1
|
Nicoll RA, Schulman H. Synaptic memory and CaMKII. Physiol Rev 2023; 103:2877-2925. [PMID: 37290118 PMCID: PMC10642921 DOI: 10.1152/physrev.00034.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and long-term potentiation (LTP) were discovered within a decade of each other and have been inextricably intertwined ever since. However, like many marriages, it has had its up and downs. Based on the unique biochemical properties of CaMKII, it was proposed as a memory molecule before any physiological linkage was made to LTP. However, as reviewed here, the convincing linkage of CaMKII to synaptic physiology and behavior took many decades. New technologies were critical in this journey, including in vitro brain slices, mouse genetics, single-cell molecular genetics, pharmacological reagents, protein structure, and two-photon microscopy, as were new investigators attracted by the exciting challenge. This review tracks this journey and assesses the state of this marriage 40 years on. The collective literature impels us to propose a relatively simple model for synaptic memory involving the following steps that drive the process: 1) Ca2+ entry through N-methyl-d-aspartate (NMDA) receptors activates CaMKII. 2) CaMKII undergoes autophosphorylation resulting in constitutive, Ca2+-independent activity and exposure of a binding site for the NMDA receptor subunit GluN2B. 3) Active CaMKII translocates to the postsynaptic density (PSD) and binds to the cytoplasmic C-tail of GluN2B. 4) The CaMKII-GluN2B complex initiates a structural rearrangement of the PSD that may involve liquid-liquid phase separation. 5) This rearrangement involves the PSD-95 scaffolding protein, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and their transmembrane AMPAR-regulatory protein (TARP) auxiliary subunits, resulting in an accumulation of AMPARs in the PSD that underlies synaptic potentiation. 6) The stability of the modified PSD is maintained by the stability of the CaMKII-GluN2B complex. 7) By a process of subunit exchange or interholoenzyme phosphorylation CaMKII maintains synaptic potentiation in the face of CaMKII protein turnover. There are many other important proteins that participate in enlargement of the synaptic spine or modulation of the steps that drive and maintain the potentiation. In this review we critically discuss the data underlying each of the steps. As will become clear, some of these steps are more firmly grounded than others, and we provide suggestions as to how the evidence supporting these steps can be strengthened or, based on the new data, be replaced. Although the journey has been a long one, the prospect of having a detailed cellular and molecular understanding of learning and memory is at hand.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California, United States
| | - Howard Schulman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States
- Panorama Research Institute, Sunnyvale, California, United States
| |
Collapse
|
2
|
Cohen LD, Ziv T, Ziv NE. Synapse integrity and function: Dependence on protein synthesis and identification of potential failure points. Front Mol Neurosci 2022; 15:1038614. [PMID: 36583084 PMCID: PMC9792512 DOI: 10.3389/fnmol.2022.1038614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic integrity and function depend on myriad proteins - labile molecules with finite lifetimes that need to be continually replaced with freshly synthesized copies. Here we describe experiments designed to expose synaptic (and neuronal) properties and functions that are particularly sensitive to disruptions in protein supply, identify proteins lost early upon such disruptions, and uncover potential, yet currently underappreciated failure points. We report here that acute suppressions of protein synthesis are followed within hours by reductions in spontaneous network activity levels, impaired oxidative phosphorylation and mitochondrial function, and, importantly, destabilization and loss of both excitatory and inhibitory postsynaptic specializations. Conversely, gross impairments in presynaptic vesicle recycling occur over longer time scales (days), as does overt cell death. Proteomic analysis identified groups of potentially essential 'early-lost' proteins including regulators of synapse stability, proteins related to bioenergetics, fatty acid and lipid metabolism, and, unexpectedly, numerous proteins involved in Alzheimer's disease pathology and amyloid beta processing. Collectively, these findings point to neuronal excitability, energy supply and synaptic stability as early-occurring failure points under conditions of compromised supply of newly synthesized protein copies.
Collapse
Affiliation(s)
- Laurie D. Cohen
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion, Haifa, Israel
| | - Noam E. Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel,*Correspondence: Noam E. Ziv,
| |
Collapse
|
3
|
Smolen P, Baxter DA, Byrne JH. Paradoxical LTP maintenance with inhibition of protein synthesis and the proteasome suggests a novel protein synthesis requirement for early LTP reversal. J Theor Biol 2018; 457:79-87. [PMID: 30138630 PMCID: PMC6179370 DOI: 10.1016/j.jtbi.2018.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 11/29/2022]
Abstract
The transition from early long-term potentiation (E-LTP) to late long-term potentiation (L-LTP) is a multistep process that involves both protein synthesis and degradation. The ways in which these two opposing processes interact to establish L-LTP are not well understood, however. For example, L-LTP is attenuated by inhibiting either protein synthesis or proteasome-dependent degradation prior to and during a tetanic stimulus (e.g., Huang et al., 1996; Karpova et al., 2006), but paradoxically, L-LTP is not attenuated when synthesis and degradation are inhibited simultaneously (Fonseca et al., 2006). These paradoxical results suggest that counter-acting 'positive' and 'negative' proteins regulate L-LTP. To investigate the basis of this paradox, we developed a model of LTP at the Schaffer collateral to CA1 pyramidal cell synapse. The model consists of nine ordinary differential equations that describe the levels of both positive- and negative-regulator proteins (PP and NP, respectively) and the transitions among five discrete synaptic states, including a basal state (BAS), three states corresponding to E-LTP (EP1, EP2, and ED), and a L-LTP state (LP). An LTP-inducing stimulus: 1) initiates the transition from BAS to EP1 and from EP1 to EP2; 2) initiates the synthesis of PP and NP; and finally; 3) activates the ubiquitin-proteasome system (UPS), which in turn, mediates transitions of EP1 and EP2 to ED and the degradation of NP. The conversion of E-LTP to L-LTP is mediated by the PP-dependent transition from ED to LP, whereas NP mediates reversal of EP2 to BAS. We found that the inclusion of the five discrete synaptic states was necessary to simulate key empirical observations: 1) normal L-LTP, 2) block of L-LTP by either proteasome inhibitor or protein synthesis inhibitor alone, and 3) preservation of L-LTP when both inhibitors are applied together. Although our model is abstract, elements of the model can be correlated with specific molecular processes. Moreover, the model correctly captures the dynamics of protein synthesis- and degradation-dependent phases of LTP, and it makes testable predictions, such as a unique synaptic state (ED) that precedes the transition from E-LTP to L-LTP, and a well-defined time window for the action of the UPS (i.e., during the transitions from EP1 and EP2 to ED). Tests of these predictions will provide new insights into the processes and dynamics of long-term synaptic plasticity.
Collapse
Affiliation(s)
- Paul Smolen
- Laboratory of Origin: Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Douglas A Baxter
- Laboratory of Origin: Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - John H Byrne
- Laboratory of Origin: Department of Neurobiology and Anatomy, W. M. Keck Center for the Neurobiology of Learning and Memory, McGovern Medical School of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
4
|
Park M. AMPA Receptor Trafficking for Postsynaptic Potentiation. Front Cell Neurosci 2018; 12:361. [PMID: 30364291 PMCID: PMC6193507 DOI: 10.3389/fncel.2018.00361] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/25/2018] [Indexed: 01/25/2023] Open
Abstract
Long-term potentiation (LTP) of excitatory synaptic strength, which has long been considered a synaptic correlate for learning and memory, requires a fast recruitment of additional α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors (AMPARs) to the postsynaptic sites. As cell biological concepts have been applied to the field and genetic manipulation and microscopic imaging technologies have been advanced, visualization of the trafficking of AMPARs to synapses for LTP has been investigated intensively over the last decade. Recycling endosomes have been reported as intracellular storage organelles to supply AMPARs for LTP through the endocytic recycling pathway. In addition, exocytic domains in the spine plasma membrane, where AMPARs are inserted from the intracellular compartment, and nanodomains, where diffusing AMPARs are trapped and immobilized inside synapses for LTP, have been described. Furthermore, cell surface lateral diffusion of AMPARs from extrasynaptic to synaptic sites has been reported as a key step for AMPAR location to the synaptic sites for LTP. This review article will discuss recent findings and views on the reservoir(s) of AMPARs and their trafficking for LTP expression by focusing on the exocytosis and lateral diffusion of AMPARs, and provide some future directions that need to be addressed in the field of LTP.
Collapse
Affiliation(s)
- Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Neuroscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
5
|
cAMP, cGMP and Amyloid β: Three Ideal Partners for Memory Formation. Trends Neurosci 2018; 41:255-266. [PMID: 29501262 DOI: 10.1016/j.tins.2018.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 02/03/2023]
Abstract
cAMP and cGMP are well established second messengers required for long-term potentiation (LTP) and memory formation/consolidation. By contrast, amyloid β (Aβ), mostly known as one of the main culprits for Alzheimer's disease (AD), has received relatively little attention in the context of plasticity and memory. Of note, however, low physiological concentrations of Aβ seem necessary for LTP induction and for memory formation. This should come as no surprise, since hormesis emerged as a central dogma in biology. Additionally, recent evidence indicates that Aβ is one of the downstream effectors for cAMP and cGMP to trigger synaptic plasticity and memory. We argue that these emerging findings depict a new scenario that should change the general view on the amyloidogenic pathway, and that could have significant implications for the understanding of AD and its pharmacological treatment in the future.
Collapse
|
6
|
Pfeiffer BE. The content of hippocampal "replay". Hippocampus 2018; 30:6-18. [PMID: 29266510 PMCID: PMC7027863 DOI: 10.1002/hipo.22824] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 11/07/2022]
Abstract
One of the most striking features of the hippocampal network is its ability to self-generate neuronal sequences representing temporally compressed, spatially coherent paths. These brief events, often termed "replay" in the scientific literature, are largely confined to non-exploratory states such as sleep or quiet rest. Early studies examining the content of replay noted a strong correlation between the encoded spatial information and the animal's prior behavior; thus, replay was initially hypothesized to play a role in memory formation and/or systems-level consolidation via "off-line" reactivation of previous experiences. However, recent findings indicate that replay may also serve as a memory retrieval mechanism to guide future behavior or may be an incidental reflection of pre-existing network assemblies. Here, I will review what is known regarding the content of replay events and their correlation with past and future actions, and I will discuss how this knowledge might inform or constrain models which seek to explain the circuit-level mechanisms underlying these events and their role in mnemonic processes.
Collapse
Affiliation(s)
- Brad E Pfeiffer
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, 75390
| |
Collapse
|
7
|
Palluzzi F, Ferrari R, Graziano F, Novelli V, Rossi G, Galimberti D, Rainero I, Benussi L, Nacmias B, Bruni AC, Cusi D, Salvi E, Borroni B, Grassi M. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia. PLoS One 2017; 12:e0185797. [PMID: 29020091 PMCID: PMC5636111 DOI: 10.1371/journal.pone.0185797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 09/19/2017] [Indexed: 01/04/2023] Open
Abstract
Frontotemporal Dementia (FTD) is the form of neurodegenerative dementia with the highest prevalence after Alzheimer’s disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72) have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM) analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies.
Collapse
Affiliation(s)
- Fernando Palluzzi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
- * E-mail:
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Francesca Graziano
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Valeria Novelli
- Department of Genetics, Fondazione Policlinico A. Gemelli, Roma, Italy
| | - Giacomina Rossi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Daniela Galimberti
- Department of Neurological Sciences, Dino Ferrari Institute, University of Milan, Milano, Italy
| | - Innocenzo Rainero
- Department of Neuroscience, Neurology I, University of Torino and Città della Salute e della Scienza di Torino, Torino, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy
| | - Amalia C. Bruni
- Neurogenetic Regional Centre ASPCZ Lamezia Terme, Lamezia Terme (CZ), Italy
| | - Daniele Cusi
- Department of Health Sciences, University of Milan at San Paolo Hospital, Milano, Italy
- Institute of Biomedical Technologies, Italian National Research Council, Milano, Italy
| | - Erika Salvi
- Institute of Biomedical Technologies, Italian National Research Council, Milano, Italy
| | - Barbara Borroni
- Department of Medical Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
The Kinase Function of MSK1 Regulates BDNF Signaling to CREB and Basal Synaptic Transmission, But Is Not Required for Hippocampal Long-Term Potentiation or Spatial Memory. eNeuro 2017; 4:eN-NWR-0212-16. [PMID: 28275711 PMCID: PMC5318545 DOI: 10.1523/eneuro.0212-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/26/2022] Open
Abstract
The later stages of long-term potentiation (LTP) in vitro and spatial memory in vivo are believed to depend upon gene transcription. Accordingly, considerable attempts have been made to identify both the mechanisms by which transcription is regulated and indeed the gene products themselves. Previous studies have shown that deletion of one regulator of transcription, the mitogen- and stress-activated kinase 1 (MSK1), causes an impairment of spatial memory. Given the ability of MSK1 to regulate gene expression via the phosphorylation of cAMP response element binding protein (CREB) at serine 133 (S133), MSK1 is a plausible candidate as a prime regulator of transcription underpinning synaptic plasticity and learning and memory. Indeed, prior work has revealed the necessity for MSK1 in homeostatic and experience-dependent synaptic plasticity. However, using a knock-in kinase-dead mouse mutant of MSK1, the current study demonstrates that, while the kinase function of MSK1 is important in regulating the phosphorylation of CREB at S133 and basal synaptic transmission in hippocampal area CA1, it is not required for metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD), two forms of LTP or several forms of spatial learning in the watermaze. These data indicate that other functions of MSK1, such as a structural role for the whole enzyme, may explain previous observations of a role for MSK1 in learning and memory.
Collapse
|
9
|
The atypical antipsychotic olanzapine disturbs depotentiation by modulating mAChRs and impairs reversal learning. Neuropharmacology 2016; 114:1-11. [PMID: 27866902 DOI: 10.1016/j.neuropharm.2016.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/13/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022]
Abstract
Antipsychotic medication is an essential component for treating schizophrenia, which is a serious mental disorder that affects approximately 1% of the global population. Olanzapine (Olz), one of the most frequently prescribed atypical antipsychotics, is generally considered a first-line drug for treating schizophrenia. In contrast to psychotic symptoms, the effects of Olz on cognitive symptoms of schizophrenia are still unclear. In addition, the mechanisms by which Olz affects the neural circuits associated with cognitive function are unknown. Here we show that Olz interrupts depotentiation (reversal of long-term potentiation) without disturbing de novo LTP (long-term potentiation) and LTD (long-term depression). At hippocampal SC-CA1 synapses, inhibition of NMDARs (N-methyl-d-aspartate receptors), mGluRs (metabotropic glutamate receptors), or mAChRs (muscarinic acetylcholine receptors) disrupted depotentiation. In addition, co-activation of NMDARs, mGluRs, and mAChRs reversed stably expressed LTP. Olz inhibits the activation of mAChRs, which amplifies glutamate signaling through enhanced NMDAR opening and Gq (Gq class of G protein)-mediated signal transduction. Behaviorally, Olz impairs spatial reversal learning of mice in the Morris water maze test. Our results uncover a novel mechanism underpinning the cognitive modulation of Olz and show that the anticholinergic property of Olz affects glutamate signaling and synaptic plasticity.
Collapse
|
10
|
Abbas AK. Protein Synthesis Inhibitors Did Not Interfere with Long-Term Depression Induced either Electrically in Juvenile Rats or Chemically in Middle-Aged Rats. PLoS One 2016; 11:e0161270. [PMID: 27517693 PMCID: PMC4982604 DOI: 10.1371/journal.pone.0161270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/02/2016] [Indexed: 11/26/2022] Open
Abstract
In testing the hypothesis that long-term potentiation (LTP) maintenance depends on triggered protein synthesis, we found no effect of protein synthesis inhibitors (PSIs) on LTP stabilization. Similarly, some studies reported a lack of effect of PSIs on long-term depression (LTD); the lack of effect on LTD has been suggested to be resulting from the short time recordings. If this proposal were true, LTD might exhibit sensitivity to PSIs when the recording intervals were enough long. We firstly induced LTD by a standard protocol involving low frequency stimulation, which is suitable for eliciting NMDAR-LTD in CA1 area of hippocampal slices obtained from juvenile Sprague-Dawley rats. This LTD was persistent for intervals in range of 8–10 h. Treating slices with anisomycin, however, did not interfere with the magnitude and persistence of this form of LTD. The failure of anisomycin to block synaptic-LTD might be relied on the age of animal, the type of protein synthesis inhibitors and/or the inducing protocol. To verify whether those variables altogether were determinant, NMDA or DHPG was used to chemically elicit LTD recorded up to 10 h on hippocampal slices obtained from middle-aged rats. In either form of LTD, cycloheximide did not interfere with LTD stabilization. Furthermore, DHPG application did show an increase in the global protein synthesis as assayed by radiolabeled methodology indicating that though triggered protein synthesis can occur but not necessarily required for LTD expression. The findings confirm that stabilized LTD in either juvenile, or middle-aged rats can be independent of triggered protein synthesis. Although the processes responsible for the independence of LTD stabilization on the triggered protein synthesis are not yet defined, these findings raise the possibility that de novo protein synthesis is not universally necessary.
Collapse
Affiliation(s)
- Abdul-Karim Abbas
- Institute of Neuroscience and Physiology, University of Gothenburg, Box 432, SE-40530, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
11
|
Takeda A, Tamano H. Significance of Low Nanomolar Concentration of Zn2+ in Artificial Cerebrospinal Fluid. Mol Neurobiol 2016; 54:2477-2482. [DOI: 10.1007/s12035-016-9816-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/23/2016] [Indexed: 01/03/2023]
|
12
|
A molecular brake controls the magnitude of long-term potentiation. Nat Commun 2015; 5:3051. [PMID: 24394804 PMCID: PMC3895372 DOI: 10.1038/ncomms4051] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 12/02/2013] [Indexed: 01/09/2023] Open
Abstract
Overexpression of suprachiasmatic nucleus circadian oscillatory protein (SCOP), a negative ERK regulator, blocks long-term memory encoding. Inhibition of calpain-mediated SCOP degradation also prevents the formation of long-term memory, suggesting rapid SCOP breakdown is necessary for memory encoding. However, whether SCOP levels also control the magnitude of long-term synaptic plasticity is unknown. Here we show that following synaptic activity-induced SCOP degradation, SCOP is rapidly replaced via mTOR-mediated protein synthesis. We further show that early SCOP degradation is specifically catalysed by μ-calpain, whereas late SCOP resynthesis is mediated by m-calpain. We propose that μ-calpain promotes long-term potentiation induction by degrading SCOP and activating ERK, whereas m-calpain activation limits the magnitude of potentiation by terminating the ERK response via enhanced SCOP synthesis. This unique braking mechanism could account for the advantages of spaced versus massed training in the formation of long-term memory.
Collapse
|
13
|
Lynch G, Kramár EA, Gall CM. Protein synthesis and consolidation of memory-related synaptic changes. Brain Res 2014; 1621:62-72. [PMID: 25485773 DOI: 10.1016/j.brainres.2014.11.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Although sometimes disputed, it has been assumed for several decades that new proteins synthesized following a learning event are required for consolidation of subsequent memory. Published findings and new results described here challenge this idea. Protein synthesis inhibitors did not prevent Theta Bust Stimulation (TBS) from producing extremely stable long-term potentiation (LTP) in experiments using standard hippocampal slice protocols. However, the inhibitors were effective under conditions that likely depleted protein levels prior to attempts to induce the potentiation effect. Experiments showed that induction of LTP at one input, and thus a prior episode of protein synthesis, eliminated the effects of inhibitors on potentiation of a second input even in depleted slices. These observations suggest that a primary role of translation and transcription processes initiated by learning events is to prepare neurons to support future learning. Other work has provided support for an alternative theory of consolidation. Specifically, if the synaptic changes that support memory are to endure, learning events/TBS must engage a complex set of signaling processes that reorganize and re-stabilize the spine actin cytoskeleton. This is accomplished in fast (10 min) and slow (50 min) stages with the first requiring integrin activation and the second a recovery of integrin functioning. These results align with, and provide mechanisms for, the long-held view that memories are established and consolidated over a set of temporally distinct phases. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | - Enikö A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Rosenberg T, Gal-Ben-Ari S, Dieterich DC, Kreutz MR, Ziv NE, Gundelfinger ED, Rosenblum K. The roles of protein expression in synaptic plasticity and memory consolidation. Front Mol Neurosci 2014; 7:86. [PMID: 25429258 PMCID: PMC4228929 DOI: 10.3389/fnmol.2014.00086] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 10/24/2014] [Indexed: 01/07/2023] Open
Abstract
The amount and availability of proteins are regulated by their synthesis, degradation, and transport. These processes can specifically, locally, and temporally regulate a protein or a population of proteins, thus affecting numerous biological processes in health and disease states. Accordingly, malfunction in the processes of protein turnover and localization underlies different neuronal diseases. However, as early as a century ago, it was recognized that there is a specific need for normal macromolecular synthesis in a specific fragment of the learning process, memory consolidation, which takes place minutes to hours following acquisition. Memory consolidation is the process by which fragile short-term memory is converted into stable long-term memory. It is accepted today that synaptic plasticity is a cellular mechanism of learning and memory processes. Interestingly, similar molecular mechanisms subserve both memory and synaptic plasticity consolidation. In this review, we survey the current view on the connection between memory consolidation processes and proteostasis, i.e., maintaining the protein contents at the neuron and the synapse. In addition, we describe the technical obstacles and possible new methods to determine neuronal proteostasis of synaptic function and better explain the process of memory and synaptic plasticity consolidation.
Collapse
Affiliation(s)
- Tali Rosenberg
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| | | | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Germany ; Research Group Neuralomics, Leibniz Institute for Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology Magdeburg, Germany
| | - Noam E Ziv
- Network Biology Research Laboratories and Faculty of Medicine, Technion - Israel Institute of Technology Haifa, Israel
| | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology Magdeburg, Germany ; Center for Behavioral Brain Sciences Magdeburg, Germany ; Medical School, Otto von Guericke University Magdeburg, Germany
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa Haifa, Israel ; Center for Gene Manipulation in the Brain, University of Haifa Haifa, Israel
| |
Collapse
|
15
|
Villers A, Giese KP, Ris L. Long-term potentiation can be induced in the CA1 region of hippocampus in the absence of αCaMKII T286-autophosphorylation. ACTA ACUST UNITED AC 2014; 21:616-26. [PMID: 25322797 PMCID: PMC4201817 DOI: 10.1101/lm.035972.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
α-calcium/calmodulin-dependent protein kinase (αCaMKII) T286-autophosphorylation provides a short-term molecular memory that was thought to be required for LTP and for learning and memory. However, it has been shown that learning can occur in αCaMKII-T286A mutant mice after a massed training protocol. This raises the question of whether there might be a form of LTP in these mice that can occur without T286 autophosphorylation. In this study, we confirmed that in CA1 pyramidal cells, LTP induced in acute hippocampal slices, after a recovery period in an interface chamber, is strictly dependent on postsynaptic αCaMKII autophosphorylation. However, we demonstrated that αCaMKII-autophosphorylation-independent plasticity can occur in the hippocampus but at the expense of synaptic specificity. This nonspecific LTP was observed in mutant and wild-type mice after a recovery period in a submersion chamber and was independent of NMDA receptors. Moreover, when slices prepared from mutant mice were preincubated during 2 h with rapamycin, high-frequency trains induced a synapse-specific LTP which was added to the nonspecific LTP. This specific LTP was related to an increase in the duration and the amplitude of NMDA receptor-mediated response induced by rapamycin.
Collapse
Affiliation(s)
- Agnès Villers
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, B-7000 Mons, Belgium
| | - Karl Peter Giese
- MRC Centre for Neurodegeneration, Institute of Psychiatry, King's College London, SE5 9NU, London, United Kingdom
| | - Laurence Ris
- Department of Neuroscience, Research Institute for Biosciences, University of Mons, B-7000 Mons, Belgium
| |
Collapse
|
16
|
Li J, O W, Li W, Jiang ZG, Ghanbari HA. Oxidative stress and neurodegenerative disorders. Int J Mol Sci 2013; 14:24438-75. [PMID: 24351827 PMCID: PMC3876121 DOI: 10.3390/ijms141224438] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/27/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022] Open
Abstract
Living cells continually generate reactive oxygen species (ROS) through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS) is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS) of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs.
Collapse
Affiliation(s)
- Jie Li
- Department of Geratology, First Hospital of Jilin University, Changchun, Jilin 130021, China; E-Mail:
| | - Wuliji O
- College of Pharmacology, Inner Mongolia University for the Nationalities, Tongliao, Inner Mongolia 028000, China; E-Mail:
| | - Wei Li
- Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130021, China; E-Mail:
| | - Zhi-Gang Jiang
- Panacea Pharmaceuticals, Inc., Gaithersburg, MD 20877, USA; E-Mail:
| | | |
Collapse
|
17
|
Park P, Volianskis A, Sanderson TM, Bortolotto ZA, Jane DE, Zhuo M, Kaang BK, Collingridge GL. NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130131. [PMID: 24298134 PMCID: PMC3843864 DOI: 10.1098/rstb.2013.0131] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP) is extensively studied since it is believed to use the same molecular mechanisms that are required for many forms of learning and memory. Unfortunately, many controversies exist, not least the seemingly simple issue concerning the locus of expression of LTP. Here, we review our recent work and some of the extensive literature on this topic and present new data that collectively suggest that LTP can be explained, during its first few hours, by the coexistence of at least three mechanistically distinct processes that are all triggered by the synaptic activation of NMDARs.
Collapse
Affiliation(s)
- Pojeong Park
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, , Seoul 151-746, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Granger AJ, Nicoll RA. Expression mechanisms underlying long-term potentiation: a postsynaptic view, 10 years on. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130136. [PMID: 24298139 DOI: 10.1098/rstb.2013.0136] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This review focuses on the research that has occurred over the past decade which has solidified a postsynaptic expression mechanism for long-term potentiation (LTP). However, experiments that have suggested a presynaptic component are also summarized. It is argued that the pairing of glutamate uncaging onto single spines with postsynaptic depolarization provides the final and most elegant demonstration of a postsynaptic expression mechanism for NMDA receptor-dependent LTP. The fact that the magnitude of this LTP is similar to that evoked by pairing synaptic stimulation and depolarization leaves little room for a substantial presynaptic component. Finally, recent data also require a revision in our thinking about the way AMPA receptors (AMPARs) are recruited to the postsynaptic density during LTP. This recruitment is independent of subunit type, but does require an adequate reserve pool of extrasynaptic receptors.
Collapse
Affiliation(s)
- Adam J Granger
- Neuroscience Graduate Program, University of California San Francisco, , San Francisco, CA 94158, USA
| | | |
Collapse
|
19
|
Villers A, Ris L. Improved preparation and preservation of hippocampal mouse slices for a very stable and reproducible recording of long-term potentiation. J Vis Exp 2013. [PMID: 23851639 DOI: 10.3791/50483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Long-term potentiation (LTP) is a type of synaptic plasticity characterized by an increase in synaptic strength and believed to be involved in memory encoding. LTP elicited in the CA1 region of acute hippocampal slices has been extensively studied. However the molecular mechanisms underlying the maintenance phase of this phenomenon are still poorly understood. This could be partly due to the various experimental conditions used by different laboratories. Indeed, the maintenance phase of LTP is strongly dependent on external parameters like oxygenation, temperature and humidity. It is also dependent on internal parameters like orientation of the slicing plane and slice viability after dissection. The optimization of all these parameters enables the induction of a very reproducible and very stable long-term potentiation. This methodology offers the possibility to further explore the molecular mechanisms involved in the stable increase in synaptic strength in hippocampal slices. It also highlights the importance of experimental conditions in in vitro investigation of neurophysiological phenomena.
Collapse
Affiliation(s)
- Agnès Villers
- Department of Neurosciences, Research Institute for Biosciences, University of Mons
| | | |
Collapse
|
20
|
Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 2013; 76 Pt C:610-27. [PMID: 23791959 DOI: 10.1016/j.neuropharm.2013.05.043] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 12/30/2022]
Abstract
Overwhelming evidence collected since the early 1990's strongly supports the notion that BDNF is among the key regulators of synaptic plasticity in many areas of the mammalian central nervous system. Still, due to the extremely low expression levels of endogenous BDNF in most brain areas, surprisingly little data i) pinpointing pre- and postsynaptic release sites, ii) unraveling the time course of release, and iii) elucidating the physiological levels of synaptic activity driving this secretion are available. Likewise, our knowledge regarding pre- and postsynaptic effects of endogenous BDNF at the single cell level in mediating long-term potentiation still is sparse. Thus, our review will discuss the data currently available regarding synaptic BDNF secretion in response to physiologically relevant levels of activity, and will discuss how endogenously secreted BDNF affects synaptic plasticity, giving a special focus on spike timing-dependent types of LTP and on mossy fiber LTP. We will attempt to open up perspectives how the remaining challenging questions regarding synaptic BDNF release and action might be addressed by future experiments. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
|
21
|
Abbas AK. Evidence for constitutive protein synthesis in hippocampal LTP stabilization. Neuroscience 2013; 246:301-11. [PMID: 23685165 DOI: 10.1016/j.neuroscience.2013.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 01/07/2023]
Abstract
UNLABELLED The notion that blockade of constitutive protein synthesis underlies the effect of protein synthesis inhibitors (PSIs) on long-term potentiation (LTP) stabilization was examined using the rat hippocampal CA3-CA1 synapse. Using a biochemical assay we found protein synthesis rate largely recovered 1h after wash-out of cycloheximide (CHX). Nonetheless, a 4-h CHX application followed by wash-out 1h prior to LTP resulted in a significant decrement of LTP stabilization. Wash-out initiated just prior to LTP, thus extending protein synthesis inhibition well into the post-LTP period, resulted in no further effect on LTP. However, short pre- and continuous post-tetanization application of PSIs failed to influence LTP persistence for up to 7 h. Addition of hydrogen peroxide (H₂O₂) 5-25 min following LTP induction resulted in parallel depression of potentiated and non-potentiated inputs, leaving LTP seemingly unaltered. However, in the presence of cyxloheximide the H₂O₂ application resulted in a significant reduction of LTP. IN CONCLUSION LTP stabilization was impaired by pre-LTP application of protein synthesis inhibition but not by post-LTP application unless the slices were exposed to oxidative stress. We submit that these results favor the notion that constitutive rather than triggered protein synthesis is important for LTP stabilization.
Collapse
Affiliation(s)
- A-K Abbas
- Institute of Neuroscience and Physiology, University of Gothenburg, PO Box 433, SE-40530 Gothenburg, Sweden.
| |
Collapse
|
22
|
Nicoll RA, Roche KW. Long-term potentiation: peeling the onion. Neuropharmacology 2013; 74:18-22. [PMID: 23439383 DOI: 10.1016/j.neuropharm.2013.02.010] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/19/2022]
Abstract
Since the discovery of long-term potentiation (LTP), thousands of papers have been published on this phenomenon. With this massive amount of information, it is often difficult, especially for someone not directly involved in the field, not to be overwhelmed. The goal of this review is to peel away as many layers as possible, and probe the core properties of LTP. We would argue that the many dozens of proteins that have been implicated in the phenomenon are not essential, but rather modulate, often in indirect ways, the threshold and/or magnitude of LTP. What is required is NMDA receptor activation followed by CaMKII activation. The consequence of CaMKII activation is the rapid recruitment of AMPA receptors to the synapse. This recruitment is independent of AMPA receptor subunit type, but absolutely requires an adequate pool of surface receptors. An important unresolved issue is how exactly CaMKII activation leads to modifications in the PSD to allow rapid enrichment. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'.
Collapse
Affiliation(s)
- Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143-2140, USA.
| | | |
Collapse
|
23
|
Stern SA, Alberini CM. Mechanisms of memory enhancement. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:37-53. [PMID: 23151999 PMCID: PMC3527655 DOI: 10.1002/wsbm.1196] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ongoing quest for memory enhancement is one that grows necessary as the global population increasingly ages. The extraordinary progress that has been made in the past few decades elucidating the underlying mechanisms of how long-term memories are formed has provided insight into how memories might also be enhanced. Capitalizing on this knowledge, it has been postulated that targeting many of the same mechanisms, including CREB activation, AMPA/NMDA receptor trafficking, neuromodulation (e.g., via dopamine, adrenaline, cortisol, or acetylcholine) and metabolic processes (e.g., via glucose and insulin) may all lead to the enhancement of memory. These and other mechanisms and/or approaches have been tested via genetic or pharmacological methods in animal models, and several have been investigated in humans as well. In addition, a number of behavioral methods, including exercise and reconsolidation, may also serve to strengthen and enhance memories. By utilizing this information and continuing to investigate these promising avenues, memory enhancement may indeed be achieved in the future.
Collapse
Affiliation(s)
- Sarah A. Stern
- Friedman Brain Institute, Graduate School of Biological Sciences, Mount Sinai School of Memories
- Center for Neural Science, New York University
| | | |
Collapse
|
24
|
Kramár EA, Babayan AH, Gall CM, Lynch G. Estrogen promotes learning-related plasticity by modifying the synaptic cytoskeleton. Neuroscience 2012; 239:3-16. [PMID: 23103216 DOI: 10.1016/j.neuroscience.2012.10.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/11/2012] [Accepted: 10/18/2012] [Indexed: 01/04/2023]
Abstract
Estrogen's acute, facilitatory effects on glutamatergic transmission and long-term potentiation (LTP) provide a potential explanation for the steroid's considerable influence on behavior. Recent work has identified mechanisms underlying these synaptic actions. Brief infusion of 17ß-estradiol (E2) into adult male rat hippocampal slices triggers actin polymerization within dendritic spines via a signaling cascade beginning with the GTPase RhoA and ending with inactivation of the filament-severing protein cofilin. Blocking this sequence, or actin polymerization itself, eliminates E2's effects on synaptic physiology. Notably, the theta burst stimulation used to induce LTP activates the same signaling pathway as E2 plus events that stabilize the reorganization of the sub-synaptic cytoskeleton. These observations suggest that E2 elicits a partial form of LTP, resulting in an increase of fast excitatory postsynaptic potentials (EPSPs) and a reduction in the threshold for lasting synaptic changes. While E2's effects on the cytoskeleton could be direct, results described here indicate that the hormone activates synaptic tropomyosin-related kinase B (TrkB) receptors for brain-derived neurotrophic factor (BDNF), a releasable neurotrophin that stimulates the RhoA to cofilin pathway. It is therefore possible that E2 acts via transactivation of neighboring receptors to modify the composition and structure of excitatory contacts. Finally, there is the question of whether a loss of acute synaptic actions contributes to the memory problems associated with estrogen depletion. Initial tests found that ovariectomy in middle-aged rats disrupts RhoA signaling, actin polymerization, and LTP consolidation. Acute applications of E2 reversed these defects, a result consistent with the idea that disturbances to actin management are one cause of behavioral effects that emerge with reductions in steroid levels.
Collapse
Affiliation(s)
- E A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|