1
|
Marhaeny HD, Rohmah L, Pratama YA, Kasatu SM, Miatmoko A, Addimaysqi R, van den Bogaart G, Ho FY, Taher M, Khotib J. Shrimp allergen extract immunotherapy induces prolonged immune tolerance in a gastro-food allergy mouse model. PLoS One 2024; 19:e0315312. [PMID: 39729447 DOI: 10.1371/journal.pone.0315312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024] Open
Abstract
Food allergies are a global health problem that continues to grow annually, with a prevalence of more than 10%. Shrimp allergy is the most common and life-threatening allergy. There is no cure for food allergies, but shrimp allergen extract (SAE) offers promise as a treatment through allergen-specific immunotherapy (AIT). However, whether SAE induces immunological tolerance in seafood allergies remains to be established. This study aimed to determine the effectiveness of SAE in inducing immunological tolerance in a gastro-food allergy mouse model. For the immunotherapy evaluation, mice (n = 24) were intraperitoneally (i.p.) sensitized with 1 mg alum and 100 μg SAE in PBS on days 0, 7, and 14 and randomly divided into four groups of six: a negative control (NC) and high- to low-dose immunotherapy (HI, MI, and LI). The untreated group (n = 6) only received 1 mg alum in PBS (i.p.). All groups were challenged with 400 μg SAE (i.g.) on days 21, 22, 23, 53, and 58. Following the challenge, SAE-sensitized mice from the immunotherapy group were treated (i.p.) with 10 μg SAE for LI, 50 μg SAE for MI, and 100 μg SAE for HI on days 32, 39, and 46. The untreated and NC groups only received PBS (i.p.). All mice were euthanized on day 59. As the results, we found that SAE immunotherapy reduced systemic allergy symptom scores, serum IL-4 levels, IL-4 and FcεR1α mRNA relative expression, and mast cell degranulation in ileum tissue in allergic mice while increasing Foxp3 and IL-10 mRNA relative expression. Notably, we observed an increased ratio of IL-10 to IL-4 mRNA expression, demonstrating the efficacy of SAE immunotherapy in promoting desensitization. Thus, SAE can be developed as an immunotherapeutic agent for food allergies by inducing prolonged allergy tolerance with a wide range of allergen targets.
Collapse
Affiliation(s)
- Honey Dzikri Marhaeny
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Lutfiatur Rohmah
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Yusuf Alif Pratama
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Rafi Addimaysqi
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science Engineering, University of Groningen, Groningen, The Netherlands
| | - Franz Y Ho
- GBB Proteomics, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science Engineering, University of Groningen, Groningen, The Netherlands
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Junaidi Khotib
- Department of Pharmacy Practice, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
2
|
Kobiela A, Hewelt-Belka W, Frąckowiak JE, Kordulewska N, Hovhannisyan L, Bogucka A, Etherington R, Piróg A, Dapic I, Gabrielsson S, Brown SJ, Ogg GS, Gutowska-Owsiak D. Keratinocyte-derived small extracellular vesicles supply antigens for CD1a-resticted T cells and promote their type 2 bias in the context of filaggrin insufficiency. Front Immunol 2024; 15:1369238. [PMID: 38585273 PMCID: PMC10995404 DOI: 10.3389/fimmu.2024.1369238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Exosome-enriched small extracellular vesicles (sEVs) are nanosized organelles known to participate in long distance communication between cells, including in the skin. Atopic dermatitis (AD) is a chronic inflammatory skin disease for which filaggrin (FLG) gene mutations are the strongest genetic risk factor. Filaggrin insufficiency affects multiple cellular function, but it is unclear if sEV-mediated cellular communication originating from the affected keratinocytes is also altered, and if this influences peptide and lipid antigen presentation to T cells in the skin. Methods Available mRNA and protein expression datasets from filaggrin-insufficient keratinocytes (shFLG), organotypic models and AD skin were used for gene ontology analysis with FunRich tool. sEVs secreted by shFLG and control shC cells were isolated from conditioned media by differential centrifugation. Mass spectrometry was carried out for lipidomic and proteomic profiling of the cells and sEVs. T cell responses to protein, peptide, CD1a lipid antigens, as well as phospholipase A2-digested or intact sEVs were measured by ELISpot and ELISA. Results Data analysis revealed extensive remodeling of the sEV compartment in filaggrin insufficient keratinocytes, 3D models and the AD skin. Lipidomic profiles of shFLGsEV showed a reduction in the long chain (LCFAs) and polyunsaturated fatty acids (PUFAs; permissive CD1a ligands) and increased content of the bulky headgroup sphingolipids (non-permissive ligands). This resulted in a reduction of CD1a-mediated interferon-γ T cell responses to the lipids liberated from shFLG-generated sEVs in comparison to those induced by sEVs from control cells, and an increase in interleukin 13 secretion. The altered sEV lipidome reflected a generalized alteration in the cellular lipidome in filaggrin-insufficient cells and the skin of AD patients, resulting from a downregulation of key enzymes implicated in fatty acid elongation and desaturation, i.e., enzymes of the ACSL, ELOVL and FADS family. Discussion We determined that sEVs constitute a source of antigens suitable for CD1a-mediated presentation to T cells. Lipids enclosed within the sEVs secreted on the background of filaggrin insufficiency contribute to allergic inflammation by reducing type 1 responses and inducing a type 2 bias from CD1a-restricted T cells, thus likely perpetuating allergic inflammation in the skin.
Collapse
Affiliation(s)
- Adrian Kobiela
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Joanna E. Frąckowiak
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Lilit Hovhannisyan
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
| | - Aleksandra Bogucka
- The Mass Spectrometry Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Rachel Etherington
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Artur Piróg
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Irena Dapic
- International Centre for Cancer Vaccine Science, University of Gdańsk, Gdańsk, Poland
| | - Susanne Gabrielsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sara J. Brown
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Graham S. Ogg
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Danuta Gutowska-Owsiak
- Laboratory of Experimental and Translational Immunology, Intercollegiate Faculty of Biotechnology of the University of Gdańsk and the Medical University of Gdańsk, Gdańsk, Poland
- MRC Human Immunology Unit, NIHR Biomedical Research Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
4
|
Fereydouni M, Motaghed M, Ahani E, Kafri T, Dellinger K, Metcalfe DD, Kepley CL. Harnessing the Anti-Tumor Mediators in Mast Cells as a New Strategy for Adoptive Cell Transfer for Cancer. Front Oncol 2022; 12:830199. [PMID: 35433433 PMCID: PMC9009255 DOI: 10.3389/fonc.2022.830199] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
The emergence of cancer immunotherapies utilizing adoptive cell transfer (ACT) continues to be one of the most promising strategies for cancer treatment. Mast cells (MCs) which occur throughout vascularized tissues, are most commonly associated with Type I hypersensitivity, bind immunoglobin E (IgE) with high affinity, produce anti-cancer mediators such as tumor necrosis factor alpha (TNF-α) and granulocyte macrophage colony-stimulating factor (GM-CSF), and generally populate the tumor microenvironments. Yet, the role of MCs in cancer pathologies remains controversial with evidence for both anti-tumor and pro-tumor effects. Here, we review the studies examining the role of MCs in multiple forms of cancer, provide an alternative, MC-based hypothesis underlying the mechanism of therapeutic tumor IgE efficacy in clinical trials, and propose a novel strategy for using tumor-targeted, IgE-sensitized MCs as a platform for developing new cellular cancer immunotherapies. This autologous MC cancer immunotherapy could have several advantages over current cell-based cancer immunotherapies and provide new mechanistic strategies for cancer therapeutics alone or in combination with current approaches.
Collapse
Affiliation(s)
- Mohammad Fereydouni
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro (UNCG), Greensboro, NC, United States
| | - Mona Motaghed
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Elnaz Ahani
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Tal Kafri
- Gene Therapy Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, Greensboro, NC, United States
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christopher L. Kepley
- Department of Molecular and Cellular Sciences, Liberty University College of Osteopathic Medicine, Lynchburg, VA, United States
- *Correspondence: Christopher L. Kepley,
| |
Collapse
|
5
|
Rossi CM, Lenti MV, Merli S, Santacroce G, Di Sabatino A. Allergic manifestations in autoimmune gastrointestinal disorders. Autoimmun Rev 2021; 21:102958. [PMID: 34560305 DOI: 10.1016/j.autrev.2021.102958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 12/14/2022]
Abstract
Allergic disorders target a young population, are increasing in both incidence and prevalence and are associated with significant disease burden. They result from the complex interplay between (epi)genetic and environmental factors, resulting in a Th2 inflammatory process targeting the epithelium of the respiratory tract (allergic rhinitis and asthma), skin (atopic dermatitis), and gastrointestinal tract (food allergy). Although the exact pathogenic mechanisms remain elusive, an altered immune system response in the gut is increasingly recognized as a relevant step. Allergic and gastrointestinal autoimmune disorders share several epidemiological, pathogenic and risk factors and several treatment modalities. Here we revise the current literature and show that allergic disorders are highly prevalent in gastrointestinal autoimmune diseases, including celiac disease, inflammatory bowel disease, autoimmune pancreatitis, and autoimmune cholangiopathies. No data are available for some autoimmune diseases, such as autoimmune gastritis and autoimmune enteropathy. To ensure the comprehensive care of patients with autoimmune gastrointestinal disorders, along with disease-specific factors, the presence of allergic disorders should be evaluated and treated when present, possibly targeting shared molecular pathways. Future studies are needed to define the exact pathogenic mechanisms underpinning the association between allergic and autoimmune diseases of the gastrointestinal tract.
Collapse
Affiliation(s)
- Carlo Maria Rossi
- Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Marco Vincenzo Lenti
- Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Stefania Merli
- Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Giovanni Santacroce
- Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, Italy.
| |
Collapse
|
6
|
Konnikova L, Robinson TO, Owings AH, Shirley JF, Davis E, Tang Y, Wall S, Li J, Hasan MH, Gharaibeh RZ, Mendoza Alvarez LB, Ryan LK, Doty A, Chovanec JF, O'Connell MP, Grunes DE, Daley WP, Mayer E, Chang L, Liu J, Snapper SB, Milner JD, Glover SC, Lyons JJ. Small intestinal immunopathology and GI-associated antibody formation in hereditary alpha-tryptasemia. J Allergy Clin Immunol 2021; 148:813-821.e7. [PMID: 33865872 DOI: 10.1016/j.jaci.2021.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hereditary alpha-tryptasemia (HαT) is characterized by elevated basal serum tryptase due to increased copies of the TPSAB1 gene. Individuals with HαT frequently present with multisystem complaints, including anaphylaxis and seemingly functional gastrointestinal (GI) symptoms. OBJECTIVE We sought to determine the prevalence of HαT in an irritable bowel syndrome cohort and associated immunologic characteristics that may distinguish patients with HαT from patients without HαT. METHODS Tryptase genotyping by droplet digital PCR, flow cytometry, cytometry by time-of-flight, immunohistochemistry, and other molecular biology techniques was used. RESULTS HαT prevalence in a large irritable bowel syndrome cohort was 5% (N = 8/158). Immunophenotyping of HαT PBMCs (N ≥ 27) revealed increased total and class-switched memory B cells. In the small bowel, expansion of tissue mast cells with expression of CD203c, HLA-DR, and FcεRI, higher intestinal epithelial cell pyroptosis, and increased class-switched memory B cells were observed. IgG profiles in sera from individuals with HαT (N = 21) significantly differed from those in individuals with quiescent Crohn disease (N = 20) and non-HαT controls (N = 19), with increased antibodies directed against GI-associated proteins identified in individuals with HαT. CONCLUSIONS Increased mast cell number and intestinal epithelial cell pyroptosis in the small intestine, and class-switched memory B cells in both the gut and peripheral blood associated with IgG reactive to GI-related proteins, distinguish HαT from functional GI disease. These innate and adaptive immunologic findings identified in association with HαT are suggestive of subclinical intestinal inflammation in symptomatic individuals.
Collapse
Affiliation(s)
- Liza Konnikova
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Children's Hospital of UPMC, Pittsburgh, Pa; Department of Pediatrics, Yale University School of Medicine, New Haven, Conn
| | - Tanya O Robinson
- Division of Digestive Diseases, Department of Medicine, University of Mississippi Medical Center, Jackson, Miss
| | - Anna H Owings
- Division of Digestive Diseases, Department of Medicine, University of Mississippi Medical Center, Jackson, Miss
| | - James F Shirley
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, Fla
| | - Elisabeth Davis
- Division of Gastroenterology, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Ark
| | - Ying Tang
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, Fla; Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Mass
| | - Sarah Wall
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Mass
| | - Jian Li
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, Fla
| | - Mohammad H Hasan
- Division of Digestive Diseases, Department of Medicine, University of Mississippi Medical Center, Jackson, Miss
| | - Raad Z Gharaibeh
- Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, Fla
| | - Lybil B Mendoza Alvarez
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Florida, Gainesville, Fla
| | - Lisa K Ryan
- Division of Infectious Disease, Department of Medicine, University of Florida, Gainesville, Fla
| | - Andria Doty
- Interdisciplinary Center for Biotechnology Research Cytometry Core, University of Florida, Gainesville, Fla
| | - Jack F Chovanec
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael P O'Connell
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Dianne E Grunes
- Department of Pathology, University of Mississippi Medical Center, Jackson, Miss
| | - William P Daley
- Department of Pathology, University of Mississippi Medical Center, Jackson, Miss
| | - Emeran Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA, Los Angeles, Calif
| | - Lin Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, UCLA, Los Angeles, Calif
| | - Julia Liu
- Morehouse School of Medicine, Atlanta, Ga
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, Mass
| | - Joshua D Milner
- Division of Allergy, Immunology and Rheumatology, Columbia University Medical Center, New York, NY
| | - Sarah C Glover
- Division of Digestive Diseases, Department of Medicine, University of Mississippi Medical Center, Jackson, Miss; Division of Gastroenterology, Department of Medicine, University of Florida, Gainesville, Fla.
| | - Jonathan J Lyons
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
7
|
Ramaswamy AT, No JS, Anderson L, Solomon A, Ciecierega T, Barfield E, Chien K, Schnoll‐Sussman F, Reisacher WR. Esophageal IgE, IgG4, and mucosal eosinophilia in individuals with dysphagia. Int Forum Allergy Rhinol 2019; 9:870-875. [DOI: 10.1002/alr.22339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/25/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Apoorva T. Ramaswamy
- Department of Otolaryngology–Head and Neck SurgeryWeill Cornell Medical College New York NY
| | | | | | - Aliza Solomon
- Department of Pediatric GastroenterologyWeill Cornell Medical College New York NY
| | - Thomas Ciecierega
- Department of Pediatric GastroenterologyWeill Cornell Medical College New York NY
| | - Elaine Barfield
- Department of Pediatric GastroenterologyWeill Cornell Medical College New York NY
| | - Kimberly Chien
- Department of Pediatric GastroenterologyWeill Cornell Medical College New York NY
| | | | - William R. Reisacher
- Department of Otolaryngology–Head and Neck SurgeryWeill Cornell Medical College New York NY
| |
Collapse
|
8
|
Sayyaf Dezfuli B, Giari L, Lorenzoni M, Carosi A, Manera M, Bosi G. Pike intestinal reaction to Acanthocephalus lucii (Acanthocephala): immunohistochemical and ultrastructural surveys. Parasit Vectors 2018; 11:424. [PMID: 30012189 PMCID: PMC6048848 DOI: 10.1186/s13071-018-3002-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/06/2018] [Indexed: 12/28/2022] Open
Abstract
Background The Northern pike, Esox lucius, is a large, long-lived, top-predator fish species and occupies a broad range of aquatic environments. This species is on its way to becoming an important model organism and has the potential to contribute new knowledge and a better understanding of ecology and evolutionary biology. Very few studies have been done on the intestinal pathology of pike infected with helminths. The present study details the first Italian record of adult Acanthocephalus lucii reported in the intestine of E. lucius. Results A total of 22 pike from Lake Piediluco (Central Italy) were examined, of which 16 (72.7%) were infected with A. lucii. The most affected areas of gastrointestinal tract were the medium and distal intestine. The intensity of infection ranged from 1 to 18 parasites per host. Acanthocephalus lucii penetrated mucosal and submucosal layers which had a high number of mast cells (MCs) with an intense degranulation. The cellular elements involved in the immune response within the intestine of pike were assessed by ultrastructural techniques and immunohistochemistry using antibodies against met-enkephalin, immunoglobulin E (IgE)-like receptor (FCεRIγ), histamine, interleukin-6, interleukin-1β, substance P, lysozyme, serotonin, inducible-nitric oxide synthase (i-NOS), tumor necrosis factor-α (TNF-α) and the antimicrobial peptide piscidin 3 (P3). In intestines of the pike, several MCs were immunopositive to 9 out of the 11 aforementioned antibodies and infected fish had a higher number of positive MCs when compared to uninfected fish. Conclusions Pike intestinal tissue response to A. lucii was documented. Numerous MCs were seen throughout the mucosa and submucosal layers. In infected and uninfected intestines of pike, MCs were the dominant immune cell type encountered; they are the most common granulocyte type involved in several fish-helminth systems. Immunopositivity of MCs to 9 out of 11 antibodies is of great interest and these cells could play an important key role in the host response to an enteric helminth. This is the first report of A. lucii in an Italian population of E. lucius and the first account on positivity of MCs to piscidin 3 and histamine in a non-perciform fish.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123, Perugia, Italy
| | - Antonella Carosi
- Department of Cellular and Environmental Biology, University of Perugia, St. Elce di sotto 5, 06123, Perugia, Italy
| | - Maurizio Manera
- Faculty of Biosciences, Agro-Alimentary and Environmental Technologies, University of Teramo, St. Crispi 212, I-64100, Teramo, Italy
| | - Giampaolo Bosi
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Qiu ZQ, Han B, Zhang ZQ, Wang X, Li LS, Xu JD. Biological characteristics of intestinal IgE and gut diseases. Shijie Huaren Xiaohua Zazhi 2018; 26:110-119. [DOI: 10.11569/wcjd.v26.i2.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin E (IgE), a crucial protective substance for the intestinal tract, plays an important role in gut immunity. IgE is secreted by plasma cells in the submucosal lamina propria upon antigenic invasion and, together with certain cytokines and immune cells, is involved in the regulation of gastrointestinal immunity in normal or abnormal conditions via the high affinity IgE receptor (FcεR I) and low affinity IgE receptor (CD23+). In this paper, we review the structure, synthetic transport, secretory regulation, receptor classification, and function of intestinal IgE as well as the related gut diseases.
Collapse
Affiliation(s)
- Zhi-Qiang Qiu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Bo Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Zi-Qing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xue Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Li-Sheng Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Mudde ACA, Lexmond WS, Blumberg RS, Nurko S, Fiebiger E. Eosinophilic esophagitis: published evidences for disease subtypes, indications for patient subpopulations, and how to translate patient observations to murine experimental models. World Allergy Organ J 2016; 9:23. [PMID: 27458501 PMCID: PMC4947322 DOI: 10.1186/s40413-016-0114-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/01/2016] [Indexed: 02/06/2023] Open
Abstract
Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder of the esophagus and commonly classified as a Th2-type allergy. Major advances in our understanding of the EoE pathophysiology have recently been made, but clinicians struggle with highly unpredictable therapy responses indicative of phenotypic diversity within the patient population. Here, we summarize evidences for the existence of EoE subpopulations based on diverse inflammatory characteristics of the esophageal tissue in EoE. Additionally, clinical characteristics of EoE patients support the concept of disease subtypes. We conclude that clinical and experimental evidences indicate that EoE is an umbrella term for conditions that are unified by esophageal eosinophilia but that several disease subgroups with various inflammatory esophageal patterns and/or different clinical features exist. We further discuss strategies to study the pathophysiologic differences as observed in EoE patients in murine experimental EoE. Going forward, models of EoE that faithfully mimic EoE subentities as defined in humans will be essential because mechanistic studies on triggers which regulate the onset of diverse EoE subpopulations are not feasible in patients. Understanding how and why different EoE phenotypes develop will be a first and fundamental step to establish strategies that integrate individual variations of the EoE pathology into personalized therapy.
Collapse
Affiliation(s)
- Anne C A Mudde
- Department of Medicine, Harvard Medical School, and Division of Gastroenterology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Willem S Lexmond
- Department of Medicine, Harvard Medical School, and Division of Gastroenterology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA USA
| | - Samuel Nurko
- Department of Medicine, Harvard Medical School, and Division of Gastroenterology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA ; Center for Motility and Functional Gastrointestinal Disorders, Boston, MA USA ; Eosinophilic Gastrointestinal Disease Center, Boston Children's Hospital, Boston, MA USA
| | - Edda Fiebiger
- Department of Medicine, Harvard Medical School, and Division of Gastroenterology and Nutrition, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
11
|
Tulic MK, Vivinus-Nébot M, Rekima A, Rabelo Medeiros S, Bonnart C, Shi H, Walker A, Dainese R, Boyer J, Vergnolle N, Piche T, Verhasselt V. Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Gut 2016; 65:757-66. [PMID: 26646935 DOI: 10.1136/gutjnl-2015-310523] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/05/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Abnormal gut barrier function is the basis of gut inflammatory disease. It is known that house dust mite (HDM) aero-allergens induce inflammation in respiratory mucosa. We have recently reported allergen from Dermatophagoides pteronyssinus (Der p1) to be present in rodent gut. OBJECTIVE To examine whether Der p1 is present in human gut and to assess its effect on gut barrier function and inflammation. DESIGN Colonic biopsies, gut fluid, serum and stool were collected from healthy adults during endoscopy. Der p1 was measured by ELISA. Effect of HDM was assessed on gut permeability, tight-junction and mucin expression, and cytokine production, in presence or absence of cysteine protease inhibitors or serine protease inhibitors. In vivo effect of HDM was examined in mice given oral HDM or protease-neutralised HDM. Role of HDM in low-grade inflammation was studied in patients with IBS. RESULTS HDM Der p1 was detected in the human gut. In colonic biopsies from healthy patients, HDM increased epithelial permeability (p<0.001), reduced expression of tight-junction proteins and mucus barrier. These effects were associated with increased tumour necrosis factor (TNF)-α and interleukin (IL)-10 production and were abolished by cysteine-protease inhibitor (p<0.01). HDM effects did not require Th2 immunity. Results were confirmed in vivo in mice. In patients with IBS, HDM further deteriorated gut barrier function, induced TNF-α but failed to induce IL-10 secretion (p<0.001). CONCLUSIONS HDM, a ubiquitous environmental factor, is present in the human gut where it directly affects gut function through its proteolytic activity. HDM may be an important trigger of gut dysfunction and warrants further investigation.
Collapse
Affiliation(s)
- Meri K Tulic
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France The International Inflammation 'in-FLAME' Network, Worldwide Universities Network
| | - Mylene Vivinus-Nébot
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Immunology, Hôpital Archet 1, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Akila Rekima
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France
| | - Samara Rabelo Medeiros
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chrystelle Bonnart
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France CNRS, U5282, Toulouse, France Université de Toulouse, Site Paul Sabatier (UPS), Toulouse, France
| | - Haining Shi
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Raffaella Dainese
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Gastroenterology and Nutrition, Hôpital Archet 2, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Julien Boyer
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Gastroenterology and Nutrition, Hôpital Archet 2, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Nathalie Vergnolle
- INSERM U1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France CNRS, U5282, Toulouse, France Université de Toulouse, Site Paul Sabatier (UPS), Toulouse, France
| | - Thierry Piche
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France Department of Gastroenterology and Nutrition, Hôpital Archet 2, CHU de Nice, Université de Nice Sophia-Antipolis, Nice, France
| | - Valérie Verhasselt
- Université de Nice Sophia-Antipolis, EA 6302 Immune Tolerance (TIM), Nice, France The International Inflammation 'in-FLAME' Network, Worldwide Universities Network
| |
Collapse
|
12
|
Lexmond WS, Hu L, Pardo M, Heinz N, Rooney K, LaRosa J, Dehlink E, Fiebiger E, Nurko S. Accuracy of digital mRNA profiling of oesophageal biopsies as a novel diagnostic approach to eosinophilic oesophagitis. Clin Exp Allergy 2016; 45:1317-1327. [PMID: 25728460 DOI: 10.1111/cea.12523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/14/2015] [Accepted: 02/15/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Quantification of tissue eosinophils remains the golden standard in diagnosing eosinophilic oesophagitis (EoE), but this approach suffers from poor specificity. It has been recognized that histopathological changes that occur in patients with EoE are associated with a disease-specific tissue transcriptome. OBJECTIVE We hypothesized that digital mRNA profiling targeted at a set of EoE-specific and Th2 inflammatory genes in oesophageal biopsies could help differentiate patients with EoE from those with reflux oesophagitis (RE) or normal tissue histology (NH). METHODS The mRNA expression levels of 79 target genes were defined in both proximal and distal biopsies of 196 patients with nCounter® (Nanostring) technology. According to clinicopathological diagnosis, these patients were grouped in a training set (35 EoE, 30 RE, 30 NH) for building of a three-class prediction model using the random forest method, and a blinded predictive set (n = 47) for model validation. RESULTS A diagnostic model built on ten differentially expressed genes was able to differentiate with 100% sensitivity and specificity between conditions in the training set. In a blinded predictive set, this model was able to correctly predict EoE in 14 of 18 patients in distal (sensitivity 78%, 95% CI 52-93%) and 16 of 18 patients in proximal biopsies (sensitivity 89%, 95% CI 64-98%), without false-positive diagnosis of EoE in RE or NH patients (specificity 100%, 95% CI 85-100%). Sensitivity was increased to 94% (95% CI 71-100%) when either the best predictive distal or proximal biopsy was used. CONCLUSION AND CLINICAL RELEVANCE We conclude that mRNA profiling of oesophageal tissue is an accurate diagnostic strategy in detecting EoE.
Collapse
Affiliation(s)
- Willem S Lexmond
- Division of Gastroenterology and Nutrition, Center for Motility and Functional Gastrointestinal Disorders, and Eosinophilic Gastrointestinal Disease Center Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts
| | - Lan Hu
- Center for Cancer Computational Biology, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute; Boston, Massachusetts
| | - Michael Pardo
- Division of Gastroenterology and Nutrition, Center for Motility and Functional Gastrointestinal Disorders, and Eosinophilic Gastrointestinal Disease Center Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts
| | - Nicole Heinz
- Division of Gastroenterology and Nutrition, Center for Motility and Functional Gastrointestinal Disorders, and Eosinophilic Gastrointestinal Disease Center Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts
| | - Katharine Rooney
- Division of Gastroenterology and Nutrition, Center for Motility and Functional Gastrointestinal Disorders, and Eosinophilic Gastrointestinal Disease Center Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts
| | - Jessica LaRosa
- Division of Gastroenterology and Nutrition, Center for Motility and Functional Gastrointestinal Disorders, and Eosinophilic Gastrointestinal Disease Center Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts
| | - Eleonora Dehlink
- Division of Gastroenterology and Nutrition, Center for Motility and Functional Gastrointestinal Disorders, and Eosinophilic Gastrointestinal Disease Center Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts
| | - Edda Fiebiger
- Division of Gastroenterology and Nutrition, Center for Motility and Functional Gastrointestinal Disorders, and Eosinophilic Gastrointestinal Disease Center Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts
| | - Samuel Nurko
- Division of Gastroenterology and Nutrition, Center for Motility and Functional Gastrointestinal Disorders, and Eosinophilic Gastrointestinal Disease Center Boston Children's Hospital and Harvard Medical School; Boston, Massachusetts
| |
Collapse
|
13
|
Davis BP, Rothenberg ME. Mechanisms of Disease of Eosinophilic Esophagitis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:365-93. [PMID: 26925500 DOI: 10.1146/annurev-pathol-012615-044241] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eosinophilic esophagitis (EoE) is a recently recognized inflammatory disease of the esophagus with clinical symptoms derived from esophageal dysfunction. The etiology of EoE is now being elucidated, and food hypersensitivity is emerging as the central cornerstone of disease pathogenesis. Herein, we present a thorough picture of the current clinical, pathologic, and molecular understanding of the disease with a focus on disease mechanisms.
Collapse
Affiliation(s)
- Benjamin P Davis
- Division of Immunology, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242;
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229;
| |
Collapse
|
14
|
Reisacher WR. Local IgE and the Future of Allergy Care. CURRENT OTORHINOLARYNGOLOGY REPORTS 2015. [DOI: 10.1007/s40136-015-0085-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Platzer B, Baker K, Vera MP, Singer K, Panduro M, Lexmond WS, Turner D, Vargas SO, Kinet JP, Maurer D, Baron RM, Blumberg RS, Fiebiger E. Dendritic cell-bound IgE functions to restrain allergic inflammation at mucosal sites. Mucosal Immunol 2015; 8:516-32. [PMID: 25227985 PMCID: PMC4363306 DOI: 10.1038/mi.2014.85] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/11/2014] [Indexed: 02/04/2023]
Abstract
Antigen-mediated cross-linking of Immunoglobulin E (IgE) bound to mast cells/basophils via FcɛRI, the high affinity IgE Fc-receptor, is a well-known trigger of allergy. In humans, but not mice, dendritic cells (DCs) also express FcɛRI that is constitutively occupied with IgE. In contrast to mast cells/basophils, the consequences of IgE/FcɛRI signals for DC function remain poorly understood. We show that humanized mice that express FcɛRI on DCs carry IgE like non-allergic humans and do not develop spontaneous allergies. Antigen-specific IgE/FcɛRI cross-linking fails to induce maturation or production of inflammatory mediators in human DCs and FcɛRI-humanized DCs. Furthermore, conferring expression of FcɛRI to DCs decreases the severity of food allergy and asthma in disease-relevant models suggesting anti-inflammatory IgE/FcɛRI signals. Consistent with the improved clinical parameters in vivo, antigen-specific IgE/FcɛRI cross-linking on papain or lipopolysaccharide-stimulated DCs inhibits the production of pro-inflammatory cytokines and chemokines. Migration assays confirm that the IgE-dependent decrease in cytokine production results in diminished recruitment of mast cell progenitors; providing a mechanistic explanation for the reduced mast cell-dependent allergic phenotype observed in FcɛRI-humanized mice. Our study demonstrates a novel immune regulatory function of IgE and proposes that DC-intrinsic IgE signals serve as a feedback mechanism to restrain allergic tissue inflammation.
Collapse
Affiliation(s)
- Barbara Platzer
- Division of Gastroenterology and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Kristi Baker
- Division of Gastroenterology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Miguel Pinilla Vera
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen Singer
- Division of Gastroenterology and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Marisella Panduro
- Division of Gastroenterology and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Willem S. Lexmond
- Division of Gastroenterology and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Devin Turner
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Sara O. Vargas
- Departments of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jean-Pierre Kinet
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Dieter Maurer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Edda Fiebiger
- Division of Gastroenterology and Nutrition, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
The role of FcεRI expressed in dendritic cells and monocytes. Cell Mol Life Sci 2015; 72:2349-60. [PMID: 25715742 DOI: 10.1007/s00018-015-1870-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 01/23/2023]
Abstract
Early studies regarding the function of FcεRI in dendritic cells (DCs) and monocytes have focused on its role in mediating inflammatory signaling and enhancing T cell immunity. It has been the case in part because FcεRI is the major receptor that mediates allergic inflammatory signaling in mast cells and basophils and because DCs and monocytes are antigen presenting cells capable of activating naïve and/or effector T cells. These studies have led to the general belief that FcεRI-mediated DC signaling and antigen presentation promote development and activation of Th2 cells and contribute to allergic inflammatory diseases. However, this belief has long suffered from a lack of evidence. Recently, studies have emerged that provide evidence supporting an opposing role: that FcεRI on DCs instead promotes immune homeostasis and regulation. In this review, we will update the current status of our understanding of FcεRI biology and function, with a specific focus on DCs and monocytes.
Collapse
|
17
|
|
18
|
Greer AM, Matthay MA, Kukreja J, Bhakta NR, Nguyen CP, Wolters PJ, Woodruff PG, Fahy JV, Shin JS. Accumulation of BDCA1⁺ dendritic cells in interstitial fibrotic lung diseases and Th2-high asthma. PLoS One 2014; 9:e99084. [PMID: 24915147 PMCID: PMC4051692 DOI: 10.1371/journal.pone.0099084] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 04/09/2014] [Indexed: 01/03/2023] Open
Abstract
Dendritic cells (DCs) significantly contribute to the pathology of several mouse lung disease models. However, little is known of the contribution of DCs to human lung diseases. In this study, we examined infiltration with BDCA1+ DCs of human lungs in patients with interstitial lung diseases or asthma. Using flow cytometry, we found that these DCs increased by 5∼6 fold in the lungs of patients with idiopathic pulmonary fibrosis or hypersensitivity pneumonitis, which are both characterized by extensive fibrosis in parenchyma. The same DC subset also significantly increased in the lung parenchyma of patients with chronic obstructive pulmonary disease, although the degree of increase was relatively modest. By employing immunofluorescence microscopy using FcεRI and MHCII as the specific markers for BDCA1+ DCs, we found that the numbers of BDCA1+ DCs also significantly increased in the airway epithelium of Th2 inflammation-associated asthma. These findings suggest a potential contribution of BDCA1+ DCs in human lung diseases associated with interstitial fibrosis or Th2 airway inflammation.
Collapse
Affiliation(s)
- Alexandra M. Greer
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, California, United States of America
| | - Michael A. Matthay
- Department of Medicine and Anesthesia, University of California San Francisco, San Francisco, California, United States of America
| | - Jasleen Kukreja
- Division of Cardiothoracic Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Nirav R. Bhakta
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Christine P. Nguyen
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Paul J. Wolters
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - John V. Fahy
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
Eosinophilic esophagitis is rapidly increasing in incidence. It is associated with food antigen-triggered, eosinophil-predominant inflammation, and the pathogenic mechanisms have many similarities to other chronic atopic diseases. Studies in animal models and from patients have suggested that allergic sensitization leads to food-specific IgE and T-helper lymphocyte type 2 cells, both of which seem to contribute to the pathogenesis along with basophils, mast cells, and antigen-presenting cells. In this review our current understandings of the allergic mechanisms that drive eosinophilic esophagitis are outlined, drawing from clinical and translational studies in humans as well as experimental animal models.
Collapse
|
20
|
Sherrill JD, KC K, Wu D, Djukic Z, Caldwell JM, Stucke EM, Kemme KA, Costello MS, Mingler MK, Blanchard C, Collins MH, Abonia JP, Putnam PE, Dellon ES, Orlando RC, Hogan SP, Rothenb ME. Desmoglein-1 regulates esophageal epithelial barrier function and immune responses in eosinophilic esophagitis. Mucosal Immunol 2014; 7:718-29. [PMID: 24220297 PMCID: PMC3999291 DOI: 10.1038/mi.2013.90] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/06/2013] [Indexed: 02/06/2023]
Abstract
The desmosomal cadherin desmoglein-1 (DSG1) is an essential intercellular adhesion molecule that is altered in various human cutaneous disorders; however, its regulation and function in allergic disease remains unexplored. Herein, we demonstrate a specific reduction in DSG1 in esophageal biopsies from patients with eosinophilic esophagitis (EoE), an emerging allergic disorder characterized by chronic inflammation within the esophageal mucosa. Further, we show that DSG1 gene silencing weakens esophageal epithelial integrity, and induces cell separation and impaired barrier function (IBF) despite high levels of desmoglein-3. Moreover, DSG1 deficiency induces transcriptional changes that partially overlap with the transcriptome of inflamed esophageal mucosa; notably, periostin (POSTN), a multipotent pro-inflammatory extracellular matrix molecule, is the top induced overlapping gene. We further demonstrate that IBF is a pathological feature in EoE, which can be partially induced through the downregulation of DSG1 by interleukin-13 (IL-13). Taken together, these data identify a functional role for DSG1 and its dysregulation by IL-13 in the pathophysiology of EoE and suggest that the loss of DSG1 may potentiate allergic inflammation through the induction of pro-inflammatory mediators such as POSTN.
Collapse
Affiliation(s)
- J D Sherrill
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - K KC
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - D Wu
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - Z Djukic
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545, USA
| | - J M Caldwell
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - E M Stucke
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - K A Kemme
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - M S Costello
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - M K Mingler
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - C Blanchard
- Nutrition and Health Department, Nestlé Research Centre, 1000 Lausanne, Switzerland
| | - M H Collins
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - J P Abonia
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - P E Putnam
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | - E S Dellon
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545, USA
| | - R C Orlando
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545, USA,Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7545, USA
| | - S P Hogan
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3026, USA
| | | |
Collapse
|
21
|
Ryan JJ. Too much of a good thing: beta-chain overexpression blocks FcεRI signalling by capturing Lyn in the cytosol. Clin Exp Allergy 2014; 44:154-6. [PMID: 24447079 DOI: 10.1111/cea.12248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|