1
|
Krysiak M, Węgrzyn A, Kowalewska Ł, Kulik A, Ostaszewska-Bugajska M, Mazur J, Garstka M, Mazur R. Light-independent pathway of STN7 kinase activation under low temperature stress in runner bean (Phaseolus coccineus L.). BMC PLANT BIOLOGY 2024; 24:513. [PMID: 38849759 PMCID: PMC11157908 DOI: 10.1186/s12870-024-05169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/19/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND The phosphorylation of the Light-Harvesting Complex of photosystem II (LHCII) driven by STATE TRANSITION 7 (STN7) kinase is a part of one of the crucial regulatory mechanisms of photosynthetic light reactions operating in fluctuating environmental conditions, light in particular. There are evidenced that STN7 can also be activated without light as well as in dark-chilling conditions. However, the biochemical mechanism standing behind this complex metabolic pathway has not been deciphered yet. RESULTS In this work, we showed that dark-chilling induces light-independent LHCII phosphorylation in runner bean (Phaseolus coccineus L.). In dark-chilling conditions, we registered an increased reduction of the PQ pool which led to activation of STN7 kinase, subsequent LHCII phosphorylation, and possible LHCII relocation inside the thylakoid membrane. We also presented the formation of a complex composed of phosphorylated LHCII and photosystem I typically formed upon light-induced phosphorylation. Moreover, we indicated that the observed steps were preceded by the activation of the oxidative pentose phosphate pathway (OPPP) enzymes and starch accumulation. CONCLUSIONS Our results suggest a direct connection between photosynthetic complexes reorganization and dark-chilling-induced activation of the thioredoxin system. The proposed possible pathway starts from the activation of OPPP enzymes and further NADPH-dependent thioredoxin reductase C (NTRC) activation. In the next steps, NTRC simultaneously activates ADP-glucose pyrophosphorylase and thylakoid membrane-located NAD(P)H dehydrogenase-like complex. These results in starch synthesis and electron transfer to the plastoquinone (PQ) pool, respectively. Reduced PQ pool activates STN7 kinase which phosphorylates LHCII. In this work, we present a new perspective on the mechanisms involving photosynthetic complexes while efficiently operating in the darkness. Although we describe the studied pathway in detail, taking into account also the time course of the following steps, the biological significance of this phenomenon remains puzzling.
Collapse
Affiliation(s)
- Małgorzata Krysiak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Anna Węgrzyn
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Anna Kulik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Monika Ostaszewska-Bugajska
- Department of Plant Bioenergetics, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Jan Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Maciej Garstka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| |
Collapse
|
2
|
Parrotta L, Tanwar UK, Aloisi I, Sobieszczuk-Nowicka E, Arasimowicz-Jelonek M, Del Duca S. Plant Transglutaminases: New Insights in Biochemistry, Genetics, and Physiology. Cells 2022; 11:cells11091529. [PMID: 35563835 PMCID: PMC9105555 DOI: 10.3390/cells11091529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022] Open
Abstract
Transglutaminases (TGases) are calcium-dependent enzymes that catalyse an acyl-transfer reaction between primary amino groups and protein-bound Gln residues. They are widely distributed in nature, being found in vertebrates, invertebrates, microorganisms, and plants. TGases and their functionality have been less studied in plants than humans and animals. TGases are distributed in all plant organs, such as leaves, tubers, roots, flowers, buds, pollen, and various cell compartments, including chloroplasts, the cytoplasm, and the cell wall. Recent molecular, physiological, and biochemical evidence pointing to the role of TGases in plant biology and the mechanisms in which they are involved allows us to consider their role in processes such as photosynthesis, plant fertilisation, responses to biotic and abiotic stresses, and leaf senescence. In the present paper, an in-depth description of the biochemical characteristics and a bioinformatics comparison of plant TGases is provided. We also present the phylogenetic relationship, gene structure, and sequence alignment of TGase proteins in various plant species, not described elsewhere. Currently, our knowledge of these proteins in plants is still insufficient. Further research with the aim of identifying and describing the regulatory components of these enzymes and the processes regulated by them is needed.
Collapse
Affiliation(s)
- Luigi Parrotta
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (U.K.T.); (E.S.-N.)
| | - Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland; (U.K.T.); (E.S.-N.)
| | - Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy; (L.P.); (I.A.)
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
- Correspondence:
| |
Collapse
|
3
|
Translational and post-translational regulation of polyamine metabolic enzymes in plants. J Biotechnol 2021; 344:1-10. [PMID: 34915092 DOI: 10.1016/j.jbiotec.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/19/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Polyamines are small organic and basic polycations that perform essential regulatory functions in all living organisms. Fluctuations in polyamine content have been observed to occur during growth, development and under stress conditions, implying that polyamines play pivotal roles in diverse cellular and physiological processes. To achieve polyamine homeostasis, the entire metabolic pathway is subjected to a fine-tuned regulation of its biosynthetic and catabolic genes and enzymes. In this review, we describe and discuss the most important mechanisms implicated in the translational and post-translational regulation of polyamine metabolic enzymes in plants. At the translational level, we emphasize the role of polyamines in the modulation of upstream open reading frame (uORF) activities that control the translation of polyamine biosynthetic and catabolic mRNAs. At the post-translational level, different aspects of the regulation of polyamine metabolic proteins are depicted, such as the proteolytic activation of enzyme precursors, the importance of dimerization in protein stability as well as in protein intracellular localization.
Collapse
|
4
|
Mazur R, Mostowska A, Kowalewska Ł. How to Measure Grana - Ultrastructural Features of Thylakoid Membranes of Plant Chloroplasts. FRONTIERS IN PLANT SCIENCE 2021; 12:756009. [PMID: 34691132 PMCID: PMC8527009 DOI: 10.3389/fpls.2021.756009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/09/2021] [Indexed: 06/11/2023]
Abstract
Granum is a basic structural unit of the thylakoid membrane network of plant chloroplasts. It is composed of multiple flattened membranes forming a stacked arrangement of a cylindrical shape. Grana membranes are composed of lipids and tightly packed pigment-protein complexes whose primary role is the catalysis of photosynthetic light reactions. These membranes are highly dynamic structures capable of adapting to changing environmental conditions by fine-tuning photochemical efficiency, manifested by the structural reorganization of grana stacks. Due to a nanometer length scale of the structural granum features, the application of high-resolution electron microscopic techniques is essential for a detailed analysis of the granum architecture. This mini-review overviews recent approaches to quantitative grana structure analyses from electron microscopy data, highlighting the basic manual measurements and semi-automated workflows. We outline and define structural parameters used by different authors, for instance, granum height and diameter, thylakoid thickness, end-membrane length, Stacking Repeat Distance, and Granum Lateral Irregularity. This article also presents insights into efficient and effective measurements of grana stacks visualized on 2D micrographs. The information on how to correctly interpret obtained data, taking into account the 3D nature of grana stacks projected onto 2D space of electron micrograph, is also given. Grana ultrastructural observations reveal key features of this intriguing membrane arrangement, broadening our knowledge of the thylakoid network's remarkable plasticity.
Collapse
Affiliation(s)
- Radosław Mazur
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Agnieszka Mostowska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łucja Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Serafini-Fracassini D, Della Mea M, Parrotta L, Faleri C, Cai G, Del Duca S, Aloisi I. AtPng1 knockout mutant of Arabidopsis thaliana shows a juvenile phenotype, morpho-functional changes, altered stress response and cell wall modifications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:11-21. [PMID: 34325356 DOI: 10.1016/j.plaphy.2021.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
In order to ascertain the role of plant transglutaminases (TGase) in growth and abiotic stress response, the AtPng1 knock out (KO) line of A. thaliana has been analyzed during plant development and under heat and wound stress. Comparing wild type (WT) and KO lines a 58-kDa band was immunodetected by anti-AtPng1p antibody in the cell wall and chloroplasts only in the WT line. A residual TGase activity, not showing correlation with development nor stress response, was still present in the KO line. The KO line was less developed, with a juvenile phenotype characterized by fewer, smaller and less differentiated cells. Chloroplast TGase activity was insensitive to mutation. Data on stressed plants showed that (i) KO plants under heat stress were more juvenile compared to WT, (ii) different responses between WT and KO lines after wounding took place. TGase activity was not completely absent in the KO line, presenting high activity in the plastidial fraction. In general, the mutation affected A. thaliana growth and development, causing less differentiated cytological and anatomical features.
Collapse
Affiliation(s)
- D Serafini-Fracassini
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| | - M Della Mea
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| | - L Parrotta
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| | - C Faleri
- Dipartimento di Scienze Della Vita, Università Degli Studi di Siena, Via Mattioli 4, Siena, 53100, Italy
| | - G Cai
- Dipartimento di Scienze Della Vita, Università Degli Studi di Siena, Via Mattioli 4, Siena, 53100, Italy
| | - S Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy.
| | - I Aloisi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università Degli Studi di Bologna, Via Irnerio, Bologna, 40126, Italy
| |
Collapse
|
6
|
Kaňa R, Govindjee. Role of Ions in the Regulation of Light-Harvesting. FRONTIERS IN PLANT SCIENCE 2016; 7:1849. [PMID: 28018387 PMCID: PMC5160696 DOI: 10.3389/fpls.2016.01849] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/23/2016] [Indexed: 03/03/2024]
Abstract
Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer (EDL). Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl-) attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids), provides an electrical field. The EDL is affected by the valence of the ions and interferes with the regulation of "state transitions," protein interactions, and excitation energy "spillover" from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching (NPQ) of the excited state of chlorophyll a. A triggering of NPQ proceeds via lumen acidification that is coupled to the export of positive counter-ions (Mg2+, K+) to the stroma or/and negative ions (e.g., Cl-) into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+) in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of EDL, proposed by Barber (1980b) Biochim Biophys Acta 594:253-308) in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+) and divalent (Mg2+) ions on light-harvesting and on "screening" of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters.
Collapse
Affiliation(s)
- Radek Kaňa
- Institute of Microbiology, Academy of Sciences of the CzechiaTřeboň, Czechia
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South BohemiaČeské Budějovice, Czechia
| | - Govindjee
- Center of Biophysics and Quantitative Biology, Department of Biochemistry, Department of Plant Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| |
Collapse
|
7
|
Ioannidis NE, Malliarakis D, Torné JM, Santos M, Kotzabasis K. The Over-expression of the Plastidial Transglutaminase from Maize in Arabidopsis Increases the Activation Threshold of Photoprotection. FRONTIERS IN PLANT SCIENCE 2016; 7:635. [PMID: 27242838 PMCID: PMC4861818 DOI: 10.3389/fpls.2016.00635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/25/2016] [Indexed: 05/09/2023]
Abstract
Plastidial transglutaminase is one of the most promising enzymes in chloroplast bioenergetics due to its link with polyamine pathways and the cross talk with signals such as Ca(2+) and GTP. Here, we show the effect of the increase of transglutaminase activity in Arabidopsis by using genetic transformation techniques. These lines fulfill their biological cycle normally (normal growth in soil, production of viable seeds) and show a relatively mild increase in transglutaminase activity (127%). These overexpressors of transglutaminase (OE TGase) have an extended stroma thylakoid network (71% higher number of PSIIβ centers), similar chlorophyll content (-4%), higher linear electron flow (+13%), and higher threshold of photoprotection activation (∼100%). On the other hand OE TGase showed a reduced maximum photochemistry of PSII (-6.5%), a smaller antenna per photosystem II (-25%), a lower photoprotective "energization" quenching or qE (-77% at 490 μmol photons m(-2) s(-1)) due to a higher threshold of qE activation and slightly lower light induced proton motive force (-17%). The role of the polyamines and of the transglutaminase in the regulation of chemiosmosis and photoprotection in chloroplasts is discussed.
Collapse
Affiliation(s)
| | | | - Josep M. Torné
- Department of Molecular Genetics, Center for Research in Agricultural GenomicsBarcelona, Spain
| | - Mireya Santos
- Department of Molecular Genetics, Center for Research in Agricultural GenomicsBarcelona, Spain
| | | |
Collapse
|
8
|
Aloisi I, Cai G, Serafini-Fracassini D, Del Duca S. Transglutaminase as polyamine mediator in plant growth and differentiation. Amino Acids 2016; 48:2467-78. [DOI: 10.1007/s00726-016-2235-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/11/2016] [Indexed: 01/23/2023]
|
9
|
Mellidou I, Moschou PN, Ioannidis NE, Pankou C, Gėmes K, Valassakis C, Andronis EA, Beris D, Haralampidis K, Roussis A, Karamanoli A, Matsi T, Kotzabasis K, Constantinidou HI, Roubelakis-Angelakis KA. Silencing S-Adenosyl-L-Methionine Decarboxylase (SAMDC) in Nicotiana tabacum Points at a Polyamine-Dependent Trade-Off between Growth and Tolerance Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:379. [PMID: 27064210 PMCID: PMC4814703 DOI: 10.3389/fpls.2016.00379] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/11/2016] [Indexed: 05/02/2023]
Abstract
Polyamines (PAs) are nitrogenous molecules that are indispensable for cell viability and with an agreed-on role in the modulation of stress responses. Tobacco plants with downregulated SAMDC (AS-SAMDC) exhibit reduced PAs synthesis but normal levels of PA catabolism. We used AS-SAMDC to increase our understanding on the role of PAs in stress responses. Surprisingly, at control conditions AS-SAMDC plants showed increased biomass and altered developmental characteristics, such as increased height and leaf number. On the contrary, during salt stress AS-SAMDC plants showed reduced vigor when compared to the WT. During salt stress, the AS-SAMDC plants although showing compensatory readjustments of the antioxidant machinery and of photosynthetic apparatus, they failed to sustain their vigor. AS-SAMDC sensitivity was accompanied by inability to effectively control H2O2 levels and concentrations of monovalent and divalent cations. In accordance with these findings, we suggest that PAs may regulate the trade-off between growth and tolerance responses.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Department of Crop Production, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Panagiotis N. Moschou
- Department of Plant Biology and Linnean Center of Plant Sciences, Uppsala BioCentrum, Swedish University of Agricultural SciencesUppsala, Sweden
| | | | - Chryssa Pankou
- Department of Crop Production, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Katalin Gėmes
- Biological Research Centre, Hungarian Academy of SciencesSzeged, Hungary
| | | | | | - Despoina Beris
- Department of Biology, National and Kapodistrian University of AthensAthens, Greece
| | - Kosmas Haralampidis
- Department of Biology, National and Kapodistrian University of AthensAthens, Greece
| | - Andreas Roussis
- Department of Biology, National and Kapodistrian University of AthensAthens, Greece
| | - Aikaterini Karamanoli
- Department of Crop Production, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Theodora Matsi
- Department of Crop Production, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | | | - Helen-Isis Constantinidou
- Department of Crop Production, School of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | | |
Collapse
|
10
|
Malliarakis D, Tsiavos T, Ioannidis NE, Kotzabasis K. Spermine and lutein quench chlorophyll fluorescence in isolated PSII antenna complexes. JOURNAL OF PLANT PHYSIOLOGY 2015; 183:108-13. [PMID: 26121079 DOI: 10.1016/j.jplph.2015.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 05/03/2023]
Abstract
Non photochemical quenching is a spontaneous mechanism that protects plants and algae from photodamage. In the last two decades, carotenoids through the xanthophylls cycle have been proposed to play a key role in quenching of chlorophyll. More recently, the involvement of endogenous polyamines in energy-dependent component of non photochemical quenching has been suggested by several research groups. In the present contribution, the combined effect of spermine and the xanthophylls, zeaxanthin and lutein on the fluorescence of antenna complexes of photosystem II was tested in vitro. Lutein caused significant quenching on trimeric and monomeric antenna complexes, whereas zeaxanthin under our experimental conditions had negligible effect. Spermine has been shown to allow fluorescence quenching to be induced in isolated antenna in the absence of ΔpH and to accelerate quenching formation. The simultaneous treatment of spermine and lutein maximizes quenching even at relatively low concentrations.
Collapse
Affiliation(s)
- Dimitris Malliarakis
- Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece
| | - Theodoros Tsiavos
- Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece
| | - Nikolaos E Ioannidis
- Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece.
| | - Kiriakos Kotzabasis
- Department of Biology, University of Crete, Voutes University Campus, GR-70013 Heraklion, Crete, Greece.
| |
Collapse
|
11
|
Sobieszczuk-Nowicka E, Zmienko A, Samelak-Czajka A, Łuczak M, Pietrowska-Borek M, Iorio R, Del Duca S, Figlerowicz M, Legocka J. Dark-induced senescence of barley leaves involves activation of plastid transglutaminases. Amino Acids 2015; 47:825-38. [PMID: 25583605 PMCID: PMC4361728 DOI: 10.1007/s00726-014-1912-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/27/2014] [Indexed: 12/13/2022]
Abstract
Transglutaminases (E.C. 2.3.2.13) catalyze the post-translational modification of proteins by establishing ε-(γ-glutamyl) lysine isopeptide bonds and by the covalent conjugation of polyamines to endo-glutamyl residues of proteins. In light of the confirmed role of transglutaminases in animal cell apoptosis and only limited information on the role of these enzymes in plant senescence, we decided to investigate the activity of chloroplast transglutaminases (ChlTGases) and the fate of chloroplast-associated polyamines in Hordeum vulgare L. 'Nagrad' leaves, where the senescence process was induced by darkness (day 0) and continued until chloroplast degradation (day 12). Using an anti-TGase antibody, we detected on a subcellular level, the ChlTGases that were associated with destacked/degraded thylakoid membranes, and beginning on day 5, were also found in the stroma. Colorimetric and radiometric assays revealed during senescence an increase in ChlTGases enzymatic activity. The MS/MS identification of plastid proteins conjugated with exogenous polyamines had shown that the ChlTGases are engaged in the post-translational modification of proteins involved in photosystem organization, stress response, and oxidation processes. We also computationally identified the cDNA of Hv-Png1-like, a barley homologue of the Arabidopsis AtPng1 gene. Its mRNA level was raised from days 3 to 10, indicating that transcriptional regulation controls the activity of barley ChlTGases. Together, the presented results deepen our knowledge of the mechanisms of the events happened in dark-induced senescence of barley leaves that might be activation of plastid transglutaminases.
Collapse
Affiliation(s)
- E Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University of Poznań, ul. Umultowska 89, 61-614, Poznań, Poland,
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Polyamines are common players in different facets of plant programmed cell death. Amino Acids 2014; 47:27-44. [PMID: 25399055 DOI: 10.1007/s00726-014-1865-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/29/2014] [Indexed: 01/16/2023]
Abstract
Programmed cell death (PCD) is a process that occurs throughout the life span of every plant life, from initial germination of the seed to the senescence of the plant. It is a normal physiological milestone during the plant's developmental process, but it can also be induced by external factors, including a variety of environmental stresses and as a response to pathogen infections. Changes in the morphology of the nucleus is one of the most noticeable during PCD but all the components of the plant cell (cytoplasm, cytoskeleton and organelles) are involved in this fascinating process. To date, relatively little is known about PCD in plants, but several factors, among which polyamines (PAs) and plant growth regulators, have been shown to play an important role in the initiation and regulation of the process. The role of PAs in plant PCD appears to be multifaceted acting in some instances as pro-survival molecules, whereas in others seem to be implicated in accelerating PCD. The molecular mechanism is still under study. Here we present some PCD plant models, focusing on the role of the enzyme responsible for PA conjugation to proteins: transglutaminase (TGase), an enzyme linked with the process of PCD also in some animal models. The role of PAs and plant TGase in the senescence and PCD in flowers, leaf and the self-incompatibility of pollen will be discussed and examined in depth.
Collapse
|
13
|
Del Duca S, Serafini-Fracassini D, Cai G. Senescence and programmed cell death in plants: polyamine action mediated by transglutaminase. FRONTIERS IN PLANT SCIENCE 2014; 5:120. [PMID: 24778637 PMCID: PMC3985020 DOI: 10.3389/fpls.2014.00120] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 05/14/2023]
Abstract
Research on polyamines (PAs) in plants laps a long way of about 50 years and many roles have been discovered for these aliphatic cations. PAs regulate cell division, differentiation, organogenesis, reproduction, dormancy-break and senescence, homeostatic adjustments in response to external stimuli and stresses. Nevertheless, the molecular mechanisms of their multiple activities are still matter of research. PAs are present in free and bound forms and interact with several important cell molecules; some of these interactions may occur by covalent linkages catalyzed by transglutaminase (TGase), giving rise to "cationization" or cross-links among specific proteins. Senescence and programmed cell death (PCD) can be delayed by PAs; in order to re-interpret some of these effects and to obtain new insights into their molecular mechanisms, their conjugation has been revised here. The TGase-mediated interactions between proteins and PAs are the main target of this review. After an introduction on the characteristics of this enzyme, on its catalysis and role in PCD in animals, the plant senescence and PCD models in which TGase has been studied, are presented: the corolla of naturally senescing or excised flowers, the leaves senescing, either excised or not, the pollen during self-incompatible pollination, the hypersensitive response and the tuber storage parenchyma during dormancy release. In all the models examined, TGase appears to be involved by a similar molecular mechanism as described during apoptosis in animal cells, even though several substrates are different. Its effect is probably related to the type of PCD, but mostly to the substrate to be modified in order to achieve the specific PCD program. As a cross-linker of PAs and proteins, TGase is an important factor involved in multiple, sometimes controversial, roles of PAs during senescence and PCD.
Collapse
Affiliation(s)
- Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences (Botany), University of BolognaBologna, Italy
| | | | - Giampiero Cai
- Department of Life Sciences, University of SienaSiena, Italy
| |
Collapse
|
14
|
Sobieszczuk-Nowicka E, Legocka J. Plastid-associated polyamines: their role in differentiation, structure, functioning, stress response and senescence. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:297-305. [PMID: 23889994 DOI: 10.1111/plb.12058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/06/2013] [Indexed: 05/03/2023]
Abstract
Polyamines are low-molecular weight biogenic amines. They are a specific group of cell growth and development regulators. In the past decade biochemical, molecular and genetic studies have contributed much to a better understanding of the biological role of polyamines in the plant cell. Substantial evidence has also been added to our understanding of the role of polyamines in plastid development. In developing chloroplasts, polyamines serve as a nitrogen source for protein and chlorophyll synthesis. In chloroplast structure, thylakoid proteins linked to polyamines belong mainly to antenna proteins of light-harvesting chlorophyll a/b-protein complexes. The fact that LHCII oligomeric forms are much more intensely labelled by polyamines, in comparison to monomeric forms, suggests that polyamines participate in oligomer stabilisation. In plastid metabolism, polyamines modulate effectiveness of photosynthesis. The role of polyamines in mature chloroplasts is also related to the photo-adaptation of the photosynthetic apparatus to low and high light intensity and its response to environmental stress. The occurrence of polyamines and enzymes participating in their metabolism at every stage of plastid development indicates that polyamines play a role in plastid differentiation, structure, functioning and senescence.
Collapse
Affiliation(s)
- E Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
15
|
Sen G, Eryilmaz IE, Ozakca D. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina. PHYTOCHEMISTRY 2014; 98:54-9. [PMID: 24359631 DOI: 10.1016/j.phytochem.2013.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/24/2013] [Accepted: 11/29/2013] [Indexed: 05/04/2023]
Abstract
In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes.
Collapse
Affiliation(s)
- Gulseren Sen
- University of Bilecik Seyh Edebali, Faculty of Science and Art, Department of Molecular Biology and Genetics, Gulumbe-Bilecik, Turkey; University of Rize Recep Tayyip Erdogan, Faculty of Medicine, Rize, Turkey
| | - Isil Ezgi Eryilmaz
- University of Bilecik Seyh Edebali, Faculty of Science and Art, Department of Molecular Biology and Genetics, Gulumbe-Bilecik, Turkey
| | - Dilek Ozakca
- University of Bilecik Seyh Edebali, Faculty of Science and Art, Department of Molecular Biology and Genetics, Gulumbe-Bilecik, Turkey.
| |
Collapse
|
16
|
Campos N, Castañón S, Urreta I, Santos M, Torné JM. Rice transglutaminase gene: Identification, protein expression, functionality, light dependence and specific cell location. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 205-206:97-110. [PMID: 23498867 DOI: 10.1016/j.plantsci.2013.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/17/2013] [Accepted: 01/21/2013] [Indexed: 05/04/2023]
Abstract
Transglutaminases (TGases), that catalyze post-translational modification of proteins, are scarcely known in plants. As part of a project to characterize transglutaminase genes in new plant species, the identification and characterization of a TGase in rice is presented. Using differential primers, a cDNA (tgo) of 1767bp from genomic rice DNA amplification was obtained. The primers were designed from the rice DNA sequence relatively homologous to the gene encoding active maize chloroplast TGase. Amino acid sequence of the deduced rice TGase protein (TGO) indicated that it contains the enzyme catalytic triad (Cys-His-Asp), three repeats, myristoylation domains and a leucine zipper motif. The TGO recombinant protein was characterized, showing specific activity regulation, and indicating that tgo encoded for an authentic TGase. Substrate preference and Ca(2+) dependent activity were also detected. In the rice plant TGO protein was immunolocalized in the grana chloroplasts, in protein vesicles near them, and in the bulliform cells. Immunoblot analyses, tgo mRNA expression, and TGase activity indicated that TGO expression in rice was light dependent and regulated by the illumination period. This work increases significantly our plant TGase understanding. Its functional role in rice, which is a good model system for C3 plants, is discussed.
Collapse
Affiliation(s)
- N Campos
- Molecular Genetics Department, Centre for Research in Agricultural Genomics: CRAG (Consorci CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | | | | | | | | |
Collapse
|