1
|
Wani AK, Roy P, Kumar V, Mir TUG. Metagenomics and artificial intelligence in the context of human health. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105267. [PMID: 35278679 DOI: 10.1016/j.meegid.2022.105267] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
Human microbiome is ubiquitous, dynamic, and site-specific consortia of microbial communities. The pathogenic nature of microorganisms within human tissues has led to an increase in microbial studies. Characterization of genera, like Streptococcus, Cutibacterium, Staphylococcus, Bifidobacterium, Lactococcus and Lactobacillus through culture-dependent and culture-independent techniques has been reported. However, due to the unique environment within human tissues, it is difficult to culture these microorganisms making their molecular studies strenuous. MGs offer a gateway to explore and characterize hidden microbial communities through a culture-independent mode by direct DNA isolation. By function and sequence-based MGs, Scientists can explore the mechanistic details of numerous microbes and their interaction with the niche. Since the data generated from MGs studies is highly complex and multi-dimensional, it requires accurate analytical tools to evaluate and interpret the data. Artificial intelligence (AI) provides the luxury to automatically learn the data dimensionality and ease its complexity that makes the disease diagnosis and disease response easy, accurate and timely. This review provides insight into the human microbiota and its exploration and expansion through MG studies. The review elucidates the significance of MGs in studying the changing microbiota during disease conditions besides highlighting the role of AI in computational analysis of MG data.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Priyanka Roy
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131 028, Haryana, India
| | - Vijay Kumar
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131 028, Haryana, India.
| | - Tahir Ul Gani Mir
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| |
Collapse
|
2
|
Wolf PG, Cowley ES, Breister A, Matatov S, Lucio L, Polak P, Ridlon JM, Gaskins HR, Anantharaman K. Diversity and distribution of sulfur metabolic genes in the human gut microbiome and their association with colorectal cancer. MICROBIOME 2022; 10:64. [PMID: 35440042 PMCID: PMC9016944 DOI: 10.1186/s40168-022-01242-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Recent evidence implicates microbial sulfidogenesis as a potential trigger of colorectal cancer (CRC), highlighting the need for comprehensive knowledge of sulfur metabolism within the human gut. Microbial sulfidogenesis produces genotoxic hydrogen sulfide (H2S) in the human colon using inorganic (sulfate) and organic (taurine/cysteine/methionine) substrates; however, the majority of studies have focused on sulfate reduction using dissimilatory sulfite reductases (Dsr). RESULTS Here, we show that genes for microbial sulfur metabolism are more abundant and diverse than previously observed and are statistically associated with CRC. Using ~ 17,000 bacterial genomes from publicly available stool metagenomes, we studied the diversity of sulfur metabolic genes in 667 participants across different health statuses: healthy, adenoma, and carcinoma. Sulfidogenic genes were harbored by 142 bacterial genera and both organic and inorganic sulfidogenic genes were associated with carcinoma. Significantly, the anaerobic sulfite reductase (asr) genes were twice as abundant as dsr, demonstrating that Asr is likely a more important contributor to sulfate reduction in the human gut than Dsr. We identified twelve potential pathways for reductive taurine metabolism and discovered novel genera harboring these pathways. Finally, the prevalence of metabolic genes for organic sulfur indicates that these understudied substrates may be the most abundant source of microbially derived H2S. CONCLUSIONS Our findings significantly expand knowledge of microbial sulfur metabolism in the human gut. We show that genes for microbial sulfur metabolism in the human gut are more prevalent than previously known, irrespective of health status (i.e., in both healthy and diseased states). Our results significantly increase the diversity of pathways and bacteria that are associated with microbial sulfur metabolism in the human gut. Overall, our results have implications for understanding the role of the human gut microbiome and its potential contributions to the pathogenesis of CRC. Video abstract.
Collapse
Affiliation(s)
- Patricia G Wolf
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Elise S Cowley
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam Breister
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah Matatov
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Luke Lucio
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Paige Polak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | | |
Collapse
|
3
|
Tian L, Wang XW, Wu AK, Fan Y, Friedman J, Dahlin A, Waldor MK, Weinstock GM, Weiss ST, Liu YY. Deciphering functional redundancy in the human microbiome. Nat Commun 2020; 11:6217. [PMID: 33277504 PMCID: PMC7719190 DOI: 10.1038/s41467-020-19940-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
Although the taxonomic composition of the human microbiome varies tremendously across individuals, its gene composition or functional capacity is highly conserved - implying an ecological property known as functional redundancy. Such functional redundancy has been hypothesized to underlie the stability and resilience of the human microbiome, but this hypothesis has never been quantitatively tested. The origin of functional redundancy is still elusive. Here, we investigate the basis for functional redundancy in the human microbiome by analyzing its genomic content network - a bipartite graph that links microbes to the genes in their genomes. We find that this network exhibits several topological features that favor high functional redundancy. Furthermore, we develop a simple genome evolution model to generate genomic content network, finding that moderate selection pressure and high horizontal gene transfer rate are necessary to generate genomic content networks with key topological features that favor high functional redundancy. Finally, we analyze data from two published studies of fecal microbiota transplantation (FMT), finding that high functional redundancy of the recipient's pre-FMT microbiota raises barriers to donor microbiota engraftment. This work elucidates the potential ecological and evolutionary processes that create and maintain functional redundancy in the human microbiome and contribute to its resilience.
Collapse
Affiliation(s)
- Liang Tian
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Physics, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR, China
| | - Xu-Wen Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Ang-Kun Wu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Yuhang Fan
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Jonathan Friedman
- Faculty of Agriculture, Food and Environment, Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amber Dahlin
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Fungus-growing insects host a distinctive microbiota apparently adapted to the fungiculture environment. Sci Rep 2020; 10:12384. [PMID: 32709946 PMCID: PMC7381635 DOI: 10.1038/s41598-020-68448-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
Some lineages of ants, termites, and beetles independently evolved a symbiotic association with lignocellulolytic fungi cultivated for food, in a lifestyle known as fungiculture. Fungus-growing insects' symbiosis also hosts a bacterial community thought to integrate their physiology. Similarities in taxonomic composition support the microbiota of fungus-growing insects as convergent, despite differences in fungus-rearing by these insects. Here, by comparing fungus-growing insects to several hosts ranging diverse dietary patterns, we investigate whether the microbiota taxonomic and functional profiles are characteristic of the fungiculture environment. Compared to other hosts, the microbiota associated with fungus-growing insects presents a distinctive taxonomic profile, dominated by Gammaproteobacteria at class level and by Pseudomonas at genera level. Even with a functional profile presenting similarities with the gut microbiota of herbivorous and omnivorous hosts, some differentially abundant features codified by the microbiota of fungus-growing insects suggest these communities occupying microhabitats that are characteristic of fungiculture. These features include metabolic pathways involved in lignocellulose breakdown, detoxification of plant secondary metabolites, metabolism of simple sugars, fungal cell wall deconstruction, biofilm formation, antimicrobials biosynthesis, and metabolism of diverse nutrients. Our results suggest that the microbiota could be functionally adapted to the fungiculture environment, codifying metabolic pathways potentially relevant to the fungus-growing insects' ecosystems functioning.
Collapse
|
5
|
Pan S, Hullar MAJ, Lai LA, Peng H, May DH, Noble WS, Raftery D, Navarro SL, Neuhouser ML, Lampe PD, Lampe JW, Chen R. Gut Microbial Protein Expression in Response to Dietary Patterns in a Controlled Feeding Study: A Metaproteomic Approach. Microorganisms 2020; 8:E379. [PMID: 32156071 PMCID: PMC7143255 DOI: 10.3390/microorganisms8030379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
Although the gut microbiome has been associated with dietary patterns linked to health, microbial metabolism is not well characterized. This ancillary study was a proof of principle analysis for a novel application of metaproteomics to study microbial protein expression in a controlled dietary intervention. We measured the response of the microbiome to diet in a randomized crossover dietary intervention of a whole-grain, low glycemic load diet (WG) and a refined-grain, high glycemic load diet (RG). Total proteins in stools from 9 participants at the end of each diet period (n = 18) were analyzed by LC MS/MS and proteins were identified using the Human Microbiome Project (HMP) human gut microbiome database and UniProt human protein databases. T-tests, controlling for false discovery rate (FDR) <10%, were used to compare the Gene Ontology (GO) biological processes and bacterial enzymes between the two interventions. Using shotgun proteomics, more than 53,000 unique peptides were identified including microbial (89%) and human peptides (11%). Forty-eight bacterial enzymes were statistically different between the diets, including those implicated in SCFA production and degradation of fatty acids. Enzymes associated with degradation of human mucin were significantly enriched in the RG diet. These results illustrate that the metaproteomic approach is a valuable tool to study the microbial metabolism of diets that may influence host health.
Collapse
Affiliation(s)
- Sheng Pan
- Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (S.P.); (H.P.)
| | - Meredith A. J. Hullar
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA 98109, USA; (D.R.); (S.L.N.); (M.L.N.); (P.D.L.); (J.W.L.)
| | - Lisa A. Lai
- Department of Medicine, University of Washington, Seattle, WA 98105, USA;
| | - Hong Peng
- Institute of Molecular Medicine, the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (S.P.); (H.P.)
| | - Damon H. May
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA; (D.H.M.)
| | - William S. Noble
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA; (D.H.M.)
| | - Daniel Raftery
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA 98109, USA; (D.R.); (S.L.N.); (M.L.N.); (P.D.L.); (J.W.L.)
- Department of Anesthesiology and Pain Medicine, Northwest Metabolomics Research Center, University of Washington, Seattle, WA 98109 USA
| | - Sandi L. Navarro
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA 98109, USA; (D.R.); (S.L.N.); (M.L.N.); (P.D.L.); (J.W.L.)
| | - Marian L. Neuhouser
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA 98109, USA; (D.R.); (S.L.N.); (M.L.N.); (P.D.L.); (J.W.L.)
| | - Paul D. Lampe
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA 98109, USA; (D.R.); (S.L.N.); (M.L.N.); (P.D.L.); (J.W.L.)
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA 98109, USA; (D.R.); (S.L.N.); (M.L.N.); (P.D.L.); (J.W.L.)
| | - Ru Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Abstract
The NIH Human Microbiome Project (HMP) has been carried out over ten years and two phases to provide resources, methods, and discoveries that link interactions between humans and their microbiomes to health-related outcomes. The recently completed second phase, the Integrative Human Microbiome Project, comprised studies of dynamic changes in the microbiome and host under three conditions: pregnancy and preterm birth; inflammatory bowel diseases; and stressors that affect individuals with prediabetes. The associated research begins to elucidate mechanisms of host-microbiome interactions under these conditions, provides unique data resources (at the HMP Data Coordination Center), and represents a paradigm for future multi-omic studies of the human microbiome.
Collapse
|
7
|
Abstract
The NIH Human Microbiome Project (HMP) has been carried out over ten years and two phases to provide resources, methods, and discoveries that link interactions between humans and their microbiomes to health-related outcomes. The recently completed second phase, the Integrative Human Microbiome Project, comprised studies of dynamic changes in the microbiome and host under three conditions: pregnancy and preterm birth; inflammatory bowel diseases; and stressors that affect individuals with prediabetes. The associated research begins to elucidate mechanisms of host-microbiome interactions under these conditions, provides unique data resources (at the HMP Data Coordination Center), and represents a paradigm for future multi-omic studies of the human microbiome.
Collapse
|
8
|
Timilsina S, Kara S, Jacques MA, Potnis N, Minsavage GV, Vallad GE, Jones JB, Fischer-Le Saux M. Reclassification of Xanthomonas gardneri (ex Šutič 1957) Jones et al. 2006 as a later heterotypic synonym of Xanthomonas cynarae Trébaol et al. 2000 and description of X. cynarae pv. cynarae and X. cynarae pv. gardneri based on whole genome analyses. Int J Syst Evol Microbiol 2018; 69:343-349. [PMID: 30457512 DOI: 10.1099/ijsem.0.003104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multilocus sequence analysis of Xanthomonas species revealed a very close relationship between Xanthomonas cynarae, an artichoke pathogen and Xanthomonas gardneri, a tomato and pepper pathogen. Results of whole genome sequence comparisons using average nucleotide identity between representative strains of X. gardneri and X. cynarae were well above the threshold of 95-96 %. Inoculations of X. gardneri strains in artichoke leaves caused mild disease symptoms, but only weak symptoms were observed in the bracts. Both X. cynarae and X. gardneri grew equally and caused typical bacterial spot symptoms in pepper after artificial inoculation. However, X. cynarae induced a hypersensitive reaction in tomato, while X. gardneri strains were virulent. Pathogenicity-associated gene clusters, including the protein secretion systems, type III effector profiles, and lipopolysaccharide cluster were nearly identical between the two species. Based on our results from whole genome sequence comparison, X. gardneri and X. cynarae belong to the same species. The name X. cynarae has priority and X. gardneri should be considered as a later heterotypic synonym. An emended description of X. cynarae (type strain=CFBP 4188T, =DSM 16794T) is given. However, due to the host specificity in artichoke and tomato, two pathovars, X. cynarae pv. cynarae and X. cynarae pv. gardneri, are proposed.
Collapse
Affiliation(s)
- S Timilsina
- 1Plant Pathology Department, University of Florida, Gainesville, FL, 32611, USA
| | - S Kara
- 1Plant Pathology Department, University of Florida, Gainesville, FL, 32611, USA.,2Diyarbakır Plant Protection Research Institute, Silvan Highway 7. Km. 21110, Diyarbakır, Turkey
| | - M A Jacques
- 3IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QUASAV, 49070 Beaucouzé, France
| | - N Potnis
- 4Entomology and Plant Pathology Department, Auburn University, Auburn, AL, 36849, USA
| | - G V Minsavage
- 1Plant Pathology Department, University of Florida, Gainesville, FL, 32611, USA
| | - G E Vallad
- 5University of Florida, Gulf Coast Research and Education Center, Balm, Florida, 33598, USA
| | - J B Jones
- 1Plant Pathology Department, University of Florida, Gainesville, FL, 32611, USA
| | - M Fischer-Le Saux
- 3IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QUASAV, 49070 Beaucouzé, France
| |
Collapse
|
9
|
Chadwick GL, Hemp J, Fischer WW, Orphan VJ. Convergent evolution of unusual complex I homologs with increased proton pumping capacity: energetic and ecological implications. THE ISME JOURNAL 2018; 12:2668-2680. [PMID: 29991762 PMCID: PMC6194058 DOI: 10.1038/s41396-018-0210-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/17/2018] [Accepted: 03/20/2018] [Indexed: 01/05/2023]
Abstract
Respiratory complex I is part of a large family of homologous enzymes that carry out the transfer of electrons between soluble cytoplasmic electron carriers and membrane-bound electron carriers. These complexes are vital bioenergetic enzymes that serve as the entry points into electron transport chains for a wide variety of microbial metabolisms, and electron transfer is coupled to proton translocation. The core complex of this enzyme is made up of 11 protein subunits, with three major proton pumping subunits. Here, we document a large number of modified complex I gene cassettes found in genome sequences from diverse cultured bacteria, shotgun metagenomics, and environmentally derived archaeal fosmids all of which encode a fourth proton pumping subunit. The incorporation of this extra subunit into a functional protein complex is supported by large amino acid insertions in the amphipathic helix that runs the length of the protein complex. Phylogenetic analyses reveal that these modified complexes appear to have arisen independently multiple times in a remarkable case of convergent molecular evolution. From an energetic perspective, we hypothesize that this modification on the canonical complex I architecture allows for the translocation of a fifth proton per reaction cycle-the physiological utility of this modified complex is discussed.
Collapse
Affiliation(s)
- Grayson L Chadwick
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA.
| | - James Hemp
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA
| | - Woodward W Fischer
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA
| | - Victoria J Orphan
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91106, USA.
| |
Collapse
|
10
|
A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. Int J Cardiol 2018; 255:92-98. [DOI: 10.1016/j.ijcard.2017.11.071] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/11/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
|
11
|
Porter NT, Canales P, Peterson DA, Martens EC. A Subset of Polysaccharide Capsules in the Human Symbiont Bacteroides thetaiotaomicron Promote Increased Competitive Fitness in the Mouse Gut. Cell Host Microbe 2017; 22:494-506.e8. [PMID: 28966055 PMCID: PMC5830307 DOI: 10.1016/j.chom.2017.08.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/25/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023]
Abstract
Capsular polysaccharides (CPSs) play multiple roles in protecting bacteria from host and environmental factors, and many commensal bacteria can produce multiple capsule types. To better understand the roles of different CPSs in competitive intestinal colonization, we individually expressed the eight different capsules of the human gut symbiont Bacteroides thetaiotaomicron. Certain CPSs were most advantageous in vivo, and increased anti-CPS immunoglobulin A correlated with increased fitness of a strain expressing one particular capsule, CPS5, suggesting that it promotes avoidance of adaptive immunity. A strain with the ability to switch between multiple capsules was more competitive than those expressing any single capsule except CPS5. After antibiotic perturbation, only the wild-type, capsule-switching strain remained in the gut, shifting to prominent expression of CPS5 only in mice with intact adaptive immunity. These data suggest that different capsules equip mutualistic gut bacteria with the ability to thrive in various niches, including those influenced by immune responses and antibiotic perturbations.
Collapse
Affiliation(s)
- Nathan T Porter
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Pablo Canales
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel A Peterson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
12
|
Chen IMA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, Ratner A, Huang J, Andersen E, Huntemann M, Varghese N, Hadjithomas M, Tennessen K, Nielsen T, Ivanova NN, Kyrpides NC. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 2016; 45:D507-D516. [PMID: 27738135 PMCID: PMC5210632 DOI: 10.1093/nar/gkw929] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022] Open
Abstract
The Integrated Microbial Genomes with Microbiome Samples (IMG/M: https://img.jgi.doe.gov/m/) system contains annotated DNA and RNA sequence data of (i) archaeal, bacterial, eukaryotic and viral genomes from cultured organisms, (ii) single cell genomes (SCG) and genomes from metagenomes (GFM) from uncultured archaea, bacteria and viruses and (iii) metagenomes from environmental, host associated and engineered microbiome samples. Sequence data are generated by DOE's Joint Genome Institute (JGI), submitted by individual scientists, or collected from public sequence data archives. Structural and functional annotation is carried out by JGI's genome and metagenome annotation pipelines. A variety of analytical and visualization tools provide support for examining and comparing IMG/M's datasets. IMG/M allows open access interactive analysis of publicly available datasets, while manual curation, submission and access to private datasets and computationally intensive workspace-based analysis require login/password access to its expert review (ER) companion system (IMG/M ER: https://img.jgi.doe.gov/mer/). Since the last report published in the 2014 NAR Database Issue, IMG/M's dataset content has tripled in terms of number of datasets and overall protein coding genes, while its analysis tools have been extended to cope with the rapid growth in the number and size of datasets handled by the system.
Collapse
Affiliation(s)
- I-Min A Chen
- Biosciences Computing Group, Computational Science Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Victor M Markowitz
- Biosciences Computing Group, Computational Science Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ken Chu
- Biosciences Computing Group, Computational Science Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Krishna Palaniappan
- Biosciences Computing Group, Computational Science Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Ernest Szeto
- Biosciences Computing Group, Computational Science Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Manoj Pillay
- Biosciences Computing Group, Computational Science Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Anna Ratner
- Biosciences Computing Group, Computational Science Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jinghua Huang
- Biosciences Computing Group, Computational Science Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Evan Andersen
- Biosciences Computing Group, Computational Science Department, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Marcel Huntemann
- Microbial Genome and Metagenome Program, Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Neha Varghese
- Microbial Genome and Metagenome Program, Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Michalis Hadjithomas
- Microbial Genome and Metagenome Program, Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Kristin Tennessen
- Microbial Genome and Metagenome Program, Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Torben Nielsen
- Microbial Genome and Metagenome Program, Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Natalia N Ivanova
- Microbial Genome and Metagenome Program, Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Nikos C Kyrpides
- Microbial Genome and Metagenome Program, Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
13
|
Bradford LL, Ravel J. The vaginal mycobiome: A contemporary perspective on fungi in women's health and diseases. Virulence 2016; 8:342-351. [PMID: 27657355 PMCID: PMC5411243 DOI: 10.1080/21505594.2016.1237332] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Most of what is known about fungi in the human vagina has come from culture-based studies and phenotypic characterization of single organisms. Though valuable, these approaches have masked the complexity of fungal communities within the vagina. The vaginal mycobiome has become an emerging field of study as genomics tools are increasingly employed and we begin to appreciate the role these fungal communities play in human health and disease. Though vastly outnumbered by its bacterial counterparts, fungi are important constituents of the vaginal ecosystem in many healthy women. Candida albicans, an opportunistic fungal pathogen, colonizes 20% of women without causing any overt symptoms, yet it is one of the leading causes of infectious vaginitis. Understanding its mechanisms of commensalism and patho-genesis are both essential to developing more effective therapies. Describing the interactions between Candida, bacteria (such as Lactobacillus spp.) and other fungi in the vagina is funda-mental to our characterization of the vaginal mycobiome.
Collapse
Affiliation(s)
- L. Latéy Bradford
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA,CONTACT Jacques Ravel Institute for Genome Sciences, 801 W. Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Dudhagara P, Bhavsar S, Bhagat C, Ghelani A, Bhatt S, Patel R. Web Resources for Metagenomics Studies. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:296-303. [PMID: 26602607 PMCID: PMC4678780 DOI: 10.1016/j.gpb.2015.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/09/2015] [Accepted: 10/13/2015] [Indexed: 10/26/2022]
Abstract
The development of next-generation sequencing (NGS) platforms spawned an enormous volume of data. This explosion in data has unearthed new scalability challenges for existing bioinformatics tools. The analysis of metagenomic sequences using bioinformatics pipelines is complicated by the substantial complexity of these data. In this article, we review several commonly-used online tools for metagenomics data analysis with respect to their quality and detail of analysis using simulated metagenomics data. There are at least a dozen such software tools presently available in the public domain. Among them, MGRAST, IMG/M, and METAVIR are the most well-known tools according to the number of citations by peer-reviewed scientific media up to mid-2015. Here, we describe 12 online tools with respect to their web link, annotation pipelines, clustering methods, online user support, and availability of data storage. We have also done the rating for each tool to screen more potential and preferential tools and evaluated five best tools using synthetic metagenome. The article comprehensively deals with the contemporary problems and the prospects of metagenomics from a bioinformatics viewpoint.
Collapse
Affiliation(s)
- Pravin Dudhagara
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India.
| | - Sunil Bhavsar
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
| | - Chintan Bhagat
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395007, India
| | - Anjana Ghelani
- Department of Microbiology, Shree Ramkrishna Institute of Computer Education and Applied Sciences, Surat 395001, India
| | - Shreyas Bhatt
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, India
| | - Rajesh Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, India
| |
Collapse
|
15
|
Markowitz VM, Chen IMA, Chu K, Pati A, Ivanova NN, Kyrpides NC. Ten Years of Maintaining and Expanding a Microbial Genome and Metagenome Analysis System. Trends Microbiol 2015; 23:730-741. [DOI: 10.1016/j.tim.2015.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 10/22/2022]
|
16
|
Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M, Matot E, Jona G, Harmelin A, Cohen N, Sirota-Madi A, Thaiss CA, Pevsner-Fischer M, Sorek R, Xavier R, Elinav E, Segal E. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 2015; 349:1101-1106. [PMID: 26229116 DOI: 10.1126/science.aac4812] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/16/2015] [Indexed: 12/22/2022]
Abstract
Metagenomic sequencing increased our understanding of the role of the microbiome in health and disease, yet it only provides a snapshot of a highly dynamic ecosystem. Here, we show that the pattern of metagenomic sequencing read coverage for different microbial genomes contains a single trough and a single peak, the latter coinciding with the bacterial origin of replication. Furthermore, the ratio of sequencing coverage between the peak and trough provides a quantitative measure of a species' growth rate. We demonstrate this in vitro and in vivo, under different growth conditions, and in complex bacterial communities. For several bacterial species, peak-to-trough coverage ratios, but not relative abundances, correlated with the manifestation of inflammatory bowel disease and type II diabetes.
Collapse
Affiliation(s)
- Tal Korem
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - David Zeevi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Jotham Suez
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Avnit-Sagi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Pompan-Lotan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Elad Matot
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Ghil Jona
- Department of Biological services, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Cohen
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Alexandra Sirota-Madi
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School and Broad Institute
| | | | | | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ramnik Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School and Broad Institute
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
17
|
Pierella Karlusich JJ, Ceccoli RD, Graña M, Romero H, Carrillo N. Environmental selection pressures related to iron utilization are involved in the loss of the flavodoxin gene from the plant genome. Genome Biol Evol 2015; 7:750-67. [PMID: 25688107 PMCID: PMC5322553 DOI: 10.1093/gbe/evv031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress and iron limitation represent the grim side of life in an oxygen-rich atmosphere. The versatile electron transfer shuttle ferredoxin, an iron-sulfur protein, is particularly sensitive to these hardships, and its downregulation under adverse conditions severely compromises survival of phototrophs. Replacement of ferredoxin by a stress-resistant isofunctional carrier, flavin-containing flavodoxin, is a widespread strategy employed by photosynthetic microorganisms to overcome environmental adversities. The flavodoxin gene was lost in the course of plant evolution, but its reintroduction in transgenic plants confers increased tolerance to environmental stress and iron starvation, raising the question as to why a genetic asset with obvious adaptive value was not kept by natural selection. Phylogenetic analyses reveal that the evolutionary history of flavodoxin is intricate, with several horizontal gene transfer events between distant organisms, including Eukarya, Bacteria, and Archaea. The flavodoxin gene is unevenly distributed in most algal lineages, with flavodoxin-containing species being overrepresented in iron-limited regions and scarce or absent in iron-rich environments. Evaluation of cyanobacterial genomic and metagenomic data yielded essentially the same results, indicating that there was little selection pressure to retain flavodoxin in iron-rich coastal/freshwater phototrophs. Our results show a highly dynamic evolution pattern of flavodoxin tightly connected to the bioavailability of iron. Evidence presented here also indicates that the high concentration of iron in coastal and freshwater habitats may have facilitated the loss of flavodoxin in the freshwater ancestor of modern plants during the transition of photosynthetic organisms from the open oceans to the firm land.
Collapse
Affiliation(s)
- Juan J Pierella Karlusich
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| | - Romina D Ceccoli
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina Present address: Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario; CONICET, Rosario, Argentina
| | - Martín Graña
- Unidad de Bioinformática, Institut Pasteur Montevideo, Uruguay
| | - Héctor Romero
- Departamento de Ecología y Evolución, Facultad de Ciencias/CURE, Universidad de la República, Montevideo, Uruguay
| | - Néstor Carrillo
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET-Universidad Nacional de Rosario, Ocampo y Esmeralda, Rosario, Argentina
| |
Collapse
|
18
|
Mao L, Franke J. Symbiosis, dysbiosis, and rebiosis-The value of metaproteomics in human microbiome monitoring. Proteomics 2014; 15:1142-51. [DOI: 10.1002/pmic.201400329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/02/2014] [Accepted: 10/08/2014] [Indexed: 01/01/2023]
Affiliation(s)
- Lei Mao
- Department of Life Science Engineering; HTW Berlin - University of Applied Sciences; Germany
| | - Jacqueline Franke
- Department of Life Science Engineering; HTW Berlin - University of Applied Sciences; Germany
| |
Collapse
|
19
|
Reddy TBK, Thomas AD, Stamatis D, Bertsch J, Isbandi M, Jansson J, Mallajosyula J, Pagani I, Lobos EA, Kyrpides NC. The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification. Nucleic Acids Res 2014; 43:D1099-106. [PMID: 25348402 DOI: 10.1093/nar/gku950] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Genomes OnLine Database (GOLD; http://www.genomesonline.org) is a comprehensive online resource to catalog and monitor genetic studies worldwide. GOLD provides up-to-date status on complete and ongoing sequencing projects along with a broad array of curated metadata. Here we report version 5 (v.5) of the database. The newly designed database schema and web user interface supports several new features including the implementation of a four level (meta)genome project classification system and a simplified intuitive web interface to access reports and launch search tools. The database currently hosts information for about 19,200 studies, 56,000 Biosamples, 56,000 sequencing projects and 39,400 analysis projects. More than just a catalog of worldwide genome projects, GOLD is a manually curated, quality-controlled metadata warehouse. The problems encountered in integrating disparate and varying quality data into GOLD are briefly highlighted. GOLD fully supports and follows the Genomic Standards Consortium (GSC) Minimum Information standards.
Collapse
Affiliation(s)
- T B K Reddy
- Prokaryotic Super Program, DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Alex D Thomas
- Prokaryotic Super Program, DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Dimitri Stamatis
- Prokaryotic Super Program, DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jon Bertsch
- Prokaryotic Super Program, DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Michelle Isbandi
- Prokaryotic Super Program, DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jakob Jansson
- Prokaryotic Super Program, DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jyothi Mallajosyula
- Prokaryotic Super Program, DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Ioanna Pagani
- Prokaryotic Super Program, DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Elizabeth A Lobos
- Prokaryotic Super Program, DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Nikos C Kyrpides
- Prokaryotic Super Program, DOE Joint Genome Institute, Walnut Creek, CA 94598, USA Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
20
|
Glycan degradation (GlyDeR) analysis predicts mammalian gut microbiota abundance and host diet-specific adaptations. mBio 2014; 5:mBio.01526-14. [PMID: 25118239 PMCID: PMC4145686 DOI: 10.1128/mbio.01526-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Glycans form the primary nutritional source for microbes in the human gut, and understanding their metabolism is a critical yet understudied aspect of microbiome research. Here, we present a novel computational pipeline for modeling glycan degradation (GlyDeR) which predicts the glycan degradation potency of 10,000 reference glycans based on either genomic or metagenomic data. We first validated GlyDeR by comparing degradation profiles for genomes in the Human Microbiome Project against KEGG reaction annotations. Next, we applied GlyDeR to the analysis of human and mammalian gut microbial communities, which revealed that the glycan degradation potential of a community is strongly linked to host diet and can be used to predict diet with higher accuracy than sequence data alone. Finally, we show that a microbe’s glycan degradation potential is significantly correlated (R = 0.46) with its abundance, with even higher correlations for potential pathogens such as the class Clostridia (R = 0.76). GlyDeR therefore represents an important tool for advancing our understanding of bacterial metabolism in the gut and for the future development of more effective prebiotics for microbial community manipulation. The increased availability of high-throughput sequencing data has positioned the gut microbiota as a major new focal point for biomedical research. However, despite the expenditure of huge efforts and resources, sequencing-based analysis of the microbiome has uncovered mostly associative relationships between human health and diet, rather than a causal, mechanistic one. In order to utilize the full potential of systems biology approaches, one must first characterize the metabolic requirements of gut bacteria, specifically, the degradation of glycans, which are their primary nutritional source. We developed a computational framework called GlyDeR for integrating expert knowledge along with high-throughput data to uncover important new relationships within glycan metabolism. GlyDeR analyzes particular bacterial (meta)genomes and predicts the potency by which they degrade a variety of different glycans. Based on GlyDeR, we found a clear connection between microbial glycan degradation and human diet, and we suggest a method for the rational design of novel prebiotics.
Collapse
|
21
|
Culligan EP, Sleator RD, Marchesi JR, Hill C. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15'-monooxygenase. PLoS One 2014; 9:e103318. [PMID: 25058308 PMCID: PMC4110020 DOI: 10.1371/journal.pone.0103318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/29/2014] [Indexed: 12/30/2022] Open
Abstract
The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.
Collapse
Affiliation(s)
- Eamonn P. Culligan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Roy D. Sleator
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- * E-mail: (CH); (RDS); (JRM)
| | - Julian R. Marchesi
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Department of Hepatology and Gastroenterology, Imperial College London, London, United Kingdom
- * E-mail: (CH); (RDS); (JRM)
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- * E-mail: (CH); (RDS); (JRM)
| |
Collapse
|
22
|
Culligan EP, Sleator RD, Marchesi JR, Hill C. Functional environmental screening of a metagenomic library identifies stlA; a unique salt tolerance locus from the human gut microbiome. PLoS One 2013; 8:e82985. [PMID: 24349412 PMCID: PMC3861447 DOI: 10.1371/journal.pone.0082985] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/29/2013] [Indexed: 12/27/2022] Open
Abstract
Functional environmental screening of metagenomic libraries is a powerful means to identify and assign function to novel genes and their encoded proteins without any prior sequence knowledge. In the current study we describe the identification and subsequent analysis of a salt-tolerant clone from a human gut metagenomic library. Following transposon mutagenesis we identified an unknown gene (stlA, for “salt tolerance locus A”) with no current known homologues in the databases. Subsequent cloning and expression in Escherichia coli MKH13 revealed that stlA confers a salt tolerance phenotype in its surrogate host. Furthermore, a detailed in silico analysis was also conducted to gain additional information on the properties of the encoded StlA protein. The stlA gene is rare when searched against human metagenome datasets such as MetaHit and the Human Microbiome Project and represents a novel and unique salt tolerance determinant which appears to be found exclusively in the human gut environment.
Collapse
Affiliation(s)
- Eamonn P. Culligan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Roy D. Sleator
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- * E-mail: (RS); (JM); (CH)
| | - Julian R. Marchesi
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Department of Hepatology and Gastroenterology, Imperial College London, London, United Kingdom
- * E-mail: (RS); (JM); (CH)
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- * E-mail: (RS); (JM); (CH)
| |
Collapse
|
23
|
Markowitz VM, Chen IMA, Chu K, Szeto E, Palaniappan K, Pillay M, Ratner A, Huang J, Pagani I, Tringe S, Huntemann M, Billis K, Varghese N, Tennessen K, Mavromatis K, Pati A, Ivanova NN, Kyrpides NC. IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res 2013; 42:D568-73. [PMID: 24136997 PMCID: PMC3964948 DOI: 10.1093/nar/gkt919] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
IMG/M (http://img.jgi.doe.gov/m) provides support for comparative analysis of microbial community aggregate genomes (metagenomes) in the context of a comprehensive set of reference genomes from all three domains of life, as well as plasmids, viruses and genome fragments. IMG/M’s data content and analytical tools have expanded continuously since its first version was released in 2007. Since the last report published in the 2012 NAR Database Issue, IMG/M’s database architecture, annotation and data integration pipelines and analysis tools have been extended to copewith the rapid growth in the number and size of metagenome data sets handled by the system. IMG/M data marts provide support for the analysis of publicly available genomes, expert review of metagenome annotations (IMG/M ER: http://img.jgi.doe.gov/mer) and Human Microbiome Project (HMP)-specific metagenome samples (IMG/M HMP: http://img.jgi.doe.gov/imgm_hmp).
Collapse
Affiliation(s)
- Victor M Markowitz
- Biological Data Management and Technology Center, Computational Research Division Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, 94720 USA and Microbial Genome and Metagenome Program, Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598 USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kirkup BC. Culture-independence for surveillance and epidemiology. Pathogens 2013; 2:556-70. [PMID: 25437208 PMCID: PMC4235693 DOI: 10.3390/pathogens2030556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/27/2022] Open
Abstract
Culture-independent methods in microbiology (quantitative PCR (qPCR), sequencing, microarrays, direct from sample matrix assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-TOF MS), etc.) are disruptive technology. Rather than providing the same results as culture-based methods more quickly, more cheaply or with improved accuracy, they reveal an unexpected diversity of microbes and illuminate dark corners of undiagnosed disease. At times, they overturn existing definitions of presumably well-understood infections, generating new requirements for clinical diagnosis, surveillance and epidemiology. However, current diagnostic microbiology, infection control and epidemiology rest principally on culture methods elegantly optimized by clinical laboratorians. The clinical significance is interwoven; the new methods are out of context, difficult to interpret and impossible to act upon. Culture-independent diagnostics and surveillance methods will not be deployed unless the reported results can be used to select specific therapeutics or infection control measures. To cut the knots surrounding the adoption of culture-independent methods in medical microbiology, culture-dependent methods should be supported by consistent culture-independent methods providing the microbial context. This will temper existing biases and motivate appropriate scrutiny of the older methods and results.
Collapse
Affiliation(s)
- Benjamin C Kirkup
- Department of Wound Infections, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
25
|
Lichtman JS, Marcobal A, Sonnenburg JL, Elias JE. Host-centric proteomics of stool: a novel strategy focused on intestinal responses to the gut microbiota. Mol Cell Proteomics 2013; 12:3310-8. [PMID: 23982161 DOI: 10.1074/mcp.m113.029967] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The diverse community of microbes that inhabits the human bowel is vitally important to human health. Host-expressed proteins are essential for maintaining this mutualistic relationship and serve as reporters on the status of host-microbiota interaction. Therefore, unbiased and sensitive methods focused on host proteome characterization are needed. Herein we describe a novel method for applying shotgun proteomics to the analysis of feces, focusing on the secreted host proteome. We have conducted the most complete analysis of the extracellular mouse gut proteome to date by employing a gnotobiotic mouse model. Using mice colonized with defined microbial communities of increasing complexity or a complete human microbiota ('humanized'), we show that the complexity of the host stool proteome mirrors the complexity of microbiota composition. We further show that host responses exhibit signatures specific to the different colonization states. We demonstrate feasibility of this approach in human stool samples and provide evidence for a "core" stool proteome as well as personalized host response features. Our method provides a new avenue for noninvasive monitoring of host-microbiota interaction dynamics via host-produced proteins in stool.
Collapse
Affiliation(s)
- Joshua S Lichtman
- Department of Chemical and Systems Biology, Stanford University, Stanford, California
| | | | | | | |
Collapse
|
26
|
|
27
|
UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc Natl Acad Sci U S A 2013; 110:5540-5. [PMID: 23509275 DOI: 10.1073/pnas.1303090110] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The composition of the human microbiota is recognized as an important factor in human health and disease. Many of our cohabitating microbes belong to phylum-level divisions for which there are no cultivated representatives and are only represented by small subunit rRNA sequences. For one such taxon (SR1), which includes bacteria with elevated abundance in periodontitis, we provide a single-cell genome sequence from a healthy oral sample. SR1 bacteria use a unique genetic code. In-frame TGA (opal) codons are found in most genes (85%), often at loci normally encoding conserved glycine residues. UGA appears not to function as a stop codon and is in equilibrium with the canonical GGN glycine codons, displaying strain-specific variation across the human population. SR1 encodes a divergent tRNA(Gly)UCA with an opal-decoding anticodon. SR1 glycyl-tRNA synthetase acylates tRNA(Gly)UCA with glycine in vitro with similar activity compared with normal tRNA(Gly)UCC. Coexpression of SR1 glycyl-tRNA synthetase and tRNA(Gly)UCA in Escherichia coli yields significant β-galactosidase activity in vivo from a lacZ gene containing an in-frame TGA codon. Comparative genomic analysis with Human Microbiome Project data revealed that the human body harbors a striking diversity of SR1 bacteria. This is a surprising finding because SR1 is most closely related to bacteria that live in anoxic and thermal environments. Some of these bacteria share common genetic and metabolic features with SR1, including UGA to glycine reassignment and an archaeal-type ribulose-1,5-bisphosphate carboxylase (RubisCO) involved in AMP recycling. UGA codon reassignment renders SR1 genes untranslatable by other bacteria, which impacts horizontal gene transfer within the human microbiota.
Collapse
|