1
|
Barragan AC, Collenberg M, Schwab R, Kersten S, Kerstens MHL, Požárová D, Bezrukov I, Bemm F, Kolár F, Weigel D. Deleterious phenotypes in wild Arabidopsis arenosa populations are common and linked to runs of homozygosity. G3 (BETHESDA, MD.) 2024; 14:jkad290. [PMID: 38124484 PMCID: PMC10917499 DOI: 10.1093/g3journal/jkad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/07/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
In this study, we aimed to systematically assess the frequency at which potentially deleterious phenotypes appear in natural populations of the outcrossing model plant Arabidopsis arenosa, and to establish their underlying genetics. For this purpose, we collected seeds from wild A. arenosa populations and screened over 2,500 plants for unusual phenotypes in the greenhouse. We repeatedly found plants with obvious phenotypic defects, such as small stature and necrotic or chlorotic leaves, among first-generation progeny of wild A. arenosa plants. Such abnormal plants were present in about 10% of maternal sibships, with multiple plants with similar phenotypes in each of these sibships, pointing to a genetic basis of the observed defects. A combination of transcriptome profiling, linkage mapping and genome-wide runs of homozygosity patterns using a newly assembled reference genome indicated a range of underlying genetic architectures associated with phenotypic abnormalities. This included evidence for homozygosity of certain genomic regions, consistent with alleles that are identical by descent being responsible for these defects. Our observations suggest that deleterious alleles with different genetic architectures are segregating at appreciable frequencies in wild A. arenosa populations.
Collapse
Affiliation(s)
- A Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- The Sainsbury Laboratory, Norwich NR4 7UH, UK
| | - Maximilian Collenberg
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Catalent, 73614 Schorndorf, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Sonja Kersten
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Institute of Plant Breeding, University of Hohenheim, 70599 Stuttgart, Germany
| | - Merijn H L Kerstens
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Department of Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, Netherlands
| | - Doubravka Požárová
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
- The MAMA AI, 100 00 Prague, Czech Republic
| | - Ilja Bezrukov
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- KWS Saat, 37574 Einbeck, Germany
| | - Filip Kolár
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Novikov A. An annotated nomenclatural checklist of endemic vascular plants distributed in the Ukrainian Carpathians. Biodivers Data J 2023; 11:e103921. [PMID: 38327305 PMCID: PMC10848708 DOI: 10.3897/bdj.11.e103921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/20/2023] [Indexed: 02/09/2024] Open
Abstract
Background The current paper presents a nomenclatural checklist for vascular plants validated being (sub)endemic to and present in the flora of the Ukrainian Carpathians. This checklist is a part of the work targeted on an inventory of endemic plants distributed in the Ukrainian Carpathians. It is mainly based on the analysis of primary sources (i.e. original protologues and monographic works), but also uses the data provided in the recent online taxonomic aggregators, such as the Global Biodiversity Information Facility (GBIF), Catalogue of Life (CoL), Plants of the World Online (POWO), Euro+Med PlantBase, World Flora Online (WFO) and others. Over 7,000 specimens deposited in the leading Ukrainian herbaria were also revised and used as a supporting data source during the work on the checklist. New information The checklist provides a revised nomenclature, including corrections on publication dates, rediscovered taxonomic protologues, corrected authorships and revised taxonomic status for (sub)endemic (sub)species of vascular plants occurring in the Ukrainian Carpathians. It contains 1,101 names, from which 78 species and subspecies have been accepted as valid and 1023 species and infraspecific taxa are provided as synonyms. It is completed with critical notes on the nomenclature of problematic taxa and brief annotations regarding their distribution in the Ukrainian Carpathians, indicating the endemicity range and sozological status for all analysed (sub)species.The current checklist is linked with the GBIF taxonomic backbone, provides notes on detected issues and primarily focuses on its update and correction of the nomenclatural issues and taxonomic inconsistencies, but also aims at discussing issues in other popular taxonomic databases.Sabulinapauciflora is proposed as a new combination to comply with a recent revision of the genus Sabulina.
Collapse
Affiliation(s)
- Andriy Novikov
- State Museum of Natural History of the NAS of Ukraine, Lviv, UkraineState Museum of Natural History of the NAS of UkraineLvivUkraine
| |
Collapse
|
3
|
Konečná V, Šustr M, Požárová D, Čertner M, Krejčová A, Tylová E, Kolář F. Genomic basis and phenotypic manifestation of (non-)parallel serpentine adaptation in Arabidopsis arenosa. Evolution 2022; 76:2315-2331. [PMID: 35950324 DOI: 10.1111/evo.14593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/22/2023]
Abstract
Parallel evolution is common in nature and provides one of the most compelling examples of rapid environmental adaptation. In contrast to the recent burst of studies addressing genomic basis of parallel evolution, integrative studies linking genomic and phenotypic parallelism are scarce. Edaphic islands of toxic serpentine soils provide ideal systems for studying rapid parallel adaptation in plants, imposing strong, spatially replicated selection on recently diverged populations. We leveraged threefold independent serpentine adaptation of Arabidopsis arenosa and combined reciprocal transplants, ion uptake phenotyping, and available genome-wide polymorphisms to test if parallelism is manifested to a similar extent at both genomic and phenotypic levels. We found pervasive phenotypic parallelism in functional traits yet with varying magnitude of fitness differences that was congruent with neutral genetic differentiation between populations. Limited costs of serpentine adaptation suggest absence of soil-driven trade-offs. On the other hand, the genomic parallelism at the gene level was significant, although relatively minor. Therefore, the similarly modified phenotypes, for example, of ion uptake arose possibly by selection on different loci in similar functional pathways. In summary, we bring evidence for the important role of genetic redundancy in rapid adaptation involving traits with polygenic architecture.
Collapse
Affiliation(s)
- Veronika Konečná
- Department of Botany, Faculty of Science, Charles University, Prague, 128 00, Czech Republic.,Institute of Botany, Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| | - Marek Šustr
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, 128 00, Czech Republic
| | - Doubravka Požárová
- Department of Botany, Faculty of Science, Charles University, Prague, 128 00, Czech Republic
| | - Martin Čertner
- Department of Botany, Faculty of Science, Charles University, Prague, 128 00, Czech Republic.,Institute of Botany, Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| | - Anna Krejčová
- Faculty of Chemical Technology, University of Pardubice, Pardubice, 532 10, Czech Republic
| | - Edita Tylová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, 128 00, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, 128 00, Czech Republic.,Institute of Botany, Czech Academy of Sciences, Průhonice, 252 43, Czech Republic
| |
Collapse
|
4
|
Gieroń Ż, Sitko K, Małkowski E. The Different Faces of Arabidopsis arenosa-A Plant Species for a Special Purpose. PLANTS (BASEL, SWITZERLAND) 2021; 10:1342. [PMID: 34209450 PMCID: PMC8309363 DOI: 10.3390/plants10071342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/01/2022]
Abstract
The following review article collects information on the plant species Arabidopsis arenosa. Thus far, A. arenosa has been known as a model species for autotetraploidy studies because, apart from diploid individuals, there are also tetraploid populations, which is a unique feature of this Arabidopsis species. In addition, A arenosa has often been reported in heavy metal-contaminated sites, where it occurs together with a closely related species A. halleri, a model plant hyperaccumulator of Cd and Zn. Recent studies have shown that several populations of A. arenosa also exhibit Cd and Zn hyperaccumulation. However, it is assumed that the mechanism of hyperaccumulation differs between these two Arabidopsis species. Nevertheless, this phenomenon is still not fully understood, and thorough research is needed. In this paper, we summarize the current state of knowledge regarding research on A. arenosa.
Collapse
Affiliation(s)
| | - Krzysztof Sitko
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| | - Eugeniusz Małkowski
- Plant Ecophysiology Team, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellońska Str., 40-032 Katowice, Poland;
| |
Collapse
|
5
|
Melichárková A, Šlenker M, Zozomová-Lihová J, Skokanová K, Šingliarová B, Kačmárová T, Caboňová M, Kempa M, Šrámková G, Mandáková T, Lysák MA, Svitok M, Mártonfiová L, Marhold K. So Closely Related and Yet So Different: Strong Contrasts Between the Evolutionary Histories of Species of the Cardamine pratensis Polyploid Complex in Central Europe. FRONTIERS IN PLANT SCIENCE 2020; 11:588856. [PMID: 33391302 PMCID: PMC7775393 DOI: 10.3389/fpls.2020.588856] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/19/2020] [Indexed: 05/04/2023]
Abstract
Recurrent polyploid formation and weak reproductive barriers between independent polyploid lineages generate intricate species complexes with high diversity and reticulate evolutionary history. Uncovering the evolutionary processes that formed their present-day cytotypic and genetic structure is a challenging task. We studied the species complex of Cardamine pratensis, composed of diploid endemics in the European Mediterranean and diploid-polyploid lineages more widely distributed across Europe, focusing on the poorly understood variation in Central Europe. To elucidate the evolution of Central European populations we analyzed ploidy level and genome size variation, genetic patterns inferred from microsatellite markers and target enrichment of low-copy nuclear genes (Hyb-Seq), and environmental niche differentiation. We observed almost continuous variation in chromosome numbers and genome size in C. pratensis s.str., which is caused by the co-occurrence of euploid and dysploid cytotypes, along with aneuploids, and is likely accompanied by inter-cytotype mating. We inferred that the polyploid cytotypes of C. pratensis s.str. are both of single and multiple, spatially and temporally recurrent origins. The tetraploid Cardamine majovskyi evolved at least twice in different regions by autopolyploidy from diploid Cardamine matthioli. The extensive genome size and genetic variation of Cardamine rivularis reflects differentiation induced by the geographic isolation of disjunct populations, establishment of triploids of different origins, and hybridization with sympatric C. matthioli. Geographically structured genetic lineages identified in the species under study, which are also ecologically divergent, are interpreted as descendants from different source populations in multiple glacial refugia. The postglacial range expansion was accompanied by substantial genetic admixture between the lineages of C. pratensis s.str., which is reflected by diffuse borders in their contact zones. In conclusion, we identified an interplay of diverse processes that have driven the evolution of the species studied, including allopatric and ecological divergence, hybridization, multiple polyploid origins, and genetic reshuffling caused by Pleistocene climate-induced range dynamics.
Collapse
Affiliation(s)
- Andrea Melichárková
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Šlenker
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Judita Zozomová-Lihová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarína Skokanová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbora Šingliarová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tatiana Kačmárová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michaela Caboňová
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Matúš Kempa
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Gabriela Šrámková
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin A. Lysák
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czechia
| | - Marek Svitok
- Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, Slovakia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | | | - Karol Marhold
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Botany, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Karol Marhold,
| |
Collapse
|
6
|
Wos G, Mořkovská J, Bohutínská M, Šrámková G, Knotek A, Lučanová M, Španiel S, Marhold K, Kolář F. Role of ploidy in colonization of alpine habitats in natural populations of Arabidopsis arenosa. ANNALS OF BOTANY 2019; 124:255-268. [PMID: 31185073 PMCID: PMC6758580 DOI: 10.1093/aob/mcz070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/17/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND AIMS Polyploidy is an important driver of plant diversification and adaptation to novel environments. As a consequence of genome doubling, polyploids often exhibit greater colonizing ability or occupy a wider ecological niche than diploids. Although elevation has been traditionally considered as a key driver structuring ploidy variation, we do not know if environmental and phenotypic differentiation among ploidy cytotypes varies along an elevational gradient. Here, we tested for the consequences of genome duplication on genetic diversity, phenotypic variation and habitat preferences on closely related diploid and tetraploid populations that coexist along approx. 2300 m of varying elevation. METHODS We sampled and phenotyped 45 natural diploid and tetraploid populations of Arabidopsis arenosa in one mountain range in Central Europe (Western Carpathians) and recorded abiotic and biotic variables at each collection site. We inferred genetic variation, population structure and demographic history in a sub-set of 29 populations genotyped for approx. 36 000 single nucleotide polymorphisms. KEY RESULTS We found minor effects of polyploidy on colonization of alpine stands and low genetic differentiation between the two cytotypes, mirroring recent divergence of the polyploids from the local diploid lineage and repeated reticulation events among the cytotypes. This pattern was corroborated by the absence of ecological niche differentiation between the two cytotypes and overall phenotypic similarity at a given elevation. CONCLUSIONS The case of A. arenosa contrasts with previous studies that frequently showed clear niche differentiation between cytotypes. Our work stresses the importance of considering genetic structure and past demographic processes when interpreting the patterns of ploidy distributions, especially in species that underwent recent polyploidization events.
Collapse
Affiliation(s)
- Guillaume Wos
- Department of Botany, Charles University, Prague, Czech Republic
| | - Jana Mořkovská
- Department of Botany, Charles University, Prague, Czech Republic
| | - Magdalena Bohutínská
- Department of Botany, Charles University, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | | | - Adam Knotek
- Department of Botany, Charles University, Prague, Czech Republic
| | - Magdalena Lučanová
- Department of Botany, Charles University, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
| | - Stanislav Španiel
- Department of Botany, Charles University, Prague, Czech Republic
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Karol Marhold
- Department of Botany, Charles University, Prague, Czech Republic
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Filip Kolář
- Department of Botany, Charles University, Prague, Czech Republic
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
- Institute of Botany, University of Innsbruck, Innsbruck, Austria
- For correspondence. E-mail
| |
Collapse
|
7
|
A new find of Arabidopsis neglecta (Brassicaceae) in the Svydovets Massif (Ukrainian Carpathians). UKRAINIAN BOTANICAL JOURNAL 2019. [DOI: 10.15407/ukrbotj76.01.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Tkach N, Röser M, Suchan T, Cieślak E, Schönswetter P, Ronikier M. Contrasting evolutionary origins of two mountain endemics: Saxifraga wahlenbergii (Western Carpathians) and S. styriaca (Eastern Alps). BMC Evol Biol 2019; 19:18. [PMID: 30634910 PMCID: PMC6329101 DOI: 10.1186/s12862-019-1355-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/02/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Carpathians and the Alps are the largest mountain ranges of the European Alpine System and important centres of endemism. Among the distinctive endemic species of this area is Saxifraga wahlenbergii, a Western Carpathians member of the speciose genus Saxifraga. It was frequently considered a taxonomically isolated Tertiary palaeopolyploid and palaeoendemic, for which the closest relatives could not yet be traced. A recently described narrow endemic of the Eastern Alps, S. styriaca, was hypothesized to be closely related to S. wahlenbergii based on shared presence of peculiar glandular hairs. To elucidate the origin and phylogenetic relationships of both species we studied nuclear and plastid DNA markers based on multiple accessions and analysed the data in a wide taxonomic context. We applied Sanger sequencing, followed by targeted next-generation sequencing (NGS) for a refined analysis of nrITS variants to detect signatures of ancient hybridization. The ITS data were used to estimate divergence times of different lineages using a relaxed molecular clock. RESULTS We demonstrate divergent evolutionary histories for the two mountain endemics. For S. wahlenbergii we revealed a complicated hybrid origin. Its maternal parent belongs to a Western Eurasian lineage of high mountain taxa grouped in subsect. Androsaceae and is most likely the widespread S. androsacea. The putative second parent was most likely S. adscendens, which belongs to the distantly related subsect. Tridactylites. While Sanger sequencing of nrITS only showed S. adscendens-related variants in S. wahlenbergii, our NGS screening revealed presence of sequences from both lineages with clear predominance of the paternal over the maternal lineage. CONCLUSIONS Saxifraga styriaca was unambiguously assigned to subsect. Androsaceae and is not the sister taxon of S. wahlenbergii. Accordingly, the similarity of the glandular hairs observed in both taxa rests on parallelism and both species do not constitute an example of a close evolutionary link between the floras of the Western Carpathians and Eastern Alps. With the origin of its paternal, S. adscendens-like ITS DNA estimated to ca. 4.7 Ma, S. wahlenbergii is not a relict of the mid-Tertiary climate optimum. Its hybrid origin is much younger and most likely took place in the Pleistocene.
Collapse
Affiliation(s)
- Natalia Tkach
- Institute of Biology, Martin Luther University Halle-Wittenberg, Neuwerk 21, 06108 Halle, Germany
| | - Martin Röser
- Institute of Biology, Martin Luther University Halle-Wittenberg, Neuwerk 21, 06108 Halle, Germany
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Krakow, Poland
| | - Elżbieta Cieślak
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Krakow, Poland
| | - Peter Schönswetter
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Michał Ronikier
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Krakow, Poland
| |
Collapse
|
9
|
Molina-Henao YF, Hopkins R. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa. AMERICAN JOURNAL OF BOTANY 2019; 106:61-70. [PMID: 30609009 DOI: 10.1002/ajb2.1212] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
PREMISE OF THE STUDY Successful establishment of neopolyploids, and therefore polyploid speciation, is thought to be contingent on environmental niche shifts from their progenitors. We explore this niche shift hypothesis in the obligate outcrosser Arabidopsis arenosa complex, which includes diploid and recently formed autotetraploid populations. METHODS To characterize the climatic niches for both cytotypes in Arabidopsis arenosa, we first gathered climatic data from localities with known ploidy types. We then estimated the climatic niches for diploids and autotetraploids and calculated niche overlap. Using this niche overlap statistic, we tested for niche equivalency and similarity. We explored differences in niches by estimating and comparing niche optimum and breadth and then calculated indices of niche expansion and unfilling. KEY RESULTS Climatic niche overlap between diploids and autotetraploids is substantial. Although the two niche models are not significantly divergent, they are not identical as they differ in both optimum and breadth along two environmental gradients. Autotetraploids fill nearly the entire niche space of diploids and have expanded into novel environments. CONCLUSIONS We find climatic niche expansion but not divergence, together with a moderate change in the niche optimum, in the autotetraploid lineage of Arabidopsis arenosa. These results indicate that the climatic niche shift hypothesis alone cannot explain the coexistence of tetraploid and diploid cytotypes.
Collapse
Affiliation(s)
- Y Franchesco Molina-Henao
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
- Departamento de Biología, Universidad del Valle, Cali, Valle, 760032, Colombia
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- The Arnold Arboretum, Harvard University, Boston, MA, 02131, USA
| |
Collapse
|
10
|
Guggisberg A, Liu X, Suter L, Mansion G, Fischer MC, Fior S, Roumet M, Kretzschmar R, Koch MA, Widmer A. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol Ecol 2018; 27:5088-5103. [PMID: 30411828 DOI: 10.1111/mec.14930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
Edaphic conditions are important determinants of plant fitness. While much has been learnt in recent years about plant adaptation to heavy metal contaminated soils, the genomic basis underlying adaptation to calcareous and siliceous substrates remains largely unknown. We performed a reciprocal germination experiment and whole-genome resequencing in natural calcareous and siliceous populations of diploid Arabidopsis lyrata to test for edaphic adaptation and detect signatures of selection at loci associated with soil-mediated divergence. In parallel, genome scans on respective diploid ecotypes from the Arabidopsis arenosa species complex were undertaken, to search for shared patterns of adaptive genetic divergence. Soil ecotypes of A. lyrata display significant genotype-by-treatment responses for seed germination. Sequence (SNPs) and copy-number variants (CNVs) point towards loci involved in ion transport as the main targets of adaptive genetic divergence. Two genes exhibiting high differentiation among soil types in A. lyrata further share trans-specific single nucleotide polymorphisms with A. arenosa. This work applies experimental and genomic approaches to study edaphic adaptation in A. lyrata and suggests that physiological response to elemental toxicity and deficiency underlies the evolution of calcareous and siliceous ecotypes. The discovery of shared adaptive variation between sister species indicates that ancient polymorphisms contribute to adaptive evolution.
Collapse
Affiliation(s)
| | - Xuanyu Liu
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Léonie Suter
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Guilhem Mansion
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Martin C Fischer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Simone Fior
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Marie Roumet
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Ruben Kretzschmar
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Marcus A Koch
- Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Alex Widmer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Genetic basis and evolution of rapid cycling in railway populations of tetraploid Arabidopsis arenosa. PLoS Genet 2018; 14:e1007510. [PMID: 29975688 PMCID: PMC6049958 DOI: 10.1371/journal.pgen.1007510] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/17/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Spatially structured plant populations with diverse adaptations provide powerful models to investigate evolution. Human-generated ruderal habitats are abundant and low-competition, but are challenging for plants not adapted to them. Ruderal habitats also sometimes form networked corridors (e.g. roadsides and railways) that allow rapid long-distance spread of successfully adapted variants. Here we use transcriptomic and genomic analyses, coupled with genetic mapping and transgenic follow-up, to understand the evolution of rapid cycling during adaptation to railway sites in autotetraploid Arabidopsis arenosa. We focus mostly on a hybrid population that is likely a secondary colonist of a railway site. These mountain railway plants are phenotypically similar to their cosmopolitan cousins. We thus hypothesized that colonization primarily involved the flow of adaptive alleles from the cosmopolitan railway variant. But our data shows that it is not that simple: while there is evidence of selection having acted on introgressed alleles, selection also acted on rare standing variation, and new mutations may also contribute. Among the genes we show have allelic divergence with functional relevance to flowering time are known regulators of flowering, including FLC and CONSTANS. Prior implications of these genes in weediness and rapid cycling supports the idea that these are “evolutionary hotspots” for these traits. We also find that one of two alleles of CONSTANS under selection in the secondary colonist was selected from rare standing variation in mountain populations, while the other was introgressed from the cosmopolitan railway populations. The latter allele likely arose in diploid populations over 700km away, highlighting how ruderal populations could act as allele conduits and thus influence local adaptation.
Collapse
|
12
|
Buckley J, Holub EB, Koch MA, Vergeer P, Mable BK. Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection. BMC Genomics 2018; 19:496. [PMID: 29945543 PMCID: PMC6020377 DOI: 10.1186/s12864-018-4806-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/18/2018] [Indexed: 11/22/2022] Open
Abstract
Background Genome scans based on outlier analyses have revolutionized detection of genes involved in adaptive processes, but reports of some forms of selection, such as balancing selection, are still limited. It is unclear whether high throughput genotyping approaches for identification of single nucleotide polymorphisms have sufficient power to detect modes of selection expected to result in reduced genetic differentiation among populations. In this study, we used Arabidopsis lyrata to investigate whether signatures of balancing selection can be detected based on genomic smoothing of Restriction Associated DNA sequencing (RAD-seq) data. We compared how different sampling approaches (both within and between subspecies) and different background levels of polymorphism (inbreeding or outcrossing populations) affected the ability to detect genomic regions showing key signatures of balancing selection, specifically elevated polymorphism, reduced differentiation and shifts towards intermediate allele frequencies. We then tested whether candidate genes associated with disease resistance (R-gene analogs) were detected more frequently in these regions compared to other regions of the genome. Results We found that genomic regions showing elevated polymorphism contained a significantly higher density of R-gene analogs predicted to be under pathogen-mediated selection than regions of non-elevated polymorphism, and that many of these also showed evidence for an intermediate site-frequency spectrum based on Tajima’s D. However, we found few genomic regions that showed both elevated polymorphism and reduced FST among populations, despite strong background levels of genetic differentiation among populations. This suggests either insufficient power to detect the reduced population structure predicted for genes under balancing selection using sparsely distributed RAD markers, or that other forms of diversifying selection are more common for the R-gene analogs tested. Conclusions Genome scans based on a small number of individuals sampled from a wide range of populations were sufficient to confirm the relative scarcity of signatures of balancing selection across the genome, but also identified new potential disease resistance candidates within genomic regions showing signatures of balancing selection that would be strong candidates for further sequencing efforts. Electronic supplementary material The online version of this article (10.1186/s12864-018-4806-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Buckley
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK. .,Adaptation to a Changing Environment, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Eric B Holub
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, D69120, Heidelberg, Germany
| | - Philippine Vergeer
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O.Box 47, 6700, AA, Wageningen, The Netherlands
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
13
|
Wang X, Gussarova G, Ruhsam M, de Vere N, Metherell C, Hollingsworth PM, Twyford AD. DNA barcoding a taxonomically complex hemiparasitic genus reveals deep divergence between ploidy levels but lack of species-level resolution. AOB PLANTS 2018; 10:ply026. [PMID: 29765588 PMCID: PMC5941139 DOI: 10.1093/aobpla/ply026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/20/2018] [Indexed: 05/18/2023]
Abstract
DNA barcoding is emerging as a useful tool not only for species identification but also for studying evolutionary and ecological processes. Although plant DNA barcodes do not always provide species-level resolution, the generation of large DNA barcode data sets can provide insights into the mechanisms underlying the generation of species diversity. Here, we study evolutionary processes in taxonomically complex British Euphrasia (Orobanchaceae), a group with multiple ploidy levels, frequent self-fertilization, young species divergence and widespread hybridization. We use a phylogenetic approach to investigate the colonization history of British Euphrasia, followed by a DNA barcoding survey and population genetic analyses to reveal the causes of shared sequence variation. Phylogenetic analysis shows Euphrasia have colonized Britain from mainland Europe on multiple occasions. DNA barcoding reveals that no British Euphrasia species has a consistent diagnostic sequence profile, and instead, plastid haplotypes are either widespread across species, or are population specific. The partitioning of nuclear genetic variation suggests differences in ploidy act as a barrier to gene exchange, while the divergence between diploid and tetraploid ITS sequences supports the polyploids being allotetraploid in origin. Overall, these results show that even when lacking species-level resolution, analyses of DNA barcoding data can reveal evolutionary patterns in taxonomically complex genera.
Collapse
Affiliation(s)
- Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, P.R. China
| | - Galina Gussarova
- Tromsø University Museum, UiT The Arctic University of Norway, Langnes, Tromsø, Norway
- CEES-Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Blindern, Oslo, Norway
- Department of Botany, Faculty of Biology, St Petersburg State University, Universitetskaya nab., Russia
| | | | - Natasha de Vere
- National Botanic Garden of Wales, Llanarthne, Carmarthenshire, UK
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion, UK
| | | | | | - Alex D Twyford
- University of Edinburgh, Institute of Evolutionary Biology, Edinburgh, UK
- Corresponding author’s e-mail address:
| |
Collapse
|
14
|
Novikova PY, Hohmann N, Van de Peer Y. Polyploid Arabidopsis species originated around recent glaciation maxima. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:8-15. [PMID: 29448159 DOI: 10.1016/j.pbi.2018.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/17/2018] [Indexed: 05/20/2023]
Abstract
Polyploidy may provide adaptive advantages and is considered to be important for evolution and speciation. Polyploidy events are found throughout the evolutionary history of plants, however they do not seem to be uniformly distributed along the time axis. For example, many of the detected ancient whole-genome duplications (WGDs) seem to cluster around the K/Pg boundary (∼66Mya), which corresponds to a drastic climate change event and a mass extinction. Here, we discuss more recent polyploidy events using Arabidopsis as the most developed plant model at the level of the entire genus. We review the history of the origin of allotetraploid species A. suecica and A. kamchatica, and tetraploid lineages of A. lyrata, A. arenosa and A. thaliana, and discuss potential adaptive advantages. Also, we highlight an association between recent glacial maxima and estimated times of origins of polyploidy in Arabidopsis. Such association might further support a link between polyploidy and environmental challenge, which has been observed now for different time-scales and for both ancient and recent polyploids.
Collapse
Affiliation(s)
- Polina Yu Novikova
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Nora Hohmann
- University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium; Department of Genetics, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
15
|
Bothe H, Słomka A. Divergent biology of facultative heavy metal plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 219:45-61. [PMID: 29028613 DOI: 10.1016/j.jplph.2017.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 05/04/2023]
Abstract
Among heavy metal plants (the metallophytes), facultative species can live both in soils contaminated by an excess of heavy metals and in non-affected sites. In contrast, obligate metallophytes are restricted to polluted areas. Metallophytes offer a fascinating biology, due to the fact that species have developed different strategies to cope with the adverse conditions of heavy metal soils. The literature distinguishes between hyperaccumulating, accumulating, tolerant and excluding metallophytes, but the borderline between these categories is blurred. Due to the fact that heavy metal soils are dry, nutrient limited and are not uniform but have a patchy distribution in many instances, drought-tolerant or low nutrient demanding species are often regarded as metallophytes in the literature. In only a few cases, the concentrations of heavy metals in soils are so toxic that only a few specifically adapted plants, the genuine metallophytes, can cope with these adverse soil conditions. Current molecular biological studies focus on the genetically amenable and hyperaccumulating Arabidopsis halleri and Noccaea (Thlaspi) caerulescens of the Brassicaceae. Armeria maritima ssp. halleri utilizes glands for the excretion of heavy metals and is, therefore, a heavy metal excluder. The two endemic zinc violets of Western Europe, Viola lutea ssp. calaminaria of the Aachen-Liège area and Viola lutea ssp. westfalica of the Pb-Cu-ditch of Blankenrode, Eastern Westphalia, as well as Viola tricolor ecotypes of Eastern Europe, keep their cells free of excess heavy metals by arbuscular mycorrhizal fungi which bind heavy metals. The Caryophyllaceae, Silene vulgaris f. humilis and Minuartia verna, apparently discard leaves when overloaded with heavy metals. All Central European metallophytes have close relatives that grow in areas outside of heavy metal soils, mainly in the Alps, and have, therefore, been considered as relicts of the glacial epoch in the past. However, the current literature favours the idea that hyperaccumulation of heavy metals serves plants as deterrent against attack by feeding animals (termed elemental defense hypothesis). The capability to hyperaccumulate heavy metals in A. halleri and N. caerulescens is achieved by duplications and alterations of the cis-regulatory properties of genes coding for heavy metal transporting/excreting proteins. Several metallophytes have developed ecotypes with a varying content of such heavy metal transporters as an adaption to the specific toxicity of a heavy metal site.
Collapse
Affiliation(s)
- Hermann Bothe
- Botanical Institute, The University of Cologne, Zuelpicher Str. 47b, 50674 Cologne, Germany.
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Jagiellonian University, Gronostajowa 9 Str., 30-387 Cracow, Poland.
| |
Collapse
|
16
|
He J, Wang S, Li J, Fan Z, Liu X, Wang Y. Genetic differentiation and spatiotemporal history of diploidy and tetraploidy of Clintonia udensis. Ecol Evol 2017; 7:10243-10251. [PMID: 29238551 PMCID: PMC5723609 DOI: 10.1002/ece3.3510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 08/16/2017] [Accepted: 09/20/2017] [Indexed: 11/21/2022] Open
Abstract
Polyploidy is an important factor shaping the geographic range of a species. Clintonia udensis (Clintonia) is a primary perennial herb widely distributed in China with two karyotypic characteristics—diploid and tetraploid and thereby used to understand the ploidy and distribution. This study unraveled the patterns of genetic variation and spatiotemporal history among the cytotypes of C. udensis using simple sequence repeat or microsatellites. The results showed that the diploids and tetraploids showed the medium level of genetic differentiation; tetraploid was slightly lower than diploid in genetic diversity; recurrent polyploidization seems to have opened new possibilities for the local genotype; the spatiotemporal history of C. udensis allows tracing the interplay of polyploidy evolution; isolated and different ecological surroundings could act as evolutionary capacitors, preserve distinct karyological, and genetic diversity. The approaches of integrating genetic differentiation and spatiotemporal history of diploidy and tetraploidy of Clintonia udens would possibly provide a powerful way to understand the ploidy and plant distribution and undertaken in similar studies in other plant species simultaneously contained the diploid and tetraploid.
Collapse
Affiliation(s)
- Juan He
- College of Life Science Shanxi Normal University Linfen China
| | - Shengnan Wang
- College of Animal Science and Technology Nanjing Agricultural University Nanjing China
| | - Jia Li
- College of Life Science Shanxi Normal University Linfen China
| | - Zelu Fan
- College of Life Science Shanxi Normal University Linfen China
| | - Xin Liu
- College of Life Science Shanxi Normal University Linfen China
| | - Yiling Wang
- College of Life Science Shanxi Normal University Linfen China
| |
Collapse
|
17
|
Abstract
Many of the most important evolutionary variations that generated phenotypic adaptations and originated novel taxa resulted from complex cellular activities affecting genome content and expression. These activities included (i) the symbiogenetic cell merger that produced the mitochondrion-bearing ancestor of all extant eukaryotes, (ii) symbiogenetic cell mergers that produced chloroplast-bearing ancestors of photosynthetic eukaryotes, and (iii) interspecific hybridizations and genome doublings that generated new species and adaptive radiations of higher plants and animals. Adaptive variations also involved horizontal DNA transfers and natural genetic engineering by mobile DNA elements to rewire regulatory networks, such as those essential to viviparous reproduction in mammals. In the most highly evolved multicellular organisms, biological complexity scales with 'non-coding' DNA content rather than with protein-coding capacity in the genome. Coincidentally, 'non-coding' RNAs rich in repetitive mobile DNA sequences function as key regulators of complex adaptive phenotypes, such as stem cell pluripotency. The intersections of cell fusion activities, horizontal DNA transfers and natural genetic engineering of Read-Write genomes provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
18
|
Paule J, Wagner ND, Weising K, Zizka G. Ecological range shift in the polyploid members of the South American genus Fosterella (Bromeliaceae). ANNALS OF BOTANY 2017; 120:233-243. [PMID: 28052858 PMCID: PMC5737899 DOI: 10.1093/aob/mcw245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/27/2016] [Indexed: 05/20/2023]
Abstract
Background and Aims The distribution of polyploidy along a relatively steep Andean elevation and climatic gradient is studied using the genus Fosterella L.B. Sm. (Bromeliaceae) as a model system. Ecological differentiation of cytotypes and the link of polyploidy with historical biogeographic processes such as dispersal events and range shift are assessed. Methods 4',6-Diamidino-2-phenylindole (DAPI) staining of nuclei and flow cytometry were used to estimate the ploidy levels of 159 plants from 22 species sampled throughout the distribution range of the genus. Ecological differentiation among ploidy levels was tested by comparing the sets of climatic variables. Ancestral chromosome number reconstruction was carried out on the basis of a previously generated phylogeographic framework. Key Results This study represents the first assessment of intrageneric, intraspecific and partially intrapopulational cytotype diversity in a genus of the Bromeliaceae family. In Fosterella , the occurrence of polyploidy was limited to the phylogenetically isolated penduliflora and rusbyi groups. Cytotypes were found to be ecologically differentiated, showing that polyploids preferentially occupy colder habitats with high annual temperature variability (seasonality). The combined effects of biogeographic history and adaptive processes are presumed to have shaped the current cytotype distribution in the genus. Conclusions The results provide indirect evidence for both adaptive ecological and non-adaptive historical processes that jointly influenced the cytotype distribution in the predominantly Andean genus Fosterella (Bromeliaceae). The results also exemplify the role of polyploidy as an important driver of speciation in a topographically highly structured and thus climatically diverse landscape.
Collapse
Affiliation(s)
- Juraj Paule
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - Natascha D. Wagner
- Plant Molecular Systematics, Department of Sciences, University of Kassel, D-34132 Kassel, Germany
| | - Kurt Weising
- Plant Molecular Systematics, Department of Sciences, University of Kassel, D-34132 Kassel, Germany
| | - Georg Zizka
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse 13, D-60439 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Yant L, Bomblies K. Genomic studies of adaptive evolution in outcrossing Arabidopsis species. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:9-14. [PMID: 27988391 DOI: 10.1016/j.pbi.2016.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Large-scale population genomic approaches have very recently been fruitfully applied to the Arabidopsis relatives Arabidopsis halleri, A. lyrata and especially A. arenosa. In contrast to A. thaliana, these species are obligately outcrossing and thus the footprints of natural selection are more straightforward to detect. Furthermore, both theoretical and empirical studies indicate that outcrossers are better able to evolve in response to selection pressure. As a result, recent work in these species serves as a paradigm of population genomic studies of adaptation both to environmental as well as intracellular challenges.
Collapse
Affiliation(s)
- Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Kirsten Bomblies
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
20
|
Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in Central Europe. Proc Natl Acad Sci U S A 2017; 114:E1027-E1035. [PMID: 28115687 DOI: 10.1073/pnas.1615123114] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on the biological species concept, two species are considered distinct if reproductive barriers prevent gene flow between them. In Central Europe, the diploid species Arabidopsis lyrata and Arabidopsis arenosa are genetically isolated, thus fitting this concept as "good species." Nonetheless, interspecific gene flow involving their tetraploid forms has been described. The reasons for this ploidy-dependent reproductive isolation remain unknown. Here, we show that hybridization between diploid A. lyrata and A. arenosa causes mainly inviable seed formation, revealing a strong postzygotic reproductive barrier separating these two species. Although viability of hybrid seeds was impaired in both directions of hybridization, the cause for seed arrest differed. Hybridization of A. lyrata seed parents with A. arenosa pollen donors resulted in failure of endosperm cellularization, whereas the endosperm of reciprocal hybrids cellularized precociously. Endosperm cellularization failure in both hybridization directions is likely causal for the embryo arrest. Importantly, natural tetraploid A. lyrata was able to form viable hybrid seeds with diploid and tetraploid A. arenosa, associated with the reestablishment of normal endosperm cellularization. Conversely, the defects of hybrid seeds between tetraploid A. arenosa and diploid A. lyrata were aggravated. According to these results, we hypothesize that a tetraploidization event in A. lyrata allowed the production of viable hybrid seeds with A. arenosa, enabling gene flow between the two species.
Collapse
|
21
|
Mráz P, Ronikier M. Biogeography of the Carpathians: evolutionary and spatial facets of biodiversity. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12918] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Patrik Mráz
- Herbarium and Department of Botany; Charles University; Benátská 2 12801 Prague Czech Republic
| | - Michał Ronikier
- W. Szafer Institute of Botany; Polish Academy of Sciences; Lubicz 46 31-512 Kraków Poland
| |
Collapse
|
22
|
Kolář F, Fuxová G, Záveská E, Nagano AJ, Hyklová L, Lučanová M, Kudoh H, Marhold K. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant modelArabidopsis arenosa. Mol Ecol 2016; 25:3929-49. [DOI: 10.1111/mec.13721] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 05/25/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Filip Kolář
- Natural History Museum; University of Oslo; PO Box 1172 Blindern Oslo NO-0318 Norway
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; The Czech Academy of Sciences; Průhonice CZ-252 43 Czech Republic
| | - Gabriela Fuxová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
| | - Eliška Záveská
- Institute of Botany; University of Innsbruck; Innsbruck AT-6020 Austria
| | - Atsushi J. Nagano
- Center for Ecological Research; Kyoto University; Kyoto JP-520-2113 Japan
- Faculty of Agriculture; Ryukoku University; Shiga JP-612-8577 Japan
- JST PRESTO; Saitama JP-332-0012 Japan
| | - Lucie Hyklová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
| | - Magdalena Lučanová
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; The Czech Academy of Sciences; Průhonice CZ-252 43 Czech Republic
| | - Hiroshi Kudoh
- Center for Ecological Research; Kyoto University; Kyoto JP-520-2113 Japan
| | - Karol Marhold
- Department of Botany; Faculty of Science; Charles University in Prague; Prague CZ-128 01 Czech Republic
- Institute of Botany; Slovak Academy of Sciences; Bratislava SK-845 23 Slovak Republic
| |
Collapse
|
23
|
Abstract
Serpentine barrens represent extreme hazards for plant colonists. These sites are characterized by high porosity leading to drought, lack of essential mineral nutrients, and phytotoxic levels of metals. Nevertheless, nature forged populations adapted to these challenges. Here, we use a population-based evolutionary genomic approach coupled with elemental profiling to assess how autotetraploid Arabidopsis arenosa adapted to a multichallenge serpentine habitat in the Austrian Alps. We first demonstrate that serpentine-adapted plants exhibit dramatically altered elemental accumulation levels in common conditions, and then resequence 24 autotetraploid individuals from three populations to perform a genome scan. We find evidence for highly localized selective sweeps that point to a polygenic, multitrait basis for serpentine adaptation. Comparing our results to a previous study of independent serpentine colonizations in the closely related diploid Arabidopsis lyrata in the United Kingdom and United States, we find the highest levels of differentiation in 11 of the same loci, providing candidate alleles for mediating convergent evolution. This overlap between independent colonizations in different species suggests that a limited number of evolutionary strategies are suited to overcome the multiple challenges of serpentine adaptation. Interestingly, we detect footprints of selection in A. arenosa in the context of substantial gene flow from nearby off-serpentine populations of A. arenosa, as well as from A. lyrata In several cases, quantitative tests of introgression indicate that some alleles exhibiting strong selective sweep signatures appear to have been introgressed from A. lyrata This finding suggests that migrant alleles may have facilitated adaptation of A. arenosa to this multihazard environment.
Collapse
|
24
|
Baduel P, Arnold B, Weisman CM, Hunter B, Bomblies K. Habitat-Associated Life History and Stress-Tolerance Variation in Arabidopsis arenosa. PLANT PHYSIOLOGY 2016; 171:437-51. [PMID: 26941193 PMCID: PMC4854687 DOI: 10.1104/pp.15.01875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/02/2016] [Indexed: 05/03/2023]
Abstract
Weediness in ephemeral plants is commonly characterized by rapid cycling, prolific all-in flowering, and loss of perenniality. Many species made transitions to weediness of this sort, which can be advantageous in high-disturbance or human-associated habitats. The molecular basis of this shift, however, remains mostly mysterious. Here, we use transcriptome sequencing, genome resequencing scans for selection, and stress tolerance assays to study a weedy population of the otherwise nonweedy Arabidopsis arenosa, an obligately outbreeding relative of Arabidopsis thaliana Although weedy A. arenosa is widespread, a single genetic lineage colonized railways throughout central and northern Europe. We show that railway plants, in contrast to plants from sheltered outcrops in hill/mountain regions, are rapid cycling, have lost the vernalization requirement, show prolific flowering, and do not return to vegetative growth. Comparing transcriptomes of railway and mountain plants across time courses with and without vernalization, we found that railway plants have sharply abrogated vernalization responsiveness and high constitutive expression of heat- and cold-responsive genes. Railway plants also have strong constitutive heat shock and freezing tolerance compared with mountain plants, where tolerance must be induced. We found 20 genes with good evidence of selection in the railway population. One of these, LATE ELONGATED HYPOCOTYL, is known in A. thaliana to regulate many stress-response genes that we found to be differentially regulated among the distinct habitats. Our data suggest that, beyond life history regulation, other traits like basal stress tolerance also are associated with the evolution of weediness in A. arenosa.
Collapse
Affiliation(s)
- Pierre Baduel
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA (P.B., B.A., B.H., K.B.);École des Mines de Paris, 75006 Paris, France (P.B.); andHarvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02138 (C.M.W.)
| | - Brian Arnold
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA (P.B., B.A., B.H., K.B.);École des Mines de Paris, 75006 Paris, France (P.B.); andHarvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02138 (C.M.W.)
| | - Cara M Weisman
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA (P.B., B.A., B.H., K.B.);École des Mines de Paris, 75006 Paris, France (P.B.); andHarvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02138 (C.M.W.)
| | - Ben Hunter
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA (P.B., B.A., B.H., K.B.);École des Mines de Paris, 75006 Paris, France (P.B.); andHarvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02138 (C.M.W.)
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA (P.B., B.A., B.H., K.B.);École des Mines de Paris, 75006 Paris, France (P.B.); andHarvard Biophysics Program, Harvard Medical School, Boston, Massachusetts 02138 (C.M.W.)
| |
Collapse
|
25
|
Lloyd A, Bomblies K. Meiosis in autopolyploid and allopolyploid Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2016; 30:116-22. [PMID: 26950252 DOI: 10.1016/j.pbi.2016.02.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 05/20/2023]
Abstract
All newly formed polyploids face a challenge in meiotic chromosome segregation due to the presence of an additional set of chromosomes. Nevertheless, naturally occurring auto and allopolyploids are common and generally show high fertility, showing that evolution can find solutions. Exactly how meiosis is adapted in these cases, however, remains a mystery. The rise of Arabidopsis as a model genus for polyploid and meiosis research has seen several new studies begin to shed light on this long standing question.
Collapse
Affiliation(s)
- Andrew Lloyd
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; Institut Jean-Pierre Bourgin (IJPB), INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France.
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA; John Innes Centre, Department of Cell & Developmental Biology, Norwich, UK
| |
Collapse
|
26
|
Yant L, Bomblies K. Genome management and mismanagement--cell-level opportunities and challenges of whole-genome duplication. Genes Dev 2016; 29:2405-19. [PMID: 26637526 PMCID: PMC4691946 DOI: 10.1101/gad.271072.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Whole-genome duplication (WGD) doubles the DNA content in the nucleus and leads to polyploidy. In this review, Yant and Bomblies discuss both the adaptive potential and problems associated with WGD, focusing primarily on cellular effects. Whole-genome duplication (WGD) doubles the DNA content in the nucleus and leads to polyploidy. In whole-organism polyploids, WGD has been implicated in adaptability and the evolution of increased genome complexity, but polyploidy can also arise in somatic cells of otherwise diploid plants and animals, where it plays important roles in development and likely environmental responses. As with whole organisms, WGD can also promote adaptability and diversity in proliferating cell lineages, although whether WGD is beneficial is clearly context-dependent. WGD is also sometimes associated with aging and disease and may be a facilitator of dangerous genetic and karyotypic diversity in tumorigenesis. Scaling changes can affect cell physiology, but problems associated with WGD in large part seem to arise from problems with chromosome segregation in polyploid cells. Here we discuss both the adaptive potential and problems associated with WGD, focusing primarily on cellular effects. We see value in recognizing polyploidy as a key player in generating diversity in development and cell lineage evolution, with intriguing parallels across kingdoms.
Collapse
Affiliation(s)
- Levi Yant
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | | |
Collapse
|
27
|
Hohmann N, Wolf EM, Lysak MA, Koch MA. A Time-Calibrated Road Map of Brassicaceae Species Radiation and Evolutionary History. THE PLANT CELL 2015; 27:2770-84. [PMID: 26410304 PMCID: PMC4682323 DOI: 10.1105/tpc.15.00482] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/13/2015] [Accepted: 09/05/2015] [Indexed: 05/18/2023]
Abstract
The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization.
Collapse
Affiliation(s)
- Nora Hohmann
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Eva M Wolf
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Marcus A Koch
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Arnold B, Kim ST, Bomblies K. Single Geographic Origin of a Widespread Autotetraploid Arabidopsis arenosa Lineage Followed by Interploidy Admixture. Mol Biol Evol 2015; 32:1382-95. [DOI: 10.1093/molbev/msv089] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
29
|
Muir G, Ruiz-Duarte P, Hohmann N, Mable BK, Novikova P, Schmickl R, Guggisberg A, Koch MA. Exogenous selection rather than cytonuclear incompatibilities shapes asymmetrical fitness of reciprocal Arabidopsis hybrids. Ecol Evol 2015; 5:1734-45. [PMID: 25937915 PMCID: PMC4409420 DOI: 10.1002/ece3.1474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 11/09/2022] Open
Abstract
Reciprocal crosses between species often display an asymmetry in the fitness of F1 hybrids. This pattern, referred to as isolation asymmetry or Darwin's corollary to Haldane's rule, is a general feature of reproductive isolation in plants, yet factors determining its magnitude and direction remain unclear. We evaluated reciprocal species crosses between two naturally hybridizing diploid species of Arabidopsis to assess the degree of isolation asymmetry at different postmating life stages. We found that pollen from Arabidopsis arenosa will usually fertilize ovules from Arabidopsis lyrata; the reverse receptivity being less complete. Maternal A. lyrata parents set more F1 hybrid seed, but germinate at lower frequency, reversing the asymmetry. As predicted by theory, A. lyrata (the maternal parent with lower seed viability in crosses) exhibited accelerated chloroplast evolution, indicating that cytonuclear incompatibilities may play a role in reproductive isolation. However, this direction of asymmetrical reproductive isolation is not replicated in natural suture zones, where delayed hybrid breakdown of fertility at later developmental stages, or later-acting selection against A. arenosa maternal hybrids (unrelated to hybrid fertility, e.g., substrate adaptation) may be responsible for an excess of A. lyrata maternal hybrids. Exogenous selection rather than cytonuclear incompatibilities thus shapes the asymmetrical postmating isolation in nature.
Collapse
Affiliation(s)
- Graham Muir
- Centre for Organismal Studies, Department of Biodiversity and Plant Systematics, University of Heidelberg D-69120, Heidelberg, Germany
| | - Paola Ruiz-Duarte
- Centre for Organismal Studies, Department of Biodiversity and Plant Systematics, University of Heidelberg D-69120, Heidelberg, Germany
| | - Nora Hohmann
- Centre for Organismal Studies, Department of Biodiversity and Plant Systematics, University of Heidelberg D-69120, Heidelberg, Germany
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow Glasgow, G12 8QQ, U.K
| | - Polina Novikova
- Gregor Mendel Institute, Austrian Academy of Sciences Vienna, Austria
| | - Roswitha Schmickl
- Centre for Organismal Studies, Department of Biodiversity and Plant Systematics, University of Heidelberg D-69120, Heidelberg, Germany
| | | | - Marcus A Koch
- Centre for Organismal Studies, Department of Biodiversity and Plant Systematics, University of Heidelberg D-69120, Heidelberg, Germany
| |
Collapse
|
30
|
Pachschwöll C, Escobar García P, Winkler M, Schneeweiss GM, Schönswetter P. Polyploidisation and geographic differentiation drive diversification in a European High Mountain Plant Group (Doronicum clusii Aggregate, Asteraceae). PLoS One 2015; 10:e0118197. [PMID: 25749621 PMCID: PMC4352020 DOI: 10.1371/journal.pone.0118197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/08/2015] [Indexed: 11/19/2022] Open
Abstract
Range shifts (especially during the Pleistocene), polyploidisation and hybridization are major factors affecting high-mountain biodiversity. A good system to study their role in the European high mountains is the Doronicum clusii aggregate (Asteraceae), whose four taxa (D. clusii s.s., D. stiriacum, D. glaciale subsp. glaciale and D. glaciale subsp. calcareum) are differentiated geographically, ecologically (basiphilous versus silicicolous) and/or via their ploidy levels (diploid versus tetraploid). Here, we use DNA sequences (three plastid and one nuclear spacer) and AFLP fingerprinting data generated for 58 populations to infer phylogenetic relationships, origin of polyploids-whose ploidy level was confirmed by chromosomally calibrated DNA ploidy level estimates-and phylogeographic history. Taxonomic conclusions were informed, among others, by a Gaussian clustering method for species delimitation using dominant multilocus data. Based on molecular data we identified three lineages: (i) silicicolous diploid D. clusii s.s. in the Alps, (ii) silicicolous tetraploid D. stiriacum in the eastern Alps (outside the range of D. clusii s.s.) and the Carpathians and (iii) the basiphilous diploids D. glaciale subsp. glaciale (eastern Alps) and D. glaciale subsp. calcareum (northeastern Alps); each taxon was identified as distinct by the Gaussian clustering, but the separation of D. glaciale subsp. calcareum and D. glaciale subsp. glaciale was not stable, supporting their taxonomic treatment as subspecies. Carpathian and Alpine populations of D. stiriacum were genetically differentiated suggesting phases of vicariance, probably during the Pleistocene. The origin (autopolyploid versus allopolyploid) of D. stiriacum remained unclear. Doronicum glaciale subsp. calcareum was genetically and morphologically weakly separated from D. glaciale subsp. glaciale but exhibited significantly higher genetic diversity and rarity. This suggests that the more widespread D. glaciale subsp. glaciale originated from D. glaciale subsp. calcareum, which is restricted to a prominent Pleistocene refugium previously identified in other alpine plant species.
Collapse
Affiliation(s)
- Clemens Pachschwöll
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Pedro Escobar García
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
- Department of Botany, Natural History Museum, Burgring 7, A-1010 Vienna, Austria
| | - Manuela Winkler
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
- GLORIA co-ordination, University of Natural Resources and Life Sciences Vienna, Center for Global Change and Sustainability & Austrian Academy of Sciences, Institute for Interdisciplinary Mountain Research, Silbergasse 30, A-1190 Vienna, Austria
| | - Gerald M. Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
- * E-mail:
| | - Peter Schönswetter
- Institute of Botany, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| |
Collapse
|
31
|
Kolář F, Lučanová M, Záveská E, Fuxová G, Mandáková T, Španiel S, Senko D, Svitok M, Kolník M, Gudžinskas Z, Marhold K. Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of theArabidopsis arenosagroup (Brassicaceae). Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12479] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Filip Kolář
- Department of Botany; Faculty of Science; Charles University in Prague; Benátská 2 CZ-128 01 Prague Czech Republic
- Institute of Botany; Academy of Sciences of the Czech Republic; Zámek 1 CZ-252 43 Průhonice Czech Republic
| | - Magdalena Lučanová
- Institute of Botany; Academy of Sciences of the Czech Republic; Zámek 1 CZ-252 43 Průhonice Czech Republic
- Department of Botany; Faculty of Science; Charles University in Prague; Benátská 2 CZ-128 01 Prague Czech Republic
| | - Eliška Záveská
- Department of Botany; Faculty of Science; Charles University in Prague; Benátská 2 CZ-128 01 Prague Czech Republic
| | - Gabriela Fuxová
- Department of Botany; Faculty of Science; Charles University in Prague; Benátská 2 CZ-128 01 Prague Czech Republic
| | - Terezie Mandáková
- Plant Cytogenomics Research Group; Central European Institute of Technology (CEITEC); Masaryk University; Kamenice 5 CZ-62500 Brno Czech Republic
| | - Stanislav Španiel
- Department of Botany; Faculty of Science; Charles University in Prague; Benátská 2 CZ-128 01 Prague Czech Republic
| | - Dušan Senko
- Institute of Botany; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 23 Bratislava Slovak Republic
| | - Marek Svitok
- Department of Biology and General Ecology; Faculty of Ecology and Environmental Sciences; Technical University in Zvolen; T. G. Masaryka 24 SK-960 53 Zvolen Slovak Republic
- Eawag Swiss Federal Institute of Aquatic Science and Technology; Department of Aquatic Ecology, Centre of Ecology; Evolution and Biogeochemistry; Seestrasse 79 CH-6047 Kastanienbaum Switzerland
| | - Martin Kolník
- Tematínska 4 SK-91501 Nové Mesto nad Váhom Slovak Republic
| | - Zigmantas Gudžinskas
- Nature Research Centre; Institute of Botany; Laboratory of Flora and Geobotany; Žaliųjų Ežerų Str. 49 LT-08406 Vilnius Lithuania
| | - Karol Marhold
- Department of Botany; Faculty of Science; Charles University in Prague; Benátská 2 CZ-128 01 Prague Czech Republic
- Institute of Botany; Slovak Academy of Sciences; Dúbravská cesta 9 SK-845 23 Bratislava Slovak Republic
| |
Collapse
|
32
|
Wright KM, Arnold B, Xue K, Šurinová M, O'Connell J, Bomblies K. Selection on meiosis genes in diploid and tetraploid Arabidopsis arenosa. Mol Biol Evol 2014; 32:944-55. [PMID: 25543117 DOI: 10.1093/molbev/msu398] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Meiotic chromosome segregation is critical for fertility across eukaryotes, and core meiotic processes are well conserved even between kingdoms. Nevertheless, recent work in animals has shown that at least some meiosis genes are highly diverse or strongly differentiated among populations. What drives this remains largely unknown. We previously showed that autotetraploid Arabidopsis arenosa evolved stable meiosis, likely through reduced crossover rates, and that associated with this there is strong evidence for selection in a subset of meiosis genes known to affect axis formation, synapsis, and crossover frequency. Here, we use genome-wide data to study the molecular evolution of 70 meiosis genes in a much wider sample of A. arenosa. We sample the polyploid lineage, a diploid lineage from the Carpathian Mountains, and a more distantly related diploid lineage from the adjacent, but biogeographically distinct Pannonian Basin. We find that not only did selection act on meiosis genes in the polyploid lineage but also independently on a smaller subset of meiosis genes in Pannonian diploids. Functionally related genes are targeted by selection in these distinct contexts, and in two cases, independent sweeps occurred in the same loci. The tetraploid lineage has sustained selection on more genes, has more amino acid changes in each, and these more often affect conserved or potentially functional sites. We hypothesize that Pannonian diploid and tetraploid A. arenosa experienced selection on structural proteins that mediate sister chromatid cohesion, the formation of meiotic chromosome axes, and synapsis, likely for different underlying reasons.
Collapse
Affiliation(s)
- Kevin M Wright
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Brian Arnold
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Katherine Xue
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Maria Šurinová
- Institute of Botany, Academy of Sciences of the Czech Republic, Pruhonice, Czech Republic
| | - Jeremy O'Connell
- Department of Evolutionary and Organismic Biology, Harvard University
| | - Kirsten Bomblies
- Department of Evolutionary and Organismic Biology, Harvard University
| |
Collapse
|
33
|
Hohmann N, Schmickl R, Chiang TY, Lučanová M, Kolář F, Marhold K, Koch MA. Taming the wild: resolving the gene pools of non-model Arabidopsis lineages. BMC Evol Biol 2014; 14:224. [PMID: 25344686 PMCID: PMC4216345 DOI: 10.1186/s12862-014-0224-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/15/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Wild relatives in the genus Arabidopsis are recognized as useful model systems to study traits and evolutionary processes in outcrossing species, which are often difficult or even impossible to investigate in the selfing and annual Arabidopsis thaliana. However, Arabidopsis as a genus is littered with sub-species and ecotypes which make realizing the potential of these non-model Arabidopsis lineages problematic. There are relatively few evolutionary studies which comprehensively characterize the gene pools across all of the Arabidopsis supra-groups and hypothesized evolutionary lineages and none include sampling at a world-wide scale. Here we explore the gene pools of these various taxa using various molecular markers and cytological analyses. RESULTS Based on ITS, microsatellite, chloroplast and nuclear DNA content data we demonstrate the presence of three major evolutionary groups broadly characterized as A. lyrata group, A. halleri group and A. arenosa group. All are composed of further species and sub-species forming larger aggregates. Depending on the resolution of the marker, a few closely related taxa such as A. pedemontana, A. cebennensis and A. croatica are also clearly distinct evolutionary lineages. ITS sequences and a population-based screen based on microsatellites were highly concordant. The major gene pools identified by ITS sequences were also significantly differentiated by their homoploid nuclear DNA content estimated by flow cytometry. The chloroplast genome provided less resolution than the nuclear data, and it remains unclear whether the extensive haplotype sharing apparent between taxa results from gene flow or incomplete lineage sorting in this relatively young group of species with Pleistocene origins. CONCLUSIONS Our study provides a comprehensive overview of the genetic variation within and among the various taxa of the genus Arabidopsis. The resolved gene pools and evolutionary lineages will set the framework for future comparative studies on genetic diversity. Extensive population-based phylogeographic studies will also be required, however, in particular for A. arenosa and their affiliated taxa and cytotypes.
Collapse
Affiliation(s)
- Nora Hohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
| | - Roswitha Schmickl
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
| | - Tzen-Yuh Chiang
- Department of Life Sciences, Cheng-Kung University, Tainan, Taiwan.
| | - Magdalena Lučanová
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic.
| | - Filip Kolář
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Prague, CZ-128 01, Czech Republic.
| | - Karol Marhold
- Institute of Botany, Academy of Sciences of the Czech Republic, Průhonice, CZ-25243, Czech Republic.
- Institute of Botany Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, SK-845 23, Slovakia.
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, Heidelberg, 69120, Germany.
| |
Collapse
|
34
|
|
35
|
Higgins JD, Wright KM, Bomblies K, Franklin FCH. Cytological techniques to analyze meiosis in Arabidopsis arenosa for investigating adaptation to polyploidy. FRONTIERS IN PLANT SCIENCE 2014; 4:546. [PMID: 24427164 PMCID: PMC3879461 DOI: 10.3389/fpls.2013.00546] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/13/2013] [Indexed: 05/20/2023]
Abstract
Arabidopsis arenosa is a close relative of the model plant A. thaliana, and exists in nature as stable diploid and autotetraploid populations. Natural tetraploids have adapted to whole genome duplication and do not commonly show meiotic errors such as multivalent and univalent formation, which can lead to chromosome non-disjunction and reduced fertility. A genome scan for genes strongly differentiated between diploid and autotetraploid A. arenosa identified a subset of meiotic genes that may be responsible for adaptation to polyploid meiosis. To investigate the mechanisms by which A. arenosa adapted to its polyploid state, and the functionality of the identified potentially adaptive polymorphisms, a thorough cytological analysis is required. Therefore, in this chapter we describe methods and techniques to analyze male meiosis in A. arenosa, including optimum plant growth conditions, and immunocytological and cytological approaches developed with the specific purpose of understanding meiotic adaptation in an autotetraploid. In addition we present a meiotic cytological atlas to be used as a reference for particular stages and discuss observations arising from a comparison of meiosis between diploid and autotetraploid A. arenosa.
Collapse
Affiliation(s)
- James D. Higgins
- School of Biosciences, The University of BirminghamBirmingham, UK
- *Correspondence: James D. Higgins, School of Biological Sciences, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, UK e-mail:
| | - Kevin M. Wright
- Department of Organismic and Evolutionary Biology, Harvard University, CambridgeMA, USA
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, CambridgeMA, USA
| | | |
Collapse
|
36
|
Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, Bomblies K. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol 2013; 23:2151-6. [PMID: 24139735 DOI: 10.1016/j.cub.2013.08.059] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/20/2013] [Accepted: 08/29/2013] [Indexed: 01/08/2023]
Abstract
Whole genome duplication (WGD) is a major factor in the evolution of multicellular eukaryotes, yet by doubling the number of homologs, WGD severely challenges reliable chromosome segregation, a process conserved across kingdoms. Despite this, numerous genome-duplicated (polyploid) species persist in nature, indicating early problems can be overcome. Little is known about which genes are involved--only one has been molecularly characterized. To gain new insights into the molecular basis of adaptation to polyploidy, we investigated genome-wide patterns of differentiation between natural diploids and tetraploids of Arabidopsis arenosa, an outcrossing relative of A. thaliana. We first show that diploids are not preadapted to polyploid meiosis. We then use a genome scanning approach to show that although polymorphism is extensively shared across ploidy levels, there is strong ploidy-specific differentiation in 39 regions spanning 44 genes. These are discrete, mostly single-gene peaks of sharply elevated differentiation. Among these peaks are eight meiosis genes whose encoded proteins coordinate a specific subset of early meiotic functions, suggesting these genes comprise a polygenic solution to WGD-associated chromosome segregation challenges. Our findings indicate that even conserved meiotic processes can be capable of nimble evolutionary shifts when required.
Collapse
Affiliation(s)
- Levi Yant
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Jesse D Hollister
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Kevin M Wright
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Brian J Arnold
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - James D Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Kirsten Bomblies
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| |
Collapse
|
37
|
Fernández-Mazuecos M, Vargas P. Congruence between distribution modelling and phylogeographical analyses reveals Quaternary survival of a toadflax species (Linaria elegans) in oceanic climate areas of a mountain ring range. THE NEW PHYTOLOGIST 2013; 198:1274-1289. [PMID: 23496320 DOI: 10.1111/nph.12220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
· The role of Quaternary climatic shifts in shaping the distribution of Linaria elegans, an Iberian annual plant, was investigated using species distribution modelling and molecular phylogeographical analyses. Three hypotheses are proposed to explain the Quaternary history of its mountain ring range. · The distribution of L. elegans was modelled using the maximum entropy method and projected to the last interglacial and to the last glacial maximum (LGM) using two different paleoclimatic models: the Community Climate System Model (CCSM) and the Model for Interdisciplinary Research on Climate (MIROC). Two nuclear and three plastid DNA regions were sequenced for 24 populations (119 individuals sampled). Bayesian phylogenetic, phylogeographical, dating and coalescent-based population genetic analyses were conducted. · Molecular analyses indicated the existence of northern and southern glacial refugia and supported two routes of post-glacial recolonization. These results were consistent with the LGM distribution as inferred under the CCSM paleoclimatic model (but not under the MIROC model). Isolation between two major refugia was dated back to the Riss or Mindel glaciations, > 100 kyr before present (bp). · The Atlantic distribution of inferred refugia suggests that the oceanic (buffered)-continental (harsh) gradient may have played a key and previously unrecognized role in determining Quaternary distribution shifts of Mediterranean plants.
Collapse
Affiliation(s)
| | - Pablo Vargas
- Real Jardín Botánico (RJB-CSIC), Plaza de Murillo 2, 28014, Madrid, Spain
| |
Collapse
|