1
|
Haridevamuthu B, Sathishkumar K. Comment on Tsioti et al's "Systemic Lipopolysaccharide Exposure Exacerbates Choroidal Neovascularization in Mice". Ocul Immunol Inflamm 2024; 32:2614-2615. [PMID: 39042810 DOI: 10.1080/09273948.2024.2377732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
The study "Systemic Lipopolysaccharide Exposure Exacerbates Choroidal Neovascularization in Mice" by Tsioti et al. explores the impact of systemic lipopolysaccharide (LPS) on choroidal neovascularization (CNV) progression. The findings reveal systemic LPS exposure significantly enhances fluorescein leakage, driven by increased pro-inflammatory monocyte-derived macrophages and microglia activation. The study underscores the importance of managing systemic inflammation to mitigate CNV progression, suggesting potential therapeutic strategies targeting CSF1R inhibition and Müller cell modulation. Future research should focus on elucidating the molecular pathways involved in LPS-induced CNV exacerbation and translating these findings into clinical interventions.
Collapse
Affiliation(s)
- B Haridevamuthu
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
2
|
Schloesser L, Klose SM, Mauschitz MM, Abdullah Z, Finger RP. The role of immune modulators in age-related macular degeneration. Surv Ophthalmol 2024; 69:851-869. [PMID: 39097172 DOI: 10.1016/j.survophthal.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We provide an overview of the expanding literature on the role of cytokines and immune mediators in pathophysiology of age-related macular degeneration (AMD). Although many immunological mediators have been linked to AMD pathophysiology, the broader mechanistic picture remains unclear with substantial variations in the levels of evidence supporting these mediators. Therefore, we reviewed the literature considering the varying levels of supporting evidence. A Medical Subject Headings (MeSH) term-based literature research was conducted in September, 2023, consisting of the MeSH terms "cytokine" and "Age-related macular degeneration" connected by the operator "AND". After screening the publications by title, abstract, and full text, a total of 146 publications were included. The proinflammatory cytokines IL-1β (especially in basic research studies), IL-6, IL-8, IL-18, TNF-α, and MCP-1 are the most extensively characterised cytokines/chemokines, highlighting the role of local inflammasome activation and altered macrophage function in the AMD pathophysiology. Among the antiinflammatory mediators IL-4, IL-10, and TGF-β were found to be the most extensively characterised, with IL-4 driving and IL-10 and TGF-β suppressing disease progression. Despite the extensive literature on this topic, a profound understanding of AMD pathophysiology has not yet been achieved. Therefore, further studies are needed to identify potential therapeutic targets, followed by clinical studies.
Collapse
Affiliation(s)
- Lukas Schloesser
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Sara M Klose
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; Asia-Pacific Centre for Animal Health, Faculty of Science, University of Melbourne, Melbourne, Australia
| | | | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany
| | - Robert P Finger
- Department of Ophthalmology, University of Bonn, Bonn, Germany; Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Tsioti I, Steiner BL, Escher P, Zinkernagel MS, Benz PM, Kokona D. Systemic Lipopolysaccharide Exposure Exacerbates Choroidal Neovascularization in Mice. Ocul Immunol Inflamm 2024; 32:19-30. [PMID: 36441988 DOI: 10.1080/09273948.2022.2147547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022]
Abstract
This study aims to investigate the effect of a systemic lipopolysaccharide (LPS) stimulus in the course of laser-induced choroidal neovascularization (CNV) in C57BL/6 J mice. A group of CNV-subjected mice received 1 mg/kg LPS via the tail vein immediately after CNV induction. Mouse eyes were monitored in vivo with fluorescein angiography for 2 weeks. In situ hybridization and flow cytometry were performed in the retina at different time points. LPS led to increased fluorescein leakage 3 days after CNV, correlated with a large influx of monocyte-derived macrophages and increase of pro-inflammatory microglia/macrophages in the retina. Additionally, LPS enhanced Vegfα mRNA expression by Glul-expressing cells but not Aif1 positive microglia/macrophages in the laser lesion. These findings suggest that systemic LPS exposure has transient detrimental effects in the course of CNV through activation of microglia/macrophages to a pro-inflammatory phenotype and supports the important role of these cells in the CNV course.
Collapse
Affiliation(s)
- Ioanna Tsioti
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Beatrice L Steiner
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Pascal Escher
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Peter M Benz
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Larsen PP, Féart C, Pais de Barros JP, Merle BMJ, Gayraud L, Delyfer MN, Korobelnik JF, Delcourt C. Association of Age-Related Macular Degeneration with a Blood Biomarker of Lipopolysaccharide, a Gut Bacterial Proinflammatory Toxin. Invest Ophthalmol Vis Sci 2023; 64:47. [PMID: 38032336 PMCID: PMC10691392 DOI: 10.1167/iovs.64.14.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Chronic inflammation, immune dysregulation, and oxidative stress are major drivers of age-related macular degeneration (AMD) pathogenesis. Lipopolysaccharide (LPS) is a potent proinflammatory toxin originating from gut bacteria. We assessed the association of a blood biomarker of LPS exposure with incident AMD. Methods The Alienor Study is a prospective population-based study, including 963 residents of Bordeaux (France), aged 73 years or more at baseline. Esterified 3-hydroxy fatty acids (3-OH FAs) were measured from blood samples as a proxy of LPS burden. AMD was graded from color retinal photographs and spectral domain optical coherence tomography, performed every two years from 2006 to 2017. Cox proportional hazards models were used to estimate associations of between esterified 3-OH FAs, using 722 eyes at risk for incident early AMD and 981 eyes at risk for incident advanced AMD. Results Higher esterified 3-OH FAs were associated with incident early AMD after adjusting for age and gender (hazard ratio [HR] = 1.21 for 1 standard deviation [SD] increase; 95% confidence interval [CI], 1.01-1.45; P = 0.04) but not with incident advanced AMD (HR = 1.03 for 1 SD increase; 95% CI, 0.73-1.45; P = 0.86). These associations remained stable after multivariate adjustment and imputation for missing covariates (early AMD HR = 1.22 for 1 SD increase; 95% CI, 1.01-1.46; P = 0.04; advanced AMD HR = 0.98 for 1 SD increase; 95% CI, 0.69-1.38; P = 0.91). Conclusions This study evidenced an association between higher esterified 3-OH FAs and incident early AMD, suggesting that exposure to LPS may be involved in the early pathophysiological processes of AMD.
Collapse
Affiliation(s)
| | | | | | | | - Laure Gayraud
- Univ. Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | - Marie-Noëlle Delyfer
- Univ. Bordeaux, INSERM, BPH, U1219, Bordeaux, France
- CHU de Bordeaux, Service d'Ophtalmologie, Bordeaux, France
| | - Jean-François Korobelnik
- Univ. Bordeaux, INSERM, BPH, U1219, Bordeaux, France
- CHU de Bordeaux, Service d'Ophtalmologie, Bordeaux, France
| | | |
Collapse
|
5
|
Endothelial Toll-like receptor 4 is required for microglia activation in the murine retina after systemic lipopolysaccharide exposure. J Neuroinflammation 2023; 20:25. [PMID: 36739425 PMCID: PMC9899393 DOI: 10.1186/s12974-023-02712-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/30/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clustering of microglia around the vasculature has been reported in the retina and the brain after systemic administration of lipopolysaccharides (LPS) in mice. LPS acts via activation of Toll-like receptor 4 (TRL4), which is expressed in several cell types including microglia, monocytes and vascular endothelial cells. The purpose of this study was to investigate the effect of systemic LPS in the pigmented mouse retina and the involvement of endothelial TLR4 in LPS-induced retinal microglia activation. METHODS C57BL/6J, conditional knockout mice that lack Tlr4 expression selectively on endothelial cells (TekCre-posTlr4loxP/loxP) and TekCre-negTlr4loxP/loxP mice were used. The mice were injected with 1 mg/kg LPS via the tail vein once per day for a total of 4 days. Prior to initiation of LPS injections and approximately 5 h after the last injection, in vivo imaging using fluorescein angiography and spectral-domain optical coherence tomography was performed. Immunohistochemistry, flow cytometry, electroretinography and transmission electron microscopy were utilized to investigate the role of endothelial TLR4 in LPS-induced microglia activation and retinal function. RESULTS Activation of microglia, infiltration of monocyte-derived macrophages, impaired ribbon synapse organization and retinal dysfunction were observed after the LPS exposure in C57BL/6J and TekCre-negTlr4loxP/loxP mice. None of these effects were observed in the retinas of conditional Tlr4 knockout mice after the LPS challenge. CONCLUSIONS The findings of the present study suggest that systemic LPS exposure can have detrimental effects in the healthy retina and that TLR4 expressed on endothelial cells is essential for retinal microglia activation and retinal dysfunction upon systemic LPS challenge. This important finding provides new insights into the role of microglia-endothelial cell interaction in inflammatory retinal disease.
Collapse
|
6
|
Thomas CN, Sim DA, Lee WH, Alfahad N, Dick AD, Denniston AK, Hill LJ. Emerging therapies and their delivery for treating age-related macular degeneration. Br J Pharmacol 2021; 179:1908-1937. [PMID: 33769566 DOI: 10.1111/bph.15459] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of blindness in the Western world and is characterised in its latter stages by retinal cell death and neovascularisation and earlier stages with the loss of parainflammatory homeostasis. Patients with neovascular AMD (nAMD) are treated with frequent intraocular injections of anti-vascular endothelial growth factor (VEGF) therapies, which are not only unpopular with patients but carry risks of sight-threatening complications. A minority of patients are unresponsive with no alternative treatment available, and some patients who respond initially eventually develop a tolerance to treatment. New therapeutics with improved delivery methods and sustainability of clinical effects are required, in particular for non-neovascular AMD (90% of cases and no current approved treatments). There are age-related and disease-related changes that occur which can affect ocular drug delivery. Here, we review the latest emerging therapies for AMD, their delivery routes and implications for translating to clinical practice.
Collapse
Affiliation(s)
- Chloe N Thomas
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dawn A Sim
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK
| | - Wen Hwa Lee
- Action Against AMD, London, UK.,Affordable Medicines Programme, Oxford Martin School, University of Oxford, Oxford, UK
| | - Nada Alfahad
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK.,Academic Unit of Ophthalmology, Bristol Medical School and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alastair K Denniston
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, UK.,Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Centre for Patient Reported Outcome Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK.,Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK.,Health Data Research UK, London, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
7
|
Ma Z, Liu J, Li J, Jiang H, Kong J. Klotho Levels are Decreased and Associated with Enhanced Oxidative Stress and Inflammation in the Aqueous Humor in Patients with Exudative Age-related Macular Degeneration. Ocul Immunol Inflamm 2020; 30:630-637. [PMID: 33048602 DOI: 10.1080/09273948.2020.1828488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE To evaluate anti-aging protein klotho levels in the aqueous humor and its association with oxidative stress and inflammation in patients with age-related macular degeneration (AMD). METHODS Levels of klotho, oxidative, and antioxidative stress markers, and proinflammatory and anti-inflammatory markers in the aqueous humor from 28 patients with exudative AMD and 35 age-matched controls were measured. RESULTS Patients with AMD had lower levels of klotho, which were negatively correlated with macular lesion size. Patients with AMD also exhibited increased levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and interleukin (IL)-6 but not tumor necrosis factor‑α, and decreased levels of total antioxidant status (TAS) and IL-10. Moreover, levels of klotho were negatively correlated with levels of 8-OHdG and IL-6, but positively correlated with levels of TSA and IL-10. CONCLUSION Klotho levels in the aqueous humor are decreased and associated with oxidative stress and inflammation in patients with exudative AMD.
Collapse
Affiliation(s)
- Zhongxu Ma
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jingjing Liu
- Provincial Key Laboratory of Lens Research, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Li
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Hao Jiang
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Jun Kong
- Provincial Key Laboratory of Lens Research, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Tan W, Zou J, Yoshida S, Jiang B, Zhou Y. The Role of Inflammation in Age-Related Macular Degeneration. Int J Biol Sci 2020; 16:2989-3001. [PMID: 33061811 PMCID: PMC7545698 DOI: 10.7150/ijbs.49890] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a blinding eye disease which incidence gradually increases with age. Inflammation participates in AMD pathogenesis, including choroidal neovascularization and geographic atrophy. It is also a kind of self-protective regulation from injury for the eyes. In this review, we described inflammation in AMD pathogenesis, summarized the roles played by inflammation-related cytokines, including pro-inflammatory and anti-inflammatory cytokines, as well as leukocytes (macrophages, dendritic cells, neutrophils, T lymphocytes and B lymphocytes) in the innate or adaptive immunity in AMD. Possible clinical applications such as potential diagnostic biomarkers and anti-inflammatory therapies were also discussed. This review overviews the inflammation as a target of novel effective therapies in treating AMD.
Collapse
Affiliation(s)
- Wei Tan
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Jingling Zou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| |
Collapse
|
9
|
Schwarzer P, Kokona D, Ebneter A, Zinkernagel MS. Effect of Inhibition of Colony-Stimulating Factor 1 Receptor on Choroidal Neovascularization in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:412-425. [PMID: 31783006 DOI: 10.1016/j.ajpath.2019.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 07/09/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Neovascular age-related macular degeneration is one of the leading causes of blindness. Microglia and macrophages play a critical role in choroidal neovascularization (CNV) and may, therefore, be potential targets to modulate the disease course. This study evaluated the effect of the colony-stimulating factor-1 receptor inhibitor PLX5622 on experimental laser-induced CNV. A 98% reduction of retinal microglia cells was observed in the retina 1 week after initiation of PLX5622 treatment, preventing accumulation of macrophages within the laser site and leading to a reduction of leukocytes within the choroid after CNV induction. Mice treated with PLX5622 had a significantly faster decrease of the CNV lesion size, as revealed by in vivo imaging and immunohistochemistry from day 3 to day 14 compared with untreated mice. Several inflammatory modulators, such as chemokine (C-C motif) ligand 9, granulocyte-macrophage colony-stimulating factor, soluble tumor necrosis factor receptor-I, IL-1α, and matrix metallopeptidase-2, were elevated in the acute phase of the disease when microglia were ablated with PLX5622, whereas other cytokines (eg, interferon-γ, IL-4, and IL-10) were reduced. Our results suggest that colony-stimulating factor-1 receptor inhibition may be a novel therapeutic target in patients with neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Petra Schwarzer
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Despina Kokona
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Andreas Ebneter
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern; and the Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Zhou YD, Yoshida S, Peng YQ, Kobayashi Y, Zhang LS, Tang LS. Diverse roles of macrophages in intraocular neovascular diseases: a review. Int J Ophthalmol 2017; 10:1902-1908. [PMID: 29259911 PMCID: PMC5733520 DOI: 10.18240/ijo.2017.12.18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Macrophages are involved in angiogenesis, and might also contribute to the pathogenesis of intraocular neovascular diseases. Recent studies indicated that macrophages exert different functions in the process of intraocular neovascularization, and the polarization of M1 and M2 phenotypes plays extremely essential roles in the diverse functions of macrophages. Moreover, a large number of cytokines released by macrophages not only participate in macrophage polarization, but also associate with retinal and choroidal neovascular diseases. Therefore, macrophage might be considered as a novel therapeutic target to the treatment of pathological neovascularization in the eye. This review mainly summarizes diverse roles of macrophages and discusses the possible mechanisms in retinal and choroidal neovascularization.
Collapse
Affiliation(s)
- Ye-Di Zhou
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Ying-Qian Peng
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Yoshiyuki Kobayashi
- Department of Ophthalmology, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan
| | - Lu-Si Zhang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| | - Luo-Sheng Tang
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha 410011, Hunan Province, China
| |
Collapse
|
11
|
Bao LL, Bian J, Yan YJ, Zhang LJ, O’Shea DF, Chen ZL. In vitro and in vivo evaluation of a pyropheophorbide-a derivative as a potential photosensitizer for age-related macular degeneration. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.01.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
12
|
Efficacy of compound Qingre Granules on inflammatory markers in patients with fever of unknown origin: A randomized clinical trial. Eur J Integr Med 2017. [DOI: 10.1016/j.eujim.2017.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Feng YF, Guo H, Yuan F, Shen MQ. Lipopolysaccharide Promotes Choroidal Neovascularization by Up-Regulation of CXCR4 and CXCR7 Expression in Choroid Endothelial Cell. PLoS One 2015; 10:e0136175. [PMID: 26288180 PMCID: PMC4545586 DOI: 10.1371/journal.pone.0136175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 07/31/2015] [Indexed: 01/01/2023] Open
Abstract
Stromal cell-derived factor-1 (SDF-1) has been confirmed to participate in the formation of choroidal neovascularization (CNV) via its two receptors: CXC chemokine receptors 4 (CXCR4) and CXCR7. Previous studies have indicated that the activation of Toll-like receptors (TLRs) by lipopolysaccharide (LPS) might elevate CXCR4 and/or CXCR7 expression in tumor cells, enhancing the response to SDF-1 to promote invasion and cell dissemination. However, the impact of LPS on the CXCR4 and CXCR7 expression in endothelial cells and subsequent pathological angiogenesis formation remains to be elucidated. The present study shows that LPS enhanced the CXCR4 and CXCR7 expression via activation of the TLR4 pathway in choroid-retinal endothelial (RF/6A) cells. In addition, the transcriptional regulation of CXCR4 and CXCR7 by LPS was found to be mediated by phosphorylation of the extracellular signal-related kinase (ERK) 1/2 and activation of nuclear factor kappa B (NF-κB) signaling pathways, which were blocked by ERK- or NF-κB-specific inhibitors. Furthermore, the increased CXCR4 and CXCR7 expression resulted in increased SDF-1-induced RF/6A cells proliferation, migration and tube formation. In vivo, LPS-treated rat had significantly higher mRNA levels of CXCR4 and CXCR7 expression and lager laser-induced CNV area than vehicle-treated rat. SDF-1 blockade with a neutralizing antibody attenuated the progression of CNV in LPS-treated rat after a single intravitreal injection. Altogether, these results demonstrated that LPS might influence CNV formation by enhancing CXCR7 and CXCR7 expression in endothelial cells, possibly providing a new perspective for the treatment of CNV-associated diseases.
Collapse
Affiliation(s)
- Yi-fan Feng
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hua Guo
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Fei Yuan
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- * E-mail:
| | - Min-qian Shen
- Department of Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
HAN DONGMEI, YAO YUAN, SUN YONG, GONG YUANYUAN, WU XINGWEI. Effect of charred Radix et Rhizoma Rhei in a laser-induced choroidal neovascularization murine model. Mol Med Rep 2014; 11:2896-902. [DOI: 10.3892/mmr.2014.3046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 11/04/2014] [Indexed: 11/05/2022] Open
|
15
|
Inflammation in age-related macular degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:229-35. [PMID: 24664703 DOI: 10.1007/978-1-4614-3209-8_30] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of legal blindness in elderly individuals in the developed world, affecting 30-50 million people worldwide. AMD primarily affects the macular region of the retina that is responsible for the majority of central, color and daytime vision. The presence of drusen, extracellular protein aggregates that accumulate under the retinal pigment epithelium (RPE), is a major pathological hallmark in the early stages of the disease. The end stage 'dry' and 'wet' forms of the disease culminate in vision loss and are characterized by focal degeneration of the RPE and cone photoreceptors, and choroidal neovascularization (CNV), respectively. Being a multifactorial and genetically heterogeneous disease, the pathophysiology of AMD remains unclear, yet, there is ample evidence supporting immunological and inflammatory processes. Here, we review the recent literature implicating some of these immune processes in human AMD and in animal models.
Collapse
|
16
|
Yang Y, Takeda A, Yoshimura T, Oshima Y, Sonoda KH, Ishibashi T. IL-10 is significantly involved in HSP70-regulation of experimental subretinal fibrosis. PLoS One 2013; 8:e80288. [PMID: 24376495 PMCID: PMC3869650 DOI: 10.1371/journal.pone.0080288] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 10/11/2013] [Indexed: 01/22/2023] Open
Abstract
Subretinal fibrosis is directly related to severe visual loss, especially if occurs in the macula, and is frequently observed in advanced age-related macular degeneration and other refractory eye disorders such as diabetic retinopathy and uveitis. In this study, we analyzed the immunosuppressive mechanism of subretinal fibrosis using the novel animal model recently demonstrated. Both TLR2 and TLR4 deficient mice showed significant enlargement of subretinal fibrotic area as compared with wild-type mice. A single intraocular administration of heat shock protein 70 (HSP70), which is an endogenous ligand for TLR2 and TLR4, inhibited subretinal fibrosis in wild-type mice but not in TLR2 and TLR4-deficient mice. Additionally, HSP70 induced IL-10 production in eyes from wild-type mice but was impaired in both TLR2- and TLR4-deficient mice, indicating that HSP70-TLR2/TLR4 axis plays an immunomodulatory role in subretinal fibrosis. Thus, these results suggest that HSP70-TLR2/TLR4 axis is a new therapeutic target for subretinal fibrosis due to prognostic CNV.
Collapse
Affiliation(s)
- Yang Yang
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu university, Fukuoka, Japan
| | - Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu university, Fukuoka, Japan
| | - Takeru Yoshimura
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu university, Fukuoka, Japan
| | - Yuji Oshima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu university, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Yamaguchi University School of Medicine, Ube, Yamaguchi, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu university, Fukuoka, Japan
| |
Collapse
|
17
|
Zeng F, Zhang M, Xu Y, Xu H. ARMS2 interference leads to decrease of proinflammatory mediators. Graefes Arch Clin Exp Ophthalmol 2013; 251:2539-44. [PMID: 23959158 DOI: 10.1007/s00417-013-2442-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/11/2013] [Accepted: 07/30/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a major cause of irreversible blindness among elderly people in developed countries. Many studies suggested that age-related maculopathy susceptibility 2 (ARMS2) is the second major susceptibility gene for AMD. Increasing evidence was found recently that inflammatory processes and oxidative stress may contribute to the pathogenesis of AMD. Meanwhile, the mechanisms underlying the contributions of ARMS2 to the pathogenesis of AMD remain unclear. The purpose of the current study was to elucidate the relationship between the ARMS2 gene and proinflammatory mediators, for further assessment of the associated biologic effects. METHODS siRNA was used to knock down ARMS2 mRNA, and Western blotting and reverse real-time PCR were used to detect the effect of siRNA on the expression of ARMS2 in ARPE-19 cells. The expressions of C3, C5, IL-6, IL-8, and TNF-α after si-RNA knockdown were evaluated by SYBR Green I real-time PCR and ELISA. RESULTS Transcription accumulative indexes (TAI = 2(-delta delta CT)) of ARMS2 by real-time PCR revealed that the transfection rate in the positive control group was 72.0 ± 2.07 % (P < 0.01). The ratio of absorbance values (by Western blotting) of AMRS2 to β-actin was 0.85 ± 0.122, 0.87 ± 0.143, and 0.61 ± 0.240 in the blank control group, scrambled ARMS2-siRNA group, and ARMS2-siRNA group respectively (F = 42.5, P < 0.01). The secreted protein levels of C3, C5, IL-6, IL-8, and TNF-α were found by ELISA to be reduced by 34.24 ± 1.81 %, 37.15 ± 2.02 %, 35.11 ± 1.75 %, 30.11 ± 2.19 %, and 34.33 ± 2.18 % respectively, in the siRNA-ARMS2 group (P < 0.05). Compared with the blank control group, reduced TAI of C3, C5, IL-6, IL-8, and TNF-α were detected by real-time PCR in the ARMS2-siRNA group. CONCLUSION This study produced evidence supporting the notion that the ARMS2 risk allele for AMD is linked directly or indirectly to proinflammatory mediators. More importantly, our data indicate that the change in ARMS2 may affect C3, C5, IL-6, IL-8, and TNF-α levels, and this may be one of the mechanisms of AMD development.
Collapse
|
18
|
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness in aged individuals. Recent advances have highlighted the essential role of immune processes in the development, progression and treatment of AMD. In this Review we discuss recent discoveries related to the immunological aspects of AMD pathogenesis. We outline the diverse immune cell types, inflammatory activators and pathways that are involved. Finally, we discuss the future of inflammation-directed therapeutics to treat AMD in the growing aged population.
Collapse
|