1
|
Owolabi AO, Akpor OB, Ndako JA, Owa SO, Oluyori AP, Oludipe EO, Afolabi SO, Asaleye RM. Antimicrobial potential of Hippocratea Indica Willd. Acetone Leaf fractions against Salmonella Typhi: an in vitro and in silico study. Sci Rep 2024; 14:25222. [PMID: 39448699 PMCID: PMC11502822 DOI: 10.1038/s41598-024-75796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Salmonella Typhi is a major global concern in many low- and middle-income countries. In addition, the emergence and persistence of drug resistant strains has increased the impact of this disease. Plant metabolites have been explored traditionally and scientifically as antimicrobial agents. Thus, this study was designed to investigate the antimicrobial potential of acetone leaf fractions of H. indica against S. Typhi. Dried pulverized leaves of H. indica were extracted using cold maceration with acetone after defatting with n-hexane. The leaf extract was concentrated and subjected to column chromatography and eight bioactive fractions were identified. The fractions were characterized using gas chromatography-mass spectrometry. The fractions were evaluated for antibacterial activity against Salmonella Typhi in-vitro and in-silico. The lowest MIC was observed in fractions 20 and 21 (0.375 mg/mL) while the lowest MBC was observed in all fractions except 7, 17 and 18 (0.375 mg/mL). A ligand from fraction 8 had the highest binding affinity to Type I dehydroquinase (-3.4) and a ligand from fraction 7 had the highest binding affinity to Gyrase B (-11.2). This study concludes that the overall antimicrobial activity of the acetone leaf extract of H. indica provided evidence that it contains drug-like compounds that can be further explored as a drug candidate against S. Typhi.
Collapse
Affiliation(s)
- Akinyomade Oladipo Owolabi
- Landmark University SDG 3 (Good Health and Well-being Group), Omu-Aran, Kwara, Nigeria.
- Department of Microbiology, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria.
- Landmark University SDG 17 (Partnerships for the Goals), Omu-Aran, Kwara State, Nigeria.
| | - Oghenerobor Benjamin Akpor
- Landmark University SDG 3 (Good Health and Well-being Group), Omu-Aran, Kwara, Nigeria
- Department of Biological Sciences, Afe Babalola, Ado Ekiti, Nigeria
| | - James Ajigasokoa Ndako
- Landmark University SDG 3 (Good Health and Well-being Group), Omu-Aran, Kwara, Nigeria
- Department of Microbiology, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria
| | - Stephen Oluwagbemiga Owa
- Landmark University SDG 3 (Good Health and Well-being Group), Omu-Aran, Kwara, Nigeria
- Department of Microbiology, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria
| | - Abimbola Peter Oluyori
- Landmark University SDG 3 (Good Health and Well-being Group), Omu-Aran, Kwara, Nigeria
- Department of Physical sciences, Landmark University, PMB 1001, Omu-Aran, 251101, Nigeria
| | | | | | | |
Collapse
|
2
|
Watanabe K, Zhao Q, Iwatsuki R, Fukui R, Ren W, Sugita Y, Nishida N. Deciphering the Multi-state Conformational Equilibrium of HDM2 in the Regulation of p53 Binding: Perspectives from Molecular Dynamics Simulation and NMR Analysis. J Am Chem Soc 2024; 146:9790-9800. [PMID: 38549219 DOI: 10.1021/jacs.3c14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
HDM2 negatively regulates the activity of the tumor suppressor p53. Previous NMR studies have shown that apo-HDM2 interconverts between an "open" state in which the N-terminal "lid" is disordered and a "closed" state in which the lid covers the p53-binding site in the core region. Molecular dynamics (MD) simulation studies have been performed to elucidate the conformational dynamics of HDM2, but the direct relevance of the experimental and computational analyses is unclear. In addition, how the phosphorylation of S17 in the lid contributes to the inhibition of p53 binding remains controversial. Here, we used both NMR and MD simulations to investigate the conformational dynamics of apo-HDM2. The NMR analysis revealed that apo-HDM2 exists in a fast-exchanging equilibrium within two closed states, closed 1 and closed 2, in addition to a previously demonstrated slow-exchanging "open-closed" equilibrium. MD simulations visualized two characteristic closed states, where the spatial orientation of the key residues corresponds well to the chemical shift changes of the NMR spectra. Furthermore, the phosphorylation of S17 induced an equilibrium shift toward closed 1, thereby suppressing the binding of p53 to HDM2. This study reveals a multi-state equilibrium of apo-HDM2 and provides new insights into the regulation mechanism of HDM2-p53 interactions.
Collapse
Affiliation(s)
- Kazuki Watanabe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Qingci Zhao
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryosuke Iwatsuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryota Fukui
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Weitong Ren
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Hirosawa 2-1, Wako 351-0918, Saitama, Japan
| | - Yuji Sugita
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Hirosawa 2-1, Wako 351-0918, Saitama, Japan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - Noritaka Nishida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
3
|
Simulation of MDM2 N-terminal domain conformational lability in the presence of imidazoline based inhibitors of MDM2-p53 protein–protein interaction. J Comput Aided Mol Des 2019; 34:55-70. [DOI: 10.1007/s10822-019-00260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 11/21/2019] [Indexed: 12/18/2022]
|
4
|
Chan JV, Ping Koh DX, Liu Y, Joseph TL, Lane DP, Verma CS, Tan YS. Role of the N-terminal lid in regulating the interaction of phosphorylated MDMX with p53. Oncotarget 2017; 8:112825-112840. [PMID: 29348869 PMCID: PMC5762554 DOI: 10.18632/oncotarget.22829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
Murine double minute 4 protein (MDMX) is crucial for the regulation of the tumor suppressor protein p53. Phosphorylation of the N-terminal domain of MDMX is thought to affect its binding with the transactivation domain of p53, thus playing a role in p53 regulation. In this study, the effects of MDMX phosphorylation on the binding of p53 were investigated using molecular dynamics simulations. It is shown that in addition to the previously proposed mechanism in which phosphorylated Y99 of MDMX inhibits p53 binding through steric clash with P27 of p53, the N-terminal lid of MDMX also appears to play an important role in regulating the phosphorylation-dependent interactions between MDMX and p53. In the proposed mechanism, phosphorylated Y99 aids in pulling the lid into the p53-binding pocket, thus inhibiting the binding between MDMX and p53. Rebinding of p53 appears to be facilitated by the subsequent phosphorylation of Y55, which draws the lid away from the binding pocket by electrostatic attraction of the lid's positively charged N-terminus. The ability to target these mechanisms for the proper regulation of p53 could have important implications for understanding cancer biology and for drug development.
Collapse
Affiliation(s)
- Jane Vin Chan
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore
| | - Dawn Xin Ping Koh
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore
| | - Yun Liu
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore
| | - Thomas L Joseph
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore
| | - David P Lane
- p53 Laboratory, Agency for Science, Technology and Research (ASTAR), Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore.,Department of Biological Sciences, National University of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore
| |
Collapse
|
5
|
Ciemny MP, Debinski A, Paczkowska M, Kolinski A, Kurcinski M, Kmiecik S. Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction. Sci Rep 2016; 6:37532. [PMID: 27905468 PMCID: PMC5131342 DOI: 10.1038/srep37532] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
Abstract
Protein-peptide interactions are often associated with large-scale conformational changes that are difficult to study either by classical molecular modeling or by experiment. Recently, we have developed the CABS-dock method for flexible protein-peptide docking that enables large-scale rearrangements of the protein chain. In this study, we use CABS-dock to investigate the binding of the p53-MDM2 complex, an element of the cell cycle regulation system crucial for anti-cancer drug design. Experimental data suggest that p53-MDM2 binding is affected by significant rearrangements of a lid region - the N-terminal highly flexible MDM2 fragment; however, the details are not clear. The large size of the highly flexible MDM2 fragments makes p53-MDM2 intractable for exhaustive binding dynamics studies using atomistic models. We performed extensive dynamics simulations using the CABS-dock method, including large-scale structural rearrangements of MDM2 flexible regions. Without a priori knowledge of the p53 peptide structure or its binding site, we obtained near-native models of the p53-MDM2 complex. The simulation results match well the experimental data and provide new insights into the possible role of the lid fragment in p53 binding. The presented case study demonstrates that CABS-dock methodology opens up new opportunities for protein-peptide docking with large-scale changes of the protein receptor structure.
Collapse
Affiliation(s)
- Maciej Pawel Ciemny
- University of Warsaw, Faculty of Chemistry, Warsaw 02-093, Poland
- University of Warsaw, Faculty of Physics, Warsaw, 02-093, Poland
| | | | - Marta Paczkowska
- University of Warsaw, Faculty of Chemistry, Warsaw 02-093, Poland
| | - Andrzej Kolinski
- University of Warsaw, Faculty of Chemistry, Warsaw 02-093, Poland
| | | | | |
Collapse
|
6
|
Lemos A, Leão M, Soares J, Palmeira A, Pinto M, Saraiva L, Sousa ME. Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction. Med Res Rev 2016; 36:789-844. [PMID: 27302609 DOI: 10.1002/med.21393] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/16/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
The growth inhibitory activity of p53 tumor suppressor is tightly regulated by interaction with two negative regulatory proteins, murine double minute 2 (MDM2) and X (MDMX), which are overexpressed in about half of all human tumors. The elucidation of crystallographic structures of MDM2/MDMX complexes with p53 has been pivotal for the identification of several classes of inhibitors of the p53-MDM2/MDMX interaction. The present review provides in silico strategies and screening approaches used in drug discovery as well as an overview of the most relevant classes of small-molecule inhibitors of the p53-MDM2/MDMX interaction, their progress in pipeline, and highlights particularities of each class of inhibitors. Most of the progress made with high-throughput screening has led to the development of inhibitors belonging to the cis-imidazoline, piperidinone, and spiro-oxindole series. However, novel potent and selective classes of inhibitors of the p53-MDM2 interaction with promising antitumor activity are emerging. Even with the discovery of the 3D structure of complex p53-MDMX, only two small molecules were reported as selective p53-MDMX antagonists, WK298 and SJ-172550. Dual inhibition of the p53-MDM2/MDMX interaction has shown to be an alternative approach since it results in full activation of the p53-dependent pathway. The knowledge of structural requirements crucial to the development of small-molecule inhibitors of the p53-MDMs interactions has enabled the identification of novel antitumor agents with improved in vivo efficacy.
Collapse
Affiliation(s)
- Agostinho Lemos
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Mariana Leão
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Joana Soares
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Andreia Palmeira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua de Bragas, 289, 4050-123, Porto, Portugal
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Maria Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.,CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua de Bragas, 289, 4050-123, Porto, Portugal
| |
Collapse
|
7
|
Bueren-Calabuig JA, Michel J. Impact of Ser17 Phosphorylation on the Conformational Dynamics of the Oncoprotein MDM2. Biochemistry 2016; 55:2500-9. [PMID: 27050388 DOI: 10.1021/acs.biochem.6b00127] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
MDM2 is an important oncoprotein that downregulates the activity of the tumor suppressor protein p53 via binding of its N-terminal domain to the p53 transactivation domain. The first 24 residues of the MDM2 N-terminal domain form an intrinsically disordered "lid" region that interconverts on a millisecond time scale between "open" and "closed" states in unliganded MDM2. While the former conformational state is expected to facilitate p53 binding, the latter competes in a pseudo-substrate manner with p53 for its binding site. Phosphorylation of serine 17 in the MDM2 lid region is thought to modulate the equilibrium between "open" and "closed" lid states, but contradictory findings on the favored lid conformational state upon phosphorylation have been reported. Here, the nature of the conformational states of MDM2 pSer17 and Ser17Asp variants was addressed by means of enhanced sampling molecular dynamics simulations. Detailed analyses of the computed lid conformational ensembles indicate that both lid variants stabilize a "closed" state, with respect to wild type. Nevertheless, the nature of the closed-state conformational ensembles differs significantly between the pSer17 and Ser17Asp variants. Thus, care should be applied in the interpretation of biochemical experiments that use phosphomimetic variants to model the effects of phosphorylation on the structure and dynamics of this disordered protein region.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- EaStCHEM School of Chemistry, The University of Edinburgh , Edinburgh, EH9 3FJ, United Kingdom
- Computational Biology, School of Life Sciences, School of Science and Engineering, University of Dundee , Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Julien Michel
- EaStCHEM School of Chemistry, The University of Edinburgh , Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
8
|
Chen J, Wang J, Zhang Q, Chen K, Zhu W. Probing Origin of Binding Difference of inhibitors to MDM2 and MDMX by Polarizable Molecular Dynamics Simulation and QM/MM-GBSA Calculation. Sci Rep 2015; 5:17421. [PMID: 26616018 PMCID: PMC4663504 DOI: 10.1038/srep17421] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/29/2015] [Indexed: 12/13/2022] Open
Abstract
Binding abilities of current inhibitors to MDMX are weaker than to MDM2. Polarizable molecular dynamics simulations (MD) followed by Quantum mechanics/molecular mechanics generalized Born surface area (QM//MM-GBSA) calculations were performed to investigate the binding difference of inhibitors to MDM2 and MDMX. The predicted binding free energies not only agree well with the experimental results, but also show that the decrease in van der Walls interactions of inhibitors with MDMX relative to MDM2 is a main factor of weaker bindings of inhibitors to MDMX. The analyses of dihedral angles based on MD trajectories suggest that the closed conformation formed by the residues M53 and Y99 in MDMX leads to a potential steric clash with inhibitors and prevents inhibitors from arriving in the deep of MDMX binding cleft, which reduces the van der Waals contacts of inhibitors with M53, V92, P95 and L98. The calculated results using the residue-based free energy decomposition method further prove that the interaction strength of inhibitors with M53, V92, P95 and L98 from MDMX are obviously reduced compared to MDM2. We expect that this study can provide significant theoretical guidance for designs of potent dual inhibitors to block the p53-MDM2/MDMX interactions.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, 250014, China
| | - Jinan Wang
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Qinggang Zhang
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Kaixian Chen
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Weiliang Zhu
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| |
Collapse
|
9
|
Cheng W, Liang Z, Wang W, Yi C, Li H, Zhang S, Zhang Q. Insight into binding modes of p53 and inhibitors to MDM2 based on molecular dynamic simulations and principal component analysis. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1087598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Pantelopulos GA, Mukherjee S, Voelz VA. Microsecond simulations of mdm2 and its complex with p53 yield insight into force field accuracy and conformational dynamics. Proteins 2015; 83:1665-76. [DOI: 10.1002/prot.24852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/08/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022]
Affiliation(s)
| | - Sudipto Mukherjee
- Department of Chemistry; Temple University; Philadelphia Pennsylvania 19122
| | - Vincent A. Voelz
- Department of Chemistry; Temple University; Philadelphia Pennsylvania 19122
| |
Collapse
|
11
|
Bueren-Calabuig JA, Michel J. Elucidation of Ligand-Dependent Modulation of Disorder-Order Transitions in the Oncoprotein MDM2. PLoS Comput Biol 2015; 11:e1004282. [PMID: 26046940 PMCID: PMC4457491 DOI: 10.1371/journal.pcbi.1004282] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/13/2015] [Indexed: 01/16/2023] Open
Abstract
Numerous biomolecular interactions involve unstructured protein regions, but how to exploit such interactions to enhance the affinity of a lead molecule in the context of rational drug design remains uncertain. Here clarification was sought for cases where interactions of different ligands with the same disordered protein region yield qualitatively different results. Specifically, conformational ensembles for the disordered lid region of the N-terminal domain of the oncoprotein MDM2 in the presence of different ligands were computed by means of a novel combination of accelerated molecular dynamics, umbrella sampling, and variational free energy profile methodologies. The resulting conformational ensembles for MDM2, free and bound to p53 TAD (17-29) peptide identify lid states compatible with previous NMR measurements. Remarkably, the MDM2 lid region is shown to adopt distinct conformational states in the presence of different small-molecule ligands. Detailed analyses of small-molecule bound ensembles reveal that the ca. 25-fold affinity improvement of the piperidinone family of inhibitors for MDM2 constructs that include the full lid correlates with interactions between ligand hydrophobic groups and the C-terminal lid region that is already partially ordered in apo MDM2. By contrast, Nutlin or benzodiazepinedione inhibitors, that bind with similar affinity to full lid and lid-truncated MDM2 constructs, interact additionally through their solubilizing groups with N-terminal lid residues that are more disordered in apo MDM2. Life as we know it depends on interactions between proteins. There is substantial evidence that many interactions between proteins involve very flexible protein regions. These disordered regions may undergo disorder/order transitions upon forming an interaction with another protein. Many successful approaches to medicinal chemistry are based on mimicking the interactions of biological molecules with man-made small molecules. However how drug-like small-molecules may modulate protein disorder is currently poorly understood, largely because it is difficult to measure in details this type of interaction with experimental methods. Here we have used computer simulations to resolve with great details the process by which different small-molecules modulate the flexibility of a disordered region of the protein MDM2. This protein is overexpressed in many cancers and small-molecules that recognize MDM2 have been developed over the last decade as possible novel anti-cancer agents. We show that the flexible MDM2 “lid” region adopts different conformational states in the presence of different small-molecules. Our results suggest why some classes of small-molecules form favorable interactions with the lid region, whereas others do not. These findings may prove crucial to develop new and more effective MDM2 inhibitors, and more generally to help drug designers target disordered proteins regions with small-molecules.
Collapse
Affiliation(s)
| | - Julien Michel
- EaStCHEM School of Chemistry, the University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Chen J, Wang J, Zhu W. Binding modes of three inhibitors 8CA, F8A and I4A to A-FABP studied based on molecular dynamics simulation. PLoS One 2014; 9:e99862. [PMID: 24918907 PMCID: PMC4053400 DOI: 10.1371/journal.pone.0099862] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/16/2014] [Indexed: 12/21/2022] Open
Abstract
Adipocyte fatty-acid binding protein (A-FABP) is an important target of drug designs treating some diseases related to lipid-mediated biology. Molecular dynamics (MD) simulations coupled with solvated interaction energy method (SIE) were carried out to study the binding modes of three inhibitors 8CA, F8A and I4A to A-FABP. The rank of our predicted binding affinities is in accordance with experimental data. The results show that the substitution in the position 5 of N-benzyl and the seven-membered ring of N-benzyl-indole carboxylic acids strengthen the I4A binding, while the substitution in the position 2 of N-benzyl weakens the F8A binding. Computational alanine scanning and dynamics analyses were performed and the results suggest that the polar interactions of the positively charged residue R126 with the three inhibitors provide a significant contribution to inhibitor bindings. This polar interaction induces the disappearance of the correlated motion of the C terminus of A-FABP relative to the N terminus and favors the stability of the binding complex. This study is helpful for the rational design of potent inhibitors within the fields of metabolic disease, inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
- * E-mail: (JC); (WZ)
| | - Jinan Wang
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weiliang Zhu
- Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (JC); (WZ)
| |
Collapse
|
13
|
Sim AYL, Joseph T, Lane DP, Verma C. Mechanism of Stapled Peptide Binding to MDM2: Possible Consequences for Peptide Design. J Chem Theory Comput 2014; 10:1753-61. [DOI: 10.1021/ct4009238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Adelene Y. L. Sim
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
| | - Thomas Joseph
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
| | - David P. Lane
- p53
Laboratory (p53Lab, A*STAR), 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| | - Chandra Verma
- Bioinformatics
Institute (A*STAR), 30
Biopolis Street #07-01, Matrix, Singapore 138671
- School
of Biological Sciences, Nanyang Technological University, 60 Nanyang
Drive, Singapore 637551
- Department
of Biological Sciences, National University of Singapore, 14 Science
Drive 4, Singapore 117543
| |
Collapse
|
14
|
Inhibition of nutlin-resistant HDM2 mutants by stapled peptides. PLoS One 2013; 8:e81068. [PMID: 24278380 PMCID: PMC3835680 DOI: 10.1371/journal.pone.0081068] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/08/2013] [Indexed: 01/22/2023] Open
Abstract
Pharmacological modulation of p53 activity is an attractive therapeutic strategy in cancers with wild-type p53. Presently in clinical trials, the small molecule Nutlin-3A competitively binds to HDM2, a key negative regulator of p53 and blocks its activity. We have described resistance mutations in HDM2 that selectively reduce affinity for Nutlin but not p53. In the present communication, we show that stapled peptides targeting the same region of HDM2 as Nutlin are refractory to these mutations, and display reduced discrimination between the wild-type and mutant HDM2s with regards to functional abrogation of interaction with p53. The larger interaction footprint afforded by stapled peptides suggests that this class of ligands may prove comparatively more resilient to acquired resistance in a clinical setting.
Collapse
|
15
|
Xue X, Wei JL, Xu LL, Xi MY, Xu XL, Liu F, Guo XK, Wang L, Zhang XJ, Zhang MY, Lu MC, Sun HP, You QD. Effective screening strategy using ensembled pharmacophore models combined with cascade docking: application to p53-MDM2 interaction inhibitors. J Chem Inf Model 2013; 53:2715-29. [PMID: 24050442 DOI: 10.1021/ci400348f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein-protein interactions (PPIs) play a crucial role in cellular function and form the backbone of almost all biochemical processes. In recent years, protein-protein interaction inhibitors (PPIIs) have represented a treasure trove of potential new drug targets. Unfortunately, there are few successful drugs of PPIIs on the market. Structure-based pharmacophore (SBP) combined with docking has been demonstrated as a useful Virtual Screening (VS) strategy in drug development projects. However, the combination of target complexity and poor binding affinity prediction has thwarted the application of this strategy in the discovery of PPIIs. Here we report an effective VS strategy on p53-MDM2 PPI. First, we built a SBP model based on p53-MDM2 complex cocrystal structures. The model was then simplified by using a Receptor-Ligand complex-based pharmacophore model considering the critical binding features between MDM2 and its small molecular inhibitors. Cascade docking was subsequently applied to improve the hit rate. Based on this strategy, we performed VS on NCI and SPECS databases and successfully discovered 6 novel compounds from 15 hits with the best, compound 1 (NSC 5359), K(i) = 180 ± 50 nM. These compounds can serve as lead compounds for further optimization.
Collapse
Affiliation(s)
- Xin Xue
- State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing, Jiangsu 210009, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|