1
|
Prombutara P, Adriansyah Putra Siregar T, Laopanupong T, Kanjanasirirat P, Khumpanied T, Borwornpinyo S, Rai A, Chaiprasert A, Palittapongarnpim P, Ponpuak M. Host cell transcriptomic response to the multidrug-resistant Mycobacterium tuberculosis clonal outbreak Beijing strain reveals its pathogenic features. Virulence 2022; 13:1810-1826. [PMID: 36242542 PMCID: PMC9578452 DOI: 10.1080/21505594.2022.2135268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The upsurge of multidrug-resistant infections has rendered tuberculosis the principal cause of death among infectious diseases. A clonal outbreak multidrug-resistant triggering strain of Mycobacterium tuberculosis was identified in Kanchanaburi Province, labelled "MKR superspreader," which was found to subsequently spread to other regions, as revealed by prior epidemiological reports in Thailand. Herein, we showed that the MKR displayed a higher growth rate upon infection into host macrophages in comparison with the H37Rv reference strain. To further elucidate MKR's biology, we utilized RNA-Seq and differential gene expression analyses to identify host factors involved in the intracellular viability of the MKR. A set of host genes function in the cellular response to lipid pathway was found to be uniquely up-regulated in host macrophages infected with the MKR, but not those infected with H37Rv. Within this set of genes, the IL-36 cytokines which regulate host cell cholesterol metabolism and resistance against mycobacteria attracted our interest, as our previous study revealed that the MKR elevated genes associated with cholesterol breakdown during its growth inside host macrophages. Indeed, when comparing macrophages infected with the MKR to H37Rv-infected cells, our RNA-Seq data showed that the expression ratio of IL-36RN, the negative regulator of the IL-36 pathway, to that of IL-36G was greater in macrophages infected with the MKR. Furthermore, the MKR's intracellular survival and increased intracellular cholesterol level in the MKR-infected macrophages were diminished with decreased IL-36RN expression. Overall, our results indicated that IL-36RN could serve as a new target against this emerging multidrug-resistant M. tuberculosis strain.
Collapse
Affiliation(s)
- Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand.,Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tegar Adriansyah Putra Siregar
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Microbiology, Faculty of Medicine, University of Muhammadiyah Sumatera Utara, Medan, Indonesia
| | - Thanida Laopanupong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Awantika Rai
- School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Angkana Chaiprasert
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Aiewsakun P, Prombutara P, Siregar TAP, Laopanupong T, Kanjanasirirat P, Khumpanied T, Borwornpinyo S, Tong-Ngam P, Tubsuwan A, Srilohasin P, Chaiprasert A, Ruangchai W, Palittapongarnpim P, Prammananan T, VanderVen BC, Ponpuak M. Transcriptional response to the host cell environment of a multidrug-resistant Mycobacterium tuberculosis clonal outbreak Beijing strain reveals its pathogenic features. Sci Rep 2021; 11:3199. [PMID: 33542438 PMCID: PMC7862621 DOI: 10.1038/s41598-021-82905-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis is a global public health problem with emergence of multidrug-resistant infections. Previous epidemiological studies of tuberculosis in Thailand have identified a clonal outbreak multidrug-resistant strain of Mycobacterium tuberculosis in the Kanchanaburi province, designated “MKR superspreader”, and this particular strain later was found to also spread to other regions. In this study, we elucidated its biology through RNA-Seq analyses and identified a set of genes involved in cholesterol degradation to be up-regulated in the MKR during the macrophage cell infection, but not in the H37Rv reference strain. We also found that the bacterium up-regulated genes associated with the ESX-1 secretion system during its intracellular growth phase, while the H37Rv did not. All results were confirmed by qRT-PCR. Moreover, we showed that compounds previously shown to inhibit the mycobacterial ESX-1 secretion system and cholesterol utilisation, and FDA-approved drugs known to interfere with the host cholesterol transportation were able to decrease the intracellular survival of the MKR when compared to the untreated control, while not that of the H37Rv. Altogether, our findings suggested that such pathways are important for the MKR’s intracellular growth, and potentially could be targets for the discovery of new drugs against this emerging multidrug-resistant strain of M. tuberculosis.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Thanida Laopanupong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Tanawadee Khumpanied
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pirut Tong-Ngam
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Alisa Tubsuwan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Prapaporn Srilohasin
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Angkana Chaiprasert
- Drug-Resistance Tuberculosis Research Fund, Siriraj Foundation, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wuthiwat Ruangchai
- Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Therdsak Prammananan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pratumthani, Thailand
| | - Brian C VanderVen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Marisa Ponpuak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand. .,Pornchai Matangkasombut Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Kyi MS, Palittapongarnpim P, Chaiprasert A, Ajawatanawong P, GarcIa HCG, Chongsuvivatwong V. Infection of multiple Mycobacterium tuberculosis strains among tuberculosis/human immunodeficiency virus co-infected patients: A molecular study in Myanmar. Int J Mycobacteriol 2019; 7:375-379. [PMID: 30531038 PMCID: PMC6341994 DOI: 10.4103/ijmy.ijmy_108_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background: Appearance of Mycobacterium tuberculosis (MTB) in the sputum of a tuberculosis (TB)/human
immunodeficiency virus (HIV) co-infected patient under treatment may indicate either failure or new infection. This study aims
to evaluate whether TB treatment failure among TB/HIV co-infected patients is a real failure. Methods: A prospective cohort study was conducted among 566 TB/HIV co-infected patients who started TB treatment in 12 townships
in the upper Myanmar. Among the 566 participants, 16 (2.8%) resulted in treatment failure. We performed a molecular study
using mycobacterial interspersed repetitive-unit-variable number of tandem repeat (MIRU-VNTR) genotyping for them. The
MIRU-VNTR profiles were analyzed using the web server, MIRU-VNTRplus. All data were entered into EpiData version 3.1 and
analyzed using R version 3.4.3. Results: Among 16 failure patients, seven had incomplete laboratory results. Of the nine remaining patients, nobody had exactly
the same MIRU-VNTR pattern between the initial and final isolates. Four patients had persistent East-African Indian (EAI)
lineages and one each had persistent Beijing lineage, changing from EAI to Beijing, from Beijing to EAI, NEW-1 to Beijing, and
NEW-1 to X strains. Female patients have significantly larger genetic difference between MTB of the paired isolates than male
patients (t-test, P = 0.04). Conclusion: Thus, in our study patients, infection of multiple MTB strains is a possible cause of TB treatment failure. Explanation
for the association between gender and distance of genotypes from the initial to subsequent MTB infection needs further
studies.
Collapse
Affiliation(s)
- Myo Su Kyi
- Department of Regional Public Health, Nay Pyi Taw Union Territory, Ministry of Health and Sports, Myanmar; Department of Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | | | - Angkana Chaiprasert
- Department of Research and Development Affairs, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pravech Ajawatanawong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - H Ctor Guzmán GarcIa
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Virasakdi Chongsuvivatwong
- Department of Epidemiology Unit, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
4
|
Perdigão J, Silva C, Diniz J, Pereira C, Machado D, Ramos J, Silva H, Abilleira F, Brum C, Reis AJ, Macedo M, Scaini JL, Silva AB, Esteves L, Macedo R, Maltez F, Clemente S, Coelho E, Viegas S, Rabna P, Rodrigues A, Taveira N, Jordao L, Kritski A, Lapa E Silva JR, Mokrousov I, Couvin D, Rastogi N, Couto I, Pain A, McNerney R, Clark TG, von Groll A, Dalla-Costa ER, Rossetti ML, Silva PEA, Viveiros M, Portugal I. Clonal expansion across the seas as seen through CPLP-TB database: A joint effort in cataloguing Mycobacterium tuberculosis genetic diversity in Portuguese-speaking countries. INFECTION GENETICS AND EVOLUTION 2018; 72:44-58. [PMID: 29559379 PMCID: PMC6598853 DOI: 10.1016/j.meegid.2018.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 12/22/2022]
Abstract
Tuberculosis (TB) remains a major health problem within the Community of Portuguese Language Speaking Countries (CPLP). Despite the marked variation in TB incidence across its member-states and continued human migratory flux between countries, a considerable gap in the knowledge on the Mycobacterium tuberculosis population structure and strain circulation between the countries still exists. To address this, we have assembled and analysed the largest CPLP M. tuberculosis molecular and drug susceptibility dataset, comprised by a total of 1447 clinical isolates, including 423 multidrug-resistant isolates, from five CPLP countries. The data herein presented reinforces Latin American and Mediterranean (LAM) strains as the hallmark of M. tuberculosis populational structure in the CPLP coupled with country-specific differential prevalence of minor clades. Moreover, using high-resolution typing by 24-loci MIRU-VNTR, six cross-border genetic clusters were detected, thus supporting recent clonal expansion across the Lusophone space. To make this data available to the scientific community and public health authorities we developed CPLP-TB (available at http://cplp-tb.ff.ulisboa.pt), an online database coupled with web-based tools for exploratory data analysis. As a public health tool, it is expected to contribute to improved knowledge on the M. tuberculosis population structure and strain circulation within the CPLP, thus supporting the risk assessment of strain-specific trends. The Community of Portuguese Speaking Countries (CPLP) occupies a vast geographical area. Three CPLP countries are shortlisted in the WHO's list of Top 30 high-burden countries. Common Mycobacterium tuberculosis population structure denote historical strain flow. Cross-border clusters suggest recent intercontinental tuberculosis transmission. CPLP-TB: a novel strain database and framework for collaborative studies and strain tracing.
Collapse
Affiliation(s)
- João Perdigão
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| | - Carla Silva
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Jaciara Diniz
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Catarina Pereira
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Machado
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Jorge Ramos
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Hugo Silva
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Fernanda Abilleira
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Clarice Brum
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Ana J Reis
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Maíra Macedo
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - João L Scaini
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Ana B Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Leonardo Esteves
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil
| | - Rita Macedo
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Fernando Maltez
- Serviço de Doenças Infecciosas, Hospital de Curry Cabral, Lisboa, Portugal
| | - Sofia Clemente
- Hospital da Divina Providência, Serviço de Doenças Infecciosas, Luanda, Angola
| | - Elizabeth Coelho
- Programa Nacional de Controlo da Tuberculose, Ministério da Saúde de Moçambique, Mozambique
| | - Sofia Viegas
- Instituto Nacional de Saúde, Ministério da Saúde de Moçambique, Mozambique
| | - Paulo Rabna
- Instituto Nacional de Saúde Pública, Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guinea-Bissau
| | - Amabélia Rodrigues
- Instituto Nacional de Saúde Pública, Projecto de Saúde de Bandim (INASA/PSB), Bissau, Guinea-Bissau
| | - Nuno Taveira
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz, Instituto Superior de Ciências da Saúde Egas Moniz, Monte de Caparica, Portugal
| | - Luísa Jordao
- Departamento de Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | - Afrânio Kritski
- Academic Tuberculosis Program, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - José R Lapa E Silva
- Thoracic Diseases Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics (former Laboratory of Molecular Microbiology), St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - David Couvin
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière Abymes, Guadeloupe, France
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière Abymes, Guadeloupe, France
| | - Isabel Couto
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ruth McNerney
- Lung Infection and Immunity Unit, UCT Lung Institute, University of Cape Town, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa
| | - Taane G Clark
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Andrea von Groll
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Elis R Dalla-Costa
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil
| | - Maria Lúcia Rossetti
- Centro de Desenvolvimento Científico e Tecnológico (CDCT), Porto Alegre, Brazil; Universidade Luterana do Brasil (ULBRA/RS), Porto Alegre, Brazil
| | - Pedro E A Silva
- Núcleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - Miguel Viveiros
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Lisboa, Portugal
| | - Isabel Portugal
- iMed.ULisboa - Instituto de Investigação do Medicamento, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
5
|
Pan XL, Zhang CL, Nakajima C, Fu J, Shao CX, Zhao LN, Cui JY, Jiao N, Fan CL, Suzuki Y, Hattori T, Li D, Ling H. A quantitative and efficient approach to select MIRU-VNTR loci based on accumulation of the percentage differences of strains for discriminating divergent Mycobacterium tuberculosis sublineages. Emerg Microbes Infect 2017; 6:e68. [PMID: 28745309 PMCID: PMC5567172 DOI: 10.1038/emi.2017.58] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 06/04/2017] [Indexed: 11/09/2022]
Abstract
Although several optimal mycobacterial interspersed repetitive units-variable number tandem repeat (MIRU-VNTR) loci have been suggested for genotyping homogenous Mycobacterium tuberculosis, including the Beijing genotype, a more efficient and convenient selection strategy for identifying optimal VNTR loci is needed. Here 281 M. tuberculosis isolates were analyzed. Beijing genotype and non-Beijing genotypes were identified, as well as Beijing sublineages, according to single nucleotide polymorphisms. A total of 22 MIRU-VNTR loci were used for genotyping. To efficiently select optimal MIRU-VNTR loci, we established accumulations of percentage differences (APDs) between the strains among the different genotypes. In addition, we constructed a minimum spanning tree for clustering analysis of the VNTR profiles. Our findings showed that eight MIRU-VNTR loci displayed disparities in h values of ≥0.2 between the Beijing genotype and non-Beijing genotype isolates. To efficiently discriminate Beijing and non-Beijing genotypes, an optimal VNTR set was established by adding loci with APDs ranging from 87.2% to 58.8%, resulting in the construction of a nine-locus set. We also found that QUB11a is a powerful locus for separating ST10s (including ST10, STF and STCH1) and ST22s (including ST22 and ST8) strains, whereas a combination of QUB11a, QUB4156, QUB18, Mtub21 and QUB26 could efficiently discriminate Beijing sublineages. Our findings suggested that two nine-locus sets were not only efficient for distinguishing the Beijing genotype from non-Beijing genotype strains, but were also suitable for sublineage genotyping with different discriminatory powers. These results indicate that APD represents a quantitative and efficient approach for selecting MIRU-VNTR loci to discriminate between divergent M. tuberculosis sublineages.
Collapse
Affiliation(s)
- Xin-Ling Pan
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Chun-Lei Zhang
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo 0010020, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo 0600808, Japan
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150026, China
| | - Chang-Xia Shao
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Li-Na Zhao
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Jia-Yi Cui
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Na Jiao
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Chang-Long Fan
- Department of Clinical Laboratory, Harbin Chest Hospital, Harbin 150081, China
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo 0010020, Japan.,The Global Station for Zoonosis Control, Hokkaido University Global Institution for Collaborative Research and Education, Sapporo 0600808, Japan
| | - Toshio Hattori
- Graduate School of Health Science Studies, Kibi International University, Takahashi 7168508, Japan
| | - Di Li
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| | - Hong Ling
- Department of Microbiology, Wu Lien-Teh Institute, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Infection and Immunity, Key Laboratory of Pathogen Biology, Harbin 150081, China
| |
Collapse
|
6
|
Zheng C, Reynaud Y, Zhao C, Zozio T, Li S, Luo D, Sun Q, Rastogi N. New Mycobacterium tuberculosis Beijing clonal complexes in China revealed by phylogenetic and Bayesian population structure analyses of 24-loci MIRU-VNTRs. Sci Rep 2017; 7:6065. [PMID: 28729708 PMCID: PMC5519585 DOI: 10.1038/s41598-017-06346-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/12/2017] [Indexed: 11/09/2022] Open
Abstract
Beijing lineage of Mycobacterium tuberculosis constitutes the most predominant lineage in East Asia. Beijing epidemiology, evolutionary history, genetics are studied in details for years revealing probable origin from China followed by worldwide expansion, partially linked to higher mutation rate, hypervirulence, drug-resistance, and association with cases of mixed infections. Considering huge amount of data available for 24-loci Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats, we performed detailed phylogenetic and Bayesian population structure analyses of Beijing lineage strains in mainland China and Taiwan using available 24-loci MIRU-VNTR data extracted from publications or the SITVIT2 database (n = 1490). Results on genetic structuration were compared to previously published data. A total of three new Beijing clonal complexes tentatively named BSP1, BPS2 and BSP3 were revealed with surprising phylogeographical specificities to previously unstudied regions in Sichuan, Chongqing and Taiwan, proving the need for continued investigations with extended datasets. Such geographical restriction could correspond to local adaptation of these “ecological specialist” Beijing isolates to local human host populations in contrast with “generalist pathogens” able to adapt to several human populations and to spread worldwide.
Collapse
Affiliation(s)
- Chao Zheng
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China.,WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière, 97183, Abymes, Guadeloupe, France
| | - Yann Reynaud
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière, 97183, Abymes, Guadeloupe, France.
| | - Changsong Zhao
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Thierry Zozio
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière, 97183, Abymes, Guadeloupe, France
| | - Song Li
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Dongxia Luo
- Public Health Clinical Center of Chengdu, Chengdu, Sichuan, 610000, PR China
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China.
| | - Nalin Rastogi
- WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière, 97183, Abymes, Guadeloupe, France.
| |
Collapse
|
7
|
Chen YY, Chang JR, Wu CD, Yeh YP, Yang SJ, Hsu CH, Lin MC, Tsai CF, Lin MS, Su IJ, Dou HY. Combining molecular typing and spatial pattern analysis to identify areas of high tuberculosis transmission in a moderate-incidence county in Taiwan. Sci Rep 2017; 7:5394. [PMID: 28710410 PMCID: PMC5511213 DOI: 10.1038/s41598-017-05674-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/01/2017] [Indexed: 11/08/2022] Open
Abstract
In total, 303 randomly selected clinical Mycobacterium tuberculosis (MTB) isolates from 303 patients (collected January to December 2012) in central Taiwan were examined. The major lineages found were Beijing (N = 114, 37.62%), Haarlem (N = 76, 25.08%) and East African-Indian (EAI) (N = 42, 13.86%). Notably, younger persons (≤30 years old) were 6.58 times more likely to be infected with a Beijing genotype compared to older persons (>70 years) (p < 0.05). Combining molecular typing methods and geographical information system (GIS) analysis, we uncovered a twofold higher incidence of Beijing strains in a hotspot area (33%) compared to non-hotspot areas (17%). By 24 MIRU-VNTR typing, persons in clustered groups were 1.96 times more likely to be infected with a Beijing strain compared with non-clustered persons, suggesting recent spread and emergence of MTB. Finally, we observed a trend in which TB incidence increased as the density/concentration of analyzed environmental factors increased, suggesting that environmental factors are associated with TB transmission; however, only population density was found to be significantly associated with increased risk of TB (p < 0.05). Molecular typing methods combined with spatial analysis suggest possible TB transmission. Early intervention to interrupt transmission may be most effective if targeted to hot zones of TB.
Collapse
Affiliation(s)
- Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiai-Yi, Taiwan
| | - Jia-Ru Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chih-Da Wu
- Department of Forestry and Natural Resources, National Chiayi University, Chia-Yi, Taiwan
- The Center for Health and the Global Environment, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yen-Po Yeh
- Chang-Hua County Public Health Bureau, Changhua City, Taiwan
| | - Shiu-Ju Yang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chih-Hao Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Ming-Ching Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Ching-Fang Tsai
- Department of Medical Research, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Ming-Shian Lin
- Department of Internal Medicine, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan.
| |
Collapse
|
8
|
Zhou Y, van den Hof S, Wang S, Pang Y, Zhao B, Xia H, Anthony R, Ou X, Li Q, Zheng Y, Song Y, Zhao Y, van Soolingen D. Association between genotype and drug resistance profiles of Mycobacterium tuberculosis strains circulating in China in a national drug resistance survey. PLoS One 2017; 12:e0174197. [PMID: 28333978 PMCID: PMC5363926 DOI: 10.1371/journal.pone.0174197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/06/2017] [Indexed: 11/19/2022] Open
Abstract
We describe the population structure of a representative collection of 3,133 Mycobacterium tuberculosis isolates, collected within the framework of a national resistance survey from 2007 in China. Genotyping data indicate that the epidemic strains in China can be divided into seven major complexes, of which 92% belonged to the East Asian (mainly Beijing strains) or the Euro-American lineage. The epidemic Beijing strains in China are closely related to the Beijing B0/W148 strain earlier described in Russia and a large cluster of these strains has spread national wide. The density of Beijing strains is high in the whole of China (average 70%), but the highest prevalence was found North of the Yellow river. The Euro-American lineage consists of three sublineages (sublineage_1, 2, and 3) and is more prevalent in the South. Beijing lineage showed the highest cluster rate of 48% and a significantly higher level of resistance to rifampicin (14%, p<0.001), ethambutol (9%, p = 0.001), and ofloxacin (5%, p = 0.011). Within the Euro-American Lineage, sublineage_3 revealed the highest cluster rate (28%) and presented a significantly elevated level of resistance to streptomycin (44%, p<0.001). Our findings suggest that standardised treatment in this region may have contributed to the successful spread of certain strains: sublineage_3 in the Euro-American lineage may have thrived when streptomycin was used without rifampicin for treatment, while later under DOTS based treatment, in which rifampicin plays a key role, Beijing lineage appears to be spreading.
Collapse
Affiliation(s)
- Yang Zhou
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Susan van den Hof
- KNCV Tuberculosis Foundation, CC The Hague, The Netherlands
- Department of Global Health, Amsterdam Medical Center, Pietersbergweg 17, BM Amsterdam, The Netherlands
| | - Shengfen Wang
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yu Pang
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Bing Zhao
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Hui Xia
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Richard Anthony
- National Institute for Public Health and the Environment, the Netherlands,BA Bilthoven, The Netherlands
| | - Xichao Ou
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Qiang Li
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yang Zheng
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yuanyuan Song
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Yanlin Zhao
- Chinese Centre for Disease Control and Prevention, Changping district, Beijing, China, P.R
| | - Dick van Soolingen
- National Institute for Public Health and the Environment, the Netherlands,BA Bilthoven, The Netherlands
| |
Collapse
|
9
|
Jiang M, Zhang J, Li Y, Shi X, Qiu Y, Lin Y, Chen Q, Jiang Y, Hu Q. Feasibility of Using Multiple-Locus Variable-Number Tandem-Repeat Analysis for Epidemiology Study of Vibrio parahaemolyticus Infections. Foodborne Pathog Dis 2016; 13:575-581. [PMID: 27454001 DOI: 10.1089/fpd.2016.2141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio parahaemolyticus causes foodborne gastroenteritis, which is often associated with the consumption of raw or undercooked shellfish. Molecular typing can provide critical information for detecting outbreaks and for source attribution. In this study, we describe the development and evaluation of an optimized multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) for the characterization of V. parahaemolyticus isolates. The discriminatory power of MLVA was compared to that of pulsed-field gel electrophoresis (PFGE) by typing 73 sporadic isolates. Epidemiologic concordance was evaluated by typing 23 isolates from five epidemiologically well-characterized outbreaks. The optimized MLVA was applied in early warning, epidemiological surveillance, and source tracking for V. parahaemolyticus infections. There was no significant difference in the discriminatory power of PFGE and MLVA with six or eight VNTR loci for the sporadic isolates. All isolates within an outbreak were indistinguishable by MLVA with six loci, except for one outbreak. Typically, the epidemiological survey could be initiated according to PFGE clusters. We applied MLVA with six loci on 22 isolates in two PFGE clusters. Isolates in one PFGE cluster were distinguished by MLVA. Although a follow-up investigation showed that both clusters had no epidemiological concordance, MLVA decreased the frequency of initiation of epidemiological surveys, thereby reducing labor costs. The ability of MLVA to trace the source of infection was evaluated by isolates from two outbreaks and shrimp samples. The isolates from one of outbreaks and a shrimp had the same MLVA type, suggesting that an epidemiological survey was initiated. Data from the epidemiological investigation subsequently indicated that contaminated shrimp from a nearby city (Dongguan) might be the source of the outbreak. In conclusion, these results indicate that the optimized MLVA may be a promising tool for early warning and epidemiological surveillance of V. parahaemolyticus infections.
Collapse
Affiliation(s)
- Min Jiang
- 1 Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention , Shenzhen, China
| | - Jinjin Zhang
- 2 Futian District Center for Disease Control and Prevention , Shenzhen, China
| | - Yinghui Li
- 1 Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention , Shenzhen, China
| | - Xiaolu Shi
- 1 Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention , Shenzhen, China
| | - Yaqun Qiu
- 1 Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention , Shenzhen, China
| | - Yiman Lin
- 1 Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention , Shenzhen, China
| | - Qiongcheng Chen
- 1 Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention , Shenzhen, China
| | - Yixiang Jiang
- 1 Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention , Shenzhen, China
| | - Qinghua Hu
- 1 Shenzhen Major Infectious Disease Control Key Laboratory, Shenzhen Center for Disease Control and Prevention , Shenzhen, China
| |
Collapse
|
10
|
Pulmonary immunity and durable protection induced by the ID93/GLA-SE vaccine candidate against the hyper-virulent Korean Beijing Mycobacterium tuberculosis strain K. Vaccine 2016; 34:2179-87. [PMID: 27005808 DOI: 10.1016/j.vaccine.2016.03.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/21/2016] [Accepted: 03/12/2016] [Indexed: 11/24/2022]
Abstract
The majority of tuberculosis (TB) vaccine candidates advanced to clinical trials have been evaluated preclinically using laboratory-adapted strains. However, it has been proposed that challenge with clinical isolates in preclinical vaccine testing could provide further and more practical validation. Here, we tested the ID93/GLA-SE TB vaccine candidate against the clinical Mycobacterium tuberculosis (Mtb) strain K (Mtb K) belonging to the Beijing family, the most prevalent Mtb strain in South Korea. Mice immunized with ID93/GLA-SE exhibited a significant reduction in bacteria and reduced lung inflammation against Mtb K when compared to non-immunized controls. In addition, we analyzed the immune responses in the lungs of ID93/GLA-SE-immunized mice, and showed that ID93/GLA-SE was able to elicit sustained Th1-biased immune responses including antigen-specific multifunctional CD4(+) T cell co-producing IFN-γ, TNF-α, and IL-2 as well as a high magnitude of IFN-γ response for up to 10 weeks post-challenge. Notably, further investigation of T cell subsets in the lung following challenge showed remarkable generation of CD8(+) central memory T cells by ID93/GLA-SE-immunization. Our findings showed that ID93/GLA-SE vaccine confers a high level of robust protection against the hypervirulent Mtb Beijing infection which was characterized by pulmonary Th1-polarized T-cell immune responses. These findings may also provide relevant information for potential utility of this vaccine candidate in East-Asian countries where the Beijing genotype is highly prevalent.
Collapse
|
11
|
Draft Genome Sequence of Mycobacterium tuberculosis Clinical Strain W06, a Prevalent Beijing Genotype Isolated in Taiwan. GENOME ANNOUNCEMENTS 2015; 3:3/6/e01460-15. [PMID: 26659689 PMCID: PMC4675954 DOI: 10.1128/genomea.01460-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mycobacterium tuberculosis strain W06, analyzed by molecular methods, was classified as a modern Beijing M. tuberculosis strain, the most predominant strain in Taiwan. To our knowledge, this is the first draft genome announcement of a Beijing M. tuberculosis strain in Taiwan.
Collapse
|
12
|
Chen YY, Chang JR, Huang WF, Hsu CH, Cheng HY, Sun JR, Kuo SC, Su IJ, Lin MS, Chen W, Dou HY. Genetic diversity of the Mycobacterium tuberculosis East African-Indian family in three tropical Asian countries. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 50:886-892. [PMID: 26922173 DOI: 10.1016/j.jmii.2015.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/29/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND The Beijing lineage of Mycobacterium tuberculosis (MTB) is the most predominant MTB strain in Asian countries and is spreading worldwide, however, the East African-Indian (EAI) lineage is also particularly prevalent in many tropical Asian countries. The evolutionary relationships among MTB EAI isolates from Taiwan and those of tropical Asian countries remain unknown. METHODS The EAI strains collected from patients in Taiwan were analyzed using spacer oligonucleotide typing and mycobacterial interspersed repetitive unit-variable number of tandem repeats (MIRU-VNTR) typing, and compared with published profiles from Cambodia and Singapore to investigate potential epidemiological linkages. RESULTS Among the three countries, the EAI lineage was most prevalent in Cambodia (60%; Singapore, 25.62%; and Taiwan, 21.85%), having also the highest rates of multidrug resistance and lowest rates of clustering of MTB isolates. We describe a convenient method using seven selected MIRU-VNTR loci for first-line typing to discriminate Beijing and EAI lineages. A potential epidemiological linkage in these tropical Asian countries is also discussed based on a minimum-spanning tree constructed using 24 MIRU-VNTR loci of MTB EAI strains. CONCLUSION This study identified evolutionary relationships among MTB EAI isolates from Taiwan and those of two other tropical Asian countries, Cambodia and Singapore.
Collapse
Affiliation(s)
- Yih-Yuan Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC; Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan, ROC.
| | - Jia-Ru Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Wei-Feng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Chih-Hao Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Han-Yin Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Jun-Ren Sun
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC
| | - Ming-Shian Lin
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan, ROC
| | - Wei Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, Taiwan, ROC
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan, ROC.
| |
Collapse
|
13
|
Regmi SM, Chaiprasert A, Kulawonganunchai S, Tongsima S, Coker OO, Prammananan T, Viratyosin W, Thaipisuttikul I. Whole genome sequence analysis of multidrug-resistant Mycobacterium tuberculosis Beijing isolates from an outbreak in Thailand. Mol Genet Genomics 2015; 290:1933-41. [DOI: 10.1007/s00438-015-1048-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
|
14
|
Regmi SM, Coker OO, Kulawonganunchai S, Tongsima S, Prammananan T, Viratyosin W, Thaipisuttikul I, Chaiprasert A. Polymorphisms in drug-resistant-related genes shared among drug-resistant and pan-susceptible strains of sequence type 10, Beijing family of Mycobacterium tuberculosis. Int J Mycobacteriol 2015; 4:67-72. [DOI: 10.1016/j.ijmyco.2014.11.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 11/02/2014] [Indexed: 10/24/2022] Open
|
15
|
Molecular epidemiology of tuberculosis in Kaohsiung City located at southern Taiwan, 2000-2008. PLoS One 2015; 10:e0117061. [PMID: 25629610 PMCID: PMC4309396 DOI: 10.1371/journal.pone.0117061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 12/17/2014] [Indexed: 01/03/2023] Open
Abstract
Background We present the first comprehensive analysis of Mycobacterium tuberculosis (MTB) isolates circulating in southern Taiwan. In this 9-year population-based study, the TB situation in the Kaohsiung region was characterized by genotypic analysis of 421 MTB isolates. Methods All 421 isolates of MTB were analyzed by spoligotyping and MIRU-VNTR typing. Drug-resistance patterns were also analyzed. Results The percentage of EAI (East African-Indian) strains increased across sampling years (2000–2008) in southern Taiwan, whereas the proportion of Beijing lineages remained unchanged. Clustering was more frequent with EAI genotype infections (odds ratio = 3.6, p<0.0001) when compared to Beijing genotypes. Notably, MTB resistance to streptomycin (STR) had significantly increased over time, but resistance to other antibiotics, including multidrug resistance, had not. Three major genes (gidB, rpsL and rrs) implicated in STR resistance were sequenced and specific mutations identified. Conclusions This study revealed that EAI strains were highly transmissible and that STR resistance has increased between 2000 and 2008 in Kaohsiung, Taiwan.
Collapse
|
16
|
Dou HY, Chen YY, Kou SC, Su IJ. Prevalence of Mycobacterium tuberculosis strain genotypes in Taiwan reveals a close link to ethnic and population migration. J Formos Med Assoc 2014; 114:484-8. [PMID: 25542769 DOI: 10.1016/j.jfma.2014.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/10/2014] [Accepted: 07/21/2014] [Indexed: 01/02/2023] Open
Abstract
Taiwan is a relatively isolated island, serving as a mixing vessel for colonization by different waves of ethnic and migratory groups over the past 4 centuries. The potential transmission pattern of Mycobacterium tuberculosis in different ethnic and migratory populations remains to be elucidated. By using mycobacterial tandem repeat sequences as genetic markers, the prevalence of M. tuberculosis strains in Taiwan revealed a close link to the historical migration. Interestingly, the M. tuberculosis strain in the aborigines of Eastern and Central Taiwan had a dominance of the Haarlem (Dutch) strain while those in Southern Taiwan had a dominance of the East-African Indian (EAI) strain. The prevalence of different M. tuberculosis strains in specific ethnic populations suggests that M. tuberculosis transmission is limited and restricted to close contact. The prevalence of the Beijing modern strain in the young population causes a concern for M. tuberculosis control, because of high virulence and drug resistance. Furthermore, our data using molecular genotyping should provide valuable information on the historical study of the origin and migration of aborigines in Taiwan.
Collapse
Affiliation(s)
- Horng-Yunn Dou
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Number 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Yih-Yuan Chen
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Number 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Shu-Chen Kou
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Number 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan
| | - Ih-Jen Su
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Number 35, Keyan Road, Zhunan Town, Miaoli County 350, Taiwan; Department of Pathology, National Cheng Kung University Hospital, Tainan 704, Taiwan.
| |
Collapse
|
17
|
Chen YY, Lin CW, Huang WF, Chang JR, Su IJ, Hsu CH, Cheng HY, Hsu SC, Dou HY. Recombinant bacille Calmette-Guerin coexpressing Ag85b, CFP10, and interleukin-12 elicits effective protection against Mycobacterium tuberculosis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 50:90-96. [PMID: 25732698 DOI: 10.1016/j.jmii.2014.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/11/2014] [Accepted: 11/29/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND The tuberculosis (TB) pandemic remains a leading cause of human morbidity and mortality, despite widespread use of the only licensed anti-TB vaccine, bacille Calmette-Guerin (BCG). The protective efficacy of BCG in preventing pulmonary TB is highly variable; therefore, an effective new vaccine is urgently required. METHODS In the present study, we assessed the ability of novel recombinant BCG vaccine (rBCG) against Mycobacterium tuberculosis by using modern immunological methods. RESULTS Enzyme-linked immunospot assays demonstrated that the rBCG vaccine, which coexpresses two mycobacterial antigens (Ag85B and CFP10) and human interleukin (IL)-12 (rBCG2) elicits greater interferon-γ (IFN-γ) release in the mouse lung and spleen, compared to the parental BCG. In addition, rBCG2 triggers a Th1-polarized response. Our results also showed that rBCG2 vaccination significantly limits M. tuberculosis H37Rv multiplication in macrophages. The rBCG2 vaccine surprisingly induces significantly higher tumor necrosis factor-α (TNF-α) production by peripheral blood mononuclear cells that were exposed to a nonmycobacterial stimulus, compared to the parental BCG. CONCLUSION In this study, we demonstrated that the novel rBCG2 vaccine may be a promising candidate vaccine against M. tuberculosis infection.
Collapse
MESH Headings
- Acyltransferases/administration & dosage
- Acyltransferases/genetics
- Acyltransferases/immunology
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/genetics
- Animals
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Enzyme-Linked Immunospot Assay
- Female
- Humans
- Interferon-gamma/metabolism
- Interleukin-12/administration & dosage
- Interleukin-12/genetics
- Leukocytes, Mononuclear/immunology
- Lung/immunology
- Macrophages/immunology
- Macrophages/microbiology
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mycobacterium bovis/genetics
- Mycobacterium bovis/immunology
- Mycobacterium tuberculosis/growth & development
- Mycobacterium tuberculosis/immunology
- Spleen/immunology
- Th1 Cells/immunology
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/administration & dosage
- Tuberculosis Vaccines/genetics
- Tuberculosis Vaccines/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Yih-Yuan Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chih-Wei Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Wei-Feng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jia-Ru Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Ih-Jen Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Chih-Hao Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Han-Yin Cheng
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan.
| |
Collapse
|
18
|
Kato-Miyazawa M, Miyoshi-Akiyama T, Kanno Y, Takasaki J, Kirikae T, Kobayashi N. Genetic diversity of Mycobacterium tuberculosis isolates from foreign-born and Japan-born residents in Tokyo. Clin Microbiol Infect 2014; 21:248.e1-8. [PMID: 25595707 DOI: 10.1016/j.cmi.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 11/30/2022]
Abstract
Sequences of the full genomes of 259 clinical isolates of Mycobacterium tuberculosis, obtained from foreign-born and Japan-born patients in Tokyo, Japan, were determined, and a phylogenetic tree constructed by concatenated single-nucleotide polymorphism (SNP) sequences. The 259 isolates were clustered into four clades: Lineage 2 (East Asian or "Beijing" genotype; n = 182, 70.3%), Lineage 4 (Euro-American, n = 46, 17.8%), Lineage 1 (Indo-Oceanic, n = 23, 8.9%), and Lineage 3 (East African-Indian, n = 8, 3.1%). Of the 259, 36 (13.9%) were resistant to at least one drug. There was no multi-drug-resistant isolate. Drug resistance was greater for the strains in Lineage 2 than the non-Lineage 2. The proportion of Lineage 2 isolates was significantly smaller in foreign-born (n = 43/91, 47.3%) than in Japan-born (n = 139/168, 82.7%) patients, whereas the proportion of Lineage 1 isolates was significantly larger in foreign-born (n = 19/91, 20.9%) than in Japan-born (n = 4/168, 2.4%) patients. We also found eight SNPs specific to the typical Beijing sub-genotype in Lineage 2, including 4 non-synonymous SNPs. Of the 259 isolates, 244 had strain-specific SNP(s) and small (1-30-bp) insertions and deletions (indels). The numbers of strain-specific SNPs and indels per isolate were significantly larger from foreign-born (median 89, range 0-520) than from Japan-born (median 23, range 0-415) (p 3.66E-15) patients. These results suggested that M. tuberculosis isolates from foreign-born patients had more genetic diversity than those from Japan-born patients.
Collapse
Affiliation(s)
| | - T Miyoshi-Akiyama
- Department of Infectious Diseases, Japan; Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Y Kanno
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - J Takasaki
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| | - T Kirikae
- Department of Infectious Diseases, Japan.
| | - N Kobayashi
- Department of Respiratory Medicine, National Center for Global Health and Medicine, Tokyo, Japan; National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
19
|
Genetic diversity and dynamic distribution of Mycobacterium tuberculosis isolates causing pulmonary and extrapulmonary tuberculosis in Thailand. J Clin Microbiol 2014; 52:4267-74. [PMID: 25297330 DOI: 10.1128/jcm.01467-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study examined the genetic diversity and dynamicity of circulating Mycobacterium tuberculosis strains in Thailand using nearly neutral molecular markers. The single nucleotide polymorphism (SNP)-based genotypes of 1,414 culture-positive M. tuberculosis isolates from 1,282 pulmonary tuberculosis (PTB) and 132 extrapulmonary TB (EPTB) patients collected from 1995 to 2011 were characterized. Among the eight SNP cluster groups (SCG), SCG2 (44.1%), which included the Beijing (BJ) genotype, and SCG1 (39.4%), an East African Indian genotype, were dominant. Comparisons between the genotypes of M. tuberculosis isolates causing PTB and EPTB in HIV-negative cases revealed similar prevalence trends although genetic diversity was higher in the PTB patients. The identification of 10 reported sequence types (STs) and three novel STs was hypothesized to indicate preferential expansion of the SCG2 genotype, especially the modern BJ ST10 (15.6%) and ancestral BJ ST19 (13.1%). An association between SCG2 and SCG1 genotypes and particular patient age groups implies the existence of different genetic advantages among the bacterial populations. The results revealed that increasing numbers of young patients were infected with M. tuberculosis SCGs 2 and 5, which contrasts with the reduction of the SCG1 genotype. Our results indicate the selection and dissemination of potent M. tuberculosis genotypes in this population. The determination of heterogeneity and dynamic population changes of circulating M. tuberculosis strains in countries using the Mycobacterium bovis BCG (bacillus Calmette-Guérin) vaccine are beneficial for vaccine development and control strategies.
Collapse
|
20
|
Whole-Genome Sequence of a Multidrug-Resistant Mycobacterium tuberculosis Beijing Sequence Type 10 Isolate from an Outbreak in Thailand. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00803-14. [PMID: 25125647 PMCID: PMC4132623 DOI: 10.1128/genomea.00803-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Infections with the Beijing family of Mycobacterium tuberculosis occur worldwide and are endemic in Asian countries. We present the draft genome sequence of DS6701, a multidrug-resistant M. tuberculosis Beijing strain of sequence type 10. The isolate is a representative of strains isolated from a multidrug-resistant tuberculosis outbreak in Thailand.
Collapse
|
21
|
Li D, Dong CB, Cui JY, Nakajima C, Zhang CL, Pan XL, Sun GX, Dai EY, Suzuki Y, Zhuang M, Ling H. Dominant modern sublineages and a new modern sublineage of Mycobacterium tuberculosis Beijing family clinical isolates in Heilongjiang Province, China. INFECTION GENETICS AND EVOLUTION 2014; 27:294-9. [PMID: 25111610 DOI: 10.1016/j.meegid.2014.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/25/2014] [Accepted: 08/02/2014] [Indexed: 01/02/2023]
Abstract
Mycobacterium tuberculosis Beijing family includes a variety of sublineages. Knowledge of the distribution of a certain sublineage of the Beijing family may help to understand the mechanisms of its rapid spread and to establish an association between a certain genotype and the disease outcome. We have previously found that M. tuberculosis Beijing family clinical isolates represent approximately 90% of the clinical isolates from Heilongjiang Province, China. To clarify the distribution of M. tuberculosis Beijing family sublineages in Heilongjiang Province, China and to investigate the regularity rule for their evolution, we examined single nucleotide polymorphisms (SNPs) of 250 M. tuberculosis Beijing family clinical isolates using 10 SNP loci that have been identified as appropriate for defining Beijing sublineages. After determining the sequence type (ST) of each isolate, the sublineages of all M. tuberculosis Beijing family isolates were determined, and phylogenetic analysis was performed. We found that 9 out of the 10 SNP loci displayed polymorphisms, but locus 1548149 did not. In total, 92.8% of the isolates in Heilongjiang Province are modern sublineages. ST10 is the most prevalent sublineage (ST10 and ST22 accounted for 63.2% and 23.6% of all the Beijing family isolates, respectively). A new ST, accounting for 4% of the Beijing family isolates in this area, was found for the first time. Each new ST isolate showed a unique VNTR pattern, and none were clustered. The present findings suggest that controlling the spread of these modern sublineages is important in Heilongjiang Province and in China.
Collapse
Affiliation(s)
- Di Li
- Department of Microbiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Cai-Bo Dong
- Department of Microbiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Jia-Yi Cui
- Department of Microbiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Chie Nakajima
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | | | - Xin-Ling Pan
- Department of Microbiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Gao-Xiang Sun
- Department of Microbiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - En-Yu Dai
- Department of Bioinformatics, Harbin Medical University, Harbin, China
| | - Yasuhiko Suzuki
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Hokkaido, Japan
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory for Infection and Immunity, Key Laboratory of Etiology of Heilongjiang Province Education Bureau, Harbin, China.
| |
Collapse
|
22
|
Draft Genome Sequence of the Mycobacterium tuberculosis Clinical Isolate C2, Belonging to the Latin American-Mediterranean Family. GENOME ANNOUNCEMENTS 2014; 2:2/3/e00536-14. [PMID: 24903871 PMCID: PMC4047450 DOI: 10.1128/genomea.00536-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Tuberculosis remains a major infectious disease in Taiwan. Here we present the draft genome sequence of the Mycobacterium tuberculosis C2 strain, belonging to the Latin American–Mediterranean lineage. The draft genome sequence comprises 4,453,307 bp with a G+C content of 65.6%, revealing 4,390 coding genes and 45 tRNA genes.
Collapse
|
23
|
Chen YY, Chang JR, Huang WF, Hsu SC, Kuo SC, Sun JR, Dou HY. The pattern of cytokine production in vitro induced by ancient and modern Beijing Mycobacterium tuberculosis strains. PLoS One 2014; 9:e94296. [PMID: 24728339 PMCID: PMC3984122 DOI: 10.1371/journal.pone.0094296] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/14/2014] [Indexed: 12/20/2022] Open
Abstract
It is unclear to what extent the host-responses elicited by Beijing versus non-Beijing strains of Mycobacterium tuberculosis (MTB) contribute to the predominance of modern Beijing strains in Taiwan and some other Asian countries. The purpose of this study was to compare the expression profiles of virulence-related genes in human monocyte-derived macrophages infected in vitro with Beijing (ancient and modern strains) and non-Beijing strains (EAI strains) of MTB that are epidemic in Taiwan. We found that modern Beijing strains induced lower levels of pro-inflammatory cytokines, whereas EAI strains induced higher levels. Notably, the most prevalent modern Beijing sub-lineage, possessing intact RD150 and RD142 chromosomal regions, induced very low levels of pro-inflammatory cytokines, especially interleukin-1β. Moreover, in an intracellular growth assay, the survival of the same modern Beijing strain in human monocyte-derived macrophages was significantly higher than that of an ancient Beijing strain and an EAI strain. Taken together, these results may explain why modern Beijing strains of MTB predominate in Taiwan.
Collapse
Affiliation(s)
- Yih-Yuan Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jia-Ru Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Wei-Feng Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | - Jun-Ren Sun
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Horng-Yunn Dou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Lee J, Kang H, Kim S, Yoo H, Kim HJ, Park YK. Optimal Combination of VNTR Typing for Discrimination of Isolated Mycobacterium tuberculosis in Korea. Tuberc Respir Dis (Seoul) 2014; 76:59-65. [PMID: 24624214 PMCID: PMC3948853 DOI: 10.4046/trd.2014.76.2.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/04/2013] [Accepted: 11/07/2013] [Indexed: 12/04/2022] Open
Abstract
Background Variable-number tandem repeat (VNTR) typing is a promising method to discriminate the Mycobacterium tuberculosis isolates in molecular epidemiology. The purpose of this study is to determine the optimal VNTR combinations for discriminating isolated M. tuberculosis strains in Korea. Methods A total of 317 clinical isolates collected throughout Korea were genotyped by using the IS6110 restriction fragment length polymorphism (RFLP), and then analysed for the number of VNTR copies from 32 VNTR loci. Results The results of discriminatory power according to diverse combinations were as follows: 25 clusters in 83 strains were yielded from the internationally standardized 15 VNTR loci (Hunter-Gaston discriminatory index [HGDI], 0.9958), 25 clusters in 65 strains by using IS6110 RFLP (HGDI, 0.9977), 14 clusters in 32 strains in 12 hyper-variable VNTR loci (HGDI, 0.9995), 6 clusters in 13 strains in 32 VNTR loci (HDGI, 0.9998), and 7 clusters in 14 strains of both the 12 hyper-variable VNTR and IS6110 RFLP (HDGI, 0.9999). Conclusion The combination of 12 hyper-variable VNTR typing can be an effective tool for genotyping Korean M. tuberculosis isolates where the Beijing strains are predominant.
Collapse
Affiliation(s)
- Jihye Lee
- Korean Institute of Tuberculosis, Cheongwon, Korea
| | - Heeyoon Kang
- Korean Institute of Tuberculosis, Cheongwon, Korea
| | - Sarang Kim
- Korean Institute of Tuberculosis, Cheongwon, Korea
| | - Heekyung Yoo
- Korean Institute of Tuberculosis, Cheongwon, Korea
| | - Hee Jin Kim
- Korean Institute of Tuberculosis, Cheongwon, Korea
| | | |
Collapse
|
25
|
Luo T, Yang C, Pang Y, Zhao Y, Mei J, Gao Q. Development of a hierarchical variable-number tandem repeat typing scheme for Mycobacterium tuberculosis in China. PLoS One 2014; 9:e89726. [PMID: 24586989 PMCID: PMC3934936 DOI: 10.1371/journal.pone.0089726] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/23/2014] [Indexed: 12/02/2022] Open
Abstract
Molecular typing based on variable-number tandem repeats (VNTR) analysis is a promising tool for identifying transmission of Mycobacterium tuberculosis. However, the currently proposed 15- and 24-locus VNTR sets (VNTR-15/24) only have limited resolution and contain too many loci for large-scale typing in high burden countries. To develop an optimal typing scheme in China, we evaluated the resolution and robustness of 25 VNTR loci, using population-based collections of 1362 clinical isolates from six provinces across the country. The resolution of most loci showed considerable variations among regions. By calculating the average resolution of all possible combinations of 20 robust loci, we identified an optimal locus set with a minimum of 9 loci (VNTR-9) that could achieve comparable resolution of the standard VNTR-15. The VNTR-9 had consistently high resolutions in all six regions, and it was highly concordant with VNTR-15 for defining both clustered and unique genotypes. Furthermore, VNTR-9 was phylogenetically informative for classifying lineages/sublineages of M. tuberculosis. Three hypervariable loci (HV-3), VNTR 3232, VNTR 3820 and VNTR 4120, were proved important for further differentiating unrelated clustered strains based on VNTR-9. We propose the optimized VNTR-9 as first-line method and the HV-3 as second-line method for molecular typing of M. tuberculosis in China and surrounding countries. The development of hierarchical VNTR typing methods that can achieve high resolution with a small number of loci could be suitable for molecular epidemiology study in other high burden countries.
Collapse
Affiliation(s)
- Tao Luo
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chongguang Yang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Pang
- Chinese Center for Disease Control and Prevention, and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanlin Zhao
- Chinese Center for Disease Control and Prevention, and Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jian Mei
- Department of TB Control, Shanghai Municipal Centers for Disease Control and Prevention, Shanghai, China
| | - Qian Gao
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
26
|
Iwamoto T, Grandjean L, Arikawa K, Nakanishi N, Caviedes L, Coronel J, Sheen P, Wada T, Taype CA, Shaw MA, Moore DAJ, Gilman RH. Genetic diversity and transmission characteristics of Beijing family strains of Mycobacterium tuberculosis in Peru. PLoS One 2012; 7:e49651. [PMID: 23185395 PMCID: PMC3504116 DOI: 10.1371/journal.pone.0049651] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 10/11/2012] [Indexed: 01/28/2023] Open
Abstract
Beijing family strains of Mycobacterium tuberculosis have attracted worldwide attention because of their wide geographical distribution and global emergence. Peru, which has a historical relationship with East Asia, is considered to be a hotspot for Beijing family strains in South America. We aimed to unveil the genetic diversity and transmission characteristics of the Beijing strains in Peru. A total of 200 Beijing family strains were identified from 2140 M. tuberculosis isolates obtained in Lima, Peru, between December 2008 and January 2010. Of them, 198 strains were classified into sublineages, on the basis of 10 sets of single nucleotide polymorphisms (SNPs). They were also subjected to variable number tandem-repeat (VNTR) typing using an international standard set of 15 loci (15-MIRU-VNTR) plus 9 additional loci optimized for Beijing strains. An additional 70 Beijing family strains, isolated between 1999 and 2006 in Lima, were also analyzed in order to make a longitudinal comparison. The Beijing family was the third largest spoligotyping clade in Peru. Its population structure, by SNP typing, was characterized by a high frequency of Sequence Type 10 (ST10), which belongs to a modern subfamily of Beijing strains (178/198, 89.9%). Twelve strains belonged to the ancient subfamily (ST3 [n=3], ST25 [n=1], ST19 [n=8]). Overall, the polymorphic information content for each of the 24 loci values was low. The 24 loci VNTR showed a high clustering rate (80.3%) and a high recent transmission index (RTI(n-1)=0.707). These strongly suggest the active and on-going transmission of Beijing family strains in the survey area. Notably, 1 VNTR genotype was found to account for 43.9% of the strains. Comparisons with data from East Asia suggested the genotype emerged as a uniquely endemic clone in Peru. A longitudinal comparison revealed the genotype was present in Lima by 1999.
Collapse
Affiliation(s)
- Tomotada Iwamoto
- Department of Microbiology, Kobe Institute of Health, Kobe, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|