1
|
Pougoue Ketchemen J, Njotu FN, Babeker H, Monzer A, Nwangele E, Tikum AF, Henning N, Hassani N, Frye S, Perron R, Byrne C, Didychuk C, Qi Q, Bannister L, Doroudi A, Fonge H. Complete Remissions of HER2-Positive Trastuzumab-Resistant Xenografts Using a Potent [225Ac]Ac-Labeled Anti-HER2 Antibody-Drug Radioconjugate. Clin Cancer Res 2025; 31:685-696. [PMID: 39670857 DOI: 10.1158/1078-0432.ccr-24-1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
PURPOSE There is overwhelming interest to use actinium-225 ([225Ac]Ac) to develop targeted α therapies. Antibody-drug conjugates (ADC) are highly cytotoxic. Combining [225Ac]Ac with an ADC to develop an antibody-drug radioconjugate [225Ac]Ac-macropa-trastuzumab(T)-PEG6-emtansine (DM1), is expected to be more effective than its ADC (T-PEG6-DM1) against breast cancer. EXPERIMENTAL DESIGN [89Zr]Zr-p-isothiocyanatobenzyl desferrioxamine (DFO)-T-PEG6-DM1 (imaging) and [225Ac]Ac-macropa-T-PEG6-DM1 (radiotherapy) were developed. Biodistribution and safety evaluations of [225Ac]Ac-macropa-T-PEG6-DM1 were carried out in non-tumor-bearing BALB/c mice. MicroPET imaging and biodistribution were done using [89Zr]Zr-DFO-T-PEG6-DM1, and radiotherapy using [225Ac]Ac-macropa-T-PEG6-DM1 was carried out in athymic BALB/c nude mice bearing trastuzumab-resistant HCC1954 and trastuzumab-DM1 (T-DM1)/trastuzumab-resistant JIMT-1 tumor-bearing mice. RESULTS After 7 days of incubation at 37°C, [225Ac]Ac-macropa-T-PEG6-DM1 was stable in both human serum (89.2% ± 0.9%) and PBS (82.8% ± 0.4%). T-PEG6-DM1 (8 mg/kg) and [225Ac]Ac-macropa-T-PEG6-DM1 (3 × 18 kBq) administered separately in non-tumor-bearing mice 10 days apart were well tolerated biochemically and hematologically. Imaging and biodistribution showed high tumor uptake of [89Zr]Zr-DFO-T-PEG6-DM1 in tumor-bearing mice at 120 hours after injection: 38.1% ± 2.8% IA/g (HCC1954) and 14.6% ± 1% IA/g (JIMT-1). In HCC1954 tumor-bearing mice, all treatment groups had complete remission (8/8), indicative of the responsiveness of the xenograft to T-DM1-based treatments, whereas for JIMT-1 xenografts (having 1/8 complete remission) at 23 days after treatment, tumor volumes were 332.1 ± 77.5 vs. 244.6 ± 63 vs. 417.9 ± 62.1 vs. 102.4 ± 18.5 for the saline (negative control), T-DM1 (positive control), T-PEG6-DM1, and [225Ac]Ac-macropa-T-PEG6-DM1, respectively. CONCLUSIONS [225Ac]Ac-macropa-T-PEG6-DM1 is more potent than ADC against trastuzumab-resistant breast cancer and necessitates clinical translation.
Collapse
Affiliation(s)
- Jessica Pougoue Ketchemen
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, Canada
| | - Fabrice Ngoh Njotu
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Hanan Babeker
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Alissar Monzer
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Emmanuel Nwangele
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Anjong Florence Tikum
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Nikita Henning
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Nava Hassani
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Sarah Frye
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Randy Perron
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Chris Byrne
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Candice Didychuk
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Qi Qi
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Laura Bannister
- Canadian Nuclear Laboratories, Radiobiology and Health Branch, Chalk River, Canada
| | - Alireza Doroudi
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Humphrey Fonge
- Department of Medical Imaging, College of Medicine, University of Saskatchewan, Saskatoon, Canada
- Axe Oncologie, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Department of Medical Imaging, Royal University Hospital Saskatoon, Saskatoon, Canada
| |
Collapse
|
2
|
Woods JJ, Rigby A, Wacker JN, Arino T, Alvarenga Vasquez JV, Cosby A, Martin KE, Abergel RJ. Synthesis and Evaluation of a Bifunctional Chelator for Thorium-227 Targeted Radiotherapy. J Med Chem 2025; 68:1682-1692. [PMID: 39752149 DOI: 10.1021/acs.jmedchem.4c02423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Thorium-227 (227Th) is an α-emitting radionuclide currently under investigation for targeted alpha therapy. Available chelators used for this isotope suffer from challenging multistep syntheses. Here, we present the synthesis and preclinical evaluation of a novel bifunctional chelator, p-SCN-Bn-DOTHOPO, which contains an isothiocyanate group that is suitable for conjugation to biological molecules. This bifunctional chelator was prepared with a 26% overall yield in four steps and conjugated to the human epidermal growth factor receptor 2 targeting antibody, trastuzumab. The resulting immunoconjugate was labeled with [227Th]ThIV (pH 5.5, room temperature, 60 min) with ≥95% radiochemical yield and purity. The conjugate was also labeled with zirconium-89 (89Zr), which can be used for positron emission tomography imaging. The radiometal complexes were subsequently investigated for their biological stability. The results described here provide insight into ligand design strategies and optimization of chelators for the development of the next generation of 89Zr and 227Th radiopharmaceuticals.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alex Rigby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trevor Arino
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | | | - Alexia Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kirsten E Martin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Bergeron DE, Cessna JT, Broder BA, Pibida L, Fitzgerald RP, DiGiorgio M, Napoli E, Zimmerman BE. Activity standard and calibrations for 227Th with ingrowing progeny. Appl Radiat Isot 2024; 209:111326. [PMID: 38701595 DOI: 10.1016/j.apradiso.2024.111326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/10/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Thorium-227 was separated from its progeny and standardized for activity by the triple-to-double coincidence ratio (TDCR) method of liquid scintillation counting. Confirmatory liquid scintillation-based measurements were made using efficiency tracing with 3H and live-timed anticoincidence counting (LTAC). The separation time and the efficiency of the separation were confirmed by gamma-ray spectrometry. Calibrations for reentrant pressurized ionization chambers, including commercial radionuclide calibrators, and a well-type NaI(Tl) detector are discussed.
Collapse
Affiliation(s)
- Denis E Bergeron
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Jeffrey T Cessna
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Brittany A Broder
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Leticia Pibida
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Ryan P Fitzgerald
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Morgan DiGiorgio
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | - Brian E Zimmerman
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
4
|
Bidkar AP, Zerefa L, Yadav S, VanBrocklin HF, Flavell RR. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics 2024; 14:2969-2992. [PMID: 38773983 PMCID: PMC11103494 DOI: 10.7150/thno.96403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Targeted alpha particle therapy (TAT) has emerged as a promising strategy for the treatment of prostate cancer (PCa). Actinium-225 (225Ac), a potent alpha-emitting radionuclide, may be incorporated into targeting vectors, causing robust and in some cases sustained antitumor responses. The development of radiolabeling techniques involving EDTA, DOTA, DOTPA, and Macropa chelators has laid the groundwork for advancements in this field. At the forefront of clinical trials with 225Ac in PCa are PSMA-targeted TAT agents, notably [225Ac]Ac-PSMA-617, [225Ac]Ac-PSMA-I&T and [225Ac]Ac-J591. Ongoing investigations spotlight [225Ac]Ac-hu11B6, [225Ac]Ac-YS5, and [225Ac]Ac-SibuDAB, targeting hK2, CD46, and PSMA, respectively. Despite these efforts, hurdles in 225Ac production, daughter redistribution, and a lack of suitable imaging techniques hinder the development of TAT. To address these challenges and additional advantages, researchers are exploring alpha-emitting isotopes including 227Th, 223Ra, 211At, 213Bi, 212Pb or 149Tb, providing viable alternatives for TAT.
Collapse
Affiliation(s)
- Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Surekha Yadav
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA-94107, USA
| |
Collapse
|
5
|
Metebi A, Kauffman N, Xu L, Singh SK, Nayback C, Fan J, Johnson N, Diemer J, Grimm T, Zamiara M, Zinn KR. Pb-214/Bi-214-TCMC-Trastuzumab inhibited growth of ovarian cancer in preclinical mouse models. Front Chem 2024; 11:1322773. [PMID: 38333550 PMCID: PMC10850308 DOI: 10.3389/fchem.2023.1322773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024] Open
Abstract
Introduction: Better treatments for ovarian cancer are needed to eliminate residual peritoneal disease after initial debulking surgery. The present study evaluated Trastuzumab to deliver Pb-214/Bi-214 for targeted alpha therapy (TAT) for HER2-positive ovarian cancer in mouse models of residual disease. This study is the first report of TAT using a novel Radon-222 generator to produce short-lived Lead-214 (Pb-214, t1/2 = 26.8 min) in equilibrium with its daughter Bismuth-214 (Bi-214, t1/2 = 19.7 min); referred to as Pb-214/Bi-214. In this study, Pb-214/Bi-214-TCMC-Trastuzumab was tested. Methods: Trastuzumab and control IgG antibody were conjugated with TCMC chelator and radiolabeled with Pb-214/Bi-214 to yield Pb-214/Bi-214-TCMC-Trastuzumab and Pb-214/Bi-214-TCMC-IgG1. The decay of Pb-214/Bi-214 yielded α-particles for TAT. SKOV3 and OVAR3 human ovarian cancer cell lines were tested for HER2 levels. The effects of Pb-214/Bi-214-TCMC-Trastuzumab and appropriate controls were compared using clonogenic assays and in mice bearing peritoneal SKOV3 or OVCAR3 tumors. Mice control groups included untreated, Pb-214/Bi-214-TCMC-IgG1, and Trastuzumab only. Results and discussion: SKOV3 cells had 590,000 ± 5,500 HER2 receptors/cell compared with OVCAR3 cells at 7,900 ± 770. In vitro clonogenic assays with SKOV3 cells showed significantly reduced colony formation after Pb-214/Bi-214-TCMC-Trastuzumab treatment compared with controls. Nude mice bearing luciferase-positive SKOV3 or OVCAR3 tumors were treated with Pb-214/Bi-214-TCMC-Trastuzumab or appropriate controls. Two 0.74 MBq doses of Pb-214/Bi-214-TCMC-Trastuzumab significantly suppressed the growth of SKOV3 tumors for 60 days, without toxicity, compared with three control groups (untreated, Pb-214/Bi-214-TCMC-IgG1, or Trastuzumab only). Mice-bearing OVCAR3 tumors had effective therapy without toxicity with two 0.74 MBq doses of Pb-214/Bi-214-TCMC-trastuzumab or Pb-214/Bi-214-TCMC-IgG1. Together, these data indicated that Pb-214/Bi-214 from a Rn-222 generator system was successfully applied for TAT. Pb-214/Bi-214-TCMC-Trastuzumab was effective to treat mouse xenograft models. Advantages of Pb-214/Bi-214 from the novel generator systems include high purity, short half-life for fractioned therapy, and hourly availability from the Rn-222 generator system. This platform technology can be applied for a variety of cancer treatment strategies.
Collapse
Affiliation(s)
- Abdullah Metebi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
- Radiological Sciences Department, Taif University, Taif, Saudi Arabia
| | - Nathan Kauffman
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Lu Xu
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Satyendra Kumar Singh
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Chelsea Nayback
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - Jinda Fan
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
- Radiology, Michigan State University, East Lansing, MI, United States
| | | | | | | | | | - Kurt R. Zinn
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Comparative Medicine and Integrative Biology, Michigan State University, East Lansing, MI, United States
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
- Radiology, Michigan State University, East Lansing, MI, United States
- Small Animal Clinical Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
6
|
Woods JJ, Cosby AG, Wacker JN, Aguirre Quintana LM, Peterson A, Minasian SG, Abergel RJ. Macrocyclic 1,2-Hydroxypyridinone-Based Chelators as Potential Ligands for Thorium-227 and Zirconium-89 Radiopharmaceuticals. Inorg Chem 2023; 62:20721-20732. [PMID: 37590371 DOI: 10.1021/acs.inorgchem.3c02164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Thorium-227 (227Th) is an α-emitting radionuclide that has shown preclinical and clinical promise for use in targeted α-therapy (TAT), a type of molecular radiopharmaceutical treatment that harnesses high energy α particles to eradicate cancerous lesions. Despite these initial successes, there still exists a need for bifunctional chelators that can stably bind thorium in vivo. Toward this goal, we have prepared two macrocyclic chelators bearing 1,2-hydroxypyridinone groups. Both chelators can be synthesized in less than six steps from readily available starting materials, which is an advantage over currently available platforms. The complex formation constants (log βmlh) of these ligands with Zr4+ and Th4+, measured by spectrophotometric titrations, are greater than 34 for both chelators, indicating the formation of exceedingly stable complexes. Radiolabeling studies were performed to show that these ligands can bind [227Th]Th4+ at concentrations as low as 10-6 M, and serum stability experiments demonstrate the high kinetic stability of the formed complexes under biological conditions. Identical experiments with zirconium-89 (89Zr), a positron-emitting radioisotope used for positron emission tomography (PET) imaging, demonstrate that these chelators can also effectively bind Zr4+ with high thermodynamic and kinetic stability. Collectively, the data reported herein highlight the suitability of these ligands for use in 89Zr/227Th paired radioimmunotheranostics.
Collapse
Affiliation(s)
- Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alexia G Cosby
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jennifer N Wacker
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Luis M Aguirre Quintana
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Appie Peterson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nuclear Engineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
8
|
Abou DS, Longtine M, Fears A, Benabdallah N, Unnerstall R, Johnston H, Shim K, Hasson A, Zhang H, Ulmert D, Mangin F, Ozen S, Raibaut L, Brandès S, Meyer M, Chambron JC, Tatum DS, Magda D, Wahl RL, Thorek DLJ. Evaluation of Candidate Theranostics for 227Th/ 89Zr Paired Radioimmunotherapy of Lymphoma. J Nucl Med 2023:jnumed.122.264979. [PMID: 37142300 DOI: 10.2967/jnumed.122.264979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
227Th is a promising radioisotope for targeted α-particle therapy. It produces 5 α-particles through its decay, with the clinically approved 223Ra as its first daughter. There is an ample supply of 227Th, allowing for clinical use; however, the chemical challenges of chelating this large tetravalent f-block cation are considerable. Using the CD20-targeting antibody ofatumumab, we evaluated chelation of 227Th4+ for α-particle-emitting and radiotheranostic applications. Methods: We compared 4 bifunctional chelators for thorium radiopharmaceutical preparation: S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), 2-(4-isothicyanatobenzyl)-1,2,7,10,13-hexaazacyclooctadecane-1,4,7,10,13,16-hexaacetic acid (p-SCN-Bn-HEHA), p-isothiacyanatophenyl-1-hydroxy-2-oxopiperidine-desferrioxamine (DFOcyclo*-p-Phe-NCS), and macrocyclic 1,2-HOPO N-hydroxysuccinimide (L804-NHS). Immunoconstructs were evaluated for yield, purity, and stability in vitro and in vivo. Tumor targeting of the lead 227Th-labeled compound in vivo was performed in CD20-expressing models and compared with a companion 89Zr-labeled PET agent. Results: 227Th-labeled ofatumumab-chelator constructs were synthesized to a radiochemical purity of more than 95%, excepting HEHA. 227Th-HEHA-ofatumumab showed moderate in vitro stability. 227Th-DFOcyclo*-ofatumumab presented excellent 227Th labeling efficiency; however, high liver and spleen uptake was revealed in vivo, indicative of aggregation. 227Th-DOTA-ofatumumab labeled poorly, yielding no more than 5%, with low specific activity (0.08 GBq/g) and modest long-term in vitro stability (<80%). 227Th-L804-ofatumumab coordinated 227Th rapidly and efficiently at high yields, purity, and specific activity (8 GBq/g) and demonstrated extended stability. In vivo tumor targeting confirmed the utility of this chelator, and the diagnostic analog, 89Zr-L804-ofatumumab, showed organ distribution matching that of 227Th to delineate SU-DHL-6 tumors. Conclusion: Commercially available and novel chelators for 227Th showed a range of performances. The L804 chelator can be used with potent radiotheranostic capabilities for 89Zr/227Th quantitative imaging and α-particle therapy.
Collapse
Affiliation(s)
- Diane S Abou
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Mark Longtine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Amanda Fears
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Nadia Benabdallah
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Ryan Unnerstall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Hannah Johnston
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Kyuhwan Shim
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Abbie Hasson
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Hanwen Zhang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - David Ulmert
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Floriane Mangin
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg, France
| | - Serife Ozen
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, Dijon, France
| | - Laurent Raibaut
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Université de Bourgogne, Dijon, France
| | - Stéphane Brandès
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg, France
| | - Michel Meyer
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Claude Chambron
- Institut de Chimie de Strasbourg, UMR 7177, CNRS, Université de Strasbourg, Strasbourg, France
| | | | | | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel L J Thorek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri;
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri; and
- Siteman Cancer Center, Oncologic Imaging Program, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
9
|
Bouvarel T, Bremeyer N, Gao M, Holkenjans W, Hetzel T, Pell R, D’Atri V, Guillarme D. Tackling Issues Observed during the Development of a Liquid Chromatography Method for Small Molecule Quantification in Antibody-Chelator Conjugate. Molecules 2023; 28:molecules28062626. [PMID: 36985597 PMCID: PMC10055815 DOI: 10.3390/molecules28062626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
In the context of targeted radionuclide therapy, antibody-chelator conjugates (ACCs) are an evolving class of antibody-related drugs with promising applications as tumor-targeted pharmaceuticals. Generally, a typical ACC consists of a recombinant monoclonal antibody (mAb) coupled to radionuclide via a chelating agent. Characterizing the ACC structure represents an analytical challenge since various impurities must be constantly monitored in the presence of formulation components during the quality control (QC) process. In this contribution, a reliable method devoted to the monitoring of an ACC sample, and its small molecule-related synthesis impurities, has been developed via liquid chromatography (LC). A problem-solving approach of common analytical issues was used to highlight some major issues encountered during method development. This included separation of poorly retained impurities (issue #1); interferences from the formulation components (issue #2); analysis of impurities in presence of ACC at high concentration (issue #3); and recovery of impurities during the whole analytical procedure (issue #4). To the best of our knowledge, this is the first time that a chromatographic method for the analysis of ACC synthesis impurities is presented. In addition, the developed approach has the potential to be more widely applied to the characterization of similar ACCs and other antibody-related drugs.
Collapse
Affiliation(s)
- Thomas Bouvarel
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| | | | - Mimi Gao
- Bayer AG, 42096 Wuppertal, Germany
| | | | | | | | - Valentina D’Atri
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-379-33-58
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Karlsson J, Schatz CA, Wengner AM, Hammer S, Scholz A, Cuthbertson A, Wagner V, Hennekes H, Jardine V, Hagemann UB. Targeted thorium-227 conjugates as treatment options in oncology. Front Med (Lausanne) 2023; 9:1071086. [PMID: 36726355 PMCID: PMC9885765 DOI: 10.3389/fmed.2022.1071086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023] Open
Abstract
Targeted alpha therapy (TAT) is a promising approach for addressing unmet needs in oncology. Inherent properties make α-emitting radionuclides well suited to cancer therapy, including high linear energy transfer (LET), penetration range of 2-10 cell layers, induction of complex double-stranded DNA breaks, and immune-stimulatory effects. Several alpha radionuclides, including radium-223 (223Ra), actinium-225 (225Ac), and thorium-227 (227Th), have been investigated. Conjugation of tumor targeting modalities, such as antibodies and small molecules, with a chelator moiety and subsequent radiolabeling with α-emitters enables specific delivery of cytotoxic payloads to different tumor types. 223Ra dichloride, approved for the treatment of patients with metastatic castration-resistant prostate cancer (mCRPC) with bone-metastatic disease and no visceral metastasis, is the only approved and commercialized alpha therapy. However, 223Ra dichloride cannot currently be complexed to targeting moieties. In contrast to 223Ra, 227Th may be readily chelated, which allows radiolabeling of tumor targeting moieties to produce targeted thorium conjugates (TTCs), facilitating delivery to a broad range of tumors. TTCs have shown promise in pre-clinical studies across a range of tumor-cell expressing antigens. A clinical study in hematological malignancy targeting CD22 has demonstrated early signs of activity. Furthermore, pre-clinical studies show additive or synergistic effects when TTCs are combined with established anti-cancer therapies, for example androgen receptor inhibitors (ARI), DNA damage response inhibitors such as poly (ADP)-ribose polymerase inhibitors or ataxia telangiectasia and Rad3-related kinase inhibitors, as well as immune checkpoint inhibitors.
Collapse
|
11
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
12
|
Stenberg VY, Tornes AJK, Nilsen HR, Revheim ME, Bruland ØS, Larsen RH, Juzeniene A. Factors Influencing the Therapeutic Efficacy of the PSMA Targeting Radioligand 212Pb-NG001. Cancers (Basel) 2022; 14:cancers14112784. [PMID: 35681766 PMCID: PMC9179904 DOI: 10.3390/cancers14112784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Prostate-specific membrane antigen (PSMA) is a protein overexpressed in metastatic castration-resistant prostate cancer and a promising target for targeted radionuclide therapy. PSMA-targeted alpha therapy is of growing interest due to the high-emission energy and short range of alpha particles, resulting in a prominent cytotoxic potency. This study assesses the influence of various factors on the in vitro and in vivo therapeutic efficacy of the alpha particle generating PSMA-targeting radioligand 212Pb-NG001. Abstract This study aimed to determine the influence of cellular PSMA expression, radioligand binding and internalization, and repeated administrations on the therapeutic effects of the PSMA-targeting radioligand 212Pb-NG001. Cellular binding and internalization, cytotoxicity, biodistribution, and the therapeutic efficacy of 212Pb-NG001 were investigated in two human prostate cancer cell lines with different PSMA levels: C4-2 (PSMA+) and PC-3 PIP (PSMA+++). Despite 10-fold higher PSMA expression on PC-3 PIP cells, cytotoxicity and therapeutic efficacy of the radioligand was only 1.8-fold better than for the C4-2 model, possibly explained by lower cellular internalization and less blood-rich stroma in PC-3 PIP xenografts. Mice bearing subcutaneous PC-3 PIP xenografts were treated with 0.2, 0.4, and 0.8 MBq of 212Pb-NG001 that resulted in therapeutic indexes of 2.7, 3.0, and 3.5, respectively. A significant increase in treatment response was observed in mice that received repeated injections compared to the corresponding single dose (therapeutic indexes of 3.6 for 2 × 0.2 MBq and 4.4 for 2 × 0.4 MBq). The results indicate that 212Pb-NG001 can induce therapeutic effects at clinically transferrable doses, both in the C4-2 model that resembles solid tumors and micrometastases with natural PSMA expression and in the PC-3 PIP model that mimics poorly vascularized metastases.
Collapse
Affiliation(s)
- Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Correspondence: ; Tel.: +47-9012-8434
| | - Anna Julie Kjøl Tornes
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
- Nucligen AS, 0379 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
| | - Hogne Røed Nilsen
- Department of Pathology, Rikshospitalet, Oslo University Hospital, 0372 Oslo, Norway;
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, 0379 Oslo, Norway
| | - Øyvind Sverre Bruland
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway; (M.-E.R.); (Ø.S.B.)
- Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (A.J.K.T.); (A.J.)
| |
Collapse
|
13
|
Sharma S, Baral M, Kanungo BK. Recent advances in therapeutical applications of the versatile hydroxypyridinone chelators. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-021-01114-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Tolmachev VM, Chernov VI, Deyev SM. Targeted nuclear medicine. Seek and destroy. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Yang H, Wilson JJ, Orvig C, Li Y, Wilbur DS, Ramogida CF, Radchenko V, Schaffer P. Harnessing α-Emitting Radionuclides for Therapy: Radiolabeling Method Review. J Nucl Med 2022; 63:5-13. [PMID: 34503958 PMCID: PMC8717181 DOI: 10.2967/jnumed.121.262687] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Targeted α-therapy (TAT) is an emerging powerful tool treating late-stage cancers for which therapeutic options are limited. At the core of TAT are targeted radiopharmaceuticals, where isotopes are paired with targeting vectors to enable tissue- or cell-specific delivery of α-emitters. DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and DTPA (diethylenetriamine pentaacetic acid) are commonly used to chelate metallic radionuclides but have limitations. Significant efforts are underway to develop effective stable chelators for α-emitters and are at various stages of development and community adoption. Isotopes such as 149Tb, 212/213Bi, 212Pb (for 212Bi), 225Ac, and 226/227Th have found suitable chelators, although further studies, especially in vivo studies, are required. For others, including 223Ra, 230U, and, arguably 211At, the ideal chemistry remains elusive. This review summarizes the methods reported to date for the incorporation of 149Tb, 211At, 212/213Bi, 212Pb (for 212Bi), 223Ra, 225Ac, 226/227Th, and 230U into radiopharmaceuticals, with a focus on new discoveries and remaining challenges.
Collapse
Affiliation(s)
- Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada;
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Justin J Wilson
- Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yawen Li
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - D Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Caterina F Ramogida
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Eychenne R, Chérel M, Haddad F, Guérard F, Gestin JF. Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The "Hopeful Eight". Pharmaceutics 2021; 13:pharmaceutics13060906. [PMID: 34207408 PMCID: PMC8234975 DOI: 10.3390/pharmaceutics13060906] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
Among all existing radionuclides, only a few are of interest for therapeutic applications and more specifically for targeted alpha therapy (TAT). From this selection, actinium-225, astatine-211, bismuth-212, bismuth-213, lead-212, radium-223, terbium-149 and thorium-227 are considered as the most suitable. Despite common general features, they all have their own physical characteristics that make them singular and so promising for TAT. These radionuclides were largely studied over the last two decades, leading to a better knowledge of their production process and chemical behavior, allowing for an increasing number of biological evaluations. The aim of this review is to summarize the main properties of these eight chosen radionuclides. An overview from their availability to the resulting clinical studies, by way of chemical design and preclinical studies is discussed.
Collapse
Affiliation(s)
- Romain Eychenne
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint-Herblain, France;
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
- Correspondence: (R.E.); (J.-F.G.)
| | - Michel Chérel
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
| | - Férid Haddad
- Groupement d’Intérêt Public ARRONAX, 1 Rue Aronnax, F-44817 Saint-Herblain, France;
- Laboratoire Subatech, UMR 6457, Université de Nantes, IMT Atlantique, CNRS, Subatech, F-44000 Nantes, France
| | - François Guérard
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
| | - Jean-François Gestin
- Université de Nantes, Inserm, CNRS, Centre de Recherche en Cancérologie et Immunologie Nantes—Angers (CRCINA)—UMR 1232, ERL 6001, F-44000 Nantes, France; (M.C.); (F.G.)
- Correspondence: (R.E.); (J.-F.G.)
| |
Collapse
|
17
|
Roy J, Jagoda EM, Basuli F, Vasalatiy O, Phelps TE, Wong K, Ton AT, Hagemann UB, Cuthbertson AS, Cole PE, Hassan R, Choyke PL, Lin FI. In Vitro and In Vivo Comparison of 3,2-HOPO Versus Deferoxamine-Based Chelation of Zirconium-89 to the Antimesothelin Antibody Anetumab. Cancer Biother Radiopharm 2021; 36:316-325. [PMID: 34014767 PMCID: PMC8161658 DOI: 10.1089/cbr.2020.4492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: [227Th]Th-3,2-HOPO-MSLN-mAb, a mesothelin (MSLN)-targeted thorium-227 therapeutic conjugate, is currently in phase I clinical trial; however, direct PET imaging using this conjugate is technically challenging. Thus, using the same MSLN antibody, we synthesized 3,2-HOPO and deferoxamine (DFO)-based zirconium-89 antibody conjugates, [89Zr]Zr-3,2-HOPO-MSLN-mAb and [89Zr]Zr-DFO-MSLN-mAb, respectively, and compared them in vitro and in vivo. Methods: [89Zr]Zr-3,2-HOPO-MSLN-mAb and [89Zr]Zr-DFO-MSLN-mAb were evaluated in vitro to determine binding affinity and immunoreactivity in HT29-MSLN and PDX (NCI-Meso16, NCI-Meso21) cells. For both the zirconium-89 conjugates, in vivo studies (biodistribution/imaging) were performed at days 1, 3, and 6, from which tissue uptake was determined. Results: Both the conjugates demonstrated a low nanomolar binding affinity for MSLN and >95% immunoreactivity. In all the three tumor types, biodistribution of [89Zr]Zr-DFO-MSLN-mAb resulted in higher tumor uptake(15.88-28-33%ID/g) at all time points compared with [89Zr]Zr-3,2-HOPO-MSLN-mAb(7–13.07%ID/g). [89Zr]Zr-3,2-HOPO-MSLN-mAb femur uptake was always higher than [89Zr]Zr-DFO-MSLN-mAb, and imaging results concurred with the biodistribution studies. Conclusions: Even though the conjugates exhibited a high binding affinity for MSLN, [89Zr]Zr-DFO-MSLN-mAb showed a higher tumor and lower femur uptake than [89Zr]Zr-3,2-HOPO-MSLN-mAb. Nevertheless, [89Zr]Zr-3,2-HOPO-MSLN-mAb could be used to study organ distribution and lesion uptake with the caveat of detecting MSLN-positive bone lesions. Clinical trial (NCT03507452).
Collapse
Affiliation(s)
- Jyoti Roy
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine M Jagoda
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Olga Vasalatiy
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Tim E Phelps
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Karen Wong
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anita T Ton
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | - Raffit Hassan
- Thoracic and GI Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank I Lin
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Herrero Álvarez N, Bauer D, Hernández-Gil J, Lewis JS. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem 2021; 16:2909-2941. [PMID: 33792195 DOI: 10.1002/cmdc.202100135] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/14/2022]
Abstract
Nuclear medicine is defined as the use of radionuclides for diagnostic and therapeutic applications. The imaging modalities positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are based on γ-emissions of specific energies. The therapeutic technologies are based on β- -particle-, α-particle-, and Auger electron emitters. In oncology, PET and SPECT are used to detect cancer lesions, to determine dosimetry, and to monitor therapy effectiveness. In contrast, radiotherapy is designed to irreparably damage tumor cells in order to eradicate or control the disease's progression. Radiometals are being explored for the development of diagnostic and therapeutic radiopharmaceuticals. Strategies that combine both modalities (diagnostic and therapeutic), referred to as theranostics, are promising candidates for clinical applications. This review provides an overview of the basic concepts behind therapeutic and diagnostic radiopharmaceuticals and their significance in contemporary oncology. Select radiometals that significantly impact current and upcoming cancer treatment strategies are grouped as clinically suitable theranostics pairs. The most important physical and chemical properties are discussed. Standard production methods and current radionuclide availability are provided to indicate whether a cost-efficient use in a clinical routine is feasible. Recent preclinical and clinical developments and outline perspectives for the radiometals are highlighted in each section.
Collapse
Affiliation(s)
- Natalia Herrero Álvarez
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - David Bauer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Javier Hernández-Gil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Katholieke Universiteit, Herestraat 49, 3000, Leuven, Belgium
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.,Department of Pharmacology, Weill-Cornell Medical College, New York, NY, 10065, USA
| |
Collapse
|
19
|
Siavoshinia L, Jamalan M, Zeinali M, Pourshohod A, Koushki M, Moradipoodeh B, Mohammadzadeh G. Improvement of Targeted Chemotherapy of HER2-positive Ovarian Malignant Cell Line by Z HER2-Idarubicin Conjugate: An in vitro Study. IRANIAN JOURNAL OF PATHOLOGY 2020; 16:109-118. [PMID: 33936221 PMCID: PMC8085286 DOI: 10.30699/ijp.2020.120392.2310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022]
Abstract
Background & Objective: Overexpression of human epidermal growth factor receptor 2 (HER2) causes cell transformation and development of various types of malignancies. Idarubicin is an effective anti-neoplastic drug but its specific delivery to the targeted cells is still a great challenge. Affibody as a cost-effective peptide molecule with low molecular weight has a high affinity for HER2 receptors. Breast and ovarian cancers as wide speared types of malignancies are associated with high expression of HER2. In the current study, we assessed the cytotoxic effects of idarubicin-ZHER2 affibody conjugate on the positive-HER2 cancer cell lines. Methods: The cytotoxic effects of constructed idarubicin-ZHER2 affibody conjugate on the SK-BR-3, SK-OV-3, and MCF-7 cells with various levels of HER2 expression were evaluated by MTT assay following 48 hours of incubation. Results: Idarubicin showed a potent and dose-dependent cytotoxic effect against all treated cell lines while the SK-OV-3 cells were significantly more sensitive. The dimeric form of the ZHER2 affibody molecule showed a mild effect on the cell viability of all treated cells at its optimum concentration. The constructed Idarubicin-ZHER2 affibody conjugate decreased the viability of SK-OV-3 cells at its optimal concentration, more efficiently and specifically than other treated cells. Conclusion: The ZHER2-affibody conjugate of idarubicin has a more specific cytotoxic effect compared with idarubicin alone against HER2-overexpressing ovarian cancerous cells. It appears the ZHER2-affibody conjugate of idarubicin has great potential to be implicated as an innovative anti-cancer agent in future clinical trials in patients with HER2-overexpressing ovarian cancer.
Collapse
Affiliation(s)
- Leila Siavoshinia
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mostafa Jamalan
- Department of Biochemistry, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Majid Zeinali
- Biotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Aminollah Pourshohod
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdie Koushki
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Moradipoodeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghorban Mohammadzadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Ferrier MG, Li Y, Chyan MK, Wong R, Li L, Spreckelmeyer S, Hamlin DK, Mastren T, Fassbender ME, Orvig C, Wilbur DS. Thorium chelators for targeted alpha therapy: Rapid chelation of thorium-226. J Labelled Comp Radiopharm 2020; 63:502-516. [PMID: 32812275 DOI: 10.1002/jlcr.3875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/26/2022]
Abstract
One of the main challenges in targeted alpha therapy is assuring delivery of the α-particle dose to the targeted cells. Thus, it is critical to identify ligands for α-emitting radiometals that will form complexes that are very stable, both in vitro and in vivo. In this investigation, thorium-227 (t1/2 = 18.70 days) chelation of ligands containing hydroxypyridinonate (HOPO) or picolinic acid (pa) moieties and the stability of the resultant complexes were studied. Chelation reactions were followed by reversed-phased HPLC and gamma spectroscopy. Studies revealed that high 227 Th chelation yields could be obtained within 2.5 h or less with ligands containing four Me-3,2-HOPO moieties, 1 (83%) and 2 (65%), and also with ligands containing pa moieties, H4 octapa 3 (65%) and H4 py4pa 6 (87%). No reaction occurred with H4 neunpa-p-Bn-NO2 4, and the chelation reaction with another pa ligand H4 pypa 5 gave inconsistent yields with a very broad radio-HPLC peak. The ligands spermine-(Me-3,2-HOPO)4 1, H4 octapa 3, and H4 py4pa 6 had high stability (i.e., 87% of 227 Th still bound to the ligand) in phosphate-buffered saline at room temperature over a 6-day period. Preliminary studies with ligand 6 demonstrated efficient chelation of thorium-226 (t1/2 = 30.57 min) when heated to 80°C for 5 min.
Collapse
Affiliation(s)
- Maryline G Ferrier
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Yawen Li
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Ming-Kuan Chyan
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Roger Wong
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Lily Li
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Division, TRIUMF, Vancouver, British Columbia, Canada
| | - Sarah Spreckelmeyer
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald K Hamlin
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Tara Mastren
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - D Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Hagemann UB, Wickstroem K, Hammer S, Bjerke RM, Zitzmann-Kolbe S, Ryan OB, Karlsson J, Scholz A, Hennekes H, Mumberg D, Cuthbertson AS. Advances in Precision Oncology: Targeted Thorium-227 Conjugates As a New Modality in Targeted Alpha Therapy. Cancer Biother Radiopharm 2020; 35:497-510. [PMID: 32255671 PMCID: PMC7475103 DOI: 10.1089/cbr.2020.3568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Targeted α therapy (TAT) offers the potential for the targeted delivery of potent α-particle-emitting radionuclides that emit high linear energy transfer radiation. This leads to a densely ionizing radiation track over a short path. Localized radiation induces cytotoxic, difficult-to-repair, clustered DNA double-strand breaks (DSBs). To date, radium-223 (223Ra) is the only TAT approved for the treatment of patients with metastatic castration-resistant prostate cancer. Thorium-227 (227Th), the progenitor nuclide of 223Ra, offers promise as a wider-ranging alternative due to the availability of efficient chelators, such as octadentate 3,2-hydroxypyridinone (3,2-HOPO). The 3,2-HOPO chelator can be readily conjugated to a range of targeting moieties, enabling the generation of new targeted thorium-227 conjugates (TTCs). This review provides a comprehensive overview of the advances in the preclinical development of TTCs for hematological cancers, including CD22-positive B cell cancers and CD33-positive leukemia, as well as for solid tumors overexpressing renal cell cancer antigen CD70, membrane-anchored glycoprotein mesothelin in mesothelioma, prostate-specific membrane antigen in prostate cancer, and fibroblast growth factor receptor 2. As the mechanism of action for TTCs is linked to the formation of DSBs, the authors also report data supporting combinations of TTCs with inhibitors of the DNA damage response pathways, including those of the ataxia telangiectasia and Rad3-related protein, and poly-ADP ribose polymerase. Finally, emerging evidence suggests that TTCs induce immunogenic cell death through the release of danger-associated molecular patterns. Based on encouraging preclinical data, clinical studies have been initiated to investigate the safety and tolerability of TTCs in patients with various cancers.
Collapse
|
22
|
Frantellizzi V, Cosma L, Brunotti G, Pani A, Spanu A, Nuvoli S, De Cristofaro F, Civitelli L, De Vincentis G. Targeted Alpha Therapy with Thorium-227. Cancer Biother Radiopharm 2020; 35:437-445. [PMID: 31967907 DOI: 10.1089/cbr.2019.3105] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Targeted alpha therapy (TAT) can deliver high localized burden of radiation selectively to cancer cells as well as the tumor microenvironment, while minimizing toxicity to normal surrounding cell. Radium-223 (223Ra), the first-in-class α-emitter approved for bone metastatic castration-resistant prostate cancer has shown the ability to prolong patient survival. Targeted Thorium-227 (227Th) conjugates represent a new class of therapeutic radiopharmaceuticals for TAT. They are comprised of the α-emitter 227Th complexed to a chelator conjugated to a tumor-targeting monoclonal antibody. In this review, the authors will focus out interest on this therapeutic agent. In recent studies 227Th-labeled radioimmunoconjugates showed a relevant stability both in serum and vivo conditions with a significant antigen-dependent inhibition of cell growth. Unlike 223Ra, the parent radionuclide 227Th can form highly stable chelator complexes and is therefore amenable to targeted radioimmunotherapy. The authors discuss the future potential role of 227Th TAT in the treatment of several solid as well as hematologic malignancies.
Collapse
Affiliation(s)
- Viviana Frantellizzi
- Department of Molecular Medicine and Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Laura Cosma
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Gabriele Brunotti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Arianna Pani
- Department of Oncology and Hemato-oncology, University of Milan "Statale," Milan, Italy
| | - Angela Spanu
- Unit of Nuclear Medicine, Department of Medicine, Surgical and Experimental Science, University of Sassari, Sassari, Italy
| | - Susanna Nuvoli
- Unit of Nuclear Medicine, Department of Medicine, Surgical and Experimental Science, University of Sassari, Sassari, Italy
| | - Flaminia De Cristofaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Liana Civitelli
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Morris MJ, Corey E, Guise TA, Gulley JL, Kevin Kelly W, Quinn DI, Scholz A, Sgouros G. Radium-223 mechanism of action: implications for use in treatment combinations. Nat Rev Urol 2019; 16:745-756. [PMID: 31712765 PMCID: PMC7515774 DOI: 10.1038/s41585-019-0251-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
The targeted alpha therapy radium-223 (223Ra) can prolong survival in men with castration-resistant prostate cancer (CRPC) who have symptomatic bone metastases and no known visceral metastases. Preclinical studies demonstrate that 223Ra preferentially incorporates into newly formed bone matrix within osteoblastic metastatic lesions. The emitted high-energy alpha particles induce DNA double-strand breaks that might be irreparable and lead to cell death in nearby exposed tumour cells, osteoblasts and osteoclasts. Consequently, tumour growth and abnormal bone formation are inhibited by these direct effects and by the disruption of positive-feedback loops between tumour cells and the bone microenvironment. 223Ra might also modulate immune responses within the bone. The clinical utility of 223Ra has encouraged the development of other anticancer targeted alpha therapies. A thorough understanding of the mechanism of action could inform the design of new combinatorial treatment strategies that might be more efficacious than monotherapy. On the basis of the current mechanistic knowledge and potential clinical benefits, combination therapies of 223Ra with microtubule-stabilizing cytotoxic drugs and agents targeting the androgen receptor axis, immune checkpoint receptors or DNA damage response proteins are being explored in patients with CRPC and metastatic bone disease.
Collapse
Affiliation(s)
- Michael J Morris
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA.
| | - Eva Corey
- Department of Urology, University of Washington, School of Medicine, Seattle, WA, USA
| | - Theresa A Guise
- Indiana University, School of Medicine, Indianapolis, IN, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - William Kevin Kelly
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - David I Quinn
- Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Arne Scholz
- Bayer AG, Drug Discovery, Pharmaceuticals, Berlin, Germany
| | - George Sgouros
- Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
De Vincentis G, Gerritsen W, Gschwend JE, Hacker M, Lewington V, O'Sullivan JM, Oya M, Pacilio M, Parker C, Shore N, Sartor O. Advances in targeted alpha therapy for prostate cancer. Ann Oncol 2019; 30:1728-1739. [PMID: 31418764 PMCID: PMC6927314 DOI: 10.1093/annonc/mdz270] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Amongst therapeutic radiopharmaceuticals, targeted alpha therapy (TαT) can deliver potent and local radiation selectively to cancer cells as well as the tumor microenvironment and thereby control cancer while minimizing toxicity. In this review, we discuss the history, progress, and future potential of TαT in the treatment of prostate cancer, including dosimetry-individualized treatment planning, combinations with small-molecule therapies, and conjugation to molecules directed against antigens expressed by prostate cancer cells, such as prostate-specific membrane antigen (PSMA) or components of the tumor microenvironment. A clinical proof of concept that TαT is efficacious in treating bone-metastatic castration-resistant prostate cancer has been demonstrated by radium-223 via improved overall survival and long-term safety/tolerability in the phase III ALSYMPCA trial. Dosimetry calculation and pharmacokinetic measurements of TαT provide the potential for optimization and individualized treatment planning for a precision medicine-based cancer management paradigm. The ability to combine TαTs with other agents, including chemotherapy, androgen receptor-targeting agents, DNA repair inhibitors, and immuno-oncology agents, is under investigation. Currently, TαTs that specifically target prostate cancer cells expressing PSMA represents a promising therapeutic approach. Both PSMA-targeted actinium-225 and thorium-227 conjugates are under investigation. The described clinical benefit, safety and tolerability of radium-223 and the recent progress in TαT trial development suggest that TαT occupies an important new role in prostate cancer treatment. Ongoing studies with newer dosimetry methods, PSMA targeting, and novel approaches to combination therapies should expand the utility of TαT in prostate cancer treatment.
Collapse
Affiliation(s)
- G De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, Rome, Italy
| | - W Gerritsen
- Department of Medical Oncology, Radboud UMC, Nijmegen, The Netherlands
| | - J E Gschwend
- Department of Urology, Technical University of Munich, Rechts der Isar Medical Center, Munich, Germany
| | - M Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - V Lewington
- Department of Imaging Sciences and Biomedical Engineering, King's College, London, UK
| | - J M O'Sullivan
- Center for Cancer Research and Cell Biology, Queen's University Belfast, Northern Ireland Cancer Center, Belfast City Hospital, Belfast, Northern Ireland
| | - M Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - M Pacilio
- Medical Physics Department, "Policlinico Umberto I" University Hospital, Rome, Italy
| | - C Parker
- The Royal Marsden Hospital, Sutton, UK
| | - N Shore
- Carolina Urologic Research Center, Myrtle Beach
| | - O Sartor
- Tulane Cancer Center, Tulane University, New Orleans, USA.
| |
Collapse
|
25
|
Parker C, Lewington V, Shore N, Kratochwil C, Levy M, Lindén O, Noordzij W, Park J, Saad F. Targeted Alpha Therapy, an Emerging Class of Cancer Agents: A Review. JAMA Oncol 2019; 4:1765-1772. [PMID: 30326033 DOI: 10.1001/jamaoncol.2018.4044] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Targeted alpha therapy attempts to deliver systemic radiation selectively to cancer cells while minimizing systemic toxic effects and may lead to additional treatment options for many cancer types. Observations Theoretically, the high-energy emission of short-range alpha particles causes complex double-stranded DNA breaks, eliciting cell death. No known resistance mechanism to alpha particles has been reported or scientifically established. The short-range emission of alpha particle radiation confines its cytotoxic effect to cancerous lesions and the surrounding tumor microenvironment while limiting toxic effects to noncancerous tissues. The high level of radiobiological effectiveness of alpha particles, in comparison with beta emissions, requires fewer particle tracks to induce cell death. Clinically effective alpha particle-emitting isotopes for cancer therapy should have a short half-life, which will limit long-term radiation exposure and allow for the production, preparation, and administration of these isotopes for clinical use and application. Radium 223 dichloride is the first-in-class, commercially available targeted alpha therapy approved for the treatment of patients with metastatic castration-resistant prostate cancer with bone metastases. Given the established overall survival benefit conferred by radium 223 for patients with metastatic castration-resistant prostate cancer, several other targeted alpha therapies are being investigated in clinical trials across many tumor types. Conclusions and Relevance Targeted alpha therapy represents an emerging treatment approach and provides for the possibility to bypass mechanisms of acquired resistance in selected tumors. In addition, developing novel radionuclide conjugation strategies may overcome targeting limitations. So far, the clinical success of radium 223 has demonstrated the proof of concept for targeted alpha therapy, and future studies may lead to additional treatment options for many cancer types.
Collapse
Affiliation(s)
| | - Christopher Parker
- The Royal Marsden National Health Service Foundation Trust-Institute of Cancer Research, Sutton, United Kingdom
| | | | - Neal Shore
- Carolina Urologic Research Center, Myrtle Beach, South Carolina
| | | | - Moshe Levy
- Baylor University Medical Center, Dallas, Texas
| | | | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Jae Park
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fred Saad
- Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
26
|
Ferrier MG, Radchenko V, Wilbur DS. Radiochemical aspects of alpha emitting radionuclides for medical application. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-0005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
The use of α-emitting radionuclides in targeted alpha therapy (TAT) holds great potential for treatment of human diseases, such as cancer, due to the short pathlength and high potency of the α particle, which can localize damage to targeted cells while minimizing effects to healthy surrounding tissues. In this review several potential α-emitting radionuclides having emission properties applicable to TAT are discussed from a radiochemical point of view. Overviews of production, radiochemical separation and chelation aspects relative to developing TAT radiopharmaceuticals are provided for the α-emitting radionuclides (and their generator systems) 211At, 224Ra/212Pb/212Bi, 225Ac/213Bi, 227Th/223Ra, 230U/226Th, 149Tb and 255Fm.
Collapse
Affiliation(s)
- Maryline G. Ferrier
- Department of Radiation Oncology, Radiochemistry Division , University of Washington , Seattle, WA , USA
| | - Valery Radchenko
- Life Sciences Division, TRIUMF , Vancouver, BC , Canada
- Department of Chemistry , University of British Columbia , Vancouver, BC , Canada
| | - D. Scott Wilbur
- Department of Radiation Oncology, Radiochemistry Division , University of Washington , Seattle, WA , USA
| |
Collapse
|
27
|
Sterjova M, Džodić P, Makreski P, Duatti A, Risteski M, Janevik-Ivanovska E. Vibrational spectroscopy as a tool for examination to the secondary structure of metal-labeled trastuzumab immunoconjugates. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06450-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Weng D, Jin X, Qin S, Lan X, Chen C, Sun X, She X, Dong C, An R. Radioimmunotherapy for CD133(+) colonic cancer stem cells inhibits tumor development in nude mice. Oncotarget 2018; 8:44004-44014. [PMID: 28430648 PMCID: PMC5546457 DOI: 10.18632/oncotarget.16868] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence indicates that cancer stem cells (CSCs) are the cause of tumor drug/radio-resistance or distant metastasis; therefore, it is essential to eliminate CSCs to cure cancer completely. The purpose of this study was to utilize radioimmunotherapy (RIT) to target CD133(+) colonic CSCs and observe whether this prevented tumor development, by assessing the maximum tolerated dose (MTD) of HCT116 tumor-bearing nude mice with escalating doses of 131I-AC133.1 monoclonal antibody (mAb), and determining the therapeutic efficacy of RIT with 131I-AC133.1 mAb. For RIT trials, animals were randomly divided into 4 groups of 6 per group, and injected with 131I-AC133.1 mAb (16.65 MBq/100 μl), AC133.1 mAb (173.1 μg/100 μl), saline (100 μl), or unrelated IgG1 as an isotype control. Iodine-131 was radiolabeled to AC133.1 mAb by conjugation with N-succinimidyl 3-(tri-n-butylstannyl) benzoate. The MTD of HCT116 tumor-bearing nude mice was 16.65 MBq. Both of the tumor volume doubling time and the survival time of the 131I-AC133.1 mAb group were significant longer than other groups (P < 0.001). CD133 expression was assessed by flow cytometry. Protein levels of cancer stem-like biomarkers (CD133, ALDH1, Lgr5, Vimentin, Snail1), and the proliferative rate of 131I-AC133.1 mAb group were lower than other groups (P<0.001); while its protein level of E-cadherin was higher than other groups. Furthermore, a large proportion of tumor necrosis was also observed in the 131I-AC133.1 mAb group, suggesting that RIT can destroy CSCs and effectively inhibit tumor development.
Collapse
Affiliation(s)
- Dinghu Weng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyan Jin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Saimei Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chong Chen
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianliang She
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Changling Dong
- Department of Neurosurgery, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Rui An
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Hubei Key Laboratory of Molecular Imaging, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
29
|
Kasten BB, Oliver PG, Kim H, Fan J, Ferrone S, Zinn KR, Buchsbaum DJ. 212Pb-Labeled Antibody 225.28 Targeted to Chondroitin Sulfate Proteoglycan 4 for Triple-Negative Breast Cancer Therapy in Mouse Models. Int J Mol Sci 2018; 19:ijms19040925. [PMID: 29561763 PMCID: PMC5979285 DOI: 10.3390/ijms19040925] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 01/16/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with a poor prognosis. There is a clinical need for effective, targeted therapy strategies that destroy both differentiated TNBC cells and TNBC cancer initiating cells (CICs), as the latter are implicated in the metastasis and recurrence of TNBC. Chondroitin sulfate proteoglycan 4 (CSPG4) is overexpressed on differentiated tumor cells and CICs obtained from TNBC patient specimens, suggesting that CSPG4 may be a clinically relevant target for the imaging and therapy of TNBC. The purpose of this study was to determine whether α-particle radioimmunotherapy (RIT) targeting TNBC cells using the CSPG4-specific monoclonal antibody (mAb) 225.28 as a carrier was effective at eliminating TNBC tumors in preclinical models. To this end, mAb 225.28 labeled with 212Pb (212Pb-225.28) as a source of α-particles for RIT was used for in vitro Scatchard assays and clonogenic survival assays with human TNBC cells (SUM159 and 2LMP) grown as adherent cells or non-adherent CIC-enriched mammospheres. Immune-deficient mice bearing orthotopic SUM159 or 2LMP xenografts were injected i.v. with the targeted (225.28) or irrelevant isotype-matched control (F3-C25) mAbs, labeled with 99mTc, 125I, or 212Pb for in vivo imaging, biodistribution, or tumor growth inhibition studies. 212Pb-225.28 bound to adherent SUM159 and 2LMP cells and to CICs from SUM159 and 2LMP mammospheres with a mean affinity of 0.5 nM. Nearly ten times more binding sites per cell were present on SUM159 cells and CICs compared with 2LMP cells. 212Pb-225.28 was six to seven times more effective than 212Pb-F3-C25 at inhibiting SUM159 cell and CIC clonogenic survival (p < 0.05). Radiolabeled mAb 225.28 showed significantly higher uptake than radiolabeled mAb F3-C25 in SUM159 and 2LMP xenografts (p < 0.05), and the uptake of 212Pb-225.28 in TNBC xenografts was correlated with target epitope expression. 212Pb-225.28 caused dose-dependent growth inhibition of SUM159 xenografts; 0.30 MBq 212Pb-225.28 was significantly more effective than 0.33 MBq 212Pb-F3-C25 at inhibiting tumor growth (p < 0.01). These results suggest that CSPG4-specific 212Pb-225.28 is a useful reagent for RIT of CSPG4-expressing tumors, including metastatic TNBC.
Collapse
Affiliation(s)
- Benjamin B Kasten
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Patsy G Oliver
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Jinda Fan
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Kurt R Zinn
- Institute for Quantitative Health Science and Engineering, Department of Radiology, Michigan State University, East Lansing, MI 48824, USA.
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
30
|
Zhou H, Wang H, Yu G, Wang Z, Zheng X, Duan H, Sun J. Synergistic inhibitory effects of an engineered antibody-like molecule ATF-Fc and trastuzumab on tumor growth and invasion in a human breast cancer xenograft mouse model. Oncol Lett 2017; 14:5189-5196. [PMID: 29113154 PMCID: PMC5656026 DOI: 10.3892/ol.2017.6896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/11/2017] [Indexed: 01/28/2023] Open
Abstract
The overexpression of the oncogene human epidermal growth factor receptor 2 (HER-2) has been associated with decreased disease-free survival and is a marker of poor prognosis of invasive breast cancer. Although the high efficacy of trastuzumab, a drug that targets the HER-2 oncogene, has been widely recognized, the efficiency of the treatment remains at ~30%. Therefore, novel effective treatments are required for patients with recurrent metastatic breast cancer. The present study aimed to investigate the effects of an engineered antibody-like molecule administered alone or in combination with trastuzumab on the tumor growth and metastasis of HER-2-positive breast cancer. Another aim was to investigate novel cancer therapies for HER-2-positive breast cancer. The engineered antibody-like molecule consists of the amino-terminal fragment (ATF) of human urokinase-type plasminogen (uPA) and is conjugated with the Fc fragment of human immunoglobulin G1 (ATF-Fc). The anti-cancer effect of ATF-Fc (alone and in combination with trastuzumab) on tumor cells and in a nude mouse tumor model was evaluated by detecting the expression of uPA, urokinase plasminogen activator receptor (uPAR) and HER-2. In vitro experiments demonstrated that specifically blocking the uPA-uPAR and HER-2 signaling pathways may effectively promote the apoptosis of breast cancer cells. Additionally, ATF-Fc-induced cell death in HER-2-positive breast cancer cells was observed in vivo. When ATF-Fc was administered in combination with trastuzumab, cell death was increased and breast cancer metastasis was reduced. The novel engineered antibody-like molecule ATF-Fc was able to inhibit HER-2-positive breast cancer cell growth and metastasis by interfering with uPA and its receptor (uPA-uPAR) system. Additionally, the antibody-like molecule exhibits a synergistic inhibitory effect when administered in combination with trastuzumab.
Collapse
Affiliation(s)
- Hongwei Zhou
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Hongwei Wang
- Department of Pathology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Guangyuan Yu
- Department of Medicine, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Zhihong Wang
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Xi Zheng
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| | - Haifeng Duan
- Beijing Institute of Radiation Medicine, Beijing 100039, P.R. China
| | - Junzhong Sun
- Department of Geriatric Oncology, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
31
|
Milenic DE, Baidoo KE, Kim YS, Barkley R, Brechbiel MW. Comparative studies on the therapeutic benefit of targeted α-particle radiation therapy for the treatment of disseminated intraperitoneal disease. Dalton Trans 2017; 46:14591-14601. [PMID: 28675216 PMCID: PMC5664163 DOI: 10.1039/c7dt01819c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Identification of the appropriate combination of radionuclide, target and targeting vehicle is critical for successful radioimmunotherapy. For the treatment of disseminated peritoneal diseases such as pancreatic or ovarian cancer, α-emitting radionuclides have been proposed for targeted radiation therapy. This laboratory has taken a systematic approach investigating targeted α-radiation therapy, allowing comparisons to now be made between 211At, 227Th, 213Bi and 212Pb. Herein, trastuzumab radiolabeled with 211At and 227Th was evaluated for therapeutic efficacy in the LS-174T i.p. tumor model. A dose escalation study was conducted with each radioimmunoconjugate (RIC). Therapeutic benefit was realized with 211At-trastuzumab with doses of 20, 30 and 40 μCi. At doses >40 μCi, toxicity was observed with greater weight loss and 2-fold higher decrease in the platelet counts. Following a second study comparing the effect of 20, 30 and 40 μCi of 211At-trastuzumab, 30 μCi was selected as the dose for future studies. A parallel study was performed evaluating 0.25, 0.5, 1.0, 2.0 and 5.0 μCi of 227Th-trastuzumab. The 0.5 and 1.0 μCi injected dose resulted in a therapeutic response; a lower degree of weight loss was experienced by the mice in the 0.5 μCi cohort. When the data is normalized for comparing 211At, 227Th, 213Bi and 212Pb, the choice of radionuclide for RIT is perhaps not entirely based on simple therapeutic efficacy, other factors may play a role in choosing the "right" radionuclide.
Collapse
Affiliation(s)
- Diane E Milenic
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda MD, USA.
| | | | | | | | | |
Collapse
|
32
|
Yang M, Bierbach U. Metal-Containing Pharmacophores in Molecularly Targeted Anticancer Therapies and Diagnostics. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mu Yang
- Department of Chemistry; Wake Forest University; 27109 Winston-Salem North Carolina USA
| | - Ulrich Bierbach
- Department of Chemistry; Wake Forest University; 27109 Winston-Salem North Carolina USA
| |
Collapse
|
33
|
Captain I, Deblonde GJP, Rupert PB, An DD, Illy MC, Rostan E, Ralston CY, Strong RK, Abergel RJ. Engineered Recognition of Tetravalent Zirconium and Thorium by Chelator-Protein Systems: Toward Flexible Radiotherapy and Imaging Platforms. Inorg Chem 2016; 55:11930-11936. [PMID: 27802058 DOI: 10.1021/acs.inorgchem.6b02041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Targeted α therapy holds tremendous potential as a cancer treatment: it offers the possibility of delivering a highly cytotoxic dose to targeted cells while minimizing damage to surrounding healthy tissue. The metallic α-generating radioisotopes 225Ac and 227Th are promising radionuclides for therapeutic use, provided adequate chelation and targeting. Here we demonstrate a new chelating platform composed of a multidentate high-affinity oxygen-donating ligand 3,4,3-LI(CAM) bound to the mammalian protein siderocalin. Respective stability constants log β110 = 29.65 ± 0.65, 57.26 ± 0.20, and 47.71 ± 0.08, determined for the EuIII (a lanthanide surrogate for AcIII), ZrIV, and ThIV complexes of 3,4,3-LI(CAM) through spectrophotometric titrations, reveal this ligand to be one of the most powerful chelators for both trivalent and tetravalent metal ions at physiological pH. The resulting metal-ligand complexes are also recognized with extremely high affinity by the siderophore-binding protein siderocalin, with dissociation constants below 40 nM and tight electrostatic interactions, as evidenced by X-ray structures of the protein:ligand:metal adducts with ZrIV and ThIV. Finally, differences in biodistribution profiles between free and siderocalin-bound 238PuIV-3,4,3-LI(CAM) complexes confirm in vivo stability of the protein construct. The siderocalin:3,4,3-LI(CAM) assembly can therefore serve as a "lock" to consolidate binding to the therapeutic 225Ac and 227Th isotopes or to the positron emission tomography emitter 89Zr, independent of metal valence state.
Collapse
Affiliation(s)
- Ilya Captain
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Gauthier J-P Deblonde
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Peter B Rupert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Marie-Claire Illy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Emeline Rostan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Corie Y Ralston
- Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Roland K Strong
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center , Seattle, Washington 98109, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
34
|
Pommé S, Collins SM, Harms A, Jerome SM. Fundamental uncertainty equations for nuclear dating applied to the 140Ba- 140La and 227Th- 223Ra chronometers. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 162-163:358-370. [PMID: 27348041 DOI: 10.1016/j.jenvrad.2016.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/14/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Basic equations for age dating through activity ratio measurements are presented and applied to nuclear chronometers based on parent-daughter decay. Uncertainty propagation formulae are derived which relate the relative uncertainty on the half-lives and measured activity ratios with the relative uncertainty on the calculated time of a nuclear event. Particular attention is paid to the case of relatively short-lived radionuclides for which the change in decay rate during the measurement is non-negligible. Mathematical solutions are presented to correct the perceived activity ratio and adapt the uncertainty propagation formulae to complete the uncertainty budget. The formulae have been applied to 140Ba-140La chronometry, which is particularly useful for dating a nuclear explosion through measurement of the produced activity ratio of 140La and 140Ba in a finite time interval. They were also applied to the 227Th-223Ra parent-daughter pair produced for therapeutic use. The impact of inaccuracies in the nuclear decay data on the performance of these nuclear chronometers is shown and discussed.
Collapse
Affiliation(s)
- S Pommé
- European Commission, Joint Research Centre, Retieseweg 111, B-2440 Geel, Belgium.
| | - S M Collins
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 OLW, UK
| | - A Harms
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 OLW, UK
| | - S M Jerome
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 OLW, UK
| |
Collapse
|
35
|
Ramdahl T, Bonge-Hansen HT, Ryan OB, Larsen S, Herstad G, Sandberg M, Bjerke RM, Grant D, Brevik EM, Cuthbertson AS. An efficient chelator for complexation of thorium-227. Bioorg Med Chem Lett 2016; 26:4318-21. [PMID: 27476138 DOI: 10.1016/j.bmcl.2016.07.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 11/29/2022]
Abstract
We present the synthesis and characterization of a highly efficient thorium chelator, derived from the octadentate hydroxypyridinone class of compounds. The chelator forms extremely stable complexes with fast formation rates in the presence of Th-227 (ambient temperature, 20min). In addition, mouse biodistribution data are provided which indicate rapid hepatobiliary excretion route of the chelator which, together with low bone uptake, supports the stability of the complex in vivo. The carboxylic acid group may be readily activated for conjugation through the ɛ-amino groups of lysine residues in biomolecules such as antibodies. This chelator is a critical component of a new class of Targeted Thorium Conjugates (TTCs) currently under development in the field of oncology.
Collapse
Affiliation(s)
- Thomas Ramdahl
- The Department of Thorium Research, Bayer AS, Drammensveien 288, 0283 Oslo, Norway
| | - Hanne T Bonge-Hansen
- The Department of Thorium Research, Bayer AS, Drammensveien 288, 0283 Oslo, Norway
| | - Olav B Ryan
- The Department of Thorium Research, Bayer AS, Drammensveien 288, 0283 Oslo, Norway
| | - Smund Larsen
- The Department of Thorium Research, Bayer AS, Drammensveien 288, 0283 Oslo, Norway
| | | | | | - Roger M Bjerke
- The Department of Thorium Research, Bayer AS, Drammensveien 288, 0283 Oslo, Norway
| | - Derek Grant
- The Department of Thorium Research, Bayer AS, Drammensveien 288, 0283 Oslo, Norway
| | - Ellen M Brevik
- The Department of Thorium Research, Bayer AS, Drammensveien 288, 0283 Oslo, Norway
| | - Alan S Cuthbertson
- The Department of Thorium Research, Bayer AS, Drammensveien 288, 0283 Oslo, Norway.
| |
Collapse
|
36
|
Dekempeneer Y, Keyaerts M, Krasniqi A, Puttemans J, Muyldermans S, Lahoutte T, D'huyvetter M, Devoogdt N. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin Biol Ther 2016; 16:1035-47. [PMID: 27145158 PMCID: PMC4940885 DOI: 10.1080/14712598.2016.1185412] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction: The combination of a targeted biomolecule that specifically defines the target and a radionuclide that delivers a cytotoxic payload offers a specific way to destroy cancer cells. Targeted radionuclide therapy (TRNT) aims to deliver cytotoxic radiation to cancer cells and causes minimal toxicity to surrounding healthy tissues. Recent advances using α-particle radiation emphasizes their potential to generate radiation in a highly localized and toxic manner because of their high level of ionization and short range in tissue. Areas covered: We review the importance of targeted alpha therapy (TAT) and focus on nanobodies as potential beneficial vehicles. In recent years, nanobodies have been evaluated intensively as unique antigen-specific vehicles for molecular imaging and TRNT. Expert opinion: We expect that the efficient targeting capacity and fast clearance of nanobodies offer a high potential for TAT. More particularly, we argue that the nanobodies’ pharmacokinetic properties match perfectly with the interesting decay properties of the short-lived α-particle emitting radionuclides Astatine-211 and Bismuth-213 and offer an interesting treatment option particularly for micrometastatic cancer and residual disease.
Collapse
Affiliation(s)
- Yana Dekempeneer
- a Vrije Universiteit Brussel, In Vivo Cellular and Molecular Imaging , Brussels , Belgium
| | - Marleen Keyaerts
- a Vrije Universiteit Brussel, In Vivo Cellular and Molecular Imaging , Brussels , Belgium.,b Nuclear Medicine Department , UZ Brussel , Brussels , Belgium
| | - Ahmet Krasniqi
- a Vrije Universiteit Brussel, In Vivo Cellular and Molecular Imaging , Brussels , Belgium
| | - Janik Puttemans
- a Vrije Universiteit Brussel, In Vivo Cellular and Molecular Imaging , Brussels , Belgium
| | - Serge Muyldermans
- c Vrije Universiteit Brussel , Laboratory of Cellular and Molecular Immunology , Brussels , Belgium
| | - Tony Lahoutte
- a Vrije Universiteit Brussel, In Vivo Cellular and Molecular Imaging , Brussels , Belgium.,b Nuclear Medicine Department , UZ Brussel , Brussels , Belgium
| | - Matthias D'huyvetter
- a Vrije Universiteit Brussel, In Vivo Cellular and Molecular Imaging , Brussels , Belgium
| | - Nick Devoogdt
- a Vrije Universiteit Brussel, In Vivo Cellular and Molecular Imaging , Brussels , Belgium
| |
Collapse
|
37
|
Kumar C, Shetake N, Desai S, Kumar A, Samuel G, Pandey BN. Relevance of radiobiological concepts in radionuclide therapy of cancer. Int J Radiat Biol 2016; 92:173-86. [PMID: 26917443 DOI: 10.3109/09553002.2016.1144944] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Radionuclide therapy (RNT) is a rapidly growing area of clinical nuclear medicine, wherein radionuclides are employed to deliver cytotoxic dose of radiation to the diseased cells/tissues. During RNT, radionuclides are either directly administered or delivered through biomolecules targeting the diseased site. RNT has been clinically used for diverse range of diseases including cancer, which is the focus of the review. CONCLUSIONS The major emphasis in RNT has so far been given towards developing peptides/antibodies and other molecules to conjugate a variety of therapeutic radioisotopes for improved targeting/delivery of radiation dose to the tumor cells. Despite that, many of the RNT approaches have not achieved their desired therapeutic success probably due to poor knowledge about complex and dynamic (i) fate of radiolabeled molecules; (ii) radiation dose delivered; (iii) cellular heterogeneity in tumor mass; and (iv) cellular radiobiological response. Based on understanding gathered during recent years, it may be stated that besides the absorbed dose, the net radiobiological response of tumor/normal cells also determines the clinical response of radiotherapeutic modalities including RNT. The radiosensitivity of tumor/normal cells is governed by radiobiological phenomenon such as radiation-induced bystander effect, genomic instability, adaptive response and low dose hyper-radiosensitivity. These concepts have been well investigated in the context of external beam radiotherapy, but their clinical implications during RNT have received meagre attention. In this direction, a few studies performed using in vitro and in vivo models envisage the possibilities of exploiting the radiobiological knowledge for improved therapeutic outcome of RNT.
Collapse
Affiliation(s)
- Chandan Kumar
- a Radiopharmaceutical Chemistry Section , Bhabha Atomic Research Centre , Mumbai
| | - Neena Shetake
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai
| | - Sejal Desai
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| | - Amit Kumar
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| | - Grace Samuel
- c Isotope Production and Applications Division , Bhabha Atomic Research Centre , Mumbai
| | - Badri N Pandey
- b Radiation Biology and Health Sciences Division , Bhabha Atomic Research Centre , Mumbai ;,d Homi Bhabha National Institute , Mumbai , India
| |
Collapse
|
38
|
Aitken-Smith PM, Collins SM. Measurement of the (211)Pb half-life using recoil atoms from (219)Rn decay. Appl Radiat Isot 2016; 110:59-63. [PMID: 26773817 DOI: 10.1016/j.apradiso.2016.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/01/2022]
Abstract
The radioactive half-life of (211)Pb was measured, by α-particle counting of samples of radiochemically pure (211)Pb in equilibrium with its α-emitting progeny, (211)Bi and (211)Po. The samples were prepared by the collection of (215)Po recoil atoms from the decay of the (219)Rn decay progeny produced from a (223)Ra sample onto stainless steel discs. The radioactive decay of the (211)Pb was measured utilising a 2π proportional counter operating on the α plateau. A half-life of 36.164 (13)min was determined, which is in agreement with currently available literature. A full uncertainty budget is presented. A recommended half-life of T1/2((211)Pb)=36.161 (17)min has been evaluated from the current literature values.
Collapse
Affiliation(s)
- P M Aitken-Smith
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK.
| | - S M Collins
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK
| |
Collapse
|
39
|
Collins S, Pommé S, Jerome S, Ferreira K, Regan P, Pearce A. The half-life of 227Th by direct and indirect measurements. Appl Radiat Isot 2015. [DOI: 10.1016/j.apradiso.2015.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Eradication of growth of HER2-positive ovarian cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate in mouse xenograft model. Int J Gynecol Cancer 2015; 24:1158-64. [PMID: 24987913 DOI: 10.1097/igc.0000000000000179] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Ovarian cancer is 1 kind of a highly malignant gynecologic tumor, and current treatments have not achieved satisfactory effects. Human epidermal growth factor receptor 2 (HER2)-targeted therapies including trastuzumab and trastuzumab-DM1 (T-DM1) (antibody-cytotoxic drug conjugates) have been applied to treat HER2-overexpressing breast cancers in clinic. In the present study, we explored whether T-DM1 could effectively treat HER2-positive human ovarian carcinoma in vitro and in vivo. METHODS HER2 expressions of 6 ovarian cancer cell lines and 2 breast carcinoma cell lines were validated, and the binding capacity of T-DM1 to HER2-positive ovarian cancer SKOV3 cells were analyzed by flow cytometry. Nude mice bearing intraperitoneal and subcutaneous SKOV3 xenografts were used to investigate the antitumor effect of T-DM1. RESULTS High HER2 expressions in SKOV3 cell lines were detected. The binding capacity of T-DM1 to HER2-positive SKOV3 cells was in a similar manner comparing with trastuzumab. In vitro, T-DM1 showed strong growth inhibitory on SKOV3 cells, with IC50 values of 0.15 nmol/L. Nude mice bearing intraperitoneal and subcutaneous SKOV3 xenografts were used to investigate the antitumor effects of T-DM1 in vivo. In subcutaneous xenografts model, T-DM1 (30 mg/kg and 10 mg/kg) indicated significant anticancer effects. It is noteworthy that tumors were completely eradicated in the T-DM1 (30 mg/kg) group, and no regrowth was observed in a long time after the termination of the treatment. In the peritoneal xenograft model, tumor nodules in 3 of 7 mice were hardly observed in the abdominal cavity of mice after intraperitoneal injection of T-DM1 (30 mg/kg). At the same time, tumor nodules from the other 4 mice weighed on the average of only 0.07 g versus 1.77 g in control group. CONCLUSIONS Our data showed that T-DM1 possessed promising antitumor effects on HER2-overexpressing ovarian cancer in mouse model, which provided valuable references for the future clinical trials.
Collapse
|
41
|
|
42
|
Black JD, English DP, Roque DM, Santin AD. Targeted therapy in uterine serous carcinoma: an aggressive variant of endometrial cancer. ACTA ACUST UNITED AC 2014; 10:45-57. [PMID: 24328598 DOI: 10.2217/whe.13.72] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Uterine serous carcinoma (USC) is a highly aggressive variant of endometrial cancer. Although it only represents less than 10% of all cases, it accounts for a disproportionate number of deaths from endometrial cancer. Comprehensive surgical staging followed by carboplatin and paclitaxel chemotherapy represents the mainstay of USC therapy. Vaginal cuff brachytherapy is also of potential benefit in USC. Recent whole-exome sequencing studies have demonstrated gain of function of the HER2/NEU gene, as well as driver mutations in the PIK3CA/AKT/mTOR and cyclin E/FBXW7 oncogenic pathways in a large number of USCs. These results emphasize the relevance of these novel therapeutic targets for biologic therapy of chemotherapy-resistant recurrent USC.
Collapse
Affiliation(s)
- Jonathan D Black
- Yale University School of Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, Room 305 Laboratory for Surgery, Obstetrics & Gynecology, 333 Cedar Street; PO Box 208063, New Haven, CT 06520-8063, USA
| | | | | | | |
Collapse
|
43
|
Wadas TJ, Pandya DN, Solingapuram Sai KK, Mintz A. Molecular targeted α-particle therapy for oncologic applications. AJR Am J Roentgenol 2014; 203:253-60. [PMID: 25055256 PMCID: PMC4490786 DOI: 10.2214/ajr.14.12554] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE A significant challenge facing traditional cancer therapies is their propensity to significantly harm normal tissue. The recent clinical success of targeting therapies by attaching them to antibodies that are specific to tumor-restricted biomarkers marks a new era of cancer treatments. CONCLUSION In this article, we highlight the recent developments in α-particle therapy that have enabled investigators to exploit this highly potent form of therapy by targeting tumor-restricted molecular biomarkers.
Collapse
Affiliation(s)
- Thaddeus J Wadas
- 1 Department of Radiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157
| | | | | | | |
Collapse
|
44
|
Vandamme TF. Use of rodents as models of human diseases. J Pharm Bioallied Sci 2014; 6:2-9. [PMID: 24459397 PMCID: PMC3895289 DOI: 10.4103/0975-7406.124301] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 11/20/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022] Open
Abstract
Advances in molecular biology have significantly increased the understanding of the biology of different diseases. However, these discoveries have not yet been fully translated into improved treatments for patients with diseases such as cancers. One of the factors limiting the translation of knowledge from preclinical studies to the clinic has been the limitations of in vivo diseases models. In this brief review, we will discuss the advantages and disadvantages of rodent models that have been developed to simulate human pathologies, focusing in models that employ xenografts and genetic modification. Within the framework of genetically engineered mouse (GEM) models, we will review some of the current genetic strategies for modeling diseases in the mouse and the preclinical studies that have already been undertaken. We will also discuss how recent improvements in imaging technologies may increase the information derived from using these GEMs during early assessments of potential therapeutic pathways. Furthermore, it is interesting to note that one of the values of using a mouse model is the very rapid turnover rate of the animal, going through the process of birth to death in a very short timeframe relative to that of larger mammalian species.
Collapse
Affiliation(s)
- Thierry F Vandamme
- University of Strasbourg, Faculty of Pharmacy, UMR 7199 CNRS, Laboratory of Concept and Application of Bioactive Molecules, Biogalenic Team, 74 Route du Rhin, 67400 Illkirch Graffenstaden, France
| |
Collapse
|
45
|
Novy Z, Laznickova A, Mandikova J, Barta P, Laznicek M, Trejtnar F. The effect of chelator type onin vitroreceptor binding and stability in177Lu-labeled cetuximab and panitumumab. J Labelled Comp Radiopharm 2014; 57:448-52. [DOI: 10.1002/jlcr.3204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 02/01/2014] [Accepted: 04/11/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Zbynek Novy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove; Charles University in Prague; Czech Republic
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry; Palacky University Olomouc; Czech Republic
| | - Alice Laznickova
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Kralove; Charles University in Prague; Czech Republic
| | - Jana Mandikova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove; Charles University in Prague; Czech Republic
| | - Pavel Barta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove; Charles University in Prague; Czech Republic
| | - Milan Laznicek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove; Charles University in Prague; Czech Republic
| | - Frantisek Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove; Charles University in Prague; Czech Republic
| |
Collapse
|
46
|
Kim S, Ding W, Zhang L, Tian W, Chen S. Clinical response to sunitinib as a multitargeted tyrosine-kinase inhibitor (TKI) in solid cancers: a review of clinical trials. Onco Targets Ther 2014; 7:719-28. [PMID: 24872713 PMCID: PMC4026584 DOI: 10.2147/ott.s61388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angiogenesis is an integral process in carcinogenesis, and molecular inhibitors of angiogenic factors are currently being tested as treatments for cancer. Sunitinib is an oral multitargeted tyrosine-kinase inhibitor that blocks activation through the stem cell-factor receptor (Kit) and platelet-derived growth-factor receptor. Sunitinib has shown potent antitumor activity against several solid tumors, including renal cell carcinoma, gastrointestinal stromal tumors, and neuroendocrine tumors in several Phase II/III trials. Recently, sunitinib has been used to treat other solid cancers, such as lung cancer, pancreatic cancer, chondrosarcoma, esophageal cancer, bladder cancer, glioma, and aggressive fibromatosis, and also showed potential efficacy in progression-free survival and overall survival. In this review, we examine the efficacy of sunitinib as a molecular-targeted therapy in patients with different types of solid cancers.
Collapse
Affiliation(s)
- Sungkyoung Kim
- Department of Oncology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Wenping Ding
- Department of Oncology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lian Zhang
- Department of Oncology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Wei Tian
- Department of Oncology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
47
|
Abstract
α-particle-emitting radionuclides are highly cytotoxic and are thus promising candidates for use in targeted radioimmunotherapy of cancer. Due to their high linear energy transfer (LET) combined with a short path length in tissue, α-particles cause severe DNA double-strand breaks that are repaired inaccurately and finally trigger cell death. For radioimmunotherapy, α-emitters such as 225Ac, 211At, 212Bi/212Pb, 213Bi and 227Th are coupled to antibodies via appropriate chelating agents. The α-emitter immunoconjugates preferably target proteins that are overexpressed or exclusively expressed on cancer cells. Application of α-emitter immunoconjugates seems particularly promising in treatment of disseminated cancer cells and small tumor cell clusters that are released during the resection of a primary tumor. α-emitter immunoconjugates have been successfully administered in numerous experimental studies for therapy of ovarian, colon, gastric, blood, breast and bladder cancer. Initial clinical trials evaluating α-emitter immunoconjugates in terms of toxicity and therapeutic efficacy have also shown positive results in patients with melanoma, ovarian cancer, acute myeloid lymphoma and glioma. The present problems in terms of availability of therapeutically effiective α-emitters will presumably be solved by use of alternative production routes and installation of additional production facilities in the near future. Therefore, clinical establishment of targeted α-emitter radioimmunotherapy as one part of a multimodal concept for therapy of cancer is a promising, middle-term concept.
Collapse
Affiliation(s)
- Christof Seidl
- Technische Universität München, Department of Nuclear Medicine, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
48
|
Navarro-Teulon I, Lozza C, Pèlegrin A, Vivès E, Pouget JP. General overview of radioimmunotherapy of solid tumors. Immunotherapy 2013; 5:467-87. [PMID: 23638743 DOI: 10.2217/imt.13.34] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Radioimmunotherapy (RIT) represents an attractive tool for the treatment of local and/or diffuse tumors with radiation. In RIT, cytotoxic radionuclides are delivered by monoclonal antibodies that specifically target tumor-associated antigens or the tumor microenvironment. While RIT has been successfully employed for the treatment of lymphoma, mostly with radiolabeled antibodies against CD20 (Bexxar(®); Corixa Corp., WA, USA and Zevalin(®); Biogen Idec Inc., CA, USA and Schering AG, Berlin, Germany), its use in solid tumors is more challenging and, so far, few trials have progressed beyond Phase II. This review provides an update on antibody-radionuclide conjugates and their use in RIT. It also discusses possible optimization strategies to improve the clinical response by considering biological, radiobiological and physical features.
Collapse
|
49
|
English DP, Roque DM, Santin AD. HER2 expression beyond breast cancer: therapeutic implications for gynecologic malignancies. Mol Diagn Ther 2013; 17:85-99. [PMID: 23529353 DOI: 10.1007/s40291-013-0024-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
HER2 or ErbB2 is a member of the epidermal growth factor family and is overexpressed in subsets of breast, ovarian, gastric, colorectal, pancreatic, and endometrial cancers. HER2 regulates signaling through several pathways (Ras/Raf/mitogen-activated protein kinase and phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin pathways) associated with cell survival and proliferation. HER2-overexpressed and/or gene-amplified tumors are generally regarded as biologically aggressive neoplasms. In breast, cervical, endometrial, and ovarian cancer, there have been several studies linking the amplification of the c-erbB2 gene with chemoresistance and overall poor survival. Tyrosine kinase inhibitors and immunotherapy with monoclonal antibodies targeting HER2 hold promise for patients harboring these aggressive neoplasms. Trastuzumab combined with cytotoxic chemotherapy agents or conjugated with radioactive isotopes is currently being investigated in clinical trials of several tumor types.
Collapse
Affiliation(s)
- Diana P English
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, LSOG 305, P.O. Box 208063, New Haven, CT 06520-8063, USA
| | | | | |
Collapse
|
50
|
Heyerdahl H, Røe K, Brevik EM, Dahle J. Modifications in Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameters After α-Particle-Emitting 227Th-trastuzumab Therapy of HER2-Expressing Ovarian Cancer Xenografts. Int J Radiat Oncol Biol Phys 2013; 87:153-9. [DOI: 10.1016/j.ijrobp.2013.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/09/2013] [Accepted: 04/29/2013] [Indexed: 12/28/2022]
|