1
|
Uehara Y, Tanaka Y, Zhao S, Nikolaidis NM, Pitstick LB, Wu H, Yu JJ, Zhang E, Hasegawa Y, Noel JG, Gardner JC, Kopras EJ, Haffey WD, Greis KD, Guo J, Woods JC, Wikenheiser-Brokamp KA, Kyle JE, Ansong C, Teitelbaum SL, Inoue Y, Altinişik G, Xu Y, McCormack FX. Insights into pulmonary phosphate homeostasis and osteoclastogenesis emerge from the study of pulmonary alveolar microlithiasis. Nat Commun 2023; 14:1205. [PMID: 36864068 PMCID: PMC9981730 DOI: 10.1038/s41467-023-36810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
Pulmonary alveolar microlithiasis is an autosomal recessive lung disease caused by a deficiency in the pulmonary epithelial Npt2b sodium-phosphate co-transporter that results in accumulation of phosphate and formation of hydroxyapatite microliths in the alveolar space. The single cell transcriptomic analysis of a pulmonary alveolar microlithiasis lung explant showing a robust osteoclast gene signature in alveolar monocytes and the finding that calcium phosphate microliths contain a rich protein and lipid matrix that includes bone resorbing osteoclast enzymes and other proteins suggested a role for osteoclast-like cells in the host response to microliths. While investigating the mechanisms of microlith clearance, we found that Npt2b modulates pulmonary phosphate homeostasis through effects on alternative phosphate transporter activity and alveolar osteoprotegerin, and that microliths induce osteoclast formation and activation in a receptor activator of nuclear factor-κB ligand and dietary phosphate dependent manner. This work reveals that Npt2b and pulmonary osteoclast-like cells play key roles in pulmonary homeostasis and suggest potential new therapeutic targets for the treatment of lung disease.
Collapse
Affiliation(s)
- Yasuaki Uehara
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Yusuke Tanaka
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shuyang Zhao
- Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nikolaos M Nikolaidis
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lori B Pitstick
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Huixing Wu
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jane J Yu
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Erik Zhang
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yoshihiro Hasegawa
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John G Noel
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jason C Gardner
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elizabeth J Kopras
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wendy D Haffey
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jinbang Guo
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Steven L Teitelbaum
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yoshikazu Inoue
- Department of Diffuse Lung Diseases and Respiratory Failure, Clinical Research Center, National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Göksel Altinişik
- Department of Chest Diseases, Faculty of Medicine, Pamukkale University, Pamukkale, Turkey
| | - Yan Xu
- Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Departments of Pediatrics and Biomedical Informatics, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
| | - Francis X McCormack
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Müller A, Krause B, Kerstein-Stähle A, Comdühr S, Klapa S, Ullrich S, Holl-Ulrich K, Lamprecht P. Granulomatous Inflammation in ANCA-Associated Vasculitis. Int J Mol Sci 2021; 22:ijms22126474. [PMID: 34204207 PMCID: PMC8234846 DOI: 10.3390/ijms22126474] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022] Open
Abstract
ANCA-associated vasculitis (AAV) comprises granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA), and eosinophilic granulomatosis with polyangiitis (EGPA). While systemic vasculitis is a hallmark of all AAV, GPA is characterized by extravascular granulomatous inflammation, preferentially affecting the respiratory tract. The mechanisms underlying the emergence of neutrophilic microabscesses; the appearance of multinucleated giant cells; and subsequent granuloma formation, finally leading to scarred or destroyed tissue in GPA, are still incompletely understood. This review summarizes findings describing the presence and function of molecules and cells contributing to granulomatous inflammation in the respiratory tract and to renal inflammation observed in GPA. In addition, factors affecting or promoting the development of granulomatous inflammation such as microbial infections, the nasal microbiome, and the release of damage-associated molecular patterns (DAMP) are discussed. Further, on the basis of numerous results, we argue that, in situ, various ways of exposure linked with a high number of infiltrating proteinase 3 (PR3)- and myeloperoxidase (MPO)-expressing leukocytes lower the threshold for the presentation of an altered PR3 and possibly also of MPO, provoking the local development of ANCA autoimmune responses, aided by the formation of ectopic lymphoid structures. Although extravascular granulomatous inflammation is unique to GPA, similar molecular and cellular patterns can be found in both the respiratory tract and kidney tissue of GPA and MPA patients; for example, the antimicrobial peptide LL37, CD163+ macrophages, or regulatory T cells. Therefore, we postulate that granulomatous inflammation in GPA or PR3-AAV is intertwined with autoimmune and destructive mechanisms also seen at other sites.
Collapse
Affiliation(s)
- Antje Müller
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Correspondence: ; Tel.: +49-451-5005-0867
| | - Bettina Krause
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Institute of Anatomy & Experimental Morphology, University Hospital Hamburg-Eppendorf, University of Hamburg, 20251 Hamburg, Germany;
| | - Anja Kerstein-Stähle
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| | - Sara Comdühr
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| | - Sebastian Klapa
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
- Institute of Experimental Medicine c/o German Naval Medical Institute, Carl-Albrechts University of Kiel, 24119 Kronshagen, Germany
| | - Sebastian Ullrich
- Institute of Anatomy & Experimental Morphology, University Hospital Hamburg-Eppendorf, University of Hamburg, 20251 Hamburg, Germany;
- Municipal Hospital Kiel, 24116 Kiel, Germany
| | | | - Peter Lamprecht
- Department of Rheumatology & Clinical Immunology, University of Luebeck, 23562 Luebeck, Germany; (B.K.); (A.K.-S.); (S.C.); (S.K.); (P.L.)
| |
Collapse
|
3
|
Sun P, Wang M, Yin GY. Endogenous parathyroid hormone (PTH) signals through osteoblasts via RANKL during fracture healing to affect osteoclasts. Biochem Biophys Res Commun 2020; 525:850-856. [PMID: 32169280 DOI: 10.1016/j.bbrc.2020.02.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/29/2020] [Indexed: 11/28/2022]
Abstract
AIM To investigate the effect of endogenous PTH deficiency on osteoclasts during fracture healing and its mechanism. METHODS A femoral fracture model was used to determine the role of endogenous PTH in fracture healing. Immunohistochemistry, qPCR, and Western blot were used to determine the potential functions and mechanisms of endogenous PTH. RESULT In this study, we found that expression of RANKL and CK was lower in PTH knockout (KO) mice than in wild type (WT) mice. In vitro culture of osteoclasts showed that under the same stimulation, there was no statistical difference in the number of osteoclasts and the area of bone resorption areas in PTH WT mice and PTH KO mice. We found that a high concentration of RANKL could promote the number and activity of osteoclasts. Upon induction of osteoblasts in vitro, those from the PTH WT group expressed higher RANKL protein and mRNA than those from the PTH KO group. Lastly, we confirmed that the PI3K/AKT/STAT5 pathway promotes RANKL increase from osteoblasts. CONCLUSION During fracture healing, endogenous PTH deficiency can affect osteoclast activity by reducing RANKL expression in osteoblasts.
Collapse
Affiliation(s)
- Peng Sun
- Department of Orthopedics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, 223300, China
| | - Ming Wang
- Department of Plastic and Burn Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Guo-Yong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
4
|
Pereira M, Petretto E, Gordon S, Bassett JHD, Williams GR, Behmoaras J. Common signalling pathways in macrophage and osteoclast multinucleation. J Cell Sci 2018; 131:131/11/jcs216267. [PMID: 29871956 DOI: 10.1242/jcs.216267] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophage cell fusion and multinucleation are fundamental processes in the formation of multinucleated giant cells (MGCs) in chronic inflammatory disease and osteoclasts in the regulation of bone mass. However, this basic cell phenomenon is poorly understood despite its pathophysiological relevance. Granulomas containing multinucleated giant cells are seen in a wide variety of complex inflammatory disorders, as well as in infectious diseases. Dysregulation of osteoclastic bone resorption underlies the pathogenesis of osteoporosis and malignant osteolytic bone disease. Recent reports have shown that the formation of multinucleated giant cells and osteoclast fusion display a common molecular signature, suggesting shared genetic determinants. In this Review, we describe the background of cell-cell fusion and the similar origin of macrophages and osteoclasts. We specifically focus on the common pathways involved in osteoclast and MGC fusion. We also highlight potential approaches that could help to unravel the core mechanisms underlying bone and granulomatous disorders in humans.
Collapse
Affiliation(s)
- Marie Pereira
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Enrico Petretto
- Duke-NUS Medical School, Singapore 169857, Republic of Singapore
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City 33302, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| |
Collapse
|
5
|
Mignemi NA, Yuasa M, Baker CE, Moore SN, Ihejirika RC, Oelsner WK, Wallace CS, Yoshii T, Okawa A, Revenko AS, MacLeod AR, Bhattacharjee G, Barnett JV, Schwartz HS, Degen JL, Flick MJ, Cates JM, Schoenecker JG. Plasmin Prevents Dystrophic Calcification After Muscle Injury. J Bone Miner Res 2017; 32:294-308. [PMID: 27530373 DOI: 10.1002/jbmr.2973] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 01/20/2023]
Abstract
Extensive or persistent calcium phosphate deposition within soft tissues after severe traumatic injury or major orthopedic surgery can result in pain and loss of joint function. The pathophysiology of soft tissue calcification, including dystrophic calcification and heterotopic ossification (HO), is poorly understood; consequently, current treatments are suboptimal. Here, we show that plasmin protease activity prevents dystrophic calcification within injured skeletal muscle independent of its canonical fibrinolytic function. After muscle injury, dystrophic calcifications either can be resorbed during the process of tissue healing, persist, or become organized into mature bone (HO). Without sufficient plasmin activity, dystrophic calcifications persist after muscle injury and are sufficient to induce HO. Downregulating the primary inhibitor of plasmin (α2-antiplasmin) or treating with pyrophosphate analogues prevents dystrophic calcification and subsequent HO in vivo. Because plasmin also supports bone homeostasis and fracture repair, increasing plasmin activity represents the first pharmacologic strategy to prevent soft tissue calcification without adversely affecting systemic bone physiology or concurrent muscle and bone regeneration. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nicholas A Mignemi
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Masato Yuasa
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Orthopaedics, Tokyo Medical Dental University, Tokyo, Japan
| | - Courtney E Baker
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephanie N Moore
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rivka C Ihejirika
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William K Oelsner
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Toshitaka Yoshii
- Department of Orthopaedics, Tokyo Medical Dental University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedics, Tokyo Medical Dental University, Tokyo, Japan
| | | | | | | | - Joey V Barnett
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Herbert S Schwartz
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jay L Degen
- Department of Experimental Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Matthew J Flick
- Department of Experimental Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Justin M Cates
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Brunini F, Page TH, Gallieni M, Pusey CD. The role of monocytes in ANCA-associated vasculitides. Autoimmun Rev 2016; 15:1046-1053. [PMID: 27491570 DOI: 10.1016/j.autrev.2016.07.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
The anti-neutrophil cytoplasm antibody (ANCA)-associated vasculitides (AAV) are a heterogeneous group of diseases causing inflammation in small blood vessels and linked by the presence of circulating ANCA specific for proteinase 3 (PR3) or myeloperoxidase (MPO). These antigens are present both in the cytoplasmic granules and on the surface of neutrophils, and the effect of ANCA on neutrophil biology has been extensively studied. In contrast, less attention has been paid to the role of monocytes in AAV. These cells contain PR3 and MPO in lysosomes and can also express them at the cell surface. Monocytes respond to ANCA by producing pro-inflammatory and chemotactic cytokines, reactive-oxygen-species and by up-regulating CD14. Moreover, soluble and cell surface markers of monocyte activation are raised in AAV patients, suggesting an activated phenotype that may persist even during disease remission. The presence of monocyte-derived macrophages and giant cells within damaged renal and vascular tissue in AAV also attests to their role in pathogenesis. In particular, their presence in the tertiary lymphoid organ-like granulomas of AAV patients may generate an environment predisposed to maintaining autoimmunity. Here we discuss the evidence for a pathogenic role of monocytes in AAV, their role in granuloma formation and tissue damage, and their potential to both direct and maintain autoimmunity. ANCA-activation of monocytes may therefore provide an explanation for the relapsing-remitting course of disease and its links with infections. Monocytes may thus represent a promising target for the treatment of this group of life-threatening diseases.
Collapse
Affiliation(s)
- Francesca Brunini
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK; Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, ASST Santi Paolo e Carlo, University of Milano, Milan, Italy; Specialty School of Nephrology, University of Milan, Milan, Italy
| | - Theresa H Page
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK
| | - Maurizio Gallieni
- Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, ASST Santi Paolo e Carlo, University of Milano, Milan, Italy
| | - Charles D Pusey
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
7
|
Kubler A, Larsson C, Luna B, Andrade BB, Amaral EP, Urbanowski M, Orandle M, Bock K, Ammerman NC, Cheung LS, Winglee K, Halushka M, Park JK, Sher A, Friedland JS, Elkington PT, Bishai WR. Cathepsin K Contributes to Cavitation and Collagen Turnover in Pulmonary Tuberculosis. J Infect Dis 2015; 213:618-27. [PMID: 26416658 DOI: 10.1093/infdis/jiv458] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/31/2015] [Indexed: 12/21/2022] Open
Abstract
Cavitation in tuberculosis enables highly efficient person-to-person aerosol transmission. We performed transcriptomics in the rabbit cavitary tuberculosis model. Among 17 318 transcripts, we identified 22 upregulated proteases. Five type I collagenases were overrepresented: cathepsin K (CTSK), mast cell chymase-1 (CMA1), matrix metalloproteinase 1 (MMP-1), MMP-13, and MMP-14. Studies of collagen turnover markers, specifically, collagen type I C-terminal propeptide (CICP), urinary deoxypyridinoline (DPD), and urinary helical peptide, revealed that cavitation in tuberculosis leads to both type I collagen destruction and synthesis and that proteases other than MMP-1, MMP-13, and MMP-14 are involved, suggesting a key role for CTSK. We confirmed the importance of CTSK upregulation in human lung specimens, using immunohistochemical analysis, which revealed perigranulomatous staining for CTSK, and we showed that CTSK levels were increased in the serum of patients with tuberculosis, compared with those in controls (3.3 vs 0.3 ng/mL; P = .005).
Collapse
Affiliation(s)
- Andre Kubler
- Infectious Diseases and Immunity, Imperial College London Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | | | - Brian Luna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | - Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Michael Urbanowski
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | - Marlene Orandle
- Infectious Diseases Pathogenesis Section, Comparative Medicine Branch, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Kevin Bock
- Infectious Diseases Pathogenesis Section, Comparative Medicine Branch, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | - Nicole C Ammerman
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | - Laurene S Cheung
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | - Kathryn Winglee
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| | - Marc Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore
| | - Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, South Korea
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland
| | | | - Paul T Elkington
- Infectious Diseases and Immunity, Imperial College London Faculty of Medicine, University of Southampton, United Kingdom
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore
| |
Collapse
|
8
|
Prieto-Potin I, Largo R, Roman-Blas JA, Herrero-Beaumont G, Walsh DA. Characterization of multinucleated giant cells in synovium and subchondral bone in knee osteoarthritis and rheumatoid arthritis. BMC Musculoskelet Disord 2015; 16:226. [PMID: 26311062 PMCID: PMC4550054 DOI: 10.1186/s12891-015-0664-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/10/2015] [Indexed: 12/21/2022] Open
Abstract
Background Multinucleated giant cells have been noticed in diverse arthritic conditions since their first description in rheumatoid synovium. However, their role in the pathogenesis of osteoarthritis (OA) or rheumatoid arthritis (RA) still remains broadly unknown. We aimed to study the presence and characteristics of multinucleated giant cells (MGC) both in synovium and in subchondral bone tissues of patients with OA or RA. Methods Knee synovial and subchondral bone samples were from age-matched patients undergoing total joint replacement for OA or RA, or non-arthritic post mortem (PM) controls. OA synovium was stratified by histological inflammation grade using index tissue sections. Synovitis was assessed by Krenn score. Histological studies employed specific antibodies against macrophage markers or cathepsin K, or TRAP enzymatic assay. Results Inflamed OA and RA synovia displayed more multinucleated giant cells than did non-inflamed OA and PM synovia. There was a significant association between MGC numbers and synovitis severity. A TRAP negative/cathepsin K negative Langhans-like subtype was predominant in OA, whereas both Langhans-like and TRAP-positive/cathepsin K-negative foreign-body-like subtypes were most commonly detected in RA. Plasma-like and foam-like subtypes also were observed in OA and RA synovia, and the latter was found surrounding adipocytes. TRAP positive/cathepsin K positive osteoclasts were only identified adjacent to subchondral bone surfaces. TRAP positive osteoclasts were significantly increased in subchondral bone in OA and RA compared to PM controls. Conclusions Multinucleated giant cells are associated with synovitis severity, and subchondral osteoclast numbers are increased in OA, as well as in RA. Further research targeting multinucleated giant cells is warranted to elucidate their contributions to the symptoms and joint damage associated with arthritis. Electronic supplementary material The online version of this article (doi:10.1186/s12891-015-0664-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iván Prieto-Potin
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Avda Reyes Católicos, 2, Madrid, 28040, Spain.
| | - Raquel Largo
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Avda Reyes Católicos, 2, Madrid, 28040, Spain.
| | - Jorge A Roman-Blas
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Avda Reyes Católicos, 2, Madrid, 28040, Spain.
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, Service of Rheumatology, IIS-Fundación Jiménez Díaz, Autonomous University of Madrid, Avda Reyes Católicos, 2, Madrid, 28040, Spain.
| | - David A Walsh
- Arthritis Research UK Pain Centre, Department of Academic Rheumatology, University of Nottingham, City Hospital, Clinical Sciences Building, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
9
|
Hilhorst M, van Paassen P, Tervaert JWC. Proteinase 3-ANCA Vasculitis versus Myeloperoxidase-ANCA Vasculitis. J Am Soc Nephrol 2015; 26:2314-27. [PMID: 25956510 DOI: 10.1681/asn.2014090903] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In patients with GN or vasculitis, ANCAs are directed against proteinase 3 (PR3) or myeloperoxidase (MPO). The differences between PR3-ANCA-associated vasculitis (AAV) and MPO-AAV described in the past have been supplemented during the last decade. In this review, we discuss the differences between these two small-vessel vasculitides, focusing especially on possible etiologic and pathophysiologic differences. PR3-AAV is more common in northern parts of the world, whereas MPO-AAV is more common in southern regions of Europe, Asia, and the Pacific, with the exception of New Zealand and Australia. A genetic contribution has been extensively studied, and there is a high prevalence of the HLA-DPB1*04:01 allele in patients with PR3-AAV as opposed to patients with MPO-AAV and/or healthy controls. Histologically, MPO-AAV and PR3-AAV are similar but show qualitative differences when analyzed carefully. Clinically, both serotypes are difficult to distinguish, but quantitative differences are present. More organs are affected in PR3-AAV, whereas renal limited vasculitis occurs more often in patients with MPO-AAV. For future clinical trials, we advocate classifying patients by ANCA serotype as opposed to the traditional disease type classification.
Collapse
Affiliation(s)
- Marc Hilhorst
- Clinical and Experimental Immunology, Maastricht University, Maastricht, The Netherlands
| | - Pieter van Paassen
- Clinical and Experimental Immunology, Maastricht University, Maastricht, The Netherlands
| | - Jan Willem Cohen Tervaert
- Clinical and Experimental Immunology, Maastricht University, Maastricht, The Netherlands jw.cohentervaert@maastrichtuniversity
| | | |
Collapse
|
10
|
Park J, Lee EB, Song YW. Decreased tumour necrosis factor-α production by monocytes of granulomatosis with polyangiitis. Scand J Rheumatol 2014; 43:403-8. [PMID: 24898149 DOI: 10.3109/03009742.2014.894568] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVES We hypothesized that monocytes in patients with granulomatosis with polyangiitis (GPA) are polarized towards alternative activation with decreased tumour necrosis factor (TNF)-α production and that tissue-infiltrating monocytes/macrophages in granulomatous GPA lesions express CD163, a marker of alternative macrophage activation. METHOD CD16+ monocytes in peripheral blood mononuclear cells (PBMCs) were quantified by flow cytometry. Monocytes were stimulated with increasing concentrations of lipopolysaccharide (LPS), and TNF-α production was measured at 4 and 24 h. CD163 expression in lung biopsies of patients with GPA was detected by immunohistochemistry. RESULTS Circulating CD16+ monocytes were more frequent in GPA patients compared to controls (4.7 ± 2.8% vs. 1.9 ± 1.2%, p < 0.001). Upon activation with LPS, TNF-α production did not differ between CD16+ and CD16- monocytes. Stimulated monocytes from GPA patients produced significantly less TNF-α compared with monocytes from healthy controls (2903 ± 1320 pg/mL vs. 8335 ± 4569 pg/mL, p < 0.001). Macrophages expressing CD163 were enriched in granulomatous lung lesions of GPA patients. CONCLUSIONS Decreased TNF-α production by circulating monocytes and CD163 overexpression by tissue monocytes/macrophages in granulomatous pulmonary lesions may suggest that monocytes/macrophages are alternatively activated in GPA.
Collapse
Affiliation(s)
- Jk Park
- Division of Rheumatology, Department of Medicine, Seoul National University Hospital , Seoul , Korea
| | | | | |
Collapse
|
11
|
Park JK, Han BK, Park JA, Woo YJ, Kim SY, Lee EY, Lee EB, Chalan P, Boots AM, Song YW. CD70-expressing CD4 T cells produce IFN-γ and IL-17 in rheumatoid arthritis. Rheumatology (Oxford) 2014; 53:1896-900. [DOI: 10.1093/rheumatology/keu171] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Park JK, Rosen A, Saffitz JE, Asimaki A, Litovsky SH, Mackey-Bojack SM, Halushka MK. Expression of cathepsin K and tartrate-resistant acid phosphatase is not confined to osteoclasts but is a general feature of multinucleated giant cells: systematic analysis. Rheumatology (Oxford) 2013; 52:1529-33. [PMID: 23674817 DOI: 10.1093/rheumatology/ket184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Cathepsin K and tartrate-resistant acid phosphatase (TRAP) are two proteins expressed in osteoclastic giant cells. Recently we showed that lesional multinucleated giant cells (MNGs) in pulmonary granulomatosis with polyangiitis expressed these proteins. We aimed to clarify whether the expression of these two proteins has any specificity or is a general feature of MNGs associated with multiple types of granulomatous inflammation. METHODS In total, 7 Crohn's disease (CD), 5 GCA, 5 giant cell myocarditis (GCM), 11 sarcoidosis and 6 tuberculosis cases were examined for expression of cathepsin K and TRAP using immunohistochemistry (IHC). Protein expression was semi-quantitatively classified as none, weak, moderate or strong. In addition, tissue TRAP activity was examined using an enzymatic reaction. RESULTS The expression of cathepsin K was robust in >95% of MNGs of all examined disease groups, whereas TRAP expression varied; CD, GCA and tuberculosis showed strong TRAP expression. TRAP expression in sarcoidosis and GCM was weaker (CD vs GCM, P = 0.04; CD vs sarcoidosis, P = 0.06). Compared with IHC, TRAP detection using an enzymatic colour reaction had limited sensitivity. CONCLUSION Expression of TRAP and cathepsin K is a general feature of MNGs and their expression might be related to histopathological pattern.
Collapse
Affiliation(s)
- Jin Kyun Park
- Division of Rheumatology, Department of Medicine, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|