are extremely useful when recombinant antigens need to be produced in a host homologous system. This work could be considered as a starting point for the expansion of the biotechnologies linked to alpaca farming and industry.
Collapse
Affiliation(s)
| | - Sarah Jacca
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - Elena L. Sassu
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - Fabio F. Stellari
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
| | - Vicky L. van Santen
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Gaetano Donofrio
- Department of Medical Veterinary Science, University of Parma, Parma, Italy
- * E-mail:
| |
Collapse
|
15
|
Stellari FF, Lavrentiadou S, Ruscitti F, Jacca S, Franceschi V, Civelli M, Carnini C, Villetti G, Donofrio G. Enlightened Mannhemia haemolytica lung inflammation in bovinized mice. Vet Res 2014; 45:8. [PMID: 24460618 PMCID: PMC3906860 DOI: 10.1186/1297-9716-45-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/17/2014] [Indexed: 11/10/2022] Open
Abstract
Polymorphonuclear cells diapedesis has an important contribution to the induced Mannhemia haemolytica (M. haemolytica) infection lung inflammation and IL-8 is the primary polymorphonuclear chemoattractant. Using a bovine IL-8/luciferase transiently transgenized mouse model, the orchestration among M. haemolytica, IL-8 promoter activation and neutrophilia was followed in real time by in vivo image analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gaetano Donofrio
- Department of Medical Veterinary Science, University of Parma, via del Taglio 10, 43126 Parma, Italy.
| |
Collapse
|
16
|
Xia Z, Jiang K, Liu T, Zheng H, Liu X, Zheng X. The protective effect of Cold-inducible RNA-binding protein (CIRP) on testicular torsion/detorsion: an experimental study in mice. J Pediatr Surg 2013; 48:2140-7. [PMID: 24094970 DOI: 10.1016/j.jpedsurg.2013.02.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 11/17/2022]
Abstract
PURPOSE To evaluate the expression of Cold-inducible RNA-binding protein (CIRP) in torsion/detorsion of the testes in different phases and demonstrate the protective effect of CIRP on testicular injury after torsion/detorsion (T/D) in an experimental mouse model. METHODS Twenty-four male BALB/c mice were divided randomly into 8 groups: normal control group (N), sham-operated group (S), torsion 2 h group (T2h), torsion/detorsion 12 h group (T/D12h), and T/D24h, T/D48h, T/D72h, and T/D96h groups. The testes were examined for the expression levels of CIRP. Another 32 male BALB/c mice were divided randomly in to 4 groups: normal control group (N), T/D group, T/D+pcDNA3.1 group, and T/D + pcDNA3.1-CIRP group. The plasmids were transfected into testes with in vivo-jetPEI. After 3 days, morphological changes, mean seminiferous tubule diameter (MSTD), and the number of the germ cell layers were observed. Superoxide dismutase (SOD) activity, the levels of malondialdehyde (MDA), and Bcl-2/Bax ratios were studied in the different groups. RESULTS Compared with the N and S groups, the expression of CIRP in the T2h group was down-regulated. In T/D groups, the levels of CIRP were reduced in a time dependent manner. Compared to T/D and T/D+pcDNA3.1 group, the MSTD, number of the germ cell layers, SOD activity, and Bcl-2/Bax ratio increased in T/D + pcDNA3.1-CIRP group, while the level of MDA decreased. CONCLUSIONS The results of our study have shown that down-regulated CIRP is involved in testicular injury after testicular torsion/detorsion. Up-regulation of the expression of CIRP may reduce the damage caused by torsion/detorsion, possibly by preventing germ cell oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Zhiping Xia
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P.R. China
| | | | | | | | | | | |
Collapse
|