1
|
Shao Q, Li Y, Fu F, Zhu P, Wang H, Wang Z, Ma J, Yan Y, Cheng Y, Sun J. Identification of pigeon mitochondrial antiviral signaling protein (MAVS) and its role in antiviral innate immunity. Arch Virol 2024; 169:26. [PMID: 38214770 DOI: 10.1007/s00705-023-05920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/08/2023] [Indexed: 01/13/2024]
Abstract
Pigeons can be infected with various RNA viruses, and their innate immune system responds to viral infection to establish an antiviral response. Mitochondrial antiviral signaling protein (MAVS), an important adaptor protein in signal transduction, plays a pivotal role in amplifying the innate immune response. In this study, we successfully cloned pigeon MAVS (piMAVS) and performed a bioinformatics analysis. The results showed that the caspase recruitment domain (CARD) and transmembrane (TM) domain are highly conserved in poultry and mammals but poorly conserved in other species. Furthermore, we observed that MAVS expression is upregulated both in pigeons and pigeon embryonic fibroblasts (PEFs) upon RNA virus infection. Overexpression of MAVS resulted in increased levels of β-interferon (IFN-β), IFN-stimulated genes (ISGs), and interleukin (ILs) mRNA and inhibited Newcastle disease virus (NDV) replication. We also found that piMAVS and human MAVS (huMAVS) induced stronger expression of IFN-β and ISGs when compared to chicken MAVS (chMAVS), and this phenomenon was also reflected in the degree of inhibition of NDV replication. Our findings demonstrate that piMAVS plays an important role in repressing viral replication by regulating the activation of the IFN signal pathway in pigeons. This study not only sheds light on the function of piMAVS in innate immunity but also contributes to a more comprehensive understanding of the innate immunity system in poultry. Our data also provide unique insights into the differences in innate immunity between poultry and mammal.
Collapse
Affiliation(s)
- Qi Shao
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Yawen Li
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Feiyu Fu
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Pei Zhu
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Hengan Wang
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Zhaofei Wang
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Jingjiao Ma
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China.
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 200240, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Ploss A, Kapoor A. Animal Models of Hepatitis C Virus Infection. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036970. [PMID: 31843875 DOI: 10.1101/cshperspect.a036970] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is an important and underreported infectious disease, causing chronic infection in ∼71 million people worldwide. The limited host range of HCV, which robustly infects only humans and chimpanzees, has made studying this virus in vivo challenging and hampered the development of a desperately needed vaccine. The restrictions and ethical concerns surrounding biomedical research in chimpanzees has made the search for an animal model all the more important. In this review, we discuss different approaches that are being pursued toward creating small animal models for HCV infection. Although efforts to use a nonhuman primate species besides chimpanzees have proven challenging, important advances have been achieved in a variety of humanized mouse models. However, such models still fall short of the overarching goal to have an immunocompetent, inheritably susceptible in vivo platform in which the immunopathology of HCV could be studied and putative vaccines development. Alternatives to overcome this include virus adaptation, such as murine-tropic HCV strains, or the use of related hepaciviruses, of which many have been recently identified. Of the latter, the rodent/rat hepacivirus from Rattus norvegicus species-1 (RHV-rn1) holds promise as a surrogate virus in fully immunocompetent rats that can inform our understanding of the interaction between the immune response and viral outcomes (i.e., clearance vs. persistence). However, further characterization of these animal models is necessary before their use for gaining new insights into the immunopathogenesis of HCV and for conceptualizing HCV vaccines.
Collapse
Affiliation(s)
- Alexander Ploss
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Amit Kapoor
- Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| |
Collapse
|
3
|
Rasche A, Sander AL, Corman VM, Drexler JF. Evolutionary biology of human hepatitis viruses. J Hepatol 2019; 70:501-520. [PMID: 30472320 PMCID: PMC7114834 DOI: 10.1016/j.jhep.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
Collapse
Affiliation(s)
- Andrea Rasche
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
4
|
Zhang M, Fu Z, Chen J, Zhu B, Cheng Y, Fu L. Low level expression of the Mitochondrial Antiviral Signaling protein (MAVS) associated with long-term nonprogression in SIV-infected rhesus macaques. Virol J 2018; 15:159. [PMID: 30326919 PMCID: PMC6192151 DOI: 10.1186/s12985-018-1069-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/26/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Abnormally increased immune activation is one of the main pathological features of acquired immunodeficiency syndrome (AIDS). This study aimed to determine whether long-term nonprogression (LTNP) suppresses the upregulation of immune activation and to elucidate the mechanisms whereby the LTNP state is maintained. METHODS For this study we selected 4 rhesus macaques(RMs) infected with simian immunodeficiency virus (SIV) that were long-term nonprogressors (LTNP); for comparison we chose 4 healthy RMs that were seronegative for SIV (hereafter referred to as the Control group), and 4 progressing infection (Progressive group) SIV RMs. We observed these animals for 6 months without intervention and explored the immunological and pathological differences among the 3 groups. A series of immune activation and inflammation markers-such as C- C chemokine receptor type 5 (CCR5), beta 2- microglobulin (β2-MG), Human Leukocyte Antigen - antigen D Related (HLA-DR), CD38, the levels of microbial translocation (LPS -binding protein), and MAVS-and histological features were monitored during this period. RESULTS Both SIV RNA and SIV DNA in the plasma and lymph nodes (LNs) of the LTNP group were at significantly lower levels than those of the Progressive group (P < 0.05). The CD4/CD8 ratio and CD4 cell count and proportion in the LTNP group were between those of the Progressive and Control groups (P < 0.05): that is, they were higher than in the Progressive group and lower than in the Control group. The LTNP macaques manifested slow progression and decreased immune activation and inflammation; they also had lower levels of CCR5, LPS-binding protein, and β2-MG than the Progressive RMs (P < 0.05). Activation of LTNP in both CD4+ and CD8+ T cells was significantly lower than in the Progressive group and closer to that in the Control group. The histological features of the LTNP macaques were also closer to those of the Control group, even though they had been infected with SIV 4 years earlier. These data point to low viral replication in the LTNP macaques but it is not static. The expression of MAVS in peripheral blood and LNs was lower in the LTNP group than that in the Progressive group (P < 0.01), and MAVS was positively correlated with SIV DNA in LNs (P < 0.05). This may reflect the low activation of T lymphocytes. It was speculated that MAVS may be the link between innate and acquired antiviral immunity in SIV infection. CONCLUSIONS The LTNP RMs in our study were in a relatively stable state of low activation and inflammation, some biological progression with no disease events. This may have been associated with their low levels of the mitochondrial antiviral signaling protein (MAVS).
Collapse
Affiliation(s)
- Miaomiao Zhang
- College of Traditional Chinese medicine, Hebei University, Baoding, 071000, China. .,Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China.
| | - Zhuotao Fu
- The first Affiliated Hospital, Guangzhou University of Chinese medicine, Guangzhou, China
| | - Jiantao Chen
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China
| | - Boqiang Zhu
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China
| | - Ye Cheng
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China
| | - Linchun Fu
- Tropical Medicine Institute, Guangzhou University of Chinese medicine, Guangzhou, 510405, China.
| |
Collapse
|
5
|
Boukadida C, Fritz M, Blumen B, Fogeron ML, Penin F, Martin A. NS2 proteases from hepatitis C virus and related hepaciviruses share composite active sites and previously unrecognized intrinsic proteolytic activities. PLoS Pathog 2018; 14:e1006863. [PMID: 29415072 PMCID: PMC5819835 DOI: 10.1371/journal.ppat.1006863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/20/2018] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
Over the recent years, several homologues with varying degrees of genetic relatedness to hepatitis C virus (HCV) have been identified in a wide range of mammalian species. HCV infectious life cycle relies on a first critical proteolytic event of its single polyprotein, which is carried out by nonstructural protein 2 (NS2) and allows replicase assembly and genome replication. In this study, we characterized and evaluated the conservation of the proteolytic mode of action and regulatory mechanisms of NS2 across HCV and animal hepaciviruses. We first demonstrated that NS2 from equine, bat, rodent, New and Old World primate hepaciviruses also are cysteine proteases. Using tagged viral protein precursors and catalytic triad mutants, NS2 of equine NPHV and simian GBV-B, which are the most closely and distantly related viruses to HCV, respectively, were shown to function, like HCV NS2 as dimeric proteases with two composite active sites. Consistent with the reported essential role for NS3 N-terminal domain (NS3N) as HCV NS2 protease cofactor via NS3N key hydrophobic surface patch, we showed by gain/loss of function mutagenesis studies that some heterologous hepacivirus NS3N may act as cofactors for HCV NS2 provided that HCV-like hydrophobic residues are conserved. Unprecedently, however, we also observed efficient intrinsic proteolytic activity of NS2 protease in the absence of NS3 moiety in the context of C-terminal tag fusions via flexible linkers both in transiently transfected cells for all hepaciviruses studied and in the context of HCV dicistronic full-length genomes. These findings suggest that NS3N acts as a regulatory rather than essential cofactor for hepacivirus NS2 protease. Overall, unique features of NS2 including enzymatic function as dimers with two composite active sites and additional NS3-independent proteolytic activity are conserved across hepaciviruses regardless of their genetic distances, highlighting their functional significance in hepacivirus life cycle. Despite remarkable progress in the development of therapeutic options, more than 70 million individuals are chronically infected by hepatitis C virus (HCV) worldwide and major challenges in basic and translational research remain. Phylogenetically-related HCV homologues have recently been identified in the wild in several mammalian species, whose host restriction and potential for zoonosis remain largely unknown. We comparatively characterized the functions and properties of nonstructural proteins 2 (NS2) from several animal hepaciviruses and HCV. We demonstrated that NS2 from animal hepaciviruses, like HCV NS2, are cysteine proteases, which function as dimers with two composite active sites to ensure a key proteolytic event of the single viral polyprotein at the NS2/NS3 junction. In addition to the activation of HCV NS2 protease by NS3 N-terminal domain, our data revealed a novel NS3-independent substrate specificity and efficient intrinsic proteolytic activity of NS2. The conservation of its properties and peculiar mode of action among distantly related hepaciviruses supports an important regulatory role for NS2 protein in the life cycle of these viruses. It also strengthens the value of animal, notably rodent hepaciviruses for the development of surrogate, immunocompetent models of HCV infection to address HCV-associated pathogenesis and vaccine strategies.
Collapse
Affiliation(s)
- Célia Boukadida
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- CNRS UMR 3569, Paris, France
- Université Paris Diderot–Sorbonne Paris Cité, Paris, France
| | - Matthieu Fritz
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- CNRS UMR 3569, Paris, France
- Université Paris Diderot–Sorbonne Paris Cité, Paris, France
| | - Brigitte Blumen
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- CNRS UMR 3569, Paris, France
- Université Paris Diderot–Sorbonne Paris Cité, Paris, France
| | - Marie-Laure Fogeron
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - François Penin
- Institut de Biologie et Chimie des Protéines, Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS, Université de Lyon, Lyon, France
| | - Annette Martin
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Paris, France
- CNRS UMR 3569, Paris, France
- Université Paris Diderot–Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
6
|
Abstract
Hepaciviruses and pegiviruses constitute two closely related sister genera of the family Flaviviridae. In the past five years, the known phylogenetic diversity of the hepacivirus genera has absolutely exploded. What was once an isolated infection in humans (and possibly other primates) has now expanded to include horses, rodents, bats, colobus monkeys, cows, and, most recently, catsharks, shedding new light on the genetic diversity and host range of hepaciviruses. Interestingly, despite the identification of these many animal and primate hepaciviruses, the equine hepaciviruses remain the closest genetic relatives of the human hepaciviruses, providing an intriguing clue to the zoonotic source of hepatitis C virus. This review summarizes the significance of these studies and discusses current thinking about the origin and evolution of the animal hepaciviruses as well as their potential usage as surrogate models for the study of hepatitis C virus.
Collapse
Affiliation(s)
- Alex S Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205;
| | - John M Cullen
- North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina 27606
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205; .,Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
7
|
Abstract
Hepatitis C virus (HCV) displays a restricted host species tropism and only humans and chimpanzees are susceptible to infection. A robust immunocompetent animal model is still lacking, hampering mechanistic analysis of virus pathogenesis, immune control, and prophylactic vaccine development. The closest homolog of HCV is the equine nonprimate hepacivirus (NPHV), which shares similar features with HCV and thus represents an animal model to study hepacivirus infections in their natural hosts. We aimed to dissect equine immune responses after experimental NPHV infection and conducted challenge experiments to investigate immune protection against secondary NPHV infections. Horses were i.v. injected with NPHV containing plasma. Flow cytometric analysis was used to monitor immune cell frequencies and activation status. All infected horses became viremic after 1 or 2 wk and viremia could be detected in two horses for several weeks followed by a delayed seroconversion and viral clearance. Histopathological examinations of liver biopsies revealed mild, periportally accentuated infiltrations of lymphocytes, macrophages, and plasma cells with some horses displaying subclinical signs of hepatitis. Following viral challenge, an activation of equine immune responses was observed. Importantly, after a primary NPHV infection, horses were protected against rechallenge with the homologous as well as a distinct isolate with only minute amounts of circulating virus being detectable.
Collapse
|
8
|
Hepacivirus NS3/4A Proteases Interfere with MAVS Signaling in both Their Cognate Animal Hosts and Humans: Implications for Zoonotic Transmission. J Virol 2016; 90:10670-10681. [PMID: 27654291 DOI: 10.1128/jvi.01634-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022] Open
Abstract
Multiple novel members of the genus Hepacivirus have recently been discovered in diverse mammalian species. However, to date, their replication mechanisms and zoonotic potential have not been explored in detail. The NS3/4A serine protease of hepatitis C virus (HCV) is critical for cleavage of the viral polyprotein. It also cleaves the cellular innate immune adaptor MAVS, thus decreasing interferon (IFN) production and contributing to HCV persistence in the human host. To investigate the conservation of fundamental aspects of the hepaciviral life cycle, we explored if MAVS cleavage and suppression of innate immune signaling represent a common mechanism employed across different clades of the genus Hepacivirus to enhance viral replication. To estimate the zoonotic potential of these nonhuman hepaciviruses, we assessed if their NS3/4A proteases were capable of cleaving human MAVS. NS3/4A proteases of viruses infecting colobus monkeys, rodents, horses, and cows cleaved the MAVS proteins of their cognate hosts and interfered with the ability of MAVS to induce the IFN-β promoter. All NS3/4A proteases from nonhuman viruses readily cleaved human MAVS. Thus, NS3/4A-dependent cleavage of MAVS is a conserved replication strategy across multiple clades within the genus Hepacivirus Human MAVS is susceptible to cleavage by these nonhuman viral proteases, indicating that it does not pose a barrier for zoonotic transmission of these viruses to humans. IMPORTANCE Virus infection is recognized by cellular sensor proteins triggering innate immune signaling and antiviral defenses. While viruses have evolved strategies to thwart these antiviral programs in their cognate host species, these evasion mechanisms are often ineffective in a novel host, thus limiting viral transmission across species. HCV, the best-characterized member of the genus Hepacivirus within the family Flaviviridae, uses its NS3/4A protease to disrupt innate immune signaling by cleaving the cellular adaptor protein MAVS. Recently, a large number of HCV-related viruses have been discovered in various animal species, including wild, livestock, and companion animals. We show that the NS3/4A proteases of these hepaciviruses from different animals and representing various clades of the genus cleave their cognate host MAVS proteins in addition to human MAVS. Therefore, cleavage of MAVS is a common strategy of hepaciviruses, and human MAVS is likely unable to limit replication of these nonhuman viruses upon zoonotic exposure.
Collapse
|
9
|
Ozdemir Isik G, Ozer AN. Prediction of substrate specificity in NS3/4A serine protease by biased sequence search threading. J Biomol Struct Dyn 2016; 35:1102-1114. [DOI: 10.1080/07391102.2016.1171801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Gonca Ozdemir Isik
- Department of Bioengineering, Marmara University , Goztepe, Kadikoy, 34722 Istanbul, Turkey
| | - A. Nevra Ozer
- Department of Bioengineering, Marmara University , Goztepe, Kadikoy, 34722 Istanbul, Turkey
| |
Collapse
|
10
|
Ion Channel Function and Cross-Species Determinants in Viral Assembly of Nonprimate Hepacivirus p7. J Virol 2016; 90:5075-5089. [PMID: 26962224 DOI: 10.1128/jvi.00132-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Nonprimate hepacivirus (NPHV), the closest homolog of hepatitis C virus (HCV) described to date, has recently been discovered in horses. Even though the two viruses share a similar genomic organization, conservation of the encoded hepaciviral proteins remains undetermined. The HCV p7 protein is localized within endoplasmic reticulum (ER) membranes and is important for the production of infectious particles. In this study, we analyzed the structural and functional features of NPHV p7 in addition to its role during virus assembly. Three-dimensional homology models for NPHV p7 using various nuclear magnetic resonance spectroscopy (NMR) structures were generated, highlighting the conserved residues important for ion channel function. By applying a liposome permeability assay, we observed that NPHV p7 exhibited liposome permeability features similar to those of HCV p7, indicative of similar ion channel activity. Next, we characterized the viral protein using a p7-based trans-complementation approach. A similar subcellular localization pattern at the ER membrane was observed, although production of infectious particles was likely hindered by genetic incompatibilities with HCV proteins. To further characterize these cross-species constraints, chimeric viruses were constructed by substituting different regions of HCV p7 with NPHV p7. The N terminus and transmembrane domains were nonexchangeable and therefore constitute a cross-species barrier in hepaciviral assembly. In contrast, the basic loop and the C terminus of NPHV p7 were readily exchangeable, allowing production of infectious trans-complemented viral particles. In conclusion, comparison of NPHV and HCV p7 revealed structural and functional homology of these proteins, including liposome permeability, and broadly acting determinants that modulate hepaciviral virion assembly and contribute to the host-species barrier were identified. IMPORTANCE The recent discovery of new relatives of hepatitis C virus (HCV) enables for the first time the study of cross-species determinants shaping hepaciviral pathogenesis. Nonprimate hepacivirus (NPHV) was described to infect horses and represents so far the closest homolog of HCV. Both viruses encode the same viral proteins; however, NPHV protein functions remain poorly understood. In this study, we aimed to dissect NPHV p7 on a structural and functional level. By using various NMR structures of HCV p7 as templates, three-dimensional homology models for NPHV p7 were generated, highlighting conserved residues that are important for ion channel function. A p7-based trans-complementation approach and the construction of NPHV/HCV p7 chimeric viruses showed that the N terminus and transmembrane domains were nonexchangeable. In contrast, the basic loop and the C terminus of NPHV p7 were readily exchangeable, allowing production of infectious viral particles. These results identify species-specific constraints as well as exchangeable determinants in hepaciviral assembly.
Collapse
|
11
|
Thézé J, Lowes S, Parker J, Pybus OG. Evolutionary and Phylogenetic Analysis of the Hepaciviruses and Pegiviruses. Genome Biol Evol 2015; 7:2996-3008. [PMID: 26494702 PMCID: PMC5635594 DOI: 10.1093/gbe/evv202] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The known genetic diversity of the hepaciviruses and pegiviruses has increased greatly in recent years through the discovery of viruses related to hepatitis C virus and human pegivirus in bats, bovines, equines, primates, and rodents. Analysis of these new species is important for research into animal models of hepatitis C virus infection and into the zoonotic origins of human viruses. Here, we provide the first systematic phylogenetic and evolutionary analysis of these two genera at the whole-genome level. Phylogenies confirmed that hepatitis C virus is most closely related to viruses from horses whereas human pegiviruses clustered with viruses from African primates. Within each genus, several well-supported lineages were identified and viral diversity was structured by both host species and location of sampling. Recombination analyses provided evidence of interspecific recombination in hepaciviruses, but none in the pegiviruses. Putative mosaic genome structures were identified in NS5B gene region and were supported by multiple tests. The identification of interspecific recombination in the hepaciviruses represents an important evolutionary event that could be clarified by future sampling of novel viruses. We also identified parallel amino acid changes shared by distantly related lineages that infect similar types of host. Notable parallel changes were clustered in the NS3 and NS4B genes and provide a useful starting point for experimental studies of the evolution of Hepacivirus host-virus interactions.
Collapse
Affiliation(s)
- Julien Thézé
- Department of Zoology, University of Oxford, United Kingdom
| | - Sophia Lowes
- Department of Zoology, University of Oxford, United Kingdom
| | - Joe Parker
- Biodiversity Informatics and Spatial Analysis, The Jodrell Laboratory, Royal Botanic Gardens, Kew, United Kingdom
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, United Kingdom
| |
Collapse
|
12
|
Dong J, Xu S, Wang J, Luo R, Wang D, Xiao S, Fang L, Chen H, Jiang Y. Porcine reproductive and respiratory syndrome virus 3C protease cleaves the mitochondrial antiviral signalling complex to antagonize IFN-β expression. J Gen Virol 2015; 96:3049-3058. [PMID: 26253126 PMCID: PMC5410108 DOI: 10.1099/jgv.0.000257] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/02/2015] [Indexed: 02/07/2023] Open
Abstract
Porcine reproductive and respiratory syndrome, a highly infectious disease caused by porcine reproductive and respiratory syndrome virus (PRRSV), has developed various strategies to evade the host innate immune response, including the suppression of type I IFN activation. The mitochondrial antiviral signalling protein (MAVS) is an important bridging adaptor of retinoic acid-inducible gene I/melanoma differentiation-associated protein 5 signalling pathways. Here, we demonstrated that the 3C-like protease (3CLSP) of PRRSV prevented the induction of IFN-β by cleaving MAVS in a proteasome- and caspase-independent manner. Moreover, this cleavage ability was dependent on the protease activity of 3CLSP. Mutations specifically disrupting the cysteine protease activity of 3CLSP eliminated MAVS cleavage and the inhibition of IFN induction. Subsequently, we determined that 3CLSP cleaved MAVS at Glu268. Remarkably, a MAVS point mutation at Glu268 rendered MAVS resistant to 3CLSP cleavage. These results reveal a novel PRRSV mechanism to escape host immunity by directly cleaving MAVS.
Collapse
Affiliation(s)
- Jianming Dong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
- Laboratory of Animal Infections, College of Veterinary Medicine, Wuhan 430070, Hubei, PR China
| | - Shangen Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
- Laboratory of Animal Infections, College of Veterinary Medicine, Wuhan 430070, Hubei, PR China
| | - Jing Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
- Laboratory of Animal Infections, College of Veterinary Medicine, Wuhan 430070, Hubei, PR China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
- Laboratory of Animal Infections, College of Veterinary Medicine, Wuhan 430070, Hubei, PR China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
- Laboratory of Animal Infections, College of Veterinary Medicine, Wuhan 430070, Hubei, PR China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
- Laboratory of Animal Infections, College of Veterinary Medicine, Wuhan 430070, Hubei, PR China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
- Laboratory of Animal Infections, College of Veterinary Medicine, Wuhan 430070, Hubei, PR China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
- Laboratory of Animal Infections, College of Veterinary Medicine, Wuhan 430070, Hubei, PR China
| | - Yunbo Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
- Laboratory of Animal Infections, College of Veterinary Medicine, Wuhan 430070, Hubei, PR China
| |
Collapse
|
13
|
Affiliation(s)
- Christian Drosten
- Institute of Virology, University of Bonn Medical Centre , Bonn 53105, Germany
| |
Collapse
|
14
|
Pfaender S, Walter S, Todt D, Behrendt P, Doerrbecker J, Wölk B, Engelmann M, Gravemann U, Seltsam A, Steinmann J, Burbelo PD, Klawonn F, Feige K, Pietschmann T, Cavalleri JMV, Steinmann E. Assessment of cross-species transmission of hepatitis C virus-related non-primate hepacivirus in a population of humans at high risk of exposure. J Gen Virol 2015; 96:2636-2642. [PMID: 26041875 DOI: 10.1099/vir.0.000208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of hepatitis C virus (HCV)-related viruses in different animal species has raised new speculations regarding the origin of HCV and the possibility of a zoonotic source responsible for the endemic HCV transmission. As a consequence, these new findings prompt questions regarding the potential for cross-species transmissions of hepaciviruses. The closest relatives to HCV discovered to date are the non-primate hepaciviruses (NPHVs), which have been described to infect horses. To evaluate the risk of a potential zoonotic transmission, we analysed NPHV RNA and antibodies in humans with occupational exposure to horses in comparison with a low-risk group. Both groups were negative for NPHV RNA, even though low seroreactivities against various NPHV antigens could be detected irrespective of the group. In conclusion, we did not observe evidence of NPHV transmission between horses and humans.
Collapse
Affiliation(s)
- Stephanie Pfaender
- Institute of Experimental Virology, Twincore - Centre of Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Stephanie Walter
- Institute of Experimental Virology, Twincore - Centre of Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Daniel Todt
- Institute of Experimental Virology, Twincore - Centre of Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Patrick Behrendt
- Institute of Experimental Virology, Twincore - Centre of Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Juliane Doerrbecker
- Institute of Experimental Virology, Twincore - Centre of Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Benno Wölk
- Institute of Virology, Hannover Medical School, Hannover, Germany.,LADR Medical Laboratory Dr Kramer & Colleagues, Geesthacht, Germany
| | - Michael Engelmann
- Institute of Experimental Virology, Twincore - Centre of Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | - Ute Gravemann
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter D Burbelo
- Dental Clinical Research Core, National Institute of Dental Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank Klawonn
- Bioinformatics and Statistics Research Group, Department of Cellular Proteomics, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.,Ostfalia University of Applied Sciences, Department of Computer Science, Wolfenbuettel, Germany
| | - Karsten Feige
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Thomas Pietschmann
- Institute of Experimental Virology, Twincore - Centre of Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| | | | - Eike Steinmann
- Institute of Experimental Virology, Twincore - Centre of Experimental and Clinical Infection Research, Feodor-Lynen-Str. 7, 30625 Hannover, Germany
| |
Collapse
|
15
|
Scheel TKH, Simmonds P, Kapoor A. Surveying the global virome: identification and characterization of HCV-related animal hepaciviruses. Antiviral Res 2015; 115:83-93. [PMID: 25545071 PMCID: PMC5081135 DOI: 10.1016/j.antiviral.2014.12.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 12/25/2022]
Abstract
Recent advances in sequencing technologies have greatly enhanced our abilities to identify novel microbial sequences. Thus, our understanding of the global virome and the virome of specific host species in particular is rapidly expanding. Identification of animal viruses is important for understanding animal disease, the origin and evolution of human viruses, as well as zoonotic reservoirs for emerging infections. Although the human hepacivirus, hepatitis C virus (HCV), was identified 25years ago, its origin has remained elusive. In 2011, the first HCV homolog was reported in dogs but subsequent studies showed the virus to be widely distributed in horses. This indicated a wider hepacivirus host range and paved the way for identification of rodent, bat and non-human primate hepaciviruses. The equine non-primate hepacivirus (NPHV) remains the closest relative of HCV and is so far the best characterized. Identification and characterization of novel hepaciviruses may in addition lead to development of tractable animal models to study HCV persistence, immune responses and pathogenesis. This could be particular important, given the current shortage of immunocompetent models for robust HCV infection. Much remains to be learned on the novel hepaciviruses, including their association with disease, and thereby how relevant they will become as HCV model systems and for studies of animal disease. This review discusses how virome analysis led to identification of novel hepaci- and pegiviruses, their genetic relationship and characterization and the potential use of animal hepaciviruses as models to study hepaciviral infection, immunity and pathogenesis. This article forms part of a symposium in Antiviral Research on "Hepatitis C: Next steps toward global eradication."
Collapse
Affiliation(s)
- Troels K H Scheel
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, United States; Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Disease and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Simmonds
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Amit Kapoor
- Center for Infection and Immunity, Columbia University, New York, NY, United States.
| |
Collapse
|
16
|
Characterization of nonprimate hepacivirus and construction of a functional molecular clone. Proc Natl Acad Sci U S A 2015; 112:2192-7. [PMID: 25646476 DOI: 10.1073/pnas.1500265112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nonprimate hepacivirus (NPHV) is the closest known relative of hepatitis C virus (HCV) and its study could enrich our understanding of HCV evolution, immunity, and pathogenesis. High seropositivity is found in horses worldwide with ∼ 3% viremic. NPHV natural history and molecular virology remain largely unexplored, however. Here, we show that NPHV, like HCV, can cause persistent infection for over a decade, with high titers and negative strand RNA in the liver. NPHV is a near-universal contaminant of commercial horse sera for cell culture. The complete NPHV 3'-UTR was determined and consists of interspersed homopolymer tracts and an HCV-like 3'-terminal poly(U)-X-tail. NPHV translation is stimulated by miR-122 and the 3'-UTR and, similar to HCV, the NPHV NS3-4A protease can cleave mitochondrial antiviral-signaling protein to inactivate the retinoic acid-inducible gene I pathway. Using an NPHV consensus cDNA clone, replication was not observed in primary equine fetal liver cultures or after electroporation of selectable replicons. However, intrahepatic RNA inoculation of a horse initiated infection, yielding high RNA titers in the serum and liver. Delayed seroconversion, slightly elevated circulating liver enzymes and mild hepatitis was observed, followed by viral clearance. This establishes the molecular components of a functional NPHV genome. Thus, NPHV appears to resemble HCV not only in genome structure but also in its ability to establish chronic infection with delayed seroconversion and hepatitis. This NPHV infectious clone and resulting acute phase sera will facilitate more detailed studies on the natural history, pathogenesis, and immunity of this novel hepacivirus in its natural host.
Collapse
|
17
|
Nevot M, Boesecke C, Parera M, Andrés C, Franco S, Revollo B, Ingiliz P, Tural C, Clotet B, Rockstroh JK, Martinez MA. Hepatitis C virus NS3/4A quasispecies diversity in acute hepatitis C infection in HIV-1 co-infected patients. J Viral Hepat 2014; 21:e19-28. [PMID: 24674023 DOI: 10.1111/jvh.12254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The growing number of cases of acute hepatitis C (AHC) infections among human immunodeficiency virus type 1 (HIV-1)-positive men who have sex with men (MSM) in the last 10 years has promoted the search for predictors of AHC clearance as well as for epidemiological networks of viral transmission. We characterized the diversity and catalytic efficiency of HCV NS3/4A protease quasispecies in AHC patients coinfected with HIV-1. Plasma samples obtained at HCV diagnosis from 18 MSM HIV-coinfected patients with AHC were studied. Five HCV monoinfected patient samples with AHC were also investigated. An average of 39 clones from each sample was analysed. The catalytic efficiency of the dominant quasispecies (i.e. the most abundant) from each quasispecies was also assayed for mitochondrial antiviral signalling protein (MAVS) cleavage. Phylogenetic analysis identified two clusters of patients with highly related viruses, suggesting a common source of HCV infection. None of the 18 MSM HIV-coinfected patients spontaneously cleared HCV, although 78% of the treated patients achieved a sustained virological response after early treatment with pegylated interferon (pegIFN) plus ribavirin (RBV). The synonymous-nonsynonymous (ds/dn) mutation ratio, a marker of selective pressure, was higher in AHC compared to 26 HIV-1-infected men with genotype 1a chronic hepatitis C (CHC) (P < 0.0001). NS3/4A proteases from AHC patients also exhibited higher catalytic efficiency compared to CHC patients (P < 0.0001). No differences were found when ds/dn mutation ratios and NS3/4A protease catalytic efficiencies from AHC HIV-coinfected patients were compared with AHC monoinfected patients. The presence of epidemiological networks of HCV transmission was confirmed among HIV-1-positive MSM. In addition, substantial genetic diversity was demonstrated in AHC. NS3/4A protease efficiency cleaving MAVS may be associated with virus transmission and response to pegIFN/RBV treatment.
Collapse
Affiliation(s)
- M Nevot
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Human pegivirus (GB virus C) NS3 protease activity inhibits induction of the type I interferon response and is not inhibited by HCV NS3 protease inhibitors. Virology 2014; 456-457:300-9. [PMID: 24889249 DOI: 10.1016/j.virol.2014.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/08/2014] [Accepted: 03/17/2014] [Indexed: 11/20/2022]
Abstract
We previously found that human pegivirus (HPgV; formerly GBV-C) NS3 protease activity inhibits Human Immunodeficiency Virus (HIV) replication in a CD4+ T cell line. Given the protease׳s similarity to the Hepatitis C virus (HCV) NS3 protease, we characterized HPgV protease activity and asked whether it affects the type I interferon response or is inhibited by HCV protease antagonists. We characterized the activity of proteases with mutations in the catalytic triad and demonstrated that the HCV protease inhibitors Telaprevir, Boceprevir, and Danoprevir do not affect HPgV protease activity. HPgV NS3 protease cleaved MAVS but not TRIF, and it inhibited interferon responses sufficiently to enhance growth of an interferon-sensitive virus. Therefore, HPgV׳s inhibition of the interferon response could help promote HPgV persistence, which is associated with clinical benefits in HIV-infected patients. Our results also imply that HCV protease inhibitors should not interfere with the beneficial effects of HPgV in HPgV/HCV/HIV infected patients.
Collapse
|
19
|
NS2 proteins of GB virus B and hepatitis C virus share common protease activities and membrane topologies. J Virol 2014; 88:7426-44. [PMID: 24741107 DOI: 10.1128/jvi.00656-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED GB virus B (GBV-B), which is hepatotropic in experimentally infected small New World primates, is a member of the Hepacivirus genus but phylogenetically relatively distant from hepatitis C virus (HCV). To gain insights into the role and specificity of hepaciviral nonstructural protein 2 (NS2), which is required for HCV polyprotein processing and particle morphogenesis, we investigated whether NS2 structural and functional features are conserved between HCV and GBV-B. We found that GBV-B NS2, like HCV NS2, has cysteine protease activity responsible for cleavage at the NS2/NS3 junction, and we experimentally confirmed the location of this junction within the viral polyprotein. A model for GBV-B NS2 membrane topology was experimentally established by determining the membrane association properties of NS2 segments fused to green fluorescent protein (GFP) and their nuclear magnetic resonance structures using synthetic peptides as well as by applying an N-glycosylation scanning approach. Similar glycosylation studies confirmed the HCV NS2 organization. Together, our data show that despite limited amino acid sequence similarity, GBV-B and HCV NS2 proteins share a membrane topology with 3 N-terminal transmembrane segments, which is also predicted to apply to other recently discovered hepaciviruses. Based on these data and using trans-complementation systems, we found that intragenotypic hybrid NS2 proteins with heterologous N-terminal membrane segments were able to efficiently trans-complement an assembly-deficient HCV mutant with a point mutation in the NS2 C-terminal domain, while GBV-B/HCV or intergenotypic NS2 chimeras were not. These studies indicate that virus- and genotype-specific intramolecular interactions between N- and C-terminal domains of NS2 are critically involved in HCV morphogenesis. IMPORTANCE Nonstructural protein 2 (NS2) of hepatitis C virus (HCV) is a multifunctional protein critically involved in polyprotein processing and virion morphogenesis. To gain insights into NS2 mechanisms of action, we investigated whether NS2 structural and functional features are conserved between HCV and GB virus B (GBV-B), a phylogenetically relatively distant primate hepacivirus. We showed that GBV-B NS2, like HCV NS2, carries cysteine protease activity. We experimentally established a model for GBV-B NS2 membrane topology and demonstrated that despite limited sequence similarity, GBV-B and HCV NS2 share an organization with three N-terminal transmembrane segments. We found that the role of HCV NS2 in particle assembly is genotype specific and relies on critical interactions between its N- and C-terminal domains. This first comparative analysis of NS2 proteins from two hepaciviruses and our structural predictions of NS2 from other newly identified mammal hepaciviruses highlight conserved key features of the hepaciviral life cycle.
Collapse
|
20
|
Abstract
A central question in protein molecular evolution is whether an amino acid that occurs at a given site makes an independent contribution to fitness or whether its contribution depends on other amino acid sites in the protein sequence, a phenomenon known as intragenic epistasis. In the absence of intragenic epistasis, natural selection acts on a protein mutation independent of its genetic background, and the experimentally determined fitness for a mutation should be the same across all genetic backgrounds. We tested this hypothesis by using site-directed mutagenesis to introduce a well-characterized deleterious single amino acid substitution in 56 different hepatitis C virus NS3 protease variants. The catalytic efficiency of the mutated proteases was determined and compared with the corresponding wild-type protein. Fitness effects ranged from lethality to significantly beneficial. Although primarily deleterious and lethal effects were observed (41 and 5 out of 56 tested variants, respectively), deleterious effects ranged from near neutral (-26.7% reduction of fitness) to near lethal (-98.5%). Our findings demonstrate that the introduced amino acid substitution has different fitness effects in different protein variants and provide independent support for the relevant role of intragenic epistasis in protein evolution.
Collapse
Affiliation(s)
- Mariona Parera
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Miguel Angel Martinez
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
21
|
Abstract
The origin of hepatitis C virus (HCV) can be conceptualised at several levels. Firstly, origins might refer to its dramatic spread throughout the Western world and developing countries throughout the twentieth century. As a blood-borne virus, this epidemic was fuelled by new parenteral transmission routes associated with medical treatments, immunisation, blood transfusion and more recently injecting drug use. At another level, however, origins might refer to the immediate sources of HCV associated with its pandemic spread, now identified as areas in Central and West sub-Saharan Africa and South and South East Asia where genetically diverse variants of HCV appear to have circulated for hundreds of years. Going back a final step to the actual source of HCV infection in these endemic areas, non-human primates have been long suspected as harbouring viruses related to HCV with potential cross-species transmission of variants corresponding to the 7 main genotypes into humans. Although there is tempting analogy between this and the clearly zoonotic origin of HIV-1 from chimpanzees in Central Africa, no published evidence to date has been obtained for infection of HCV-like viruses in either apes or Old World monkey species. Indeed, a radical re-think of both the host range and host-specificity of hepaciviruses is now required following the very recent findings of a non-primate hepacivirus (NPHV) in horses and potentially in dogs. Further research on a much wider range of mammals is needed to better understand the true genetic diversity of HCV-like viruses and their host ranges in the search for the ultimate origin of HCV in humans.
Collapse
|