1
|
Tan Y, Zhou J, Liu K, Liu R, Zhou J, Wu Z, Li L, Zeng J, Feng X, Dong B, Du J. Novel prognostic biomarkers in nasopharyngeal carcinoma unveiled by mega-data bioinformatics analysis. Front Oncol 2024; 14:1354940. [PMID: 38854728 PMCID: PMC11157084 DOI: 10.3389/fonc.2024.1354940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is commonly diagnosed at an advanced stage with a high incidence rate in Southeast Asia and Southeast China. However, the limited availability of NPC patient survival data in public databases has resulted in less rigorous studies examining the prediction of NPC survival through construction of Kaplan-Meier curves. These studies have primarily relied on small samples of NPC patients with progression-free survival (PFS) information or data from head and neck squamous cell carcinoma (HNSCC) studies almost without NPC patients. Thus, we coanalyzed RNA expression profiles in eleven datasets (46 normal (control) vs 160 tumor (NPC)) downloaded from the Gene Expression Omnibus (GEO) database and survival data provided by Jun Ma from Sun Yat-sen University. Then, differential analysis, gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and network analysis were performed using STRING database. After that, 2142 upregulated differentially expressed genes (DEGs) and 3857 downregulated DEGs were screened. Twenty-five of them were identified as hub genes, which were enriched in several pathways (cilium movement, extracellular matrix structural constituent, homologous recombination and cell cycle). Utilizing the comprehensive dataset we amassed from GEO database, we conducted a survival analysis of DEGs and subsequently constructed survival models. Seven DEGs (RASGRP2, MOCOS, TTC9, ARHGAP4, DPM3, CD37, and CD72) were identified and closely related to the survival prognosis of NPC. Finally, qRT-PCR, WB and IHC were performed to confirm the elevated expression of RASGRP2 and the decreased expression of TTC9, CD37, DPM3 and ARHGAP4, consistent with the DEG analysis. Conclusively, our findings provide insights into the novel prognostic biomarkers of NPC by mega-data bioinformatics analysis, which suggests that they may serve special targets in the treatment of NPC.
Collapse
Affiliation(s)
- Yishuai Tan
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jiao Zhou
- Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Ruowu Liu
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zhou
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linke Li
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Zeng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuxian Feng
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Biao Dong
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jintao Du
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Sobhi Amjad Z, Shojaeian A, Sadri Nahand J, Bayat M, Taghizadieh M, Rostamian M, Babaei F, Moghoofei M. Oncoviruses: Induction of cancer development and metastasis by increasing anoikis resistance. Heliyon 2023; 9:e22598. [PMID: 38144298 PMCID: PMC10746446 DOI: 10.1016/j.heliyon.2023.e22598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The phenomenon of cell death is a vital aspect in the regulation of aberrant cells such as cancer cells. Anoikis is a kind of cell death that occurs when cells get separated from the extracellular matrix. Some cancer cells can inhibit anoikis in order to progress metastasis. One of the key variables that might be implicated in anoikis resistance (AR) is viral infections. The most important viruses involved in this process are Epstein-Barr virus, human papillomavirus, hepatitis B virus, human herpes virus 8, human T-cell lymphotropic virus type 1, and hepatitis C virus. A better understanding of how carcinogenic viruses suppress anoikis might be helpful in developing an effective treatment for virus-associated cancers. In the current study, we review the role of the mentioned viruses and their gene products in anoikis inhibition.
Collapse
Affiliation(s)
- Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mosayeb Rostamian
- Nosocomial Infections Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Babaei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Chen H, Shi X, Ren L, Wan Y, Zhuo H, Zeng L, SangDan W, Wang F. Screening of core genes and prediction of ceRNA regulation mechanism of circRNAs in nasopharyngeal carcinoma by bioinformatics analysis. Pathol Oncol Res 2023; 29:1610960. [PMID: 37056700 PMCID: PMC10086187 DOI: 10.3389/pore.2023.1610960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/06/2023] [Indexed: 03/30/2023]
Abstract
Background: Nasopharyngeal carcinoma (NPC) represents a highly aggressive malignant tumor. Competing endogenous RNAs (ceRNA) regulation is a common regulatory mechanism in tumors. The ceRNA network links the functions between mRNAs and ncRNAs, thus playing an important regulatory role in diseases. This study screened the potential key genes in NPC and predicted regulatory mechanisms using bioinformatics analysis.Methods: The merged microarray data of three NPC-related mRNA expression microarrays from the Gene Expression Omnibus (GEO) database and the expression data of tumor samples or normal samples from the nasopharynx and tonsil in The Cancer Genome Atlas (TCGA) database were both subjected to differential analysis and Weighted Gene Co-expression Network Analysis (WGCNA). The results from two different databases were intersected with WGCNA results to obtain potential regulatory genes in NPC, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. The hub-gene in candidate genes was discerned through Protein-Protein Interaction (PPI) analysis and its upstream regulatory mechanism was predicted by miRwalk and circbank databases.Results: Totally 68 upregulated genes and 96 downregulated genes in NPC were screened through GEO and TCGA. According to WGCNA, the NPC-related modules were screened from GEO and TCGA analysis results, and the genes in the modules were obtained. After the results of differential analysis and WGCNA were intersected, 74 differentially expressed candidate genes associated with NPC were discerned. Finally, fibronectin 1 (FN1) was identified as a hub-gene in NPC. Prediction of upstream regulatory mechanisms of FN1 suggested that FN1 may be regulated by ceRNA mechanisms involving multiple circRNAs, thereby influencing NPC progression through ceRNA regulation.Conclusion: FN1 is identified as a key regulator in NPC development and is likely to be regulated by numerous circRNA-mediated ceRNA mechanisms.
Collapse
Affiliation(s)
- HongMin Chen
- Department of Medical Oncology, Cancer Center, West China Hospital, West China, Medical School, Sichuan University, Sichuan, China
| | - XiaoXiao Shi
- Department of Medical Oncology, Chengdu Shangjin Nanfu Hospital, West China Hospital, Sichuan University, Chengdu, China
| | - Li Ren
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - YuMing Wan
- Department of Medical Oncology, Cancer Center, West China Hospital, West China, Medical School, Sichuan University, Sichuan, China
| | - HongYu Zhuo
- Department of Medical Oncology, Cancer Center, West China Hospital, West China, Medical School, Sichuan University, Sichuan, China
| | - Li Zeng
- Department of Medical Oncology, Cancer Center, West China Hospital, West China, Medical School, Sichuan University, Sichuan, China
| | - WangMu SangDan
- Department of Oncology, People’s Hospital of Tibet Autonomous Region, Lhasa, China
| | - Feng Wang
- Department of Medical Oncology, Cancer Center, West China Hospital, West China, Medical School, Sichuan University, Sichuan, China
- *Correspondence: Feng Wang,
| |
Collapse
|
4
|
Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory epigenome reprogramming in nasopharyngeal carcinoma. EBioMedicine 2022; 86:104357. [DOI: 10.1016/j.ebiom.2022.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
|
5
|
EGFR Mutation in Nasopharyngeal Carcinoma. JOURNAL OF MOLECULAR PATHOLOGY 2022. [DOI: 10.3390/jmp3040017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nasopharyngeal carcinoma is a malignant tumor of the nasopharynx. However, while radiotherapy is the primary choice of treatment, the treatment may fail due to distant metastasis in most patients at an advanced stage. Treatment agents against some mutations have led to the development of personalized treatment regimens. EGFR is one of the most studied molecules and has played a role in the development of a large number of cancer types. We aimed to demonstrate the EGFR mutation status in nasopharyngeal carcinomas. Twenty-six nasopharyngeal carcinomas were included in the study. EGFR mutation analysis was applied to the cases by the real-time PCR method. The results were evaluated statistically. No EGFR mutation was detected in any of the cases. Although EGFR expression is frequently shown in nasopharyngeal carcinomas immunohistochemically, the same positivity was not shown in genetic analysis. This result shows that the use of anti-EGFR agents in nasopharyngeal carcinoma treatment will not be effective.
Collapse
|
6
|
Wu X, Lin L, Zhou F, Yu S, Chen M, Wang S. The Highly Expressed IFIT1 in Nasopharyngeal Carcinoma Enhances Proliferation, Migration, and Invasion of Nasopharyngeal Carcinoma Cells. Mol Biotechnol 2022; 64:621-636. [PMID: 35038119 DOI: 10.1007/s12033-021-00439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022]
Abstract
In this study, we aimed to identify potential targets modulating the progression of nasopharyngeal carcinoma (NPC) using integrated bioinformatics analysis and functional assays. Differentially expressed genes (DEGs) between NPC and normal tissues samples were obtained from publicly availably microarray datasets (GSE68799, GSE34573, and GSE53819) in the Gene Expression Omnibus (GEO) database. The bioinformatics analysis identified 49 common DEGs from three GEO datasets, which were mainly enriched in cytokine/chemokine pathways and extracellular matrix organization pathway. Further protein-protein interaction network analysis identified 11 hub genes from the 49 DEGs. The 11 hub genes were significantly up-regulated in the NPC tissues when compared to normal tissues by analyzing the Oncomine database. The 8 hub genes including COL5A1, COL7A1, COL22A1, CXCL11, IFI44L, IFIT1, RSAD2, and USP18 were significantly up-regulated in the NPC tissues when compared to normal tissues by using the Oncomine database. Further validation studies showed that IFIT1 was up-regulated in the NPC cells. Knockdown of IFI1T1 suppressed the proliferation, migration, and invasion of NPC cells; while IFIT1 overexpression promoted the proliferation, migration, and invasion of NPC cells. In conclusion, a total of 49 DEGs and 11 hub genes in NPC using the integrated bioinformatics analysis. IFIT1 was up-regulated in the NPC cells lines, and IFIT1 may act as an oncogene by promoting NPC cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China. .,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China. .,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China.
| | - Liping Lin
- Department of Oncology, Guangzhou Panyu Central Hospital, Guangzhou, 511400, China
| | - Fengrui Zhou
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China.,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Shaokang Yu
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China.,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China.,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China
| | - Minhua Chen
- Community Healthcare Center, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Shubin Wang
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China. .,Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, 518036, China. .,Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, 518036, China.
| |
Collapse
|
7
|
Blanco R, Carrillo-Beltrán D, Corvalán AH, Aguayo F. High-Risk Human Papillomavirus and Epstein-Barr Virus Coinfection: A Potential Role in Head and Neck Carcinogenesis. BIOLOGY 2021; 10:biology10121232. [PMID: 34943147 PMCID: PMC8698839 DOI: 10.3390/biology10121232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary A subset of carcinomas that arise in the head and neck region show a viral etiology. In fact, a subgroup of oropharyngeal cancers are caused by some types of human papillomavirus (HPV), so-called high-risk (HR)-HPVs, whereas undifferentiated nasopharyngeal carcinomas are etiologically related to Epstein–Barr virus (EBV). However, studies have reported the presence of both HR-HPV and EBV in some types of head and neck cancers. In this review, we discuss the potential contribution and role of HR-HPV/EBV coinfection in head and neck carcinogenesis, as well as the mechanisms that are potentially involved. In addition, HR-HPV/EBV interaction models are proposed. Abstract High-risk human papillomaviruses (HR-HPVs) and Epstein–Barr virus (EBV) are recognized oncogenic viruses involved in the development of a subset of head and neck cancers (HNCs). HR-HPVs are etiologically associated with a subset of oropharyngeal carcinomas (OPCs), whereas EBV is a recognized etiological agent of undifferentiated nasopharyngeal carcinomas (NPCs). In this review, we address epidemiological and mechanistic evidence regarding a potential cooperation between HR-HPV and EBV for HNC development. Considering that: (1) both HR-HPV and EBV infections require cofactors for carcinogenesis; and (2) both oropharyngeal and oral epithelium can be directly exposed to carcinogens, such as alcohol or tobacco smoke, we hypothesize possible interaction mechanisms. The epidemiological and experimental evidence suggests that HR-HPV/EBV cooperation for developing a subset of HNCs is plausible and warrants further investigation.
Collapse
Affiliation(s)
- Rancés Blanco
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Diego Carrillo-Beltrán
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | | |
Collapse
|
8
|
Zhang Z, Zhang Y, Qiu Y, Mo W, Yang Z. Human/eukaryotic ribosomal protein L14 (RPL14/eL14) overexpression represses proliferation, migration, invasion and EMT process in nasopharyngeal carcinoma. Bioengineered 2021; 12:2175-2186. [PMID: 34057029 PMCID: PMC8806664 DOI: 10.1080/21655979.2021.1932225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although human/eukaryotic ribosomal protein L14 (RPL14/eL14) is known to be associated with a variety of cancers, its role in nasopharyngeal carcinoma (NPC) remains unclear. The aim of this study was to explore the impact of RPL14(eL14) in NPC. The results of quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and immunohistochemical staining revealed that the expression of RPL14(eL14) significantly reduced in NPC tissues and cells. Furthermore, the protein expression of RPL14(eL14) was linked to NPC-related clinical pathological features, including the T and N classification of Tumor Node Metastasis (TNM) staging (all p < 0.05). Cell counting kit-8 (CCK-8) assay and colony formation assay revealed that RPL14(eL14) overexpression repressed NPC cell proliferation. In cell cycle assay, RPL14(eL14) overexpression significantly blocked NPC cells in S phase. Overexpression of RPL14(eL14) repressed cell migration and invasion in NPC as shown by transwell assay and cell scratch healing assay. In addition, RPL14(eL14) was closely correlated with the expression of epithelial–mesenchymal transition (EMT) biomarkers, including E-cadherin, N-cadherin, and vimentin as detected by western blot. In conclusion, our results revealed that RPL14(eL14) may be considered as an antioncogene in NPC, which greatly suppresses cancer progression.
Collapse
Affiliation(s)
- Zunni Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yalong Zhang
- Department of Ultrasonic Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuling Qiu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wuning Mo
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zheng Yang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
9
|
A practical method to screen and identify functioning biomarkers in nasopharyngeal carcinoma. Sci Rep 2021; 11:7294. [PMID: 33790390 PMCID: PMC8012388 DOI: 10.1038/s41598-021-86809-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a rare malignancy, with the unique geographical and ethnically characteristics of distribution. Gene chip and bioinformatics have been employed to reveal regulatory mechanisms in current functional genomics. However, a practical solution addressing the unresolved aspects of microarray data processing and analysis have been long pursuit. This study developed a new method to improve the accuracy of identifying key biomarkers, namely Unit Gamma Measurement (UGM), accounting for multiple hypotheses test statistics distribution, which could reduce the dependency problem. Three mRNA expression profile of NPC were selected to feed UGM. Differentially expressed genes (DEGs) were identified with UGM and hub genes were derived from them to explore their association with NPC using functional enrichment and pathway analysis. 47 potential DEGs were identified by UGM from the 3 selected datasets, and affluent in cysteine-type endopeptidase inhibitor activity, cilium movement, extracellular exosome etc. also participate in ECM-receptor interaction, chemical carcinogenesis, TNF signaling pathway, small cell lung cancer and mismatch repair pathway. Down-regulation of CAPS and WFDC2 can prolongation of the overall survival periods in the patients. ARMC4, SERPINB3, MUC4 etc. have a close relationship with NPC. The UGM is a practical method to identify NPC-associated genes and biomarkers.
Collapse
|
10
|
Huang D, Zhu X, Wang Y, Yu H, Pu Y. Long non-coding RNA FAM133B-2 represses the radio-resistance of nasopharyngeal cancer cells by targeting miR-34a-5p/CDK6 axis. Aging (Albany NY) 2020; 12:16936-16950. [PMID: 32889799 PMCID: PMC7521541 DOI: 10.18632/aging.103600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/13/2020] [Indexed: 01/24/2023]
Abstract
Long non-coding RNAs (lncRNAs) were found to play roles in various cancers, including nasopharyngeal carcinoma. In this study, we focused on the biological function of the lncRNA FAM133B-2 in the radio-resistance of nasopharyngeal carcinoma. The RNA-seq and qRT-PCR analysis showed that FAM133B-2 is highly expressed in the radio-resistant nasopharyngeal carcinoma cells. The following biochemical assays showed that FAM133B-2 represses the nasopharyngeal carcinoma radio-resistance and also affects the apoptosis and proliferation of nasopharyngeal carcinoma cells. Further investigations suggested that miR-34a-5p targets FAM133B-2 and also regulates the cyclin-dependent kinase 6 (CDK6). All these results suggested that the lncRNA FAM133B-2 might function as a competitive endogenous RNA (ceRNA) for miR-34a-5p in nasopharyngeal carcinoma radio-resistance, thus it may be regarded as a novel prognostic biomarker and therapeutic target in nasopharyngeal carcinoma diagnosis and treatment.
Collapse
Affiliation(s)
- Dabing Huang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Xianhai Zhu
- Department of Interventional Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Yong Wang
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Haobin Yu
- Department of Cancer Nutrition and Metabolic Therapy, No.3 Ward of Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| | - Youguang Pu
- Department of Cancer Epigenetics Program, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, P.R. China
| |
Collapse
|
11
|
E. A. R. ENS, Irekeola AA, Yean Yean C. Diagnostic and Prognostic Indications of Nasopharyngeal Carcinoma. Diagnostics (Basel) 2020; 10:E611. [PMID: 32825179 PMCID: PMC7554987 DOI: 10.3390/diagnostics10090611] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a disease that is highly associated with the latent infection of Epstein-Barr virus. The absence of obvious clinical signs at the early stage of the disease has made early diagnosis practically impossible, thereby promoting the establishment and progression of the disease. To enhance the stride for a reliable and less invasive tool for the diagnosis and prognosis of NPC, we synopsize biomarkers belonging to the two most implicated biological domains (oncogenes and tumor suppressors) in NPC disease. Since no single biomarker is sufficient for diagnosis and prognosis, coupled with the fact that the known established methods such as methylation-specific polymerase chain reaction (PCR), multiplex methylation-specific PCR, microarray assays, etc., can only accommodate a few biomarkers, we propose a 10-biomarker panel (KIT, LMP1, PIKC3A, miR-141, and miR-18a/b (oncogenic) and p16, RASSF1A, DAP-kinase, miR-9, and miR-26a (tumor suppressors)) based on their diagnostic and prognostic values. This marker set could be explored in a multilevel or single unified assay for the diagnosis and prognosis of NPC. If carefully harnessed and standardized, it is hoped that the proposed marker set would help transform the diagnostic and prognostic realm of NPC, and ultimately, help prevent the life-threatening late-stage NPC disease.
Collapse
Affiliation(s)
- Engku Nur Syafirah E. A. R.
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Department of Biological Sciences, Microbiology Unit, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara State, Nigeria
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
12
|
Bridgewater HE, Date KL, O’Neil JD, Hu C, Arrand JR, Dawson CW, Young LS. The Epstein-Barr Virus-Encoded EBNA1 Protein Activates the Bone Morphogenic Protein (BMP) Signalling Pathway to Promote Carcinoma Cell Migration. Pathogens 2020; 9:pathogens9070594. [PMID: 32708289 PMCID: PMC7400503 DOI: 10.3390/pathogens9070594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) protein is expressed in all virus-associated malignancies, where it performs an essential role in the maintenance, replication and transcription of the EBV genome. In recent years, it has become apparent that EBNA1 can also influence cellular gene transcription. Here, we demonstrate that EBNA1 is able to stimulate the expression of the Transforming growth factor-beta (TGFβ) superfamily member, bone morphogenic protein 2 (BMP2), with consequential activation of the BMP signalling pathway in carcinoma cell lines. We show that BMP pathway activation is associated with an increase in the migratory capacity of carcinoma cells, an effect that can be ablated by the BMP antagonist, Noggin. Gene expression profiling of authentic EBV-positive nasopharyngeal carcinoma (NPC) tumours revealed the consistent presence of BMP ligands, established BMP pathway effectors and putative target genes, constituting a prominent BMP “signature” in this virus-associated cancer. Our findings show that EBNA1 is the major viral-encoded protein responsible for activating the BMP signalling pathway in carcinoma cells and supports a role for this pathway in promoting cell migration and possibly, metastatic spread.
Collapse
Affiliation(s)
- Hannah E. Bridgewater
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; (H.E.B.); (C.W.D.)
| | - Kathryn L. Date
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - John D. O’Neil
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - Chunfang Hu
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - John R. Arrand
- Institute for Cancer & Genomic Sciences, College of Medicine & Dentistry, University of Birmingham, Birmingham B15 2TT, UK; (K.L.D.); (J.D.O.); (C.H.); (J.R.A.)
| | - Christopher W. Dawson
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; (H.E.B.); (C.W.D.)
| | - Lawrence S. Young
- Warwick Medical School, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK; (H.E.B.); (C.W.D.)
- Correspondence: ; Tel.: +44-2476-752-38
| |
Collapse
|
13
|
Wang X, Wang C, Xu H, Xie H. Long Non-Coding RNA SLC25A21-AS1 Promotes Multidrug Resistance in Nasopharyngeal Carcinoma by Regulating miR-324-3p/IL-6 Axis. Cancer Manag Res 2020; 12:3949-3957. [PMID: 32547230 PMCID: PMC7264158 DOI: 10.2147/cmar.s251820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC), one of the most common types of head and neck tumor, occurred in the epithelial lining of the nasopharynx and is mainly prevalent in Southeast Asia and Southern China. However, the molecular mechanisms of NPC multidrug resistance still remained largely unclear. Methods The qRT-PCR assay was performed to examine SLC25A21-AS1, miR-324-3p and IL-6 expression in NPC tissues and cell. The CCK8 assay and colony formation assay were used to detect cell growth. In addition, CCK8 assay was performed to detect IC50 values of different drugs in NPC cell. Results In this study, we found that SLC25A21-AS1 expression was increased in NPC tissues and cell line, and knockdown of SLC25A21-AS1 inhibited cell growth and MDR in NPC cell. Moreover, SLC25A21-AS1 acted as a ceRNA for miR-324-3p and facilitates NPC cell growth and MDR by regulating the miR-324-3p/IL-6 axis. Conclusion Our findings demonstrated the role of SLC25A21-AS1/miR-324-3p/IL-6 axis in cell growth and MDR in NPC, which might be a potential prognostic and diagnostic marker in NPC patients and provide new insight into the molecular mechanism of MDR in NPC chemotherapy.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Otolaryngology, Liangxiang Hospital, Capital Medical University, Beijing 102401, People's Republic of China
| | - Chunhui Wang
- Department of Otolaryngology, Liangxiang Hospital, Capital Medical University, Beijing 102401, People's Republic of China
| | - Hong Xu
- Department of Otolaryngology, Liangxiang Hospital, Capital Medical University, Beijing 102401, People's Republic of China
| | - Hong Xie
- Department of Otolaryngology Head and Neck Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| |
Collapse
|
14
|
Lee HM, Sia APE, Li L, Sathasivam HP, Chan MSA, Rajadurai P, Tsang CM, Tsao SW, Murray PG, Tao Q, Paterson IC, Yap LF. Monoamine oxidase A is down-regulated in EBV-associated nasopharyngeal carcinoma. Sci Rep 2020; 10:6115. [PMID: 32273550 PMCID: PMC7145851 DOI: 10.1038/s41598-020-63150-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we identify for the first time a role for monoamine oxidase A (MAOA) in NPC. MAOA is a mitochondrial enzyme that catalyzes oxidative deamination of neurotransmitters and dietary amines. Depending on the cancer type, MAOA can either have a tumour-promoting or tumour-suppressive role. We show that MAOA is down-regulated in primary NPC tissues and its down-regulation enhances the migration of NPC cells. In addition, we found that EBV infection can down-regulate MAOA expression in both pre-malignant and malignant nasopharyngeal epithelial (NPE) cells. We further demonstrate that MAOA is down-regulated as a result of IL-6/IL-6R/STAT3 signalling and epigenetic mechanisms, effects that might be attributed to EBV infection in NPE cells. Taken together, our data point to a central role for EBV in mediating the tumour suppressive effects of MAOA and that loss of MAOA could be an important step in the pathogenesis of NPC.
Collapse
Affiliation(s)
- Hui Min Lee
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Alice Pei Eal Sia
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Melissa Sue Ann Chan
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Chi Man Tsang
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Shatin, Hong Kong.,Department of Anatomical and Cellular Pathology and State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Pokfulam, Hong Kong
| | - Sai Wah Tsao
- School of Biomedical Sciences and Center for Cancer Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Shatin, Hong Kong
| | - Paul G Murray
- Health Research Institute, University of Limerick, Limerick, Ireland.,Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Lee Fah Yap
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Aimjongjun S, Mahmud Z, Jiramongkol Y, Alasiri G, Yao S, Yagüe E, Janvilisri T, Lam EWF. Lapatinib sensitivity in nasopharyngeal carcinoma is modulated by SIRT2-mediated FOXO3 deacetylation. BMC Cancer 2019; 19:1106. [PMID: 31727006 PMCID: PMC6854897 DOI: 10.1186/s12885-019-6308-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Chemoresistance is an obstacle to the successful treatment of nasopharyngeal carcinoma (NPC). Lapatinib is a targeted tyrosine kinase inhibitor therapeutic drug also used to treat NPC, but high doses are often required to achieve a result. To investigate the mechanism for the development of Lapatinib resistance, we characterised a number of NPC cell lines to determine the role of FOXO3 and sirtuins in regulating NPC resistance. Methods Sulforhodamine B (SRB) assays, Clonogenic assays, Protein extraction, quantification and western blotting, RT qPCR, Co-immunoprecipitation assay. Results To explore novel treatment strategies, we first characterized the Lapatinib-sensitivity of a panel of NPC cell lines by SRB and clonogenic cytotoxic assays and found that the metastatic NPC (C666–1 and 5-8F) cells are highly resistant whereas the poorly metastatic lines (6-10B, TW01 and HK-1) are sensitive to Lapatinib. Western blot analysis of the Lapatinib-sensitive 6-10B and resistant 5-8F NPC cells showed that the expression of phosphorylated/inactive FOXO3 (P-FOXO3;T32), its target FOXM1 and its regulator SIRT2 correlate negatively with Lapatinib response and sensitivity, suggesting that SIRT2 mediates FOXO3 deacetylation to promote Lapatinib resistance. In agreement, clonogenic cytotoxic assays using wild-type and foxo1/3/4−/− mouse embryonic fibroblasts (MEFs) showed that FOXO1/3/4-deletion significantly attenuates Lapatinib-induced cytotoxicity, confirming that FOXO proteins are essential for mediating Lapatinib response. SRB cell viability assays using chemical SIRT inhibitors (i.e. sirtinol, Ex527, AGK2 and AK1) revealed that all SIRT inhibitors can reduce NPC cell viability, but only the SIRT2-specific inhibitors AK1 and AGK2 further enhance the Lapatinib cytotoxicity. Consistently, clonogenic assays demonstrated that the SIRT2 inhibitors AK1 and AGK2 as well as SIRT2-knockdown increase Lapatinib cytotoxicity further in both the sensitive and resistant NPC cells. Co-immunoprecipitation studies showed that besides Lapatinib treatment, SIRT2-pharmaceutical inhibition and silencing also led to an increase in FOXO3 acetylation. Importantly, SIRT2 inhibition and depletion further enhanced Lapatinib-mediated FOXO3-acetylation in NPC cells. Conclusion Collectively, our results suggest the involvement of SIRT2-mediated FOXO3 deacetylation in Lapatinib response and sensitivity, and that SIRT2 can specifically antagonise the cytotoxicity of Lapatinib through mediating FOXO3 deacetylation in both sensitive and resistant NPC cells. The present findings also propose that SIRT2 can be an important biomarker for metastatic and Lapatinib resistant NPC and that targeting the SIRT2-FOXO3 axis may provide novel strategies for treating NPC and for overcoming chemoresistance.
Collapse
Affiliation(s)
- Sathid Aimjongjun
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.,Graduate Program in Molecular Medicine, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Zimam Mahmud
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Glowi Alasiri
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Shang Yao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Ernesto Yagüe
- Graduate Program in Molecular Medicine, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
16
|
Cai L, Long Y, Chong T, Cai W, Tsang CM, Zhou X, Lin Y, Ding T, Zhou W, Zhao H, Chen Y, Wang J, Lyu X, Cho WC, Li X. EBV-miR-BART7-3p Imposes Stemness in Nasopharyngeal Carcinoma Cells by Suppressing SMAD7. Front Genet 2019; 10:939. [PMID: 31681406 PMCID: PMC6811651 DOI: 10.3389/fgene.2019.00939] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/05/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer stem-like cells, possessing “stemness” properties, play crucial roles in progression, metastasis, and drug resistance in various cancers. Viral microRNAs (such as EBV-miR-BART7-3p), as exogenous regulators, have been discovered to regulate malignant progression of nasopharyngeal carcinoma (NPC), suggesting a possible role of viral microRNAs in imposing stemness. In this study, we found that EBV-miR-BART7-3p induce stemness of NPC cells. We firstly reported that EBV-miR-BART7-3p increased the percentage of side population cells, the development of tumor spheres, and the expression level of stemness markers in vitro. This viral microRNA also enhanced stem-like or cancer-initiating properties of NPC cells in vivo. Besides, we identified SMAD7 as a novel target gene of EBV-miR-BART7-3p in addition to PTEN gene we previously reported; this viral microRNA suppressed SMAD7, led to activation of TGF-β signaling, and eventually enhanced the stemness of NPC cells. Silencing of SMAD7 resembled the effects generated by EBV-miR-BART7-3p in NPC cells. After reconstitution of SMAD7, EBV-miR-BART7-3p-expressing cells underwent a phenotypic reversion. EBV-positive NPC cells were used to enable experimental validation. Finally, we further discovered that EBV-miR-BART7-3p increased chemo-resistance of NPC in vitro and in vivo, supporting that EBV-miR-BART7-3 resulted in increased stemness of NPC cells and lead to drug resistance and cancer recurrence. Overall, this study uncovered a novel mechanism underlying viral microRNA-associated stemness of NPC cells. This viral microRNA and its associated cellular genes may be potential therapeutic targets for restraining chemo-resistance and recurrence of NPC.
Collapse
Affiliation(s)
- Longmei Cai
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China.,Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yufei Long
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tuotuo Chong
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenzhi Cai
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chi Man Tsang
- Department of Anatomy and Center for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanling Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tengteng Ding
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wenyan Zhou
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Hongli Zhao
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yuxiang Chen
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianguo Wang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaoming Lyu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
17
|
Hu X, Liu W, Jiang X, Wang B, Li L, Wang J, Ma J. Long noncoding RNA LINC00460 aggravates invasion and metastasis by targeting miR-30a-3p/Rap1A in nasopharyngeal carcinoma. Hum Cell 2019; 32:465-476. [PMID: 31414345 DOI: 10.1007/s13577-019-00262-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/08/2019] [Indexed: 11/30/2022]
|
18
|
Liu K, Kang M, Zhou Z, Qin W, Wang R. Bioinformatics analysis identifies hub genes and pathways in nasopharyngeal carcinoma. Oncol Lett 2019; 18:3637-3645. [PMID: 31516577 PMCID: PMC6732963 DOI: 10.3892/ol.2019.10707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to identify genes associated with and the underlying mechanisms in nasopharyngeal carcinoma (NPC) using microarray data. GSE12452 and GSE34573 gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. GEO2R was utilized to obtain differentially expressed genes (DEGs). In addition, the Database for Annotation, Visualization and Integrated Discovery was used to perform pathway enrichment analyses for DEGs using the Gene Ontology (GO) annotation along with the Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, Cytoscape was used to perform module analysis of the protein-protein interaction (PPI) network and pathways of the hub genes were studied. A total of 298 genes were ascertained as DEGs in the two datasets. To functionally categorize these DEGs, we obtained 82 supplemented GO terms along with 7 KEGG pathways. Subsequently, a PPI network consisting of 10 hub genes with high degrees of interaction was constructed. These hub genes included cyclin-dependent kinase (CDK) 1, structural maintenance of chromosomes (SMC) 4, kinetochore-associated (KNTC) 1, kinesin family member (KIF) 23, aurora kinase A (AURKA), ATAD (ATPase family AAA domain containing) 2, NDC80 kinetochore complex component, enhancer of zeste 2 polycomb repressive complex 2 subunit, BUB1 mitotic checkpoint serine/threonine kinase and protein regulator of cytokinesis 1. CDK1, SMC4, KNTC1, KIF23, AURKA and ATAD2 presented with high areas under the curve in receiver operator curves, suggesting that these genes may be diagnostic markers for nasopharyngeal carcinoma. In conclusion, it was proposed that CDK1, SMC4, KNTC1, KIF23, AURKA and ATAD2 may be involved in the tumorigenesis of NPC. Furthermore, they may be utilized as molecular biomarkers in early diagnosis of NPC.
Collapse
Affiliation(s)
- Kang Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Ziyan Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Wen Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning 530021, P.R. China
| |
Collapse
|
19
|
Long non-coding RNA 520 is a negative prognostic biomarker and exhibits pro-oncogenic function in nasopharyngeal carcinoma carcinogenesis through regulation of miR-26b-3p/USP39 axis. Gene 2019; 707:44-52. [DOI: 10.1016/j.gene.2019.02.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
|
20
|
Zou Z, Gan S, Liu S, Li R, Huang J. Investigation of differentially expressed genes in nasopharyngeal carcinoma by integrated bioinformatics analysis. Oncol Lett 2019; 18:916-926. [PMID: 31289570 DOI: 10.3892/ol.2019.10382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignancy of the head and neck. The aim of the present study was to conduct an integrated bioinformatics analysis of differentially expressed genes (DEGs) and to explore the molecular mechanisms of NPC. Two profiling datasets, GSE12452 and GSE34573, were downloaded from the Gene Expression Omnibus database and included 44 NPC specimens and 13 normal nasopharyngeal tissues. R software was used to identify the DEGs between NPC and normal nasopharyngeal tissues. Distributions of DEGs in chromosomes were explored based on the annotation file and the CYTOBAND database of DAVID. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were applied. Additionally, a protein-protein interaction (PPI) network, constructed using the STRING database and visualized by Cytoscape, was used to identify hub genes, key modules and important transcription factors (TFs). A total of 906 DEGs were identified; 434 (47.90%) DEGs were upregulated and 472 (52.10%) were downregulated. The DEGs were demonstrated to be enriched in chromosome 7p15-p14, 2q31, 1q21-q22, 1q21, 4q21 and 1p31-p22. DEGs were mainly enriched for the following GO terms: 'Cilium movement', 'microtubule bundle formation' and 'axoneme assembly'. KEGG pathway enrichment analysis revealed that pathways for 'cell cycle', 'DNA replication', 'interleukin-17 signaling', 'amoebiasis' and 'glutathione metabolism' were enriched. In addition, a PPI network comprising 867 nodes and 1,241 edges was constructed. Finally, five hub genes (aurora kinase A, cell division cycle 6, mitotic arrest deficient 2-like 1, DNA topoisomerase 2α and TPX2 microtubule nucleation factor), 8 modules, and 14 TFs were identified. Modules analysis revealed that cyclin-dependent kinase 1 and exportin 1 were involved in the pathway of Epstein-Barr virus infection. In summary, the hub genes, key modules and TFs identified in this study may promote our understanding of the pathogenesis of NPC and require further in-depth investigation.
Collapse
Affiliation(s)
- Zhenning Zou
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Siyuan Gan
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Rujia Li
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Jian Huang
- Department of Pathology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
21
|
Zhu HM, Fei Q, Qian LX, Liu BL, He X, Yin L. Identification of key pathways and genes in nasopharyngeal carcinoma using bioinformatics analysis. Oncol Lett 2019; 17:4683-4694. [PMID: 30988824 DOI: 10.3892/ol.2019.10133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/01/2019] [Indexed: 12/26/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common malignancies in the head and neck. The aim of the current study was to identify the key pathways and genes involved in NPC through bioinformatics analysis and to identify potential molecular mechanisms underlying NPC proliferation and progression. Three gene expression profiles (GSE12452, GSE34573 and GSE64634) were downloaded from the Gene Expression Omnibus database. A total of 76 samples were analyzed, of which 59 were NPC samples and 17 were normal samples. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were subsequently conducted. The protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was constructed using Cytoscape software. Analysis of GSE12452, GSE34573 and GSE64634 datasets identified 1,301 (553 upregulated and 748 downregulated), 1,232 (348 upregulated and 884 downregulated) and 1,218 (555 upregulated and 663 downregulated) DEGs, respectively. Using Venn diagram analysis, 268 DEGs (59 upregulated and 209 downregulated) that intersected all three datasets, were selected for further analysis. The results of GO analysis revealed that upregulated DEGs were significantly enriched in biological processes, including 'cell adhesion', 'cell division', 'mitosis' and 'mitotic cell cycle'. The downregulated DEGs were mainly enriched in 'microtubule-based movement', 'cilium movement', 'cilium axoneme assembly' and 'epithelial cell differentiation'. The KEGG pathway analysis results revealed that the upregulated DEGs were highly associated with several pathways, including 'extracellular matrix-receptor interaction', 'human papillomavirus infection', 'arrhythmogenic right ventricular cardiomyopathy' and 'focal adhesion', whereas the downregulated DEGs were enriched in 'metabolic pathways', 'Huntington's disease', 'fluid shear stress and atherosclerosis' and 'chemical carcinogenesis'. On the basis of the PPI network of the DEGs, the following top 10 hub genes were identified: Dynein axonemal light intermediate chain 1, dynein axonemal intermediate chain 2, calmodulin 1, coiled-coil domain containing 114, dynein axonemal heavy chain 5, radial spoke head 9 homolog, radial spoke head component 4A, NDC80 kinetochore complex component, thymidylate synthetase and coiled-coil domain containing 39. In conclusion, by performing a comprehensive bioinformatics analysis of DEGs, putative targets that could be used to elucidate the molecular mechanisms underlying NPC were identified.
Collapse
Affiliation(s)
- Hong-Ming Zhu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Qian Fei
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Lu-Xi Qian
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Bao-Ling Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Xia He
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Li Yin
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
22
|
Salahuddin S, Fath EK, Biel N, Ray A, Moss CR, Patel A, Patel S, Hilding L, Varn M, Ross T, Cramblet WT, Lowrey A, Pagano JS, Shackelford J, Bentz GL. Epstein-Barr Virus Latent Membrane Protein-1 Induces the Expression of SUMO-1 and SUMO-2/3 in LMP1-positive Lymphomas and Cells. Sci Rep 2019; 9:208. [PMID: 30659232 PMCID: PMC6338769 DOI: 10.1038/s41598-018-36312-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/12/2018] [Indexed: 11/17/2022] Open
Abstract
Epstein-Barr Virus latent membrane protein-1 (LMP1) interacts with the SUMO-conjugating enzyme Ubc9, which induces protein sumoylation and may contribute to LMP1-mediated oncogenesis. After analyzing human lymphoma tissues and EBV-positive cell lines, we now document a strong correlation between LMP1 and sumo-1/2/3 or SUMO-1/2/3 levels, and show that LMP1-induced sumo expression requires the activation of NF-κB signaling through CTAR1 and CTAR2. Together, these results point to a second mechanism by which LMP1 dysregulates sumoylation processes and adds EBV-associated lymphomas to the list of malignancies associated with increased SUMO expression.
Collapse
Affiliation(s)
- Sadia Salahuddin
- Departments of Medicine and Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA.,Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Emma K Fath
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Natalie Biel
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Ashley Ray
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - C Randall Moss
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Akash Patel
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Sheetal Patel
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Leslie Hilding
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Matthew Varn
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Tabithia Ross
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Wyatt T Cramblet
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Angela Lowrey
- Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA
| | - Joseph S Pagano
- Departments of Medicine and Microbiology and Immunology, The University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Julia Shackelford
- Department of Cellular Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA
| | - Gretchen L Bentz
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA. .,Department of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA, USA.
| |
Collapse
|
23
|
Tsang C, Lo K, Nicholls JM, Huang S, Tsao S. Pathogenesis of Nasopharyngeal Carcinoma. NASOPHARYNGEAL CARCINOMA 2019:45-64. [DOI: 10.1016/b978-0-12-814936-2.00003-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Velapasamy S, Dawson CW, Young LS, Paterson IC, Yap LF. The Dynamic Roles of TGF-β Signalling in EBV-Associated Cancers. Cancers (Basel) 2018; 10:E247. [PMID: 30060514 PMCID: PMC6115974 DOI: 10.3390/cancers10080247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signalling pathway plays a critical role in carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-β signalling is strongly context-dependent and is influenced by various factors including cell, tissue and cancer type. Disruption of this pathway can be caused by various means, including genetic and environmental factors. A number of human viruses have been shown to modulate TGF-β signalling during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr virus (EBV)-associated cancers and how EBV interferes with TGF-β signal transduction. The role of TGF-β in regulating the EBV life cycle in tumour cells is also discussed.
Collapse
Affiliation(s)
- Sharmila Velapasamy
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Christopher W Dawson
- Institute of Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | - Lawrence S Young
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Ian C Paterson
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Lee Fah Yap
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
25
|
Yan D, Deng S, Gan W, Li S, Li Y. Curcumol attenuates epithelial-mesenchymal transition of nasopharyngeal carcinoma cells via TGF-β1. Mol Med Rep 2018; 17:7513-7520. [PMID: 29620189 PMCID: PMC5983941 DOI: 10.3892/mmr.2018.8817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
The current study aimed to identify the effect and primary mechanism of Curcumol on the migration of nasopharyngeal carcinoma (NPC) cells in vitro and in vivo. Curcumol was dissolved in absolute ethyl alcohol and the experiment was performed in NPC 5–8F cells in vitro and in vivo. The effect of different concentrations of Curcumol on cell migration was determined using wound healing and Transwell assays. A cell counting kit-8 (CCK-8) assay was also performed in order to determine cell viability. Flow cytometry was used to detect the effect of Curcumol on apoptosis. The expression of epithelial-mesenchymal transition (EMT)-associated proteins and genes was evaluated by western blotting, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and ELISA. In addition, the antitumor activity of Curcumol was investigated in female BALB/C nude mice with orthotopic tumor implants. The results indicated that cell apoptosis was increased and the viability of NPC 5–8F cells was decreased following treatment with Curcumol at doses of 0.1, 0.2 and 0.4 µM/ml. The results of in vivo experiments indicated that tumor growth and weight were decreased following Curcumol administration. Furthermore, the results of western blotting and RT-qPCR demonstrated that Curcumol altered the level of E-cadherin and N-cadherin in a dose-dependent manner in vivo. Curcumol also regulated the secretion of protein markers in the serum that were associated with EMT and TGF-β1 in the 5–8F xenograft mouse model. Thus, the results indicated that Curcumol induced TGF-β1-mediated EMT arrest by regulating E-cadherin and N-cadherin, which may prevent further development of NPC.
Collapse
Affiliation(s)
- Dazhong Yan
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shishan Deng
- Department of Human Anatomy Teaching and Research, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Weigang Gan
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Sijun Li
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuanquan Li
- Department of Otolaryngology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
26
|
Chen G, Sun W, Hua X, Zeng W, Yang L. Long non-coding RNA FOXD2-AS1 aggravates nasopharyngeal carcinoma carcinogenesis by modulating miR-363-5p/S100A1 pathway. Gene 2018; 645:76-84. [DOI: 10.1016/j.gene.2017.12.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022]
|
27
|
Chen L, Sun L, Dong L, Cui P, Xia Z, Li C, Zhu Y. The role of long noncoding RNA-LET in cell proliferation and invasion of nasopharyngeal carcinoma and its mechanism. Onco Targets Ther 2017; 10:2769-2778. [PMID: 28615956 PMCID: PMC5460646 DOI: 10.2147/ott.s126907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
LncRNA-LET, a recently identified long noncoding RNA, has been shown to act as a tumor suppressor; however, its biological function and mechanism have not been fully investigated. Our research found that there was less expression of LET in nasopharyngeal carcinoma (NPC) tissues than normal tissues and that LET might inhibit proliferation, adhesion and invasion of NPC in vitro by enhancing its expression. By contrast, decreased LET expression could promote the proliferation, adhesion and invasion of NPC. In addition, the expression profiles of related genes and MAPK/ERK pathway were also regulated effectively via overexpression or silencing of LET. This result provides comprehensive evidence of LET’s antitumor effect on NPC in vitro, which might provide a new approach for clinical treatment.
Collapse
Affiliation(s)
- Lei Chen
- Department of Otolaryngology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Lingling Sun
- Department of Otolaryngology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Lei Dong
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Peng Cui
- Department of Multidisciplinary Consultation Center of TCM and Western Medicine, The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao
| | - Ziwei Xia
- Department of Clinical Medicine, The Second Clinical Medical School of Tianjin Medical University
| | - Chao Li
- Department of Otolaryngology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yu Zhu
- Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin, People's Republic of China
| |
Collapse
|
28
|
Yap LF, Lai SL, Patmanathan SN, Gokulan R, Robinson CM, White JB, Chai SJ, Rajadurai P, Prepageran N, Liew YT, Lopes V, Wei W, Hollows RJ, Murray PG, Lambert DW, Hunter KD, Paterson IC. HOPX functions as a tumour suppressor in head and neck cancer. Sci Rep 2016; 6:38758. [PMID: 27934959 PMCID: PMC5146930 DOI: 10.1038/srep38758] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/14/2016] [Indexed: 11/08/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is generalized term that encompasses a diverse group of cancers that includes tumours of the oral cavity (OSCC), oropharynx (OPSCC) and nasopharynx (NPC). Genetic alterations that are common to all HNSCC types are likely to be important for squamous carcinogenesis. In this study, we have investigated the role of the homeodomain-only homeobox gene, HOPX, in the pathogenesis of HNSCC. We show that HOPX mRNA levels are reduced in OSCC and NPC cell lines and tissues and there is a general reduction of HOPX protein expression in these tumours and OPSCCs. HOPX promoter methylation was observed in a subset of HNSCCs and was associated with a worse overall survival in HPV negative tumours. RNAseq analysis of OSCC cells transfected with HOPX revealed a widespread deregulation of the transcription of genes related to epithelial homeostasis and ectopic over-expression of HOPX in OSCC and NPC cells inhibited cell proliferation, plating efficiency and migration, and enhanced sensitivity to UVA-induced apoptosis. Our results demonstrate that HOPX functions as a tumour suppressor in HNSCC and suggest a central role for HOPX in suppressing epithelial carcinogenesis.
Collapse
Affiliation(s)
- Lee Fah Yap
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sook Ling Lai
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sathya Narayanan Patmanathan
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ravindran Gokulan
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - C. Max Robinson
- Centre for Oral Health Research, Newcastle University, Newcastle, NE2 4BW, United Kingdom
| | - Joe B. White
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, Unite Kingdom
| | - San Jiun Chai
- Cancer Research Malaysia, Selangor, 47500 Subang Jaya, Malaysia
| | | | - Narayanan Prepageran
- Department of Otorhinolaryngology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yew Toong Liew
- Department of Otorhinolaryngology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Victor Lopes
- Department of Oral surgery, Edinburgh Postgraduate Dental Institute, University of Edinburgh, Edinburgh, EH3 9HA, United Kingdom
| | - Wenbin Wei
- Institute of Cancer and Genomic Studies, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, United Kingdom
| | - Robert J. Hollows
- Institute of Cancer and Genomic Studies, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Paul G. Murray
- Institute of Cancer and Genomic Studies, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Daniel W. Lambert
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, Unite Kingdom
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, Unite Kingdom
| | - Ian C. Paterson
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Ramayanti O, Juwana H, Verkuijlen SAMW, Adham M, Pegtel MD, Greijer AE, Middeldorp JM. Epstein-Barr virus mRNA profiles and viral DNA methylation status in nasopharyngeal brushings from nasopharyngeal carcinoma patients reflect tumor origin. Int J Cancer 2016; 140:149-162. [PMID: 27600027 PMCID: PMC5129462 DOI: 10.1002/ijc.30418] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 08/24/2016] [Indexed: 12/22/2022]
Abstract
Undifferentiated nasopharyngeal carcinoma (NPC) is 100% associated with Epstein-Barr virus (EBV) as oncogenic driver. NPC is often diagnosed late due to initial vague complaints and obscured location. Prior studies suggest that measurement of EBV DNA load and RNA transcripts in nasopharyngeal (NP) brushings is useful for minimally invasive NPC diagnosis. However, whether these EBV markers relate to local virus replication or reflect tumor origin remains to be demonstrated. To resolve this, we analysed EBV-DNA characteristics and quantified latent and lytic viral RNA transcripts in NP brushings and matching frozen NP-biopsy specimens from patients suspected of having NPC. We observed non-fragmented and Cp-promotor methylated EBV-DNA in both NP brushings and biopsies suggestive of tumor origin. Using quantitative RT-PCR we determined expression levels of 7 critical latent (EBER1, Qp-EBNA1, EBNA2, BART, LMP1, LMP2, BARF1) and 5 lytic (Zta, Rta, TK, PK and VCA-p18) RNA transcripts. Although latent and early lytic RNA transcripts were frequently detected in conjunction with high EBV viral load, in both brushings and biopsies the latent transcripts prevailed and reflected a typical NPC-associated latency-II transcription profile without EBNA2. Late lytic RNA transcripts were rare and detected at low levels mainly in NP brushings, suggestive of abortive viral reactivation rather than complete virus replication. EBV-IgA serology (EBNA1, VCA, Zta) did not correlate to the level of viral reactivation in situ. Overall, viral RNA profiling, DNA fragmentation and methylation analysis in NP brushings and parallel biopsies indicate that NP brush sampling provides a true and robust indicator of NPC tumor presence.
Collapse
Affiliation(s)
- Octavia Ramayanti
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Hedy Juwana
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Marlinda Adham
- ENT Department, University of Indonesia, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Michiel D Pegtel
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Astrid E Greijer
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jaap M Middeldorp
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
30
|
He HL, Lee YE, Liang PI, Lee SW, Chen TJ, Chan TC, Hsing CH, Chang IW, Shiue YL, Li CF. Overexpression of JAK2: a predictor of unfavorable prognosis for nasopharyngeal carcinoma. Future Oncol 2016; 12:1887-96. [PMID: 27086650 DOI: 10.2217/fon-2016-0025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose: Analysis of the nasopharyngeal carcinoma public transcriptome revealed JAK2 was significantly upregulated in tumors, which encouraged us to investigate its prognostic significance and mutational status. Materials & methods: We assessed the immune-expression of JAK2 and its relationships with various clinicopathological parameters. JAK2 mutation was detected by PCR followed by sequencing. Results: High expression of JAK2 was significantly associated with advanced tumor staging (p = 0.019). JAK2 overexpression acted as an independent predictor for worse disease-specific survival (p = 0.005), distant metastasis-free survival (p = 0.036), local recurrence-free survival (p = 0.012) and overall survival (p = 0.007). JAK2 mutation was not detected in selected cases with JAK2 protein overexpression. Conclusion: JAK2 can serve as a valuable negative prognostic factor and a potential therapeutic target.
Collapse
Affiliation(s)
- Hong-Lin He
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ying-En Lee
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital & Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Peir-In Liang
- Department of Pathology, Kaohsiung Medical University Hospital, & Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ti-Chun Chan
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - I-Wei Chang
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science & Technology, Tainan, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Morris MA, Dawson CW, Laverick L, Davis AM, Dudman JPR, Raveenthiraraj S, Ahmad Z, Yap LF, Young LS. The Epstein-Barr virus encoded LMP1 oncoprotein modulates cell adhesion via regulation of activin A/TGFβ and β1 integrin signalling. Sci Rep 2016; 6:19533. [PMID: 26782058 PMCID: PMC4726061 DOI: 10.1038/srep19533] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023] Open
Abstract
Approximately 20% of global cancer incidence is causally linked to an infectious agent. Epstein-Barr virus (EBV) accounts for around 1% of all virus-associated cancers and is associated with nasopharyngeal carcinoma (NPC). Latent membrane protein 1 (LMP1), the major oncoprotein encoded by EBV, behaves as a constitutively active tumour necrosis factor (TNF) receptor activating a variety of signalling pathways, including the three classic MAPKs (ERK-MAPK, p38 MAPK and JNK/SAPK). The present study identifies novel signalling properties for this integral membrane protein via the induction and secretion of activin A and TGFβ1, which are both required for LMP1’s ability to induce the expression of the extracellular matrix protein, fibronectin. However, it is evident that LMP1 is unable to activate the classic Smad-dependent TGFβ signalling pathway, but rather elicits its effects through the non-Smad arm of TGFβ signalling. In addition, there is a requirement for JNK/SAPK signalling in LMP1-mediated fibronectin induction. LMP1 also induces the expression and activation of the major fibronectin receptor, α5β1 integrin, an effect that is accompanied by increased focal adhesion formation and turnover. Taken together, these findings support the putative role for LMP1 in the pathogenesis of NPC by contributing to the metastatic potential of epithelial cells.
Collapse
Affiliation(s)
- Mhairi A Morris
- Faculty of Health and Life Sciences, Hawthorn Building, De Montfort University, The Gateway, Leicester, LE1 9BH
| | - Christopher W Dawson
- Institute for Cancer Studies, School of Cancer Sciences, The University of Birmingham, Vincent Drive, Edgbaston, Birmingham, B15 2TT
| | - Louise Laverick
- Department of Medicine, University of Melbourne, Clinical Sciences, Royal Melbourne Hospital, Royal Parade, Parkville, Victoria 3050
| | - Alexandra M Davis
- Faculty of Health and Life Sciences, Hawthorn Building, De Montfort University, The Gateway, Leicester, LE1 9BH
| | - Joe P R Dudman
- Faculty of Health and Life Sciences, Hawthorn Building, De Montfort University, The Gateway, Leicester, LE1 9BH
| | - Sathuwarman Raveenthiraraj
- Faculty of Health and Life Sciences, Hawthorn Building, De Montfort University, The Gateway, Leicester, LE1 9BH
| | - Zeeshan Ahmad
- Faculty of Health and Life Sciences, Hawthorn Building, De Montfort University, The Gateway, Leicester, LE1 9BH
| | - Lee-Fah Yap
- Department of Oral Biology &Biomedical Sciences and Oral Cancer Research &Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lawrence S Young
- Warwick Medical School, University of Warwick, Coventry, CV4 8UW
| |
Collapse
|
32
|
Sun J, Hu C, Zhu Y, Sun R, Fang Y, Fan Y, Xu F. LMP1 Increases Expression of NADPH Oxidase (NOX) and Its Regulatory Subunit p22 in NP69 Nasopharyngeal Cells and Makes Them Sensitive to a Treatment by a NOX Inhibitor. PLoS One 2015; 10:e0134896. [PMID: 26244812 PMCID: PMC4526464 DOI: 10.1371/journal.pone.0134896] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 07/12/2015] [Indexed: 11/21/2022] Open
Abstract
Oxidative stress is thought to contribute to cancer development. Epstein–Barr virus (EBV) and its encoded oncoprotein, latent membrane protein 1 (LMP1), are closely associated with the transformation of nasopharyngeal carcinoma (NPC) and Burkitt’s lymphoma (BL). In this study, we used LMP1-transformed NP cells and EBV-related malignant cell lines to assess the effects of LMP1 on reactive oxygen species (ROS) accumulation and glycolytic activity. Using NPC tissue samples and a tissue array to address clinical implications, we report that LMP1 activates NAD(P)H oxidases to generate excessive amount of ROS in EBV-related malignant diseases. By evaluating NAD(P)H oxidase (NOX) subunit expression, we found that the expression of the NAD(P)H oxidase regulatory subunit p22phox was significantly upregulated upon LMP1-induced transformation. Furthermore, this upregulation was mediated by the c-Jun N-terminal kinase (JNK) pathway. In addition, LMP1 markedly stimulated anaerobic glycolytic activity through the PI3K/Akt pathway. Additionally, in both NPC cells and tissue samples, p22phox expression correlated with LMP1 expression. The NAD(P)H oxidase inhibitor diphenyleneiodonium (DPI) also exerted a marked cytotoxic effect in LMP1-transformed and malignant cells, providing a novel strategy for anticancer therapy.
Collapse
Affiliation(s)
- Jian Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R.China
| | - Chongyu Hu
- Hunan Provincial People’s Hospital, No.61 West Liberation Road, Changsha 410005, P.R.China
| | - Yinghui Zhu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R.China
| | - Rui Sun
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R.China
| | - Yujing Fang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R.China
| | - Yuhua Fan
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R.China
- * E-mail: (Y. Fan); (FX)
| | - Fei Xu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R.China
- * E-mail: (Y. Fan); (FX)
| |
Collapse
|
33
|
Boon SS, Sim SP. Inhibitor of caspase-activated DNase expression enhances caspase-activated DNase expression and inhibits oxidative stress-induced chromosome breaks at the mixed lineage leukaemia gene in nasopharyngeal carcinoma cells. Cancer Cell Int 2015; 15:54. [PMID: 26019688 PMCID: PMC4446063 DOI: 10.1186/s12935-015-0205-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 05/12/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is commonly found in Asia, especially among the Chinese ethnic group. Chromosome rearrangements are common among NPC patients. Although the mechanism underlying the chromosome rearrangements in NPC is unclear, various mechanisms including activation of caspase-activated DNase (CAD) were proposed to contribute to chromosome rearrangements in leukaemia. Activation of CAD can be initiated by multiple agents, including oxidative stress, which is well implicated in carcinogenesis. CAD is the main enzyme that causes DNA fragmentation during apoptosis, and CAD is also implicated in promoting cell differentiation. In view of the role of oxidative stress in carcinogenesis and CAD activation, and since CAD was suggested to contribute to chromosome rearrangement in leukaemia, we hypothesise that oxidative stress-induced CAD activation could be one of the mechanisms that leads to chromosome rearrangements in NPC. METHODS SUNEI cells were treated with various concentrations of H2O2 for different period of time to ensure that cells undergo H2O2-induced MLL gene cleavage. Transfections with hCAD, mCAD, mutant hCAD, or cotransfection with hCAD and mICAD, and cotransfection with mutant hCAD and mICAD were performed. Gene expression was confirmed by Western blotting and MLL gene cleavage was assessed by inverse polymerase chain reaction (IPCR). RESULTS Treatment with H2O2 clearly induces cleavages within the MLL gene which locates at 11q23, a common deletion site in NPC. In order to investigate the role of CAD, CAD was overexpressed in SUNE1 cells, but that did not result in significant changes in H2O2-induced MLL gene cleavage. This could be because CAD requires ICAD for proper folding. Indeed, by overexpressing ICAD alone or co-expressing ICAD with CAD, Western blotting showed that CAD was expressed. In addition, ICAD overexpression also suppressed H2O2-induced MLL gene cleavage, suggesting a possible role of CAD in initiating chromosome cleavage during oxidative stress. CONCLUSIONS Oxidative stress mediated by H2O2 induces cleavage of the MLL gene, most likely via the caspase-activated DNase, CAD, and CAD expression requires ICAD. Since the MLL gene is located at 11q23, a common deletion site in NPC, thus stress-induced CAD activation may represent one of the mechanisms leading to chromosome rearrangement in NPC.
Collapse
Affiliation(s)
- Siaw Shi Boon
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak Malaysia
| | - Sai-Peng Sim
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak Malaysia
| |
Collapse
|
34
|
Lee YE, He HL, Chen TJ, Lee SW, Chang IW, Hsing CH, Li CF. The prognostic impact of RAP2A expression in patients with early and locoregionally advanced nasopharyngeal carcinoma in an endemic area. Am J Transl Res 2015; 7:912-921. [PMID: 26175852 PMCID: PMC4494142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND By data mining from published transcriptomic databases, we identified RAP2A as a significantly upregulated gene in nasopharyngeal carcinoma (NPC) tissues. RAP2A, a member of the RAS oncogene family, is involved in the process of GTP binding and GTPase activity. The aim of this study was to evaluate the expression of RAP2A and its prognostic impact in patients with early and locoregionally advanced NPC. METHODS RAP2A immunohistochemistry was performed for 124 NPC patients who were receiving standard treatment and had no initial distal metastasis. We also performed Western blotting to evaluate the endogenous protein expression of RAP2A in NPC cells and non-neoplastic mucosal cells. The result of RAP2A expression was further correlated with clinicopathological variables, disease-specific survival (DSS), distant metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS). RESULTS High expression of RAP2A was significantly associated with advanced primary tumor status (P = 0.024) and advanced TNM stage (P = 0.006). In univariate analysis, high expression of RAP2A served as a significant prognostic factor for inferior DSS (P < 0.0001), DMeFS (P < 0.0001), and LRFS (P < 0.0001). In multivariate analysis, RAP2A overexpression still independently predicted worse DSS (hazard ratio [HR] = 2.976, P < 0.001), DMeFS (HR = 4.233, P < 0.001), and LRFS (HR = 4.156, P < 0.001). Moreover, Both HONE1 and TW01 NPC cells, but not non-neoplastic DOK cells demonstrated significantly increased RAP2A expression. CONCLUSION Overexpression of RAP2A is associated with advanced disease status and may therefore be an important prognosticator for poor outcomes in NPC, as well as a potential therapeutic target to aid in developing effective treatment modalities.
Collapse
Affiliation(s)
- Ying-En Lee
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineKaohsiung, Taiwan
| | - Hong-Lin He
- Department of Pathology, E-DA Hospital, I-Shou UniversityKaohsiung, Taiwan
- Institute of Biomedical Science, National Sun Yat-Sen UniversityKaohsiung, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical CenterTainan, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi-Mei Medical CenterLiouying, Tainan, Taiwan
| | - I-Wei Chang
- Department of Pathology, E-DA Hospital, I-Shou UniversityKaohsiung, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi-Mei Medical CenterTainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical CenterTainan, Taiwan
- National Institute of Cancer Research, National Health Research InstitutesTainan, Taiwan
- Department of Biotechnology, Southern Taiwan University of Science and TechnologyTainan, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| |
Collapse
|
35
|
Omics-based identification of biomarkers for nasopharyngeal carcinoma. DISEASE MARKERS 2015; 2015:762128. [PMID: 25999660 PMCID: PMC4427004 DOI: 10.1155/2015/762128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/10/2015] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a head and neck cancer that is highly found in distinct geographic areas, such as Southeast Asia. The management of NPC remains burdensome as the prognosis is poor due to the late presentation of the disease and the complex nature of NPC pathogenesis. Therefore, it is necessary to find effective molecular markers for early detection and therapeutic measure of NPC. In this paper, the discovery of molecular biomarker for NPC through the emerging omics technologies including genomics, miRNA-omics, transcriptomics, proteomics, and metabolomics will be extensively reviewed. These markers have been shown to play roles in various cellular pathways in NPC progression. The knowledge on their function will help us understand in more detail the complexity in tumor biology, leading to the better strategies for early detection, outcome prediction, detection of disease recurrence, and therapeutic approach.
Collapse
|
36
|
Zhang JW, Qin T, Hong SD, Zhang J, Fang WF, Zhao YY, Yang YP, Xue C, Huang Y, Zhao HY, Ma YX, Hu ZH, Huang PY, Zhang L. Multiple oncogenic mutations related to targeted therapy in nasopharyngeal carcinoma. CHINESE JOURNAL OF CANCER 2015; 34:177-83. [PMID: 25963410 PMCID: PMC4593383 DOI: 10.1186/s40880-015-0011-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/09/2015] [Indexed: 01/13/2023]
Abstract
INTRODUCTION An increasing number of targeted drugs have been tested for the treatment of nasopharyngeal carcinoma (NPC). However, targeted therapy-related oncogenic mutations have not been fully evaluated. This study aimed to detect targeted therapy-related oncogenic mutations in NPC and to determine which targeted therapy might be potentially effective in treating NPC. METHODS By using the SNaPshot assay, a rapid detection method, 19 mutation hotspots in 6 targeted therapy-related oncogenes were examined in 70 NPC patients. The associations between oncogenic mutations and clinicopathologic factors were analyzed. RESULTS Among 70 patients, 12 (17.1%) had mutations in 5 oncogenes: 7 (10.0%) had v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) mutation, 2 (2.8%) had epidermal growth factor receptor (EGFR) mutation, 1 (1.4%) had phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutation, 1 (1.4%) had Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation, and 1 (1.4%) had simultaneous EGFR and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) mutations. No significant differences were observed between oncogenic mutations and clinicopathologic characteristics. Additionally, these oncogenic mutations were not associated with tumor recurrence and metastasis. CONCLUSIONS Oncogenic mutations are present in NPC patients. The efficacy of targeted drugs on patients with the related oncogenic mutations requires further validation.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Tao Qin
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Shao-Dong Hong
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Jing Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Wen-Feng Fang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Yuan-Yuan Zhao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Yun-Peng Yang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Cong Xue
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Yan Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Hong-Yuan Zhao
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Yu-Xiang Ma
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Zhi-Huang Hu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| | - Pei-Yu Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, P. R. China.
| | - Li Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, P. R. China.
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, P. R. China.
| |
Collapse
|
37
|
Liu MT, Chen MK, Huang CC, Huang CY. Prognostic Value of Molecular Markers and Implication for Molecular Targeted Therapies in Nasopharyngeal Carcinoma: An Update in an Era of New Targeted Molecules Development. World J Oncol 2015; 6:243-261. [PMID: 29147412 PMCID: PMC5649942 DOI: 10.14740/wjon610w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2012] [Indexed: 12/15/2022] Open
Abstract
The aim of the study was to evaluate the prognostic significance of molecular biomarkers which could provide information for more accurate prognostication and development of novel therapeutic strategies for nasopharyngeal carcinoma (NPC). NPC is a unique malignant epithelial carcinoma of head and neck region, with an intimate association with the Epstein-Barr virus (EBV). Currently, the prediction of NPC prognosis is mainly based on the clinical TNM staging; however, NPC patients with the same clinical stage often present different clinical outcomes, suggesting that the TNM stage is insufficient to precisely predict the prognosis of this disease. In this review, we give an overview of the prognostic value of molecular markers in NPC and discuss potential strategies of targeted therapies for treatment of NPC. Molecular biomarkers, which play roles in abnormal proliferation signaling pathways (such as Wnt/β-catenin pathway), intracellular mitogenic signal aberration (such as hypoxia-inducible factor (HIF)-1α), receptor-mediated aberrations (such as vascular endothelial growth factor (VEGF)), tumor suppressors (such as p16 and p27 activity), cell cycle aberrations (such as cyclin D1 and cyclin E), cell adhesion aberrations (such as E-cadherin), apoptosis dysregualtion (such as survivin) and centromere aberration (centromere protein H), are prognostic markers for NPC. Plasma EBV DNA concentrations and EBV-encoded latent membrane proteins are also prognostic markers for NPC. Implication of molecular targeted therapies in NPC was discussed. Such therapies could have potential in combination with different cytotoxic agents to combat and eradicate tumor cells. In order to further improve overall survival for patients with loco-regionally advanced NPC, the development of innovative strategies, including prognostic molecular markers and molecular targeted agents is needed.
Collapse
Affiliation(s)
- Mu-Tai Liu
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nan Shiau Street, Changhua, Taiwan 500, ROC.,Department of Oncology, National Taiwan University Hospital, 7 Chung San South Road, Taipei, Taiwan 100, ROC.,Department of Medicine, Chang Shan Medical University, 110 Section 1, Chien- Kuo N. Road, Taichung, Taiwan 402, ROC.,Department of Radiology, Yuanpei University of Science and Technology, 306 Yuanpei Street, Hsinchu, Taiwan 300, ROC
| | - Mu-Kuan Chen
- Department of Radiology, Yuanpei University of Science and Technology, 306 Yuanpei Street, Hsinchu, Taiwan 300, ROC.,Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, 135 Nan Shiau Street, Changhua, Taiwan 500, ROC
| | - Chia-Chun Huang
- Department of Radiation Oncology, Changhua Christian Hospital, 135 Nan Shiau Street, Changhua, Taiwan 500, ROC
| | - Chao-Yuan Huang
- Department of Oncology, National Taiwan University Hospital, 7 Chung San South Road, Taipei, Taiwan 100, ROC
| |
Collapse
|
38
|
Yap LF, Velapasamy S, Lee HM, Thavaraj S, Rajadurai P, Wei W, Vrzalikova K, Ibrahim MH, Khoo ASB, Tsao SW, Paterson IC, Taylor GS, Dawson CW, Murray PG. Down-regulation of LPA receptor 5 contributes to aberrant LPA signalling in EBV-associated nasopharyngeal carcinoma. J Pathol 2014; 235:456-65. [DOI: 10.1002/path.4460] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 10/01/2014] [Accepted: 10/05/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Lee Fah Yap
- Department of Oral Biology & Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry; University of Malaya, Kuala Lumpur; Malaysia
- School of Cancer Sciences; University of Birmingham; Birmingham UK
| | - Sharmila Velapasamy
- Department of Oral Biology & Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry; University of Malaya, Kuala Lumpur; Malaysia
| | - Hui Min Lee
- Department of Oral Biology & Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry; University of Malaya, Kuala Lumpur; Malaysia
| | - Selvam Thavaraj
- Clinical and Diagnostic Sciences; King's College London Dental Institute; London UK
| | | | - Wenbin Wei
- School of Cancer Sciences; University of Birmingham; Birmingham UK
| | | | | | - Alan Soo-Beng Khoo
- Molecular Pathology Unit; Institute for Medical Research; Kuala Lumpur Malaysia
| | - Sai Wah Tsao
- Department of Anatomy; Li Ka Shing Faculty of Medicine, University of Hong Kong; Hong Kong
| | - Ian C Paterson
- Department of Oral Biology & Biomedical Sciences and Oral Cancer Research & Coordinating Centre, Faculty of Dentistry; University of Malaya, Kuala Lumpur; Malaysia
| | - Graham S Taylor
- School of Cancer Sciences; University of Birmingham; Birmingham UK
| | | | - Paul G Murray
- School of Cancer Sciences; University of Birmingham; Birmingham UK
| |
Collapse
|
39
|
Lin DC, Meng X, Hazawa M, Nagata Y, Varela AM, Xu L, Sato Y, Liu LZ, Ding LW, Sharma A, Goh BC, Lee SC, Petersson BF, Yu FG, Macary P, Oo MZ, Ha CS, Yang H, Ogawa S, Loh KS, Koeffler HP. The genomic landscape of nasopharyngeal carcinoma. Nat Genet 2014; 46:866-71. [PMID: 24952746 DOI: 10.1038/ng.3006] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/13/2014] [Indexed: 12/15/2022]
Abstract
Nasopharyngeal carcinoma (NPC) has extremely skewed ethnic and geographic distributions, is poorly understood at the genetic level and is in need of effective therapeutic approaches. Here we determined the mutational landscape of 128 cases with NPC using whole-exome and targeted deep sequencing, as well as SNP array analysis. These approaches revealed a distinct mutational signature and nine significantly mutated genes, many of which have not been implicated previously in NPC. Notably, integrated analysis showed enrichment of genetic lesions affecting several important cellular processes and pathways, including chromatin modification, ERBB-PI3K signaling and autophagy machinery. Further functional studies suggested the biological relevance of these lesions to the NPC malignant phenotype. In addition, we uncovered a number of new druggable candidates because of their genomic alterations. Together our study provides a molecular basis for a comprehensive understanding of, and exploring new therapies for, NPC.
Collapse
Affiliation(s)
- De-Chen Lin
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2] Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California, USA. [3]
| | - Xuan Meng
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2] Department of Medicine, School of Medicine, National University of Singapore, Singapore. [3]
| | - Masaharu Hazawa
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yasunobu Nagata
- 1] Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ana Maria Varela
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Yusuke Sato
- 1] Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Li-Zhen Liu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Arjun Sharma
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Boon Cher Goh
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2] Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | - Soo Chin Lee
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2] Department of Haematology-Oncology, National University Cancer Institute, Singapore
| | | | - Feng Gang Yu
- Department of Otolaryngology, National University Hospital Singapore, Singapore
| | - Paul Macary
- Department of Immunology, National University of Singapore, Singapore
| | - Min Zin Oo
- Department of Immunology, National University of Singapore, Singapore
| | - Chan Soh Ha
- Department of Microbiology, National University of Singapore, Singapore
| | - Henry Yang
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2]
| | - Seishi Ogawa
- 1] Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. [3]
| | - Kwok Seng Loh
- 1] Department of Otolaryngology, National University Hospital Singapore, Singapore. [2]
| | - H Phillip Koeffler
- 1] Cancer Science Institute of Singapore, National University of Singapore, Singapore. [2] Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California, USA. [3] National University Cancer Institute, National University Hospital Singapore, Singapore. [4]
| |
Collapse
|
40
|
Yap LF, Ahmad M, Zabidi MMA, Chu TL, Chai SJ, Lee HM, Lim PVH, Wei W, Dawson C, Teo SH, Khoo ASB. Oncogenic effects of WNT5A in Epstein-Barr virus‑associated nasopharyngeal carcinoma. Int J Oncol 2014; 44:1774-80. [PMID: 24626628 DOI: 10.3892/ijo.2014.2342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/27/2014] [Indexed: 11/06/2022] Open
Abstract
The molecular events that drive the progression of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) are still to be elucidated. Here, we report for the first time the pathogenic significance of an NPC-associated gene, wingless-type MMTV integration site family, member 5A (WNT5A) and the contribution of EBV to its expression. WNT5A is a representative Wnt protein that activates non-canonical Wnt signalling. With regard to its role in carcinogenesis, there is conflicting evidence as to whether WNT5A has a tumour-promoting or tumour-suppressive role. We show that WNT5A is upregulated in primary NPC tissue samples. We also demonstrate that WNT5A expression was dramatically increased in NPC cell lines expressing the EBV-encoded LMP2A gene, suggesting that this EBV-encoded latent gene is responsible for upregulating WNT5A in NPC. In addition, in vitro WNT5A overexpression promotes the proliferation, migration and invasion of NPC cells. Our results not only reveal pro-tumorigenic effects of WNT5A in NPC but also suggest that WNT5A could be an important therapeutic target in patients with EBV-associated disease.
Collapse
Affiliation(s)
- Lee Fah Yap
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Munirah Ahmad
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | | | - Tai Lin Chu
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - San Jiun Chai
- Cancer Research Initiatives Foundation, Selangor, Malaysia
| | - Hui Min Lee
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Wenbin Wei
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Selangor, Malaysia
| | - Alan Soo Beng Khoo
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Szeto CYY, Lin CH, Choi SC, Yip TTC, Ngan RKC, Tsao GSW, Li Lung M. Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA-microRNA regulatory network in nasopharyngeal carcinoma model systems. FEBS Open Bio 2014; 4:128-40. [PMID: 24490137 PMCID: PMC3907684 DOI: 10.1016/j.fob.2014.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 01/28/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq) of NPC model systems. Matched total mRNA and small RNA of undifferentiated Epstein–Barr virus (EBV)-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 were sequenced by Solexa technology. We found 2812 genes and 149 miRNAs (human and EBV) to be differentially expressed in NP460, HK1, C666 and X666 with RNASeq; 533 miRNA–mRNA target pairs were inversely regulated in the three NPC cell lines compared to NP460. Integrated mRNA/miRNA expression profiling and pathway analysis show extracellular matrix organization, Beta-1 integrin cell surface interactions, and the PI3K/AKT, EGFR, ErbB, and Wnt pathways were potentially deregulated in NPC. Real-time quantitative PCR was performed on selected mRNA/miRNAs in order to validate their expression. Transcript sequence variants such as short insertions and deletions (INDEL), single nucleotide variant (SNV), and isomiRs were characterized in the NPC model systems. A novel TP53 transcript variant was identified in NP460, HK1, and C666. Detection of three previously reported novel EBV-encoded BART miRNAs and their isomiRs were also observed. Meta-analysis of a model system to a clinical system aids the choice of different cell lines in NPC studies. This comprehensive characterization of mRNA and miRNA transcriptomes in NPC cell lines and the xenograft provides insights on miRNA regulation of mRNA and valuable resources on transcript variation and regulation in NPC, which are potentially useful for mechanistic and preclinical studies. Using RNASeq we characterized the mRNA and miRNA transcriptomes in NPC and NP models. 2812 Genes and 149 miRNAs (human and EBV) were differentially expressed in NPC vs NP models. 533 miRNA–mRNA target pairs were inversely regulated in HK1, C666, and X666 vs NP460. ECM, β1 integrin, PI3K/AKT, EGFR, ErbB, and Wnt pathways appeared to be deregulated in NPC. A novel TP53 mutation was identified in NP460, HK1, and C666.
Collapse
Key Words
- AIP, aryl hydrocarbon receptor interacting protein
- BAX, BCL2-asscoiated X protein
- CIITA, class II, major histocompatibility complex, transactivator
- DKK1, Dickkopf-Like protein 1
- EBV, Epstein–Barr virus
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EGR1, early growth response 1
- FBLN2, fibulin 2
- GADD45, growth arrest and DNA-damage-inducible
- GNG11, guanine nucleotide binding protein (G protein), Gamma 11
- GO, gene ontology
- GSTP1, glutathione S-transferase pi 1
- IL18, interleukin 18
- INDEL, insertion and deletion
- LMP1, Epstein–Barr virus latent membrane protein 1
- LTBP2, latent transforming growth factor beta binding protein 2
- MDM2, MDM2 oncogene, E3 ubiquitin protein ligase
- MET, met proto-oncogene
- MMP19, matrix metallopeptidase 19
- NGS, next-generation sequencing
- NPC, nasopharyngeal carcinoma
- Nasopharyngeal carcinoma
- Nasopharyngeal cell lines/xenograft (NP460, HK1, C666, X666)
- PI3K, phosphoinositide 3-kinase
- PTEN, phosphatase and tensin homolog
- RNA sequencing
- RNASeq, RNA sequencing
- SNP, single nucleotide polymorphism
- TNFRSF9, tumour necrosis factor receptor superfamily, member 9
- TP53
- Transcriptome analysis
- UTR, untranslated region
- miRNA, microRNA
Collapse
Affiliation(s)
- Carol Ying-Ying Szeto
- Center for Nasopharyngeal Cancer Research, The University of Hong Kong, PR China ; Department of Clinical Oncology, The University of Hong Kong, PR China
| | - Chi Ho Lin
- Centre for Genomic Sciences, The University of Hong Kong, PR China
| | - Siu Chung Choi
- Centre for Genomic Sciences, The University of Hong Kong, PR China
| | - Timothy T C Yip
- Center for Nasopharyngeal Cancer Research, The University of Hong Kong, PR China ; Department of Clinical Oncology, Queen Elizabeth Hospital, PR China
| | - Roger Kai-Cheong Ngan
- Center for Nasopharyngeal Cancer Research, The University of Hong Kong, PR China ; Department of Clinical Oncology, Queen Elizabeth Hospital, PR China
| | - George Sai-Wah Tsao
- Center for Nasopharyngeal Cancer Research, The University of Hong Kong, PR China ; Department of Anatomy, The University of Hong Kong, PR China
| | - Maria Li Lung
- Center for Nasopharyngeal Cancer Research, The University of Hong Kong, PR China ; Department of Clinical Oncology, The University of Hong Kong, PR China
| |
Collapse
|
42
|
Port RJ, Pinheiro-Maia S, Hu C, Arrand JR, Wei W, Young LS, Dawson CW. Epstein-Barr virus induction of the Hedgehog signalling pathway imposes a stem cell phenotype on human epithelial cells. J Pathol 2013; 231:367-77. [PMID: 23934731 DOI: 10.1002/path.4245] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 01/02/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is a cancer common in southern China and South East Asia that is causally linked to Epstein-Barr virus (EBV) infection. Here, we demonstrate that NPC displays frequent dysregulation of the Hedgehog (HH) pathway, a pathway implicated in the maintenance of stem cells, but whose aberrant activation in adult tissues can lead to cancer. Using authentic EBV-positive carcinoma-derived cell lines and nasopharyngeal epithelial cell lines latently infected with EBV as models for NPC in vitro, we show that EBV activates the HH signalling pathway through autocrine induction of SHH ligand. Moreover, we find that constitutive engagement of the HH pathway induces the expression of a number of stemness-associated genes and imposes stem-like characteristics on EBV-infected epithelial cells in vitro. Using epithelial cells expressing individual EBV latent genes detected in NPC, we show that EBNA1, LMP1, and LMP2A are all capable of inducing SHH ligand and activating the HH pathway, but only LMP1 and LMP2A are able to induce expression of stemness-associated marker genes. Our findings not only identify a role for dysregulated HH signalling in NPC oncogenesis, but also provide a novel rationale for therapeutic intervention.
Collapse
Affiliation(s)
- Rebecca J Port
- Birmingham Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Liu YR, Huang SY, Chen JY, Wang LHC. Microtubule depolymerization activates the Epstein–Barr virus lytic cycle through protein kinase C pathways in nasopharyngeal carcinoma cells. J Gen Virol 2013; 94:2750-2758. [DOI: 10.1099/vir.0.058040-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Elevated levels of antibodies against Epstein–Barr virus (EBV) and the presence of viral DNA in plasma are reliable biomarkers for the diagnosis of nasopharyngeal carcinoma (NPC) in high-prevalence areas, such as South-East Asia. The presence of these viral markers in the circulation suggests that a minimal level of virus reactivation may have occurred in an infected individual, although the underlying mechanism of reactivation remains to be elucidated. Here, we showed that treatment with nocodazole, which provokes the depolymerization of microtubules, induces the expression of two EBV lytic cycle proteins, Zta and EA-D, in EBV-positive NPC cells. This effect was independent of mitotic arrest, as viral reactivation was not abolished in cells synchronized at interphase. Notably, the induction of Zta by nocodazole was mediated by transcriptional upregulation via protein kinase C (PKC). Pre-treatment with inhibitors for PKC or its downstream signalling partners p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) abolished the nocodazole-mediated induction of Zta and EA-D. Interestingly, the effect of nocodazole, as well as colchicine and vinblastine, on lytic gene expression occurred only in NPC epithelial cells but not in cells derived from lymphocytes. These results establish a novel role of microtubule integrity in controlling the EBV life cycle through PKC and its downstream pathways, which represents a tissue-specific mechanism for controlling the life-cycle switch of EBV.
Collapse
Affiliation(s)
- Yi-Ru Liu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Sheng-Yen Huang
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Graduate Program of Biotechnology in Medicine of National Tsing Hua University and National Health Research Institutes, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Jen-Yang Chen
- National Institute of Cancer Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
| | - Lily Hui-Ching Wang
- Department of Medical Science, National Tsing Hua University, Hsinchu 300, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
44
|
Hoebe EK, Le Large TYS, Greijer AE, Middeldorp JM. BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator. Rev Med Virol 2013; 23:367-83. [PMID: 23996634 PMCID: PMC4272418 DOI: 10.1002/rmv.1758] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/19/2022]
Abstract
Epstein–Barr virus (EBV) causes several benign and malignant disorders of lymphoid and epithelial origin. EBV-related tumors display distinct patterns of viral latent gene expression, of which the BamHI-A rightward frame 1 (BARF1) is selectively expressed in carcinomas, regulated by cellular differentiation factors including ΔNp63α. BARF1 functions as a viral oncogene, immortalizing and transforming epithelial cells of different origin by acting as a mitogenic growth factor, inducing cyclin-D expression, and up-regulating antiapoptotic Bcl-2, stimulating host cell growth and survival. In addition, secreted hexameric BARF1 has immune evasive properties, functionally corrupting macrophage colony stimulating factor, as supported by recent functional and structural data. Therefore, BARF1, an intracellular and secreted protein, not only has multiple pathogenic functions but also can function as a target for immune responses. Deciphering the role of BARF1 in EBV biology will contribute to novel diagnostic and treatment options for EBV-driven carcinomas. Herein, we discuss recent insights on the regulation of BARF1 expression and aspects of structure-function relating to its oncogenic and immune suppressive properties. © 2013 The Authors. Reviews in Medical Virology published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eveline K Hoebe
- VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
45
|
Fan Q, He JF, Wang QR, Cai HB, Sun XG, Zhou XX, Qin HD, Shugart YY, Jia WH. Functional polymorphism in the 5'-UTR of CR2 is associated with susceptibility to nasopharyngeal carcinoma. Oncol Rep 2013; 30:11-6. [PMID: 23612877 PMCID: PMC3729234 DOI: 10.3892/or.2013.2421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/18/2013] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) is a squamous cell cancer endemic in Southern China and Southeast Asia. It has been shown that inflammatory and immune responses during EBV infection contribute to the development of NPC. The complement receptor 2 (CR2) gene plays central roles during inflammatory and immune responses and, therefore, is a good candidate susceptibility gene for NPC. We performed PCR-based sequencing to identify multiple single-nucleotide polymorphisms (SNPs) within the exon regions of the CR2 gene in a Cantonese population. Two SNPs were screened in 528 NPC patients and 408 normal individuals to perform a case-control study matched according to age, gender and residence. Furthermore, we cloned the entire 5′-UTR and entire CR2 promoter into a luciferase report system and compared the luciferase activities between the different allelic constructs. A SNP in the 5′-UTR of CR2 (24 T/C, rs3813946) showed a significant association (P<0.01) with NPC in the Cantonese population studied. The subjects were categorized into 2 age groups: group 1, age ≤45 years and group 2, age >45 years. In group 1, the allelic frequencies of 24 T/C in the patients were significantly different from those of the controls (P=0.0034). The odds ratio (OR=1.81) also indicated a higher risk of NPC in individuals who carried the minor allele C. All constructs exerted allelic differences on luciferase activities, but only the susceptible allele +24C construct showed increased activity. Our findings implicate CR2 as a susceptibility gene for NPC and suggest that enhanced CR2 expression may be involved in the oncogenesis and development of NPC.
Collapse
Affiliation(s)
- Qin Fan
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shen Z, Jiang X, Zeng C, Zheng S, Luo B, Zeng Y, Ding R, Jiang H, He Q, Guo J, Jie W. High expression of ubiquitin-conjugating enzyme 2C (UBE2C) correlates with nasopharyngeal carcinoma progression. BMC Cancer 2013; 13:192. [PMID: 23587173 PMCID: PMC3637393 DOI: 10.1186/1471-2407-13-192] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Background Overexpression of ubiquitin-conjugating enzyme 2C (UBE2C) has been detected in many types of human cancers, and is correlated with tumor malignancy. However, the role of UBE2C in human nasopharyngeal carcinoma (NPC) is unclear. In this study, we investigated the role of aberrant UBE2C expression in the progression of human NPC. Methods Immunohistochemical analysis was performed to detect UBE2C protein in clinical samples of NPC and benign nasopharyngeal tissues, and the association of UBE2C expression with patient clinicopathological characteristics was analyzed. UBEC2 expression profiles were evaluated in cell lines representing varying differentiated stages of NPC and immortalized nasopharyngeal epithelia NP-69 cells using quantitative RT-PCR, western blotting and fluorescent staining. Furthermore, UBE2C was knocked down using RNA interference in these cell lines and proliferation and cell cycle distribution was investigated. Results Immunohistochemical analysis revealed that UBE2C protein expression levels were higher in NPC tissues than in benign nasopharyngeal tissues (P<0.001). Moreover, high UBE2C protein expression was positively correlated with tumor size (P=0.017), lymph node metastasis (P=0.016) and distant metastasis (P=0.015) in NPC patients. In vitro experiments demonstrated that UBE2C expression levels were inversely correlated with the degree of differentiation of NPC cell lines, whereas UBE2C displayed low level of expression in NP-69 cells. Knockdown of UBE2C led to significant arrest at the S and G2/M phases of the cell cycle, and decreased cell proliferation was observed in poorly-differentiated CNE2Z NPC cells and undifferentiated C666-1 cells, but not in well-differentiated CNE1 and immortalized NP-69 cells. Conclusions Our findings suggest that high expression of UBE2C in human NPC is closely related to tumor malignancy, and may be a potential marker for NPC progression.
Collapse
Affiliation(s)
- Zhihua Shen
- Department of Pathology & Pathophysiology, School of Basic Medicine Science, Guangdong Medical College, Zhanjiang 524023, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|