1
|
Červinková K, Vahalová P, Poplová M, Zakar T, Havelka D, Paidar M, Kolivoška V, Cifra M. Modulation of pulsed electric field induced oxidative processes in protein solutions by pro- and antioxidants sensed by biochemiluminescence. Sci Rep 2024; 14:22649. [PMID: 39349538 PMCID: PMC11442601 DOI: 10.1038/s41598-024-71626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 10/02/2024] Open
Abstract
Technologies based on pulsed electric field (PEF) are increasingly pervasive in medical and industrial applications. However, the detailed understanding of how PEF acts on biosamples including proteins at the molecular level is missing. There are indications that PEF might act on biomolecules via electrogenerated reactive oxygen species (ROS). However, it is unclear how this action is modulated by the pro- and antioxidants, which are naturally present components of biosamples. This knowledge gap is often due to insufficient sensitivity of the conventionally utilized detection assays. To overcome this limitation, here we employed an endogenous (bio)chemiluminescence sensing platform, which enables sensitive detection of PEF-generated ROS and oxidative processes in proteins, to inspect effects of pro-and antioxidants. Taking bovine serum albumin (BSA) as a model protein, we found that the chemiluminescence signal arising from its solution is greatly enhanced in the presence ofH 2 O 2 as a prooxidant, especially during PEF treatment. In contrast, the chemiluminescence signal decreases in the presence of antioxidant enzymes (catalase, superoxide dismutase), indicating the involvement of bothH 2 O 2 and electrogenerated superoxide anion in oxidation-reporting chemiluminescence signal before, during, and after PEF treatment. We also performed additional biochemical and biophysical assays, which confirmed that BSA underwent structural changes afterH 2 O 2 treatment, with PEF having only a minor effect. We proposed a scheme describing the reactions leading from interfacial charge transfer at the anode by which ROS are generated to the actual photon emission. Results of our work help to elucidate the mechanisms of action of PEF on proteins via electrogenerated reactive oxygen species and open up new avenues for the application of PEF technology. The developed chemiluminescence technique enables label-free, in-situ and non-destructive sensing of interactions between ROS and proteins. The technique may be applied to study oxidative damage of other classes of biomolecules such as lipids, nucleic acids or carbohydrates.
Collapse
Affiliation(s)
- Kateřina Červinková
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Petra Vahalová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Michaela Poplová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Tomáš Zakar
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Daniel Havelka
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia
| | - Martin Paidar
- Department of Inorganic Technology, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 160 28, Prague, Czechia
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18200, Prague, Czechia.
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, 18200, Prague, Czechia.
| |
Collapse
|
2
|
Jain A, Judy E, Kishore N. Analytical Aspects of ANSA-BSA Association: A Thermodynamic and Conformational Approach. J Phys Chem B 2024; 128:5344-5362. [PMID: 38773936 DOI: 10.1021/acs.jpcb.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Many studies have demonstrated the manner in which ANS interacts with bovine serum albumin (BSA), although they are limited by the extremely low solubility of dye. The present study demonstrates the binding of ANSA dye with BSA, and since this dye can easily replace ANS, it not only simplifies research but also improves sensor accuracy for serum albumin. A combination of calorimetry and spectroscopy has been employed to establish the thermodynamic signatures associated with the interaction of ANSA with the protein and the consequent conformational changes in the latter. The results of differential scanning calorimetry reveal that when the concentration of ANSA in solution is increased, the thermal stability of the protein increases substantially. The fluorescence data demonstrated a decrease in the binding affinity of ANSA with the protein when pH increased but was unable to identify a change in the mode of interaction of the ligand. ITC has demonstrated that the mode of interaction between ANSA and the protein varies from a single set of binding sites at pH 5 and 7.4 to a sequential binding site at pH 10, emphasizing the potential relevance of protein conformational changes. TCSPC experiments suggested a dynamic type in the presence of ANSA. Molecular docking studies suggest that ANSA molecules are able to find ionic centers in the hydrophobic pockets of BSA. The findings further imply that given its ease of use in experiments, ANSA may be a useful probe for tracking the presence of serum albumin and partially folded protein states.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Eva Judy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Carabadjac I, Vormittag LC, Muszer T, Wuth J, Ulbrich MH, Heerklotz H. Transfer of ANS-Like Drugs from Micellar Drug Delivery Systems to Albumin Is Highly Favorable and Protected from Competition with Surfactant by "Reserved" Binding Sites. Mol Pharm 2024; 21:2198-2211. [PMID: 38625037 DOI: 10.1021/acs.molpharmaceut.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Micellar drug delivery systems (MDDS) for the intravenous administration of poorly soluble drugs have great advantages over alternative formulations in terms of the safety of their excipients, storage stability, and straightforward production. A classic example is mixed micelles of glycocholate (GC) and lecithin, both endogenous substances in human blood. What limits the use of MDDS is the complexity of the transitions after injection. In particular, as the MDDS disintegrate partially or completely after injection, the drug has to be transferred safely to endogenous carriers in the blood, such as human serum albumin (HSA). If this transfer is compromised, the drug might precipitate─a process that needs to be excluded under all circumstances. The key question of this paper is whether the high local concentration of GC at the moment and site of MDDS dissolution might transiently saturate HSA binding sites and, hence, endanger quick drug transfer. To address this question, we have used a new approach, which is time-resolved fluorescence spectroscopy of the single tryptophan in HSA, Trp-214, to characterize the competitive binding of GC and the drug substitute anilinonaphthalenesulfonate (ANS) to HSA. Time-resolved fluorescence of Trp-214 showed important advantages over established methods for tackling this problem. ANS has been the standard "model drug" to study albumin binding for decades, given its structural similarity to the class of naphthalene-containing acidic drugs and the fact that it is displaced from HSA by numerous drugs (which presumably bind to the same sites). Our complex global fit uses the critical approximation that the average lifetimes behave similarly to a single lifetime, but the resulting errors are found to be moderate and the results provide a convincing explanation of the, at first glance, counterintuitive behavior. Accordingly, and largely in line with the literature, we observed two types of sites binding ANS at HSA: 3 type A, rather peripheral, and 2 type B, likely more central sites. The latter quench Trp-214 by Förster Resonance Energy Transfer (FRET) with a rate constant of ≈0.4 ns-1 per ANS. Adding millimolar concentrations of GC displaces ANS from the A sites but not from B sites. At incomplete ANS saturation, this causes a GC-induced translocation of ANS from A to the more FRET-active B sites. This leads to the apparent paradox that the partial displacement of ANS from HSA increases its quenching effect on Trp-214. The most important conclusion is that (ANS-like) drugs cannot be displaced from the type-B sites, and consequently, drug transfer to these sites is not impaired by competitive binding of GC in the vicinity of a dissolving micelle. The second conclusion is that for unbound GC above the CMC (9 mM), ANS equilibrates between HSA and GC micelles but with a strong preference for free sites on HSA. That means that even persisting micelles would lose their cargo readily once exposed to HSA. For all MDDS sharing this property, targeted drug delivery approaches involving them as the nanocarrier would be pointless.
Collapse
Affiliation(s)
- Iulia Carabadjac
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Leonie C Vormittag
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Thomas Muszer
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Jakob Wuth
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
| | - Maximilian H Ulbrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstr. 17, 79104 Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Schan̈zlestr. 18, Freiburg 79104, Germany
| | - Heiko Heerklotz
- Institute of Pharmaceutical Sciences, University of Freiburg, Hermann-Herder-Str. 9, 79104 Freiburg, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto M5s 3M2, Ontario, Canada
- BIOSS Centre for Biological Signalling Studies, Schan̈zlestr. 18, Freiburg 79104, Germany
| |
Collapse
|
4
|
Chen T, Pu M, Subramanian S, Kearns D, Rowe-Magnus D. PlzD modifies Vibrio vulnificus foraging behavior and virulence in response to elevated c-di-GMP. mBio 2023; 14:e0153623. [PMID: 37800901 PMCID: PMC10653909 DOI: 10.1128/mbio.01536-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Many free-swimming bacteria propel themselves through liquid using rotary flagella, and mounting evidence suggests that the inhibition of flagellar rotation initiates biofilm formation, a sessile lifestyle that is a nearly universal surface colonization paradigm in bacteria. In general, motility and biofilm formation are inversely regulated by the intracellular second messenger bis-(3´-5´)-cyclic dimeric guanosine monophosphate (c-di-GMP). Here, we identify a protein, PlzD, bearing a conserved c-di-GMP binding PilZ domain that localizes to the flagellar pole in a c-di-GMP-dependent manner and alters the foraging behavior, biofilm, and virulence characteristics of the opportunistic human pathogen, Vibrio vulnificus. Our data suggest that PlzD interacts with components of the flagellar stator to decrease bacterial swimming speed and changes in swimming direction, and these activities are enhanced when cellular c-di-GMP levels are elevated. These results reveal a physical link between a second messenger (c-di-GMP) and an effector (PlzD) that promotes transition from a motile to a sessile state in V. vulnificus.
Collapse
Affiliation(s)
- Tianyi Chen
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Meng Pu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sundharraman Subramanian
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Dan Kearns
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Dean Rowe-Magnus
- Department of Biology, Indiana University Bloomington, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Tanuja Safala Bodapati A, Srinivas Reddy R, Lavanya K, Rao Madku S, Ketan Sahoo B. A comprehensive biophysical and theoretical study on the binding of dexlansoprazole with human serum albumin. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Wang L, Rose D, Li K, Chen X, He L. Conformational changes to zein and its binding interactions with sodium caseinate during the pH-driven self-assembly using multi-spectroscopic and hydrostatic methods. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Fuentes-Lemus E, Reyes JS, López-Alarcón C, Davies MJ. Crowding modulates the glycation of plasma proteins: In vitro analysis of structural modifications to albumin and transferrin and identification of sites of modification. Free Radic Biol Med 2022; 193:551-566. [PMID: 36336230 DOI: 10.1016/j.freeradbiomed.2022.10.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Protein modification occurs in biological milieus that are characterized by high concentrations of (macro)molecules (i.e. heterogeneous and packed environments). Recent data indicate that crowding can modulate the extent and rate of protein oxidation, however its effect on other post-translational modifications remains to be explored. In this work we hypothesized that crowding would affect the glycation of plasma proteins. Physiologically-relevant concentrations of albumin (35 mg mL-1) and transferrin (2 mg mL-1) were incubated with methylglyoxal and glyoxal (5 μM-5 mM), two α-oxoaldehyde metabolites that are elevated in the plasma of people with diabetes. Crowding was induced by adding dextran or ficoll polymers. Electrophoresis, electron microscopy, fluorescence spectroscopy and mass spectrometry were employed to investigate the structural consequences of glycation under crowded conditions. Our data demonstrate that crowding modulates the extent of formation of transferrin cross-links, and also the modification pathways in both albumin and transferrin. Arginine was the most susceptible residue to modification, with lysine and cysteine also affected. Loss of 0.48 and 7.28 arginine residues per protein molecule were determined on incubation with 500 μM methylglyoxal for albumin and transferrin, respectively. Crowding did not influence the extent of loss of arginine and lysine for either protein, but the sites of modification, detected by LC-MS, were different between dilute and crowded conditions. These data confirm the relevance of studying modification processes under conditions that closely mimic biological milieus. These data unveil additional factors that influence the pattern and extent of protein modification, and their structural consequences, in biological systems.
Collapse
Affiliation(s)
- Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| | - Juan S Reyes
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo López-Alarcón
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, Blegdamsvej 3, University of Copenhagen, Copenhagen, 2200, Denmark.
| |
Collapse
|
8
|
Socas LB, Ambroggio EE. Introducing the multi-dimensional spectral phasors: a tool for the analysis of fluorescence excitation-emission matrices. Methods Appl Fluoresc 2022; 10. [PMID: 35139496 DOI: 10.1088/2050-6120/ac5389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/09/2022] [Indexed: 11/12/2022]
Abstract
The use of phasors to analyze fluorescence data was first introduced for time-resolved studies for a simpler mathematical analysis of the fluorescence-decay curves. Recently, this approach was extended to steady-state experiments with the introduction of the spectral phasors (SP), derived from the Fourier transform of the fluorescence emission spectrum. In this work, we revise key mathematical aspects that lead to an interpretation of SP as the characteristic function of a probability distribution. This formalism allows us to introduce a new tool, called multi-dimensional spectral phasor (MdSP) that seize, not only the information from the emission spectrum, but from the full excitation-emission matrix (EEM). In addition, we developed a homemade open-source Java software to facilitate the MdSP data processing. Due to this mathematical conceptualization, we settled a mechanism for the use of MdSP as a tool to tackle spectral signal unmixing problems in a more accurate way than SP. As a proof of principle, with the use of MdSP we approach two important biophysical questions: protein conformational changes and protein-ligand interactions. Specifically, we experimentally measure the EEM changes upon denaturation of human serum albumin (HSA) or during its association with the fluorescence dye 1,8-anilinonaphtalene sulphate (ANS) detected via tryptophan-ANS Förster Resonance Energy Transfer (FRET). In this sense, MdSP allows us to obtain information of the system in a simpler and finer way than the traditional SP. Specifically, understanding a protein's EEM as a molecular fingerprint opens new doors for the use of MdSP as a tool to analyze and comprehend protein conformational changes and interactions.
Collapse
Affiliation(s)
- Luis Bp Socas
- Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba, Haya de la Torre y Medina Allende s/n, Cordoba, Córdoba, X5000HUA, ARGENTINA
| | - Ernesto Esteban Ambroggio
- Química Biológica, CIQUIBIC Química Biológica, Haya de la Torre y Medina Allende s/n, Cordoba, X5000HUA, ARGENTINA
| |
Collapse
|
9
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Trypsin Induced Degradation of Amyloid Fibrils. Int J Mol Sci 2021; 22:4828. [PMID: 34063223 PMCID: PMC8124345 DOI: 10.3390/ijms22094828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Proteolytic enzymes are known to be involved in the formation and degradation of various monomeric proteins, but the effect of proteases on the ordered protein aggregates, amyloid fibrils, which are considered to be extremely stable, remains poorly understood. In this work we study resistance to proteolytic degradation of lysozyme amyloid fibrils with two different types of morphology and beta-2-microglobulun amyloids. We showed that the proteolytic enzyme of the pancreas, trypsin, induced degradation of amyloid fibrils, and the mechanism of this process was qualitatively the same for all investigated amyloids. At the same time, we found a dependence of efficiency and rate of fibril degradation on the structure of the amyloid-forming protein as well as on the morphology and clustering of amyloid fibrils. It was assumed that the discovered relationship between fibrils structure and the efficiency of their degradation by trypsin can become the basis of a new express method for the analysis of amyloids polymorphism. Unexpectedly lower resistance of both types of lysozyme amyloids to trypsin exposure compared to the native monomeric protein (which is not susceptible to hydrolysis) was attributed to the higher availability of cleavage sites in studied fibrils. Another intriguing result of the work is that the cytotoxicity of amyloids treated with trypsin was not only failing to decline, but even increasing in the case of beta-2-microglobulin fibrils.
Collapse
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Maksim I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia;
| | - Ekaterina V. Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
| | - Anna I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Avenue, 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (I.M.K.); (A.I.S.)
| |
Collapse
|
10
|
Bruntha A, Radhipriya R, Palanisamy T, Dhathathreyan A. Elastic compliance and adsorption profiles of Bovine serum albumin at fluid/solid interface in the presence of electrolytes. Biophys Chem 2021; 269:106523. [PMID: 33341694 DOI: 10.1016/j.bpc.2020.106523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022]
Abstract
Non-trivial topology of proteins under shear suggests that even small structural changes in proteins result in dramatic variations in the mechanical properties and stability. In this study, we have analysed the elastic compliance of solvated bovine serum albumin (BSA) with NaCl,MgCl2, FeCl3 of concentration-ranging from 50 mM to 250 mM using Quartz crystal microbalance with dissipation. The compliance shows a reverse Hofmeister trend (Na +
Collapse
Affiliation(s)
- A Bruntha
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - R Radhipriya
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Thanikaivelan Palanisamy
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - A Dhathathreyan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
11
|
Revisiting the Rate-Limiting Step of the ANS-Protein Binding at the Protein Surface and Inside the Hydrophobic Cavity. Molecules 2021; 26:molecules26020420. [PMID: 33466888 PMCID: PMC7830758 DOI: 10.3390/molecules26020420] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
8-Anilino-1-naphthalenesulfonic acid (ANS) is used as a hydrophobic fluorescence probe due to its high intensity in hydrophobic environments, and also as a microenvironment probe because of its unique ability to exhibit peak shift and intensity change depending on the surrounding solvent environment. The difference in fluorescence can not only be caused by the microenvironment but can also be affected by the binding affinity, which is represented by the binding constant (K). However, the overall binding process considering the binding constant is not fully understood, which requires the ANS fluorescence binding mechanism to be examined. In this study, to reveal the rate-limiting step of the ANS-protein binding process, protein concentration-dependent measurements of the ANS fluorescence of lysozyme and bovine serum albumin were performed, and the binding constants were analyzed. The results suggest that the main factor of the binding process is the microenvironment at the binding site, which restricts the attached ANS molecule, rather than the attractive diffusion-limited association. The molecular mechanism of ANS-protein binding will help us to interpret the molecular motions of ANS molecules at the binding site in detail, especially with respect to an equilibrium perspective.
Collapse
|
12
|
Guliyeva AJ, Gasymov OK. ANS fluorescence: Potential to discriminate hydrophobic sites of proteins in solid states. Biochem Biophys Rep 2020; 24:100843. [PMID: 33204856 PMCID: PMC7649441 DOI: 10.1016/j.bbrep.2020.100843] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 11/18/2022] Open
Abstract
In the current study, ANS fluorescence was established as a powerful tool to study proteins in solid-state. Silk fibroin from Bombyx mori cocoons was used as a paradigm protein. ANS incorporated into the films of silk fibroin exhibits fluorescence with two-lifetime components that can be assigned to the patches and/or cavities with distinct hydrophobicities. Decay associated spectra (DAS) of ANS fluorescence from both sites could be fit to the single log-normal component indicating their homogeneity. ANS binding sites in the protein film are specific and could be saturated by ANS titration. ANS located in the binding site that exhibits the long-lifetime fluorescence is not accessible to the water molecules and its DAS stays homogeneously broadened upon hydration of the protein film. In contrast, ANS from the sites demonstrating the short-lifetime fluorescence is accessible to water molecules. In the hydrated films, solvent-induced fluctuations produce an ensemble of binding sites with similar characters. Therefore, upon hydration, the short-lifetime DAS becomes significantly red-shifted and inhomogeneously broadened. The similar spectral features have previously been observed for ANS complexed with globular proteins in solution. The data reveal the origin of the short-lifetime fluorescence component of ANS bound to the globular proteins in aqueous solution. Findings from this study indicate that ANS is applicable to characterize dehydrated as well as hydrated protein aggregates, amyloids relevant to amyloid diseases, such as Alzheimer's, Parkinson, and prion diseases. ANS has the potential to characterize proteins in solid states. ANS fluorescence in protein films reveals the hydrophobic sites with distinct properties. Short lifetime DAS of ANS in hydrated protein films is similar to that of ANS-protein complexes in solution. ANS is applicable to characterize protein aggregates relevant to the Alzheimer's, Parkinson, and prion diseases.
Collapse
|
13
|
Stepanenko OV, Stepanenko OV, Turoverov KK, Kuznetsova IM. Probing the allostery in dimeric near-infrared biomarkers derived from the bacterial phytochromes: The impact of the T204A substitution on the inter-monomer interaction. Int J Biol Macromol 2020; 162:894-902. [PMID: 32569685 DOI: 10.1016/j.ijbiomac.2020.06.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
Abstract
In dimeric near-infrared (NIR) biomarkers engineered from bacterial phytochromes the covalent binding of BV to the cysteine residue in one monomer of a protein allosterically prevents the chromophore embedded into the pocket of the other monomer from the covalent binding to the cysteine residue. In this work, we analyzed the impact on inter-monomeric allosteric effects in dimeric NIR biomarkers of substitutions at position 204, one of the target residues of mutagenesis at the evolution of these proteins. The T204A substitution in iRFP713, developed on the basis of RpBphP2, and in its mutant variant iRFP713/C15S/V256C, in which the ligand covalent attachment site was changed, resulted in the rearrangement of the hydrogen bond network joining the chromophore with the adjacent amino acids and bound water molecules in its local environment. The change in the intramolecular contacts between the chromophore and its protein environment in iRFP713/C15S/V256C caused by the T204A substitution reduced the negative cooperativity of cofactor binding. We discuss the possible influence of cross-talk between monomers the functioning of full-length phytochromes.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4, Tikhoretsky ave., St. Petersburg 194064, Russia
| |
Collapse
|
14
|
Gordon F, Elcoroaristizabal S, Ryder AG. Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES). Biochim Biophys Acta Gen Subj 2020; 1865:129770. [PMID: 33214128 DOI: 10.1016/j.bbagen.2020.129770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 10/19/2020] [Indexed: 12/01/2022]
Abstract
BACKGROUND Förster Resonance Energy Transfer (FRET) is widely used to study the structure and dynamics of biomolecular systems and also causes the non-linear fluorescence response observed in multi-fluorophore proteins. Accurate FRET analysis, in terms of measuring changes in donor and acceptor spectra and energy transfer efficiency is therefore critical. METHODS We demonstrate a novel quantitative FRET analysis using anisotropy resolved multidimensional emission spectroscopy (ARMES) in a Human Serum Albumin (HSA) and 1,8-anilinonaphathalene sulfonate (ANS) model. ARMES combines 4D measurement of polarized excitation emission matrices (pEEM) with multivariate data analysis to spectrally resolve contributing fluorophores. Multivariate analysis (Parallel Factor, PARAFAC and restricted Tucker3) was used to resolve fluorophore contributions and for modelling the quenching of HSA emission and the HSA-ANS interactions. RESULTS pEEM spectra were modelled using Tucker3 which accommodates non-linearities introduced by FRET and a priori chemical knowledge was used to optimise the solution, thus resolving three components: HSA emission, ANS emission from indirect FRET excitation, and ANS emission from direct excitation. Perpendicular emission measurements were more sensitive to indirectly excited acceptor emission. PARAFAC modelling of HSA, donor emission, separated ANS FRET interacting (Tryptophan) and non-interacting (Tyrosine) components. This enabled a new way of calculating quenching constants using the multi-dimensional emission of individual donor fluorophores. CONCLUSIONS FRET efficiency could be calculated using the multi-dimensional, resolved emission of the interacting donor fluorophores only which yielded higher ET efficiencies compared to conventional methods. GENERAL SIGNIFICANCE Shows the potential of multidimensional fluorescence measurements and data analysis for more accurate FRET modelling in proteins.
Collapse
Affiliation(s)
- Fiona Gordon
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, Galway, Galway H91 CF50, Ireland.
| | - Saioa Elcoroaristizabal
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, Galway, Galway H91 CF50, Ireland.
| | - Alan G Ryder
- Nanoscale BioPhotonics Laboratory, School of Chemistry, National University of Ireland, Galway, Galway H91 CF50, Ireland.
| |
Collapse
|
15
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Povarova OI, Kuznetsova IM, Turoverov KK, Sulatskaya AI. Alpha-B-Crystallin Effect on Mature Amyloid Fibrils: Different Degradation Mechanisms and Changes in Cytotoxicity. Int J Mol Sci 2020; 21:ijms21207659. [PMID: 33081200 PMCID: PMC7589196 DOI: 10.3390/ijms21207659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Given the ability of molecular chaperones and chaperone-like proteins to inhibit the formation of pathological amyloid fibrils, the chaperone-based therapy of amyloidosis has recently been proposed. However, since these diseases are often diagnosed at the stages when a large amount of amyloids is already accumulated in the patient’s body, in this work we pay attention to the undeservedly poorly studied problem of chaperone and chaperone-like proteins’ effect on mature amyloid fibrils. We showed that a heat shock protein alpha-B-crystallin, which is capable of inhibiting fibrillogenesis and is found in large quantities as a part of amyloid plaques, can induce degradation of mature amyloids by two different mechanisms. Under physiological conditions, alpha-B-crystallin induces fluffing and unweaving of amyloid fibrils, which leads to a partial decrease in their structural ordering without lowering their stability and can increase their cytotoxicity. We found a higher correlation between the rate and effectiveness of amyloids degradation with the size of fibrils clusters rather than with amino acid sequence of amyloidogenic protein. Some external effects (such as an increase in medium acidity) can lead to a change in the mechanism of fibrils degradation induced by alpha-B-crystallin: amyloid fibers are fragmented without changing their secondary structure and properties. According to recent data, fibrils cutting can lead to the generation of seeds for new bona fide amyloid fibrils and accelerate the accumulation of amyloids, as well as enhance the ability of fibrils to disrupt membranes and to reduce cell viability. Our results emphasize the need to test the chaperone effect not only on fibrillogenesis, but also on the mature amyloid fibrils, including stress conditions, in order to avoid undesirable disease progression during chaperone-based therapy.
Collapse
Affiliation(s)
- Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - M. I. Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia;
| | - E. V. Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - O. I. Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - I. M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| | - K. K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
- Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, 195251 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-812-297-19-57
| | - A. I. Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia; (O.V.S.); (E.V.M.); (O.V.S.); (O.I.P.); (I.M.K.); (A.I.S.)
| |
Collapse
|
16
|
Amoorahim M, Ashrafi-Kooshk MR, Esmaeili S, Shahlaei M, Moradi S, Khodarahmi R. Physiological changes in the albumin-bound non-esterified free fatty acids critically influence heme/bilirubin binding properties of the protein: A comparative, in vitro, spectroscopic study using the endogenous biomolecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 235:118298. [PMID: 32294588 DOI: 10.1016/j.saa.2020.118298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Heme and bilirubin (BR), as by-products of red blood cells (and hemoglobin) degradation, show increased plasma concentrations in some diseases. These two toxic hydrophobic molecules are mainly transported in the blood-stream by human serum albumin (HSA) that carries a wide variety of ligands. Under normal physiological conditions, ~3 fatty acid (FA) molecules are bound to each HSA; and its possible effect on BR/heme binding remains to be more clarified. In the present study, to provide deeper insight on this issue, we purified albumin from healthy individuals (as purified non-defatted albumin or PA) with normal plasma levels of FA, then defatted some of the purified protein (as defatted-HSA; or DA). In the next step, using various spectroscopic methods, their interactions with heme and BR were investigated. By 1: 1 binding of the ligands, quenching and thermodynamic analysis of parameters indicated that binding constants (Kb) values of bilirubin and heme for PA and DA are different. It could be perceived that the presence of FAs in high-affinity FA binding sites (FABSs) exerted considerable conformational changes in the structure followed by an improved BR binding while hindered heme interaction. The data was confirmed by determining surface hydrophobicity of the purified albumin (PA) and DA, and then supported by bioinformatics analyses. The physiological and clinical relevance of the observed dynamic interactions is also discussed. This study, also, re-confirmed that the primary BR binding site is subdomain IIA not subdomain IB.
Collapse
Affiliation(s)
- Mahtab Amoorahim
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Ashrafi-Kooshk
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajjad Esmaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
17
|
Sulatsky MI, Sulatskaya AI, Stepanenko OV, Povarova OI, Kuznetsova IM, Turoverov KK. Denaturant effect on amyloid fibrils: Declasterization, depolymerization, denaturation and reassembly. Int J Biol Macromol 2020; 150:681-694. [PMID: 32057863 DOI: 10.1016/j.ijbiomac.2020.01.290] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/07/2023]
Abstract
Accumulation of amyloid fibrils in organism accompanies many serious diseases, such as Alzheimer's and Parkinson's diseases, diabetes, prion diseases, etc. It is generally accepted that amyloids are highly resistant to degradation, which complicates their elimination in vivo and is one of the reasons for their pathogenicity. However, using a wide range of physicochemical approaches and specially elaborated method for the tested samples preparation by equilibrium microdialysis technique, it is proved that the stability of amyloids is greatly exaggerated. It turned out that amyloid fibrils formed from at least two amyloidogenic proteins, one of which is a model object for fibrils studying and the second is the cause of hemodialysis amyloidosis in an acute renal failure, are less stable than monomeric proteins. A mechanism of the degradation/reassembly of amyloid fibrils was proposed. It was shown that amyloid «seed» is a factor affecting not only the rate of the fibrils formation, but also their structure. Obtained results are a step towards identifying effects that can lead to degradation of amyloids and their clearance without adverse influence on the functionally active state of the protein or to change the structure and, as a result, the pathogenicity of these protein aggregates.
Collapse
Affiliation(s)
- M I Sulatsky
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia
| | - A I Sulatskaya
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia
| | - Olga V Stepanenko
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia
| | - O I Povarova
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia
| | - I M Kuznetsova
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia
| | - K K Turoverov
- Institute of Cytology Russian Academy of Science, St. Petersburg, Tikhoretsky ave. 4, 194064, Russia; Peter the Great St.-Petersburg Polytechnic University, St. Petersburg, Polytechnicheskaya 29, 195251, Russia.
| |
Collapse
|
18
|
Sulatsky MI, Sulatskaya AI, Povarova OI, Antifeeva IA, Kuznetsova IM, Turoverov KK. Effect of the fluorescent probes ThT and ANS on the mature amyloid fibrils. Prion 2020; 14:67-75. [PMID: 32008441 PMCID: PMC7009331 DOI: 10.1080/19336896.2020.1720487] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fluorescent probes thioflavin T (ThT) and 1-anilino-8-naphthalene sulfonate (ANS) are widely used to study amyloid fibrils that accumulate in the body of patients with serious diseases, such as Alzheimer’s, Parkinson’s, prion diseases, etc. However, the possible effect of these probes on amyloid fibrils is not well understood. In this work, we investigated the photophysical characteristics, structure, and morphology of mature amyloid fibrils formed from two model proteins, insulin and lysozyme, in the presence of ThT and ANS. It turned out that ANS affects the secondary structure of amyloids (shown for fibrils formed from insulin and lysozyme) and their fibers clusterization (valid for lysozyme fibrils), while ThT has no such effects. These results confirm the differences in the mechanisms of these dyes interaction with amyloid fibrils. Observed effect of ANS was explained by the electrostatic interactions between the dye molecule and cationic groups of amyloid-forming proteins (unlike hydrophobic binding of ThT) that induce amyloids conformational changes. This interaction leads to weakening repulsion between positive charges of amyloid fibrils and can promote their clusterization. It was shown that when fibrillogenesis conditions and, consequently, fibrils structure is changing, as well as during defragmentation of amyloids by ultrasonication, the influence of ANS to amyloids does not change, which indicates the universality of the detected effects. Based on the obtained results, it was concluded that ANS should be used cautiously for the study of amyloid fibrils, since this fluorescence probe have a direct effect on the object of study.
Collapse
Affiliation(s)
- M I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | - A I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | - O I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | - Iu A Antifeeva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | - I M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology Russian Academy of Science, St. Petersburg, Russia
| | - K K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology Russian Academy of Science, St. Petersburg, Russia.,Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
19
|
Tayyab S, Min LH, Kabir MZ, Kandandapani S, Ridzwan NFW, Mohamad SB. Exploring the interaction mechanism of a dicarboxamide fungicide, iprodione with bovine serum albumin. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-01015-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Nooshi-Nedamani S, Habibi-Rezaei M, Farzadfard A, Moosavi-Movahedi AA. Intensification of serum albumin amyloidogenesis by a glycation-peroxidation loop (GPL). Arch Biochem Biophys 2019; 668:54-60. [PMID: 31091430 DOI: 10.1016/j.abb.2019.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 11/18/2022]
Abstract
The interaction of reducing sugars with proteins leads to the formation of advanced glycation end products (AGE) and reactive oxidative species (ROS). ROS peroxidise free or membrane included unsaturated fatty acids, leading to generate reactive aldehydes as advanced lipid peroxidation end products (ALE). Aldehydes from lipid peroxidation (LPO) react with proteins to cause alteration of protein structure to exacerbate complication of diseases. Here we studied serum albumin glycation in the presence and absence of liposomes as a bio-membrane model to investigate protein structural changes using various techniques including intrinsic and extrinsic fluorescence spectroscopies and electron microscopy analysis. Accordingly, serum albumin glycation and fibrillation were accelerated and intensified in the presence of liposomes through a hypothesized glycation-peroxidation loop (GPL). Together, our results shed light on the necessity of reconsidering diabetic protein glycation to make it close to physiological conditions mimicry, more importantly, proteins structural change due to diabetic glycation is intensified in the proximity of cell membranes which probably potentiates programmed cell death distinct from apoptosis.
Collapse
Affiliation(s)
- S Nooshi-Nedamani
- Protein Biotechnology Research Lab (PBRL), School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - M Habibi-Rezaei
- Protein Biotechnology Research Lab (PBRL), School of Biology, College of Science, University of Tehran, Tehran, Iran; Nano-Biomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran.
| | - A Farzadfard
- Protein Biotechnology Research Lab (PBRL), School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
21
|
Evaluation of guanylhydrazone derivatives as inhibitors of Candida rugosa digestive lipase: Biological, biophysical, theoretical studies and biotechnological application. Bioorg Chem 2019; 87:169-180. [DOI: 10.1016/j.bioorg.2019.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/03/2019] [Accepted: 03/14/2019] [Indexed: 01/19/2023]
|
22
|
Boulton S, Selvaratnam R, Ahmed R, Van K, Cheng X, Melacini G. Mechanisms of Specific versus Nonspecific Interactions of Aggregation-Prone Inhibitors and Attenuators. J Med Chem 2019; 62:5063-5079. [PMID: 31074269 PMCID: PMC7255057 DOI: 10.1021/acs.jmedchem.9b00258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A common source of false positives in drug discovery is ligand self-association into large colloidal assemblies that nonspecifically inhibit target proteins. However, the mechanisms of aggregation-based inhibition (ABI) and ABI-attenuation by additives, such as Triton X-100 (TX) and human serum albumin (HSA), are not fully understood. Here, we investigate the molecular basis of ABI and ABI-attenuation through the lens of NMR and coupled thermodynamic cycles. We unexpectedly discover a new class of aggregating ligands that exhibit negligible interactions with proteins but act as competitive sinks for the free inhibitor, resulting in bell-shaped dose-response curves. TX attenuates ABI by converting inhibitory, protein-binding aggregates into nonbinding coaggregates, whereas HSA minimizes nonspecific ligand interactions by functioning as a reservoir for free inhibitor and preventing self-association. Hence, both TX and HSA are useful tools to minimize false positives arising from nonspecific binding but at the cost of potentially introducing false negatives due to suppression of specific interactions.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Rajeevan Selvaratnam
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department of Laboratory Medicine, University Health Network, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - Rashik Ahmed
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Katherine Van
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology and Texas Therapeutics Institute, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
23
|
Stepanenko OV, Stepanenko OV, Kuznetsova IM, Turoverov KK. The unfolding of iRFP713 in a crowded milieu. PeerJ 2019; 7:e6707. [PMID: 30993043 PMCID: PMC6459179 DOI: 10.7717/peerj.6707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 03/02/2019] [Indexed: 01/07/2023] Open
Abstract
The exploring of biological processes in vitro under conditions of macromolecular crowding is a way to achieve an understanding of how these processes occur in vivo. In this work, we study the unfolding of the fluorescent probe iRFP713 in crowded environment in vitro. Previously, we showed that the unfolding of the dimeric iRFP713 is accompanied by the formation of a compact monomer and an intermediate state of the protein. In the intermediate state, the macromolecules of iRFP713 have hydrophobic clusters exposed to the surface of the protein and are prone to aggregation. Concentrated solutions of polyethylene glycol (PEG-8000), Dextran-40 and Dextran-70 with a molecular mass of 8000, 40000 and 70000 Da, respectively, were used to model the conditions for macromolecular crowding. A limited available space provided by all the crowding agents used favors to the enhanced aggregation of iRFP713 in the intermediate state at the concentration of guanidine hydrochloride (GdnHCl), at which the charge of protein surface is neutralized by the guanidine cations. This is in line with the theory of the excluded volume. In concentrated solutions of the crowding agents (240–300 mg/ml), the stabilization of the structure of iRFP713 in the intermediate state is observed. PEG-8000 also enhances the stability of iRFP713 in the monomeric compact state, whereas in concentrated solutions of Dextran-40 and Dextran-70 the resistance of the protein in the monomeric state against GdnHCl-induced unfolding decreases. The obtained data argues for the excluded volume effect being not the only factor that contributes the behavior of biological molecules in a crowded milieu. Crowding agents do not affect the structure of the native dimer of iRFP713, which excludes the direct interactions between the target protein and the crowding agents. PEGs of different molecular mass and Dextran-40/Dextran-70 are known to influence the solvent properties of water. The solvent dipolarity/polarizability and basicity/acidity in aqueous solutions of these crowding agents vary in different ways. The change of the solvent properties in aqueous solutions of crowding agents might impact the functioning of a target protein.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
| |
Collapse
|
24
|
Madadlou A, Zamani S, Lu Y, Abbaspourrad A. Effect of surfactant addition on particle properties of whey proteins and their subsequent complexation with salivary proteins. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
The Pathways of the iRFP713 Unfolding Induced by Different Denaturants. Int J Mol Sci 2018; 19:ijms19092776. [PMID: 30223568 PMCID: PMC6163377 DOI: 10.3390/ijms19092776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023] Open
Abstract
Near-infrared fluorescent proteins (NIR FPs) based on the complexes of bacterial phytochromes with their natural biliverdin chromophore are widely used as genetically encoded optical probes for visualization of cellular processes and deep-tissue imaging of cells and organs in living animals. In this work, we show that the steady-state and kinetic dependencies of the various spectral characteristics of iRFP713, developed from the bacterial phytochrome RpBphP2 and recorded at protein unfolding induced by guanidine hydrochloride (GdnHCl), guanidine thiocyanate (GTC), and urea, differ substantially. A study of the unfolding of three single-tryptophan mutant forms of iRFP713 expectedly revealed that protein unfolding begins with the dissociation of the native dimer, while the monomers remain compact. A further increase in the denaturant concentration leads to the formation of an intermediate state of iRFP713 having hydrophobic areas exposed on the protein surface (I). The total surface charge of iRFP713 (pI 5.86) changes from negative to positive with an increase in the concentration of GdnHCl and GTC because the negative charge of glutamic and aspartic acids is neutralized by forming salt bridges between the carboxyl groups and GdnH+ ions and because the guanidinium cations bind to amide groups of glutamines and asparagines. The coincidence of both the concentration of the denaturants at which the intermediate state of iRFP713 accumulates and the concentration of GdnH+ ions at which the neutralization of the surface charge of the protein in this state is ensured results in strong protein aggregation. This is evidently realized by iRFP713 unfolding by GTC. At the unfolding of the protein by GdnHCl, an intermediate state is populated at higher denaturant concentrations and a strong aggregation is not observed. As expected, protein aggregates are not formed in the presence of the urea. The aggregation of the protein upon neutralization of the charge on the macromolecule surface is the main indicator of the intermediate state of protein. The unfolded state of iRFP713, whose formation is accompanied by a significant decrease in the parameter A, was found to have a different residual structure in the denaturants used.
Collapse
|
26
|
Foo YY, Kabir MZ, Periasamy V, Malek SNA, Tayyab S. Spectroscopic studies on the interaction of green synthesized-gold nanoparticles with human serum albumin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Weiss-Errico MJ, Miksovska J, O’Shea KE. β-Cyclodextrin Reverses Binding of Perfluorooctanoic Acid to Human Serum Albumin. Chem Res Toxicol 2018; 31:277-284. [DOI: 10.1021/acs.chemrestox.8b00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mary Jo Weiss-Errico
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Jaroslava Miksovska
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Kevin E. O’Shea
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| |
Collapse
|
28
|
Customized tuning of aggregation-induced emission of a napthalimide dye by surfactants and cyclodextrin. J Colloid Interface Sci 2017; 499:46-53. [DOI: 10.1016/j.jcis.2017.03.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 11/20/2022]
|
29
|
Roy AS, Samanta SK, Ghosh P, Tripathy DR, Ghosh SK, Dasgupta S. Cell cytotoxicity and serum albumin binding capacity of the morin-Cu(ii) complex and its effect on deoxyribonucleic acid. MOLECULAR BIOSYSTEMS 2017; 12:2818-33. [PMID: 27345944 DOI: 10.1039/c6mb00344c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The dietary components, flavonoids, are important for their anti-oxidant properties and the ability to act as metal ion chelators. The characterization of the morin-Cu(ii) complex is executed using elemental analysis, FTIR and mass spectroscopy. DNA cleaving and cell cytotoxicity properties followed by serum albumin binding have been investigated in this report. The morin-Cu(ii) complex was found to cleave plasmid pBR322 DNA via an oxidative pathway as revealed by agarose gel based assay performed in the presence of some scavengers and reactive oxygen species. The breaking of the deoxyribose ring of calf thymus DNA (ct-DNA) was also confirmed by the formation of thiobarbituric acid reacting species (TBARS) between thiobarbituric acid and malonaldehyde. The morin-Cu(ii) complex is able to inhibit the growth of human HeLa cells. Fluorescence studies revealed that the morin-Cu(ii) complex can quench the intrinsic fluorescence of serum albumins (SAs) via a static quenching method. The binding constants were found to be in the order of 10(5) M(-1) and observed to increase with temperature. Both ΔH° and ΔS° are positive for the binding of the morin-Cu(ii) complex with serum albumins which indicated the presence of hydrophobic forces. Site-selectivity studies reveal that the morin-Cu(ii) complex binds to both site 1 (subdomain IIA) and site 2 (subdomain IIIA) of human serum albumin (HSA) and bovine serum albumin (BSA). Circular dichroism (CD) studies showed the structural perturbation of SAs during binding with the morin-Cu(ii) complex. The results from binding studies confirmed that after complexation with the Cu(ii) ion, morin alters its mode of interaction with SAs which could have differential implications on its other biological and pharmaceutical properties.
Collapse
Affiliation(s)
- Atanu Singha Roy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| | - Sintu Kumar Samanta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Pooja Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| | - Debi Ranjan Tripathy
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India.
| |
Collapse
|
30
|
Stepanenko OV, Stepanenko OV, Bublikov G, Kuznetsova I, Verkhusha V, Turoverov K. Stabilization of structure in near-infrared fluorescent proteins by binding of biliverdin chromophore. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Sulatskaya AI, Rodina NP, Povarova OI, Kuznetsova IM, Turoverov KK. Different conditions of fibrillogenesis cause polymorphism of lysozyme amyloid fibrils. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.10.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Stepanenko OV, Stepanenko OV, Kuznetsova IM, Shcherbakova DM, Verkhusha VV, Turoverov KK. Interaction of Biliverdin Chromophore with Near-Infrared Fluorescent Protein BphP1-FP Engineered from Bacterial Phytochrome. Int J Mol Sci 2017; 18:E1009. [PMID: 28481303 PMCID: PMC5454922 DOI: 10.3390/ijms18051009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022] Open
Abstract
Near-infrared (NIR) fluorescent proteins (FPs) designed from PAS (Per-ARNT-Sim repeats) and GAF (cGMP phosphodiesterase/adenylate cyclase/FhlA transcriptional activator) domains of bacterial phytochromes covalently bind biliverdin (BV) chromophore via one or two Cys residues. We studied BV interaction with a series of NIR FP variants derived from the recently reported BphP1-FP protein. The latter was engineered from a bacterial phytochrome RpBphP1, and has two reactive Cys residues (Cys15 in the PAS domain and Cys256 in the GAF domain), whereas its mutants contain single Cys residues either in the PAS domain or in the GAF domain, or no Cys residues. We characterized BphP1-FP and its mutants biochemically and spectroscopically in the absence and in the presence of denaturant. We found that all BphP1-FP variants are monomers. We revealed that spectral properties of the BphP1-FP variants containing either Cys15 or Cys256, or both, are determined by the covalently bound BV chromophore only. Consequently, this suggests an involvement of the inter-monomeric allosteric effects in the BV interaction with monomers in dimeric NIR FPs, such as iRFPs. Likely, insertion of the Cys15 residue, in addition to the Cys256 residue, in dimeric NIR FPs influences BV binding by promoting the BV chromophore covalent cross-linking to both PAS and GAF domains.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russian.
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park ave., Bronx, NY 10461, USA.
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park ave., Bronx, NY 10461, USA.
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 8 Haartmaninkatu st., Helsinki 00290, Finland.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russian.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russian.
| |
Collapse
|
33
|
Stepanenko OV, Stepanenko OV, Kuznetsova IM, Uversky VN, Turoverov KK. Peculiarities of the Super-Folder GFP Folding in a Crowded Milieu. Int J Mol Sci 2016; 17:ijms17111805. [PMID: 27801849 PMCID: PMC5133806 DOI: 10.3390/ijms17111805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/11/2016] [Accepted: 10/20/2016] [Indexed: 01/19/2023] Open
Abstract
The natural cellular milieu is crowded by large quantities of various biological macromolecules. This complex environment is characterized by a limited amount of unoccupied space, limited amounts of free water, and changed solvent properties. Obviously, such a tightly packed cellular environment is poorly mimicked by traditional physiological conditions, where low concentrations of a protein of interest are analyzed in slightly salted aqueous solutions. An alternative is given by the use of a model crowded milieu, where a protein of interest is immersed in a solution containing high concentrations of various polymers that serve as model crowding agents. An expected outcome of the presence of such macromolecular crowding agents is their ability to increase conformational stability of a globular protein due to the excluded volume effects. In line with this hypothesis, the behavior of a query protein should be affected by the hydrodynamic size and concentration of an inert crowder (i.e., an agent that does not interact with the protein), whereas the chemical nature of a macromolecular crowder should not play a role in its ability to modulate conformational properties. In this study, the effects of different crowding agents (polyethylene glycols (PEGs) of various molecular masses (PEG-600, PEG-8000, and PEG-12000), Dextran-70, and Ficoll-70) on the spectral properties and unfolding–refolding processes of the super-folder green fluorescent protein (sfGFP) were investigated. sfGFP is differently affected by different crowders, suggesting that, in addition to the expected excluded volume effects, there are some changes in the solvent properties.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia.
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia.
| | - Vladimir N Uversky
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia.
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia.
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St. Petersburg State Polytechnic University, 29 Polytechnicheskaya st., St. Petersburg 195251, Russia.
| |
Collapse
|
34
|
Multi-target screening mines hesperidin as a multi-potent inhibitor: Implication in Alzheimer's disease therapeutics. Eur J Med Chem 2016; 121:810-822. [DOI: 10.1016/j.ejmech.2016.03.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/09/2016] [Accepted: 03/20/2016] [Indexed: 01/09/2023]
|
35
|
Pishkar L, Taheri S, Makarem S, Alizadeh Zeinabad H, Rahimi A, Saboury AA, Falahati M. Studies on the interaction between nanodiamond and human hemoglobin by surface tension measurement and spectroscopy methods. J Biomol Struct Dyn 2016; 35:603-615. [DOI: 10.1080/07391102.2016.1155172] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Leila Pishkar
- Young Researchers and Elite Club, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Saba Taheri
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Somayeh Makarem
- Young Researchers and Elite Club, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Hojjat Alizadeh Zeinabad
- Department of Nanotechnology, Faculty of Advance Science and Technology, Islamic Azad University of Pharmaceutical Sciences (IAUPS), Tehran, Iran
| | - Arash Rahimi
- Faculty of Basic Science, Department of Biophysics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Islamic Azad University of Pharmaceutical Sciences (IAUPS), Tehran, Iran
| |
Collapse
|
36
|
Chanphai P, Tajmir-Riahi H. Chitosan nanoparticles conjugate with trypsin and trypsin inhibitor. Carbohydr Polym 2016; 144:346-52. [DOI: 10.1016/j.carbpol.2016.02.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 01/23/2023]
|
37
|
Awasthi S, Saraswathi N. Vanillin restrains non-enzymatic glycation and aggregation of albumin by chemical chaperone like function. Int J Biol Macromol 2016; 87:1-6. [DOI: 10.1016/j.ijbiomac.2016.02.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
|
38
|
Sulatskaya AI, Kuznetsova IM, Belousov MV, Bondarev SA, Zhouravleva GA, Turoverov KK. Stoichiometry and Affinity of Thioflavin T Binding to Sup35p Amyloid Fibrils. PLoS One 2016; 11:e0156314. [PMID: 27228180 PMCID: PMC4882037 DOI: 10.1371/journal.pone.0156314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/12/2016] [Indexed: 11/25/2022] Open
Abstract
In this work two modes of binding of the fluorescent probe thioflavin T to yeast prion protein Sup35p amyloid fibrils were revealed by absorption spectrometry of solutions prepared by equilibrium microdialysis. These binding modes exhibited significant differences in binding affinity and stoichiometry. Moreover, the absorption spectrum and the molar extinction coefficient of the dye bound in each mode were determined. The fluorescence quantum yield of the dye bound in each mode was determined via a spectrofluorimetric study of the same solutions in which the recorded fluorescence intensity was corrected for the primary inner filter effect. As previously predicted, the existence of one of the detected binding modes may be due to the incorporation of the dye into the grooves along the fiber axis perpendicular to the β-sheets of the fibrils. It was assumed that the second type of binding with higher affinity may be due to the existence of ThT binding sites that are localized to areas where amyloid fibrils are clustered.
Collapse
Affiliation(s)
- Anna I. Sulatskaya
- Laboratory for Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Tikhoretsky Ave. 4, 194064, Russia
| | - Irina M. Kuznetsova
- Laboratory for Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Tikhoretsky Ave. 4, 194064, Russia
| | - Mikhail V. Belousov
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7–9, 199034, Russia
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7–9, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Universitetskaya Emb. 7–9, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Konstantin K. Turoverov
- Laboratory for Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Science, St. Petersburg, Tikhoretsky Ave. 4, 194064, Russia
- Institute of Physics, Nanotechnology and Telecommunications, Peter the Great St.-Petersburg Polytechnic University, St. Petersburg, Polytechnicheskaya 29, 195251, Russia
- * E-mail:
| |
Collapse
|
39
|
Saha C, Kaushik A, Das A, Pal S, Majumder D. Anthracycline Drugs on Modified Surface of Quercetin-Loaded Polymer Nanoparticles: A Dual Drug Delivery Model for Cancer Treatment. PLoS One 2016; 11:e0155710. [PMID: 27196562 PMCID: PMC4873127 DOI: 10.1371/journal.pone.0155710] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/03/2016] [Indexed: 01/29/2023] Open
Abstract
Polymer nanoparticles are vehicles used for delivery of hydrophobic anti-cancer drugs, like doxorubicin, paclitaxel or chemopreventors like quercetin (Q). The present study deals with the synthesis and characterisation of nano formulations (NFs) from Q loaded PLGA (poly lactic-co-glycolic acid) nano particles (NPs) by surface modification. The surface of Q-loaded (NPs) is modified by coating with biopolymers like bovine serum albumin (BSA) or histones (His). Conventional chemotherapeutic drugs adriamycin (ADR) and mitoxantrone (MTX) are bound to BSA and His respectively before being coated on Q-loaded NPs to nano formulate NF1 and NF2 respectively. The sizes of these NFs are in the range 400–500 nm as ascertained by SEM and DLS measurements. Encapsulation of Q in polymer NPs is confirmed from shifts in FT-IR, TGA and DSC traces of Q-loaded NPs compared to native PLGA and Q. Surface modification in NFs is evidenced by three distinct regions in their TEM images; the core, polymer capsule and the coated surface. Negative zeta potential of Q-loaded NPs shifted to positive potential on surface modification in NF1 and NF2. In vitro release of Q from the NFs lasted up to twenty days with an early burst release. NF2 is better formulation than NF1 as loading of MTX is 85% compared to 23% loading of ADR. Such NFs are expected to overcome multi-drug resistance (MDR) by reaching and treating the target cancerous cells by virtue of size, charge and retention.
Collapse
Affiliation(s)
- Chabita Saha
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Salt Lake, Sector-I, Kolkata 700 064, West Bengal, India
- * E-mail:
| | - Agrima Kaushik
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Salt Lake, Sector-I, Kolkata 700 064, West Bengal, India
| | - Asmita Das
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Salt Lake, Sector-I, Kolkata 700 064, West Bengal, India
| | - Sandip Pal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Salt Lake, Sector-I, Kolkata 700 064, West Bengal, India
| | - Debashis Majumder
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Salt Lake, Sector-I, Kolkata 700 064, West Bengal, India
| |
Collapse
|
40
|
Li Y, Chen C, Zhang C, Duan J, Yao H, Wei Q. Probing the binding interaction of AKR with human serum albumin by multiple fluorescence spectroscopy and molecular modeling. J Biomol Struct Dyn 2016; 35:1189-1199. [DOI: 10.1080/07391102.2016.1174622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yan Li
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chun Chen
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chunping Zhang
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jingyu Duan
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Huankai Yao
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Faculty of Health Sciences, University of Macau, Macau SAR, Taipa, China
| | - Qunli Wei
- School of Pharmacy and Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
41
|
Karthikeyan S, Bharanidharan G, Mani KA, Srinivasan N, Kesherwani M, Velmurugan D, Aruna P, Ganesan S. Determination on the binding of thiadiazole derivative to human serum albumin: a spectroscopy and computational approach. J Biomol Struct Dyn 2016; 35:817-828. [DOI: 10.1080/07391102.2016.1162751] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Karthik Ananth Mani
- Department of Chemistry, Asthagiri Herbal Research Foundation, Perungudi Industrial Estate, Perungudi, Chennai 600 096, India
| | - Narasimhan Srinivasan
- Department of Chemistry, Asthagiri Herbal Research Foundation, Perungudi Industrial Estate, Perungudi, Chennai 600 096, India
| | - Manish Kesherwani
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai 600 025, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai 600 025, India
| | - Prakasarao Aruna
- Department of Medical Physics, Anna University, Chennai 600 025, India
| | | |
Collapse
|
42
|
Mariam J, Sivakami S, Dongre PM. Elucidation of structural and functional properties of albumin bound to gold nanoparticles. J Biomol Struct Dyn 2016; 35:368-379. [PMID: 26821333 DOI: 10.1080/07391102.2016.1144223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanoparticle-albumin complexes are being designed for targeted drug delivery and imaging. However, the changes in the functional properties of albumin due to adsorption on nanoparticles remain elusive. Thus, the objective of this work was to elucidate the structural and functional properties of human and bovine serum albumin bound to negatively charged gold nanoparticles (GNPs). Fluorescence data demonstrated static quenching of albumin by GNP with the quenching of buried as well as surface tryptophan in BSA. The binding process was enthalpy and entropy-driven in HSA and BSA, respectively. At lower concentrations of GNP there was a higher affinity for tryptophan, whereas at higher concentrations both tryptophan and tyrosine participated in the interaction. Synchronous fluorescence spectra revealed that the microenvironment of tryptophan in HSA turned more hydrophilic upon exposure to GNP. The α-helical content of albumin was unaltered by GNP. Approximately 37 and 23% reduction in specific activity of HSA and BSA was observed due to GNP binding. In presence of warfarin and ibuprofen the binding constants of albumin-GNP complexes were altered. A very interesting observation not reported so far is the retained antioxidant activity of albumin in presence of GNP i.e. we believe that GNPs did not bind to the free sulfhydryl groups of albumin. However enhanced levels of copper binding were observed. We have also highlighted the differential response in albumin due to gold and silver nanoparticles which could be attributed to differences in the charge of the nanoparticle.
Collapse
Affiliation(s)
- Jessy Mariam
- a Department of Biophysics , University of Mumbai , Vidyanagari, Santacruz (E), Mumbai 400098 , India
| | - S Sivakami
- a Department of Biophysics , University of Mumbai , Vidyanagari, Santacruz (E), Mumbai 400098 , India
| | - P M Dongre
- a Department of Biophysics , University of Mumbai , Vidyanagari, Santacruz (E), Mumbai 400098 , India
| |
Collapse
|
43
|
Li X, Geng M. Probing the binding of procyanidin B3 to trypsin and pepsin: A multi-technique approach. Int J Biol Macromol 2016; 85:168-78. [DOI: 10.1016/j.ijbiomac.2015.12.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 12/23/2022]
|
44
|
Mallick S, Pal K, Koner AL. Probing microenvironment of micelle and albumin using diethyl 6-(dimethylamino)naphthalene-2,3-dicarboxylate: An electroneutral solvatochromic fluorescent probe. J Colloid Interface Sci 2016; 467:81-89. [DOI: 10.1016/j.jcis.2015.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 11/15/2022]
|
45
|
Maurya JK, Mir MUH, Maurya N, Dohare N, Ali A, Patel R. A spectroscopic and molecular dynamic approach on the interaction between ionic liquid type gemini surfactant and human serum albumin. J Biomol Struct Dyn 2016; 34:2130-45. [DOI: 10.1080/07391102.2015.1109552] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Muzaffar Ul Hassan Mir
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Anwar Ali
- Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
46
|
Bohlooli M, Ghaffari-Moghaddam M, Khajeh M, Aghashiri Z, Sheibani N, Moosavi-Movahedi AA. Acetoacetate promotes the formation of fluorescent advanced glycation end products (AGEs). J Biomol Struct Dyn 2016; 34:2658-2666. [PMID: 26621475 DOI: 10.1080/07391102.2015.1125790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Acetoacetate (AA) is an important ketone body, which produces reactive oxygen species (ROS). Advanced glycation end products (AGEs) are defined as final products of glycation process whose production is influenced by the levels of ROS. The accumulation of AGEs in the body contributes to pathogenesis of many diseases including complications of diabetes, and Alzheimer's and Parkinson's disease. Here, we evaluated the impact of AA on production of AGEs upon incubation of human serum albumin (HSA) with glucose. The effect of AA on the AGEs formation of HSA was studied under physiological conditions after incubation with glucose for 35 days. The physical techniques including circular dichroism (CD) and fluorescence spectroscopy were used to assess the impact of AA on formation and structural changes of glycated HSA (GHSA). Our results indicated that the secondary and tertiary structural changes of GHSA were increased in the presence of AA. The fluorescence intensity measurements of AGEs also showed an increase in AGEs formation. Acetoacetate has an activator effect in formation of AGEs through ROS production. The presence of AA may result in enhanced glycation in the presence of glucose and severity of complications associated with accumulation of AGEs.
Collapse
Affiliation(s)
- Mousa Bohlooli
- a Department of Biology , University of Zabol , Zabol , Iran
| | | | - Mostafa Khajeh
- b Department of Chemistry , University of Zabol , Zabol , Iran
| | - Zohre Aghashiri
- b Department of Chemistry , University of Zabol , Zabol , Iran
| | - Nader Sheibani
- c Departments of Ophthalmology and Visual Sciences and McPherson Eye Research Institute , University of Wisconsin School of Medicine and Public Health , Madison , WI , USA
| | | |
Collapse
|
47
|
Awasthi S, Saraswathi N. Sinigrin, a major glucosinolate from cruciferous vegetables restrains non-enzymatic glycation of albumin. Int J Biol Macromol 2016; 83:410-5. [DOI: 10.1016/j.ijbiomac.2015.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 10/22/2022]
|
48
|
Hosseinzadeh R, Khorsandi K, Sheikh-Hasani V, Khatibi A. Biological interaction of thiamine with lysozyme using binding capacity concept and molecular docking. J Biomol Struct Dyn 2016; 34:2146-54. [DOI: 10.1080/07391102.2015.1109553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Vahid Sheikh-Hasani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
49
|
Stepanenko OV, Baloban M, Bublikov GS, Shcherbakova DM, Stepanenko OV, Turoverov KK, Kuznetsova IM, Verkhusha VV. Allosteric effects of chromophore interaction with dimeric near-infrared fluorescent proteins engineered from bacterial phytochromes. Sci Rep 2016; 6:18750. [PMID: 26725513 PMCID: PMC4698714 DOI: 10.1038/srep18750] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/25/2015] [Indexed: 01/02/2023] Open
Abstract
Fluorescent proteins (FPs) engineered from bacterial phytochromes attract attention as probes for in vivo imaging due to their near-infrared (NIR) spectra and use of available in mammalian cells biliverdin (BV) as chromophore. We studied spectral properties of the iRFP670, iRFP682 and iRFP713 proteins and their mutants having Cys residues able to bind BV either in both PAS (Cys15) and GAF (Cys256) domains, in one of these domains, or without these Cys residues. We show that the absorption and fluorescence spectra and the chromophore binding depend on the location of the Cys residues. Compared with NIR FPs in which BV covalently binds to Cys15 or those that incorporate BV noncovalently, the proteins with BV covalently bound to Cys256 have blue-shifted spectra and higher quantum yield. In dimeric NIR FPs without Cys15, the covalent binding of BV to Сys256 in one monomer allosterically inhibits the covalent binding of BV to the other monomer, whereas the presence of Cys15 allosterically promotes BV binding to Cys256 in both monomers. The NIR FPs with both Cys residues have the narrowest blue-shifted spectra and the highest quantum yield. Our analysis resulted in the iRFP713/Val256Cys protein with the highest brightness in mammalian cells among available NIR FPs.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Grigory S Bublikov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation.,Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russian Federation
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russian Federation
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| |
Collapse
|
50
|
Yuan X, Zeng Y, Nie K, Luo D, Wang Z. Extraction Optimization, Characterization and Bioactivities of a Major Polysaccharide from Sargassum thunbergii. PLoS One 2015; 10:e0144773. [PMID: 26649576 PMCID: PMC4674119 DOI: 10.1371/journal.pone.0144773] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/23/2015] [Indexed: 11/19/2022] Open
Abstract
Sargassum thunbergii is a kind of natural edible algae. STP (S. thunbergii polysaccharides) was considered as the main bioactive compounds in S. thunbergii. To obtain the optimal processing conditions for maximum total sugar yield, single factor investigation and response surface methodology (RSM) were employed. The optimal processing conditions were as follows: liquid to solid ratio 120 mL/g, extraction time 210 min, extraction temperature 97°C. The experimental yield 7.53% under optimized conditions was closely agreed with the predicted yield 7.85% of the model. The major polysaccharide fraction from S. thunbergii (named STP-II) was purified by DEAE-Sepharose CL-6B column chromatography. High-performance size-exclusion chromatography (HPSEC), gas chromatography (GC) and high-performance liquid chromatography (HPLC) were used to identify its characterizations, and in vitro antioxidant assays and cytotoxicity assays were used to research its bioactivities. The purified fraction STP-II (63.75%) was a single peak in HPSEC with Sugar KS-804 column, had a molecular weight of 550KD, and comprised mainly of fucose, xylose, galactose, glucose and glucuronic acid. STP-II had higher scavenging activities on hydroxyl radical (76.72% at 0.7 mg/mL) and superoxide radical (95.17% at 2 mg/mL) than Vitamin C (Vc). STP-II also exhibited the capability of anti-proliferation in Caco-2 cells. STP-II possessed good antioxidant and inhibitory activity against human colon cancer Caco-2 cells in vitro and could be explored as novel natural functional food.
Collapse
Affiliation(s)
- Xiumei Yuan
- Department of Bioengineering and Biotechnology, Huaqiao University, Fujian Xiamen, China
| | - Yawei Zeng
- Department of Bioengineering and Biotechnology, Huaqiao University, Fujian Xiamen, China
| | - Kaiying Nie
- Department of Bioengineering and Biotechnology, Huaqiao University, Fujian Xiamen, China
| | - Dianhui Luo
- Department of Bioengineering and Biotechnology, Huaqiao University, Fujian Xiamen, China
| | - Zhaojing Wang
- Department of Bioengineering and Biotechnology, Huaqiao University, Fujian Xiamen, China
| |
Collapse
|