1
|
Chevillard PM, Batailler M, Dubois JP, Estienne A, Pillon D, Vaudin P, Piégu B, Blache MC, Dupont J, Just N, Migaud M. Seasonal remodeling of the progenitor pool and its distribution in the ewe mediobasal hypothalamus. Cell Tissue Res 2023:10.1007/s00441-023-03745-x. [PMID: 36795154 DOI: 10.1007/s00441-023-03745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023]
Abstract
Recent studies have reported the presence of adult neurogenesis in the arcuate nucleus periventricular space (pvARH) and in the median eminence (ME), two structures involved in reproductive function. In sheep, a seasonal mammal, decreasing daylight in autumn induces a higher neurogenic activity in these two structures. However, the different types of neural stem and progenitor cells (NSCs/NPCs) that populate the arcuate nucleus and median eminence, as well as their location, have not been evaluated. Here, using semi-automatic image analyzing processes, we identified and quantified the different populations of NSCs/NPCs, showing that, during short days, higher densities of [SOX2 +] cells are found in pvARH and ME. In the pvARH, higher densities of astrocytic and oligodendrocitic progenitors mainly contribute to these variations. The different populations of NSCs/NPCs were mapped according to their position relative to the third ventricle and their proximity to the vasculature. We showed that [SOX2 +] cells extended deeper into the hypothalamic parenchyma during short days. Similarly, [SOX2 +] cells were found further from the vasculature in the pvARH and the ME, at this time of year, indicating the existence of migratory signals. The expression levels of neuregulin transcripts (NRGs), whose proteins are known to stimulate proliferation and adult neurogenesis and to regulate progenitor migration, as well as the expression levels of ERBB mRNAs, cognate receptors for NRGs, were assessed. We showed that mRNA expression changed seasonally in pvARH and ME, suggesting that the ErbB-NRG system is potentially involved in the photoperiodic regulation of neurogenesis in seasonal adult mammals.
Collapse
Affiliation(s)
| | - Martine Batailler
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | | | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Delphine Pillon
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Pascal Vaudin
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Benoît Piégu
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | | | - Joelle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Nathalie Just
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France
| | - Martine Migaud
- CNRS, IFCE, INRAE, Université de Tours, PRC, F-37380, Nouzilly, France.
| |
Collapse
|
2
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
3
|
Batailler M, Chesneau D, Derouet L, Butruille L, Segura S, Cognié J, Dupont J, Pillon D, Migaud M. Pineal-dependent increase of hypothalamic neurogenesis contributes to the timing of seasonal reproduction in sheep. Sci Rep 2018; 8:6188. [PMID: 29670193 PMCID: PMC5906660 DOI: 10.1038/s41598-018-24381-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/26/2018] [Indexed: 11/20/2022] Open
Abstract
To survive in temperate latitudes, species rely on the photoperiod to synchronize their physiological functions, including reproduction, with the predictable changes in the environment. In sheep, exposure to decreasing day length reactivates the hypothalamo-pituitary-gonadal axis, while during increasing day length, animals enter a period of sexual rest. Neural stem cells have been detected in the sheep hypothalamus and hypothalamic neurogenesis was found to respond to the photoperiod. However, the physiological relevance of this seasonal adult neurogenesis is still unexplored. This longitudinal study, therefore aimed to thoroughly characterize photoperiod-stimulated neurogenesis and to investigate whether the hypothalamic adult born-cells were involved in the seasonal timing of reproduction. Results showed that time course of cell proliferation reached a peak in the middle of the period of sexual activity, corresponding to decreasing day length period. This enhancement was suppressed when animals were deprived of seasonal time cues by pinealectomy, suggesting a role of melatonin in the seasonal regulation of cell proliferation. Furthermore, when the mitotic blocker cytosine-b-D-arabinofuranoside was administered centrally, the timing of seasonal reproduction was affected. Overall, our findings link the cyclic increase in hypothalamic neurogenesis to seasonal reproduction and suggest that photoperiod-regulated hypothalamic neurogenesis plays a substantial role in seasonal reproductive physiology.
Collapse
Affiliation(s)
- Martine Batailler
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Didier Chesneau
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Laura Derouet
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Lucile Butruille
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Stéphanie Segura
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Juliette Cognié
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Joëlle Dupont
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Delphine Pillon
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France.,CNRS, UMR7247, F-37380, Nouzilly, France.,Université de Tours, F-37041, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France
| | - Martine Migaud
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France. .,CNRS, UMR7247, F-37380, Nouzilly, France. .,Université de Tours, F-37041, Tours, France. .,Institut Français du Cheval et de l'Equitation (IFCE), F-37380, Nouzilly, France.
| |
Collapse
|
4
|
Lévy F, Batailler M, Meurisse M, Migaud M. Adult Neurogenesis in Sheep: Characterization and Contribution to Reproduction and Behavior. Front Neurosci 2017; 11:570. [PMID: 29109674 PMCID: PMC5660097 DOI: 10.3389/fnins.2017.00570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/28/2017] [Indexed: 01/18/2023] Open
Abstract
Sheep have many advantages to study neurogenesis in comparison to the well-known rodent models. Their development and life expectancy are relatively long and they possess a gyrencephalic brain. Sheep are also seasonal breeders, a characteristic that allows studying the involvement of hypothalamic neurogenesis in the control of seasonal reproduction. Sheep are also able to individually recognize their conspecifics and develop selective and lasting bonds. Adult olfactory neurogenesis could be adapted to social behavior by supporting recognition of conspecifics. The present review reveals the distinctive features of the hippocampal, olfactory, and hypothalamic neurogenesis in sheep. In particular, the organization of the subventricular zone and the dynamic of neuronal maturation differs from that of rodents. In addition, we show that various physiological conditions, such as seasonal reproduction, gestation, and lactation differently modulate these three neurogenic niches. Last, we discuss recent evidence indicating that hypothalamic neurogenesis acts as an important regulator of the seasonal control of reproduction and that olfactory neurogenesis could be involved in odor processing in the context of maternal behavior.
Collapse
Affiliation(s)
- Frederic Lévy
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Batailler
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Maryse Meurisse
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Martine Migaud
- Institut National de la Recherche Agronomique, UMR85, Centre National de la Recherche Scientifique, UMR7247, Université F. Rabelais, IFCE, Physiologie de la Reproduction et des Comportements, Nouzilly, France
| |
Collapse
|
5
|
Borniger JC, Nelson RJ. Photoperiodic regulation of behavior: Peromyscus as a model system. Semin Cell Dev Biol 2016; 61:82-91. [PMID: 27346738 DOI: 10.1016/j.semcdb.2016.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/20/2022]
Abstract
Winter and summer present vastly different challenges to animals living outside of the tropics. To survive and reproduce, individuals must anticipate seasonal environmental changes and adjust physiology and behavior accordingly. Photoperiod (day length) offers a relatively 'noise free' environmental signal that non-tropical animals use to tell the time of year, and whether winter is approaching or receding. In some cases, photoperiodic signals may be fine-tuned by other proximate cues such as food availability or temperature. The pineal hormone, melatonin, is a primary physiological transducer of the photoperiodic signal. It tracks night length and provokes changes in physiology and behavior at appropriate times of the year. Because of their wide latitudinal distribution, Peromyscus has been well studied in the context of photoperiodic regulation of physiology and behavior. Here, we discuss how photoperiodic signals are transduced by pineal melatonin, how melatonin acts on target tissues, and subsequent consequences for behavior. Using a life-history paradigm involving trade-offs between the immune and reproductive systems, specific emphasis is placed on aggression, metabolism, and cognition. We discuss future directions including examining the effects of light pollution on photoperiodism, genetic manipulations to test the role of specific genes in the photoperiodic response, and using Peromyscus to test evolutionary theories of aging.
Collapse
Affiliation(s)
- Jeremy C Borniger
- Department of Neuroscience, Behavioral Neuroendocrinology Group, and Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Randy J Nelson
- Department of Neuroscience, Behavioral Neuroendocrinology Group, and Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
6
|
Fernandes C, Rocha NBF, Rocha S, Herrera-Solís A, Salas-Pacheco J, García-García F, Murillo-Rodríguez E, Yuan TF, Machado S, Arias-Carrión O. Detrimental role of prolonged sleep deprivation on adult neurogenesis. Front Cell Neurosci 2015; 9:140. [PMID: 25926773 PMCID: PMC4396387 DOI: 10.3389/fncel.2015.00140] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/24/2015] [Indexed: 01/17/2023] Open
Abstract
Adult mammalian brains continuously generate new neurons, a phenomenon called adult neurogenesis. Both environmental stimuli and endogenous factors are important regulators of adult neurogenesis. Sleep has an important role in normal brain physiology and its disturbance causes very stressful conditions, which disrupt normal brain physiology. Recently, an influence of sleep in adult neurogenesis has been established, mainly based on sleep deprivation studies. This review provides an overview on how rhythms and sleep cycles regulate hippocampal and subventricular zone neurogenesis, discussing some potential underlying mechanisms. In addition, our review highlights some interacting points between sleep and adult neurogenesis in brain function, such as learning, memory, and mood states, and provides some insights on the effects of antidepressants and hypnotic drugs on adult neurogenesis.
Collapse
Affiliation(s)
- Carina Fernandes
- Faculty of Medicine, University of PortoPorto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of PortoPorto, Portugal
| | | | - Susana Rocha
- School of Accounting and Administration of Porto, Polytechnic Institute of PortoPorto, Portugal
| | - Andrea Herrera-Solís
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González/Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - Fabio García-García
- Departamento de Biomedicina, Instituto de Ciencias de la Salud, Universidad VeracruzanaXalapa, Mexico
| | - Eric Murillo-Rodríguez
- División Ciencias de la Salud, Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, Universidad Anáhuac MayabMérida, México
| | - Ti-Fei Yuan
- School of Psychology, Nanjing Normal UniversityNanjing, China
| | - Sergio Machado
- Panic and Respiration, Institute of Psychiatry of Federal University of Rio de JaneiroRio de Janeiro, Brazil
- Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira UniversityNiterói, Brazil
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González/Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| |
Collapse
|
7
|
Migaud M, Butrille L, Batailler M. Seasonal regulation of structural plasticity and neurogenesis in the adult mammalian brain: focus on the sheep hypothalamus. Front Neuroendocrinol 2015; 37:146-57. [PMID: 25462590 DOI: 10.1016/j.yfrne.2014.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 01/19/2023]
Abstract
To cope with variations in the environment, most mammalian species exhibit seasonal cycles in physiology and behaviour. Seasonal plasticity during the lifetime contributes to seasonal physiology. Over the years, our ideas regarding adult brain plasticity and, more specifically, hypothalamic plasticity have greatly evolved. Along with the two main neurogenic regions, namely the hippocampal subgranular and lateral ventricle subventricular zones, the hypothalamus, which is the central homeostatic regulator of numerous physiological functions that comprise sexual behaviours, feeding and metabolism, also hosts neurogenic niches. Both endogenous and exogenous factors, including the photoperiod, modulate the hypothalamic neurogenic capacities. The present review describes the effects of season on adult morphological plasticity and neurogenesis in seasonal species, for which the photoperiod is a master environmental cue for the successful programming of seasonal functions. In addition, the potential functional significance of adult neurogenesis in the mediation of the seasonal control of reproduction and feeding is discussed.
Collapse
Affiliation(s)
- Martine Migaud
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France.
| | - Lucile Butrille
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France
| | - Martine Batailler
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université de Tours, F-37041 Tours, France; Haras Nationaux, F-37380 Nouzilly, France
| |
Collapse
|
8
|
Slotnick B, Coppola DM. Odor-Cued Taste Avoidance: A Simple and Robust Test of Mouse Olfaction. Chem Senses 2015; 40:269-78. [DOI: 10.1093/chemse/bjv005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Walton JC, Aubrecht TG, Weil ZM, Leuner B, Nelson RJ. Photoperiodic regulation of hippocampal neurogenesis in adult male white-footed mice (Peromyscus leucopus). Eur J Neurosci 2014; 40:2674-9. [PMID: 24893623 DOI: 10.1111/ejn.12626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/02/2014] [Accepted: 04/21/2014] [Indexed: 11/27/2022]
Abstract
Photoperiodic organisms monitor environmental day length to engage in seasonally appropriate adaptions in physiology and behavior. Among these adaptations are changes in brain volume and neurogenesis, which have been well described in multiple species of birds, yet few studies have described such changes in the brains of adult mammals. White-footed mice (Peromyscus leucopus) are an excellent species in which to investigate the effects of day length on adult hippocampal neurogenesis, as males, in addition to having reduced hippocampal volume in short days (SD) with concomitant impairments in hippocampus-mediated behaviors, have photoperiod-dependent changes in olfactory bulb neurogenesis. We performed the current experiment to assess the effects of photoperiod on hippocampal neurogenesis longitudinally, using the thymidine analog bromodeoxyuridine at multiple time points across 10 weeks of SD exposure. Compared with counterparts held in long day (LD) lengths, across the first 8 weeks of SD exposure hippocampal neurogenesis was reduced. However, at 10 weeks in SD lengths neurogenic levels in the hippocampus were elevated above those levels in mice held in LD lengths. The current findings are consistent with the natural photoperiodic cycle of hippocampal function in male white-footed mice, and may help to inform research on photoperiodic plasticity in neurogenesis and provide insight into how the complex interplay among the environment, genes and adaptive responses to changing day lengths affects brain structure, function and behavior at multiple levels.
Collapse
Affiliation(s)
- James C Walton
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
10
|
Rosillo JC, Olivera-Bravo S, Casanova G, García-Verdugo JM, Fernández AS. Olfacto-retinalis pathway in Austrolebias charrua fishes: a neuronal tracer study. Neuroscience 2013; 253:304-15. [PMID: 24012745 DOI: 10.1016/j.neuroscience.2013.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/06/2013] [Accepted: 08/24/2013] [Indexed: 11/17/2022]
Abstract
The olfacto-retinal centrifugal system, a constant component of the central nervous system that appears to exist in all vertebrate groups, is part of the terminal nerve (TN) complex. TN allows the integration of different sensory modalities, and its anatomic variability may have functional and evolutionary significance. We propose that the olfacto-retinal branch of TN is an important anatomical link that allows the functional interaction between olfactory and visual systems in Austrolebias. By injecting three different neuronal tracers (biocytin, horseradish peroxidase, and 1,1'-dioctadecyl-3,3,3',3'tetramethyl-indocarbocyanine perchlorate (DiI)) in the left eye of Austrolebias charrua fishes, we identified the olfacto-retinal branch of TN and related neuronal somas that were differentiable by location, shape, and size. The olfacto-retinal TN branch is composed of numerous thin axons that run ventrally along the olfactory bulb (OB) and telencephalic lobes, and appears to originate from a group of many small monopolar neurons located in the rostral portion of both the ipsi- and contralateral OB (referred to as region 1). Labeled cells were found in two other regions: bipolar and multipolar neurons in the transition between the OB and telencephalic lobes (region 2) and two other groups in the preoptic/pretectal area (region 3). In this last region, the most rostral group is constituted by monopolar pear-shaped neurons and may belong to the septo-preoptic TN complex. The second group, putatively located in the pretectal region, is formed by pseudounipolar neurons and coincides with a conserved vertebrate nucleus of the centrifugal retinal system not involved in the TN complex. The found that connections between the olfactory and visual systems via the olfacto-retinal TN branch suggest an early interaction between these sensory modalities, and contribute to the identification of their currently unknown circuital organization.
Collapse
Affiliation(s)
- J C Rosillo
- Neuroanatomía Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, Montevideo 11600, Uruguay.
| | | | | | | | | |
Collapse
|
11
|
Konefal S, Elliot M, Crespi B. The adaptive significance of adult neurogenesis: an integrative approach. Front Neuroanat 2013; 7:21. [PMID: 23882188 PMCID: PMC3712125 DOI: 10.3389/fnana.2013.00021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 06/18/2013] [Indexed: 01/15/2023] Open
Abstract
Adult neurogenesis in mammals is predominantly restricted to two brain regions, the dentate gyrus (DG) of the hippocampus and the olfactory bulb (OB), suggesting that these two brain regions uniquely share functions that mediate its adaptive significance. Benefits of adult neurogenesis across these two regions appear to converge on increased neuronal and structural plasticity that subserves coding of novel, complex, and fine-grained information, usually with contextual components that include spatial positioning. By contrast, costs of adult neurogenesis appear to center on potential for dysregulation resulting in higher risk of brain cancer or psychological dysfunctions, but such costs have yet to be quantified directly. The three main hypotheses for the proximate functions and adaptive significance of adult neurogenesis, pattern separation, memory consolidation, and olfactory spatial, are not mutually exclusive and can be reconciled into a simple general model amenable to targeted experimental and comparative tests. Comparative analysis of brain region sizes across two major social-ecological groups of primates, gregarious (mainly diurnal haplorhines, visually-oriented, and in large social groups) and solitary (mainly noctural, territorial, and highly reliant on olfaction, as in most rodents) suggest that solitary species, but not gregarious species, show positive associations of population densities and home range sizes with sizes of both the hippocampus and OB, implicating their functions in social-territorial systems mediated by olfactory cues. Integrated analyses of the adaptive significance of adult neurogenesis will benefit from experimental studies motivated and structured by ecologically and socially relevant selective contexts.
Collapse
Affiliation(s)
- Sarah Konefal
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, The Research Institute of the McGill University Health Centre, Montreal General HospitalMontreal, QC, Canada
| | - Mick Elliot
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| | - Bernard Crespi
- Department of Biological Sciences, Simon Fraser UniversityBurnaby, BC, Canada
| |
Collapse
|
12
|
Walton JC, Chen Z, Travers JB, Nelson RJ. Exogenous melatonin reproduces the effects of short day lengths on hippocampal function in male white-footed mice, Peromyscus leucopus. Neuroscience 2013; 248:403-13. [PMID: 23806713 DOI: 10.1016/j.neuroscience.2013.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/23/2013] [Accepted: 06/13/2013] [Indexed: 12/26/2022]
Abstract
Photoperiodism is a biological phenomenon, common among organisms living outside of the tropics, by which environmental day length is used to ascertain the time of year to engage in seasonally-appropriate adaptations. White-footed mice (Peromyscus leucopus) are small photoperiodic rodents which display a suite of adaptive winter responses to short day lengths mediated by the extended duration of nightly melatonin secretion. Exposure to short days alters hippocampal dendritic morphology, impairs spatial learning and memory, and impairs hippocampal long-term potentiation (LTP). To determine the role of melatonin in these photoperiod-induced alterations of behavioral, neuroanatomical, and neurophysiological processes in this species, we implanted male mice subcutaneously with melatonin or empty Silastic capsules and exposed them to long or short day lengths. After 10 weeks, mice were assessed for hippocampal LTP, tested for spatial learning and memory in the Barnes maze, and morphometric analysis of neurons in the hippocampus using Golgi staining. Extending the duration of melatonin exposure, by short-day exposure or via melatonin implants, impaired both Schaffer collateral LTP in the CA1 region of the hippocampus and spatial learning and memory, and altered neuronal morphology in all hippocampal regions. The current results demonstrate that chronic melatonin implants reproduce the effects of short days on the hippocampus and implicate melatonin signaling as a critical factor in day-length-induced changes in the structure and function of the hippocampus in a photoperiodic rodent.
Collapse
Affiliation(s)
- J C Walton
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Z Chen
- Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, OH, 43210, USA
| | - J B Travers
- Department of Oral Biology, The Ohio State University College of Dentistry, Columbus, OH, 43210, USA
| | - R J Nelson
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| |
Collapse
|