1
|
Yang Y, Yang X, Wu L, Sun Z, Zhang Y, Shen Z, Zhou J, Guo M, Yan C. Phenotypic Analysis and Gene Cloning of Rice Floury Endosperm Mutant wcr (White-Core Rice). PLANTS (BASEL, SWITZERLAND) 2024; 13:2653. [PMID: 39339627 PMCID: PMC11434883 DOI: 10.3390/plants13182653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024]
Abstract
The composition and distribution of storage substances in rice endosperm directly affect grain quality. A floury endosperm mutant, wcr (white-core rice), was identified, exhibiting a loose arrangement of starch granules with a floury opaque appearance in the inner layer of mature grains, resulting in reduced grain weight. The total starch and amylose content remained unchanged, but the levels of the four component proteins in the mutant brown rice significantly decreased. Additionally, the milled rice (inner endosperm) showed a significant decrease in total starch and amylose content, accompanied by a nearly threefold increase in albumin content. The swelling capacity of mutant starch was reduced, and its chain length distribution was altered. The target gene was mapped on chromosome 5 within a 65 kb region. A frameshift mutation occurred due to an insertion of an extra C base in the second exon of the cyOsPPDKB gene, which encodes pyruvate phosphate dikinase. Expression analysis revealed that wcr not only affected genes involved in starch metabolism but also downregulated expression levels of genes associated with storage protein synthesis. Overall, wcr plays a crucial role as a regulator factor influencing protein synthesis and starch metabolism in rice grains.
Collapse
Affiliation(s)
- Yihao Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyi Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Lingjun Wu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Zixing Sun
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Ziyan Shen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
| | - Juan Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Min Guo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Changjie Yan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Li X, Yang X, Yang L, Muhu-Din Ahmed HG, Yao C, Yang J, Wang L, Yang T, Pu X, Zeng Y. Evolution and association analysis of SSIIIa in rice landraces of Yunnan Province. Biologia (Bratisl) 2024; 79:2203-2211. [DOI: 10.1007/s11756-024-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/03/2024] [Indexed: 11/07/2024]
|
3
|
Luo M, Gong W, Zhang S, Xie L, Shi Y, Wu D, Shu X. Discrepancies in resistant starch and starch physicochemical properties between rice mutants similar in high amylose content. FRONTIERS IN PLANT SCIENCE 2023; 14:1267281. [PMID: 38023836 PMCID: PMC10654750 DOI: 10.3389/fpls.2023.1267281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The content of resistant starch (RS) was considered positively correlated with the apparent amylose content (AAC). Here, we analyzed two Indica rice mutants, RS111 and Zhedagaozhi 1B, similar in high AAC and found that their RS content differed remarkably. RS111 had higher RS3 content but lower RS2 content than Zhedagaozhi 1B; correspondingly, cooked RS111 showed slower digestibility. RS111 had smaller irregular and oval starch granules when compared with Zhedagaozhi 1B and the wild type. Zhedagaozhi 1B showed a B-type starch pattern, different from RS111 and the wild type, which showed A-type starch. Meantime, RS111 had more fa and fb1 but less fb3 than Zhedagaozhi 1B. Both mutants showed decreased viscosity and swelling power when compared with the parents. RS111 had the lowest viscosity, and Zhedagaozhi 1B had the smallest swelling power. The different fine structures of amylopectin between RS111 and Zhedagaozhi 1B led to different starch types, gelatinization properties, paste viscosity, and digestibility. In addition to enhancing amylose content, modifications on amylopectin structure showed great potent in breeding rice with different RS2 and RS3 content, which could meet the increasing needs for various rice germplasms.
Collapse
Affiliation(s)
- Mingrui Luo
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan, China
| | - Wanxin Gong
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Siyan Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Lanyu Xie
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan, China
| | - Yitao Shi
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| | - Xiaoli Shu
- State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Sanya, China
| |
Collapse
|
4
|
Yang R, Tang J, Zhao Q, Piao Z, Lee G, Wan C, Bai J. Starch Properties of Roasting Rice from Naturally High-Resistant Starch Rice Varieties. Molecules 2023; 28:6408. [PMID: 37687237 PMCID: PMC10490166 DOI: 10.3390/molecules28176408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This study investigates the effects of moisture content control on the characteristics, properties, and in vitro starch digestion of roasted rice powder made from natural high-resistant starch (RS) rice varieties. The results demonstrate that adjusting the moisture content before roasting significantly affects the RS content of the roasted rice powder. Among various moisture levels tested, the addition of 15% water (rice-to-water ratio of 85:15) before roasting resulted in the highest RS content, reaching 22.61%. Several key parameters of the rice samples before and after optimal moisture control were analyzed, including thermal stability, chain length distribution, volatile flavor composition, and scanning electron microscopy. Additionally, in vitro digestion properties were measured. The findings revealed that the volatile flavor compounds in the high-RS roasted rice significantly increased compared to non-roasted rice. Moreover, the thermal stability of the rice samples improved, and the chain length distribution exhibited significant changes. The water absorption and expansion properties were significantly lower in the high-RS roasted rice. Furthermore, the in vitro starch digestion of the roasted flour made from high-RS rice showed a significantly lower digestion rate compared to common rice, indicating a lower starch hydrolysis index in high-RS rice with the sbe-rs genotype. Overall, the roasting process of natural high-RS rice modifies its characteristics, increases the RS content, enhances the flavor, and results in a lower starch digestion rate compared to common rice. This study provides valuable data for the food industry to promote the application of high-RS rice varieties with mutations in the SBEIIb gene, such as Youtangdao2 (YTD2).
Collapse
Affiliation(s)
- Ruifang Yang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Jianhao Tang
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Qi Zhao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Zhongze Piao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Gangseob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea;
| | - Changzhao Wan
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| | - Jianjiang Bai
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (R.Y.); (J.T.); (Q.Z.); (Z.P.)
| |
Collapse
|
5
|
Zhong Q, Jia Q, Yin W, Wang Y, Rao Y, Mao Y. Advances in cloning functional genes for rice yield traits and molecular design breeding in China. FRONTIERS IN PLANT SCIENCE 2023; 14:1206165. [PMID: 37404533 PMCID: PMC10317195 DOI: 10.3389/fpls.2023.1206165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/31/2023] [Indexed: 07/06/2023]
Abstract
Rice, a major food crop in China, contributes significantly to international food stability. Advances in rice genome sequencing, bioinformatics, and transgenic techniques have catalyzed Chinese researchers' discovery of novel genes that control rice yield. These breakthroughs in research also encompass the analysis of genetic regulatory networks and the establishment of a new framework for molecular design breeding, leading to numerous transformative findings in this field. In this review, some breakthroughs in rice yield traits and a series of achievements in molecular design breeding in China in recent years are presented; the identification and cloning of functional genes related to yield traits and the development of molecular markers of rice functional genes are summarized, with the intention of playing a reference role in the following molecular design breeding work and how to further improve rice yield.
Collapse
Affiliation(s)
- Qianqian Zhong
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Qiwei Jia
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Wenjing Yin
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yuchun Rao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Yijian Mao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
6
|
Li C. Starch fine molecular structures: The basis for designer rice with slower digestibility and desirable texture properties. Carbohydr Polym 2023; 299:120217. [PMID: 36876819 DOI: 10.1016/j.carbpol.2022.120217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
Development of whole rice with low glycaemic index has been achieved, however, these rices are frequently associated with a poor texture property. Recent advances in terms of understanding the importance of starch fine molecular structures on the starch digestibility/texture of cooked whole rice have shed new insights on mechanisms of starch digestibility and texture from molecular levels. With an extensive discussion on the correlative and causal relationships among starch molecular structure, texture and starch digestibility of cooked whole rice, this review identified desirable starch fine molecular structures contributing to both slow starch digestibility and preferable textures. For instance, the selection of rice variety having more amylopectin intermediate chains while less amylopectin long chains might help develop cooked whole rice with both slower starch digestibility and softer texture. The information could help rice industry transform cooked whole rice into a healthier food product with slow starch digestibility and desirable texture.
Collapse
Affiliation(s)
- Cheng Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
7
|
Sahoo B, Roy A. Structure–function relationship of resistant starch formation: Enhancement technologies and need for more viable alternatives for whole rice grains. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Bijendra Sahoo
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Department of Chemical Engineering Birla Institute of Technology Ranchi Jharkhand India
| | - Anupam Roy
- Laboratory of Applied Food Chemistry, Microbiology and Process Engineering, Department of Chemical Engineering Birla Institute of Technology Ranchi Jharkhand India
| |
Collapse
|
8
|
Shim KC, Adeva C, Kang JW, Luong NH, Lee HS, Cho JH, Kim H, Tai TH, Ahn SN. Interaction of starch branching enzyme 3 and granule-bound starch synthase 1 alleles increases amylose content and alters physico-chemical properties in japonica rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:968795. [PMID: 35991424 PMCID: PMC9389286 DOI: 10.3389/fpls.2022.968795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Four near-isogenic lines (NILs) with different allele combinations of the starch branching enzyme 3 (SBE3) and granule-bound starch synthase 1 (GBSS1) were developed by crossing the japonica rice cultivars "Dodamssal" and "Hwayeong." The associations between sequence variations in SBE3 and GBSS1, and starch-related traits were investigated. These sequence variations led to changes in seed morphology, starch structure, starch crystallinity, amylopectin chain length distribution, digestibility, apparent amylose content (AAC), and resistant starch content (RS). SBE3 and GBSS1 showed genetic interaction in regulating AAC and RS. Gene expression profiling of panicle tissues revealed significant differences in expression levels of GBSS1, SBE3, and other starch-related genes among the four NILs, indicating that variations in GBSS1 and SBE3 changed the expression level of starch-related genes. These variations contributed to the changes observed in AAC, RS, and physico-chemical characteristics of the rice starch from the NILs.
Collapse
Affiliation(s)
- Kyu-Chan Shim
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Cheryl Adeva
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Ju-Won Kang
- Department of Southern Area Crop Science, Rural Development Administration, Miryang, South Korea
| | - Ngoc Ha Luong
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| | - Hyun-Sook Lee
- Crop Breeding Division, National Institute of Crop Science, Wanju-Gun, South Korea
| | - Jun-Hyeon Cho
- Department of Southern Area Crop Science, Rural Development Administration, Miryang, South Korea
| | | | - Thomas H. Tai
- USDA-ARS Crops Pathology and Genetics Research Unit, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sang-Nag Ahn
- Department of Agronomy, College of Agriculture and Life Sciences, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
9
|
Ke F, Zhang K, Li Z, Wang J, Zhang F, Wu H, Zhang Z, Lu F, Wang Y, Duan Y, Liu Z, Zou J, Zhu K. Transcriptomic analysis of starch accumulation patterns in different glutinous sorghum seeds. Sci Rep 2022; 12:11133. [PMID: 35778525 PMCID: PMC9249802 DOI: 10.1038/s41598-022-15394-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Sorghum is a high-quality raw material for brewing white wine, and the starch content in seeds has a large impact on brewing quality. Transcriptomic data obtained from a glutinous variety (Liaonian3) and a non-glutinous variety (Liaoza10) at 3, 18, and 30 days after pollination were analyzed to identify genes associated with starch accumulation. The amylopectin content was significantly higher in Liaonian3 compared to Liaoza10, but the amylose content and total starch content were lower. There were 6634 differentially expressed genes found in Liaoza10 between 3 and 18 d after pollination, and 779 differentially expressed genes between 18 and 30 d after pollination. In Liaonian3, there were 6768 differentially expressed genes between 3 and 18 d after pollination, and 7630 differentially expressed genes between 18 and 30 d after pollination. Genes were grouped by expression profiles over the three time points and the profiles were analyzed for enrichment of gene ontology terms and biochemical pathways. Profile 1 (decreasing expression from 3 to 30 d) for Liaoza10 was enriched in ribosomes, metabolic pathways, and carbon metabolic pathways. Profile 0 (decreasing expression from 3 to 18 d and consistent expression from 18 to 30 d) was enriched in pathways related to sugar or starch metabolism. Although the starch accumulation rate in Liaonian3 and Liaoza10 showed a profile of increasing and then decreasing, the expression of genes related to starch synthesis gradually decreased with time since pollination, demonstrating the complexity of starch synthesis. According to orthologous gene alignment and expression analysis, 19 genes such as entrzID_8068390 and entrzID_8066807 were found to be the key genes for starch synthesis and glutinous and non-glutinous differentiation in sorghum grains.
Collapse
Affiliation(s)
- Fulai Ke
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Kuangye Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Zhihua Li
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Jiaxu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Fei Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Han Wu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Zhipeng Zhang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Feng Lu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Yanqiu Wang
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Youhou Duan
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Zhiqiang Liu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Jianqiu Zou
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China
| | - Kai Zhu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, Liaoning Province, People's Republic of China.
| |
Collapse
|
10
|
Badoni S, Parween S, Henry RJ, Sreenivasulu N. Systems seed biology to understand and manipulate rice grain quality and nutrition. Crit Rev Biotechnol 2022:1-18. [PMID: 35723584 DOI: 10.1080/07388551.2022.2058460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rice is one of the most essential crops since it meets the calorific needs of 3 billion people around the world. Rice seed development initiates upon fertilization, leading to the establishment of two distinct filial tissues, the endosperm and embryo, which accumulate distinct seed storage products, such as starch, storage proteins, and lipids. A range of systems biology tools deployed in dissecting the spatiotemporal dynamics of transcriptome data, methylation, and small RNA based regulation operative during seed development, influencing the accumulation of storage products was reviewed. Studies of other model systems are also considered due to the limited information on the rice transcriptome. This review highlights key genes identified through a holistic view of systems biology targeted to modify biochemical composition and influence rice grain quality and nutritional value with the target of improving rice as a functional food.
Collapse
Affiliation(s)
- Saurabh Badoni
- Consumer-Driven Grain Quality and Nutrition Unit, International Rice Research Institute (IRRI), Manila, Philippines
| | - Sabiha Parween
- Consumer-Driven Grain Quality and Nutrition Unit, International Rice Research Institute (IRRI), Manila, Philippines
| | - Robert J Henry
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Unit, International Rice Research Institute (IRRI), Manila, Philippines
| |
Collapse
|
11
|
Shen L, Li J, Li Y. Resistant starch formation in rice: Genetic regulation and beyond. PLANT COMMUNICATIONS 2022; 3:100329. [PMID: 35576157 PMCID: PMC9251435 DOI: 10.1016/j.xplc.2022.100329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 05/07/2023]
Abstract
Resistant starch (RS), a healthy dietary fiber, is a particular type of starch that has attracted much research attention in recent years. RS has important roles in reducing glycemic index, postprandial blood glucose levels, and serum cholesterol levels, thereby improving and preventing many diseases, such as diabetes, obesity, and cardiovascular disease. The formation of RS is influenced by intrinsic properties of starch (e.g., starch granule structure, starch crystal structure, and amylose-to-amylopectin ratio) and non-starch components (e.g., proteins, lipids, and sugars), as well as storage and processing conditions. Recent studies have revealed that several starch-synthesis-related genes (SSRGs) are crucial for the formation of RS during seed development. Several transcription factors and mRNA splicing factors have been shown to affect the expression or splicing of SSRGs that regulate RS content, suggesting their potential roles in RS formation. This review focuses mainly on recent research progress on the genetic regulation of RS content and discusses the emerging genetic and molecular mechanisms of RS formation in rice.
Collapse
Affiliation(s)
- Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| |
Collapse
|
12
|
Nagamatsu S, Wada T, Matsushima R, Fujita N, Miura S, Crofts N, Hosaka Y, Yamaguchi O, Kumamaru T. Mutation in BEIIb mitigates the negative effect of the mutation in ISA1 on grain filling and amyloplast formation in rice. PLANT MOLECULAR BIOLOGY 2022; 108:497-512. [PMID: 35083581 DOI: 10.1007/s11103-022-01242-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Mutation of the BEIIb gene in an isa1 mutant background mitigates the negative effect of the ISA1 mutation on grain filling, and facilitates recovery of amyloplast formation in rice endosperm. In this study, the effect of branching enzyme IIb and isoamylase 1 deficiency on starch properties was demonstrated using high resistant starch rice lines, Chikushi-kona 85 and EM129. Both lines harbored a mutation in the BEIIb and ISA1 genes and showed no BEIIb and ISA1 activity, implying that both lines are beIIb isa1 double mutants. The amylopectin long chain and apparent amylose content of both mutant lines were higher than those of the wild-type. While both mutants contained loosely packed, round starch grains, a trait specific to beIIb mutants, they also showed collapsed starch grains at the center of the endosperm, a property specific to isa1 mutants. Furthermore, beIIb isa1 double mutant F2 lines derived from a cross between Chikushi-kona 85 and Nishihomare (wild-type cultivar) showed significantly heavier seed weight than the beIIb and isa1 single mutant lines. These results suggest that co-occurrence of beIIb and isa1 mutant alleles in a single genetic background mitigates the negative effect of the isa1 allele on grain filling, and contributes to recovery of the amyloplast formation defect in the isa1 single mutant.
Collapse
Affiliation(s)
- Shiro Nagamatsu
- Fukuoka Agriculture and Forestry Research Center, 587 Yoshiki, Chikushino, Fukuoka, 818-8549, Japan.
| | - Takuya Wada
- Fukuoka Agriculture and Forestry Research Center, 587 Yoshiki, Chikushino, Fukuoka, 818-8549, Japan
| | - Ryo Matsushima
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo Kurashiki, Okayama, 710-0046, Japan
| | - Naoko Fujita
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita, 010-0195, Japan
| | - Satoko Miura
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita, 010-0195, Japan
| | - Naoko Crofts
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita, 010-0195, Japan
| | - Yuko Hosaka
- Department of Biological Production, Akita Prefectural University, 241-438 Kaidobata-Nishi Nakano Shimoshinjo, Akita, 010-0195, Japan
| | - Osamu Yamaguchi
- Fukuoka Agriculture and Forestry Research Center, 587 Yoshiki, Chikushino, Fukuoka, 818-8549, Japan
| | - Toshihiro Kumamaru
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
13
|
Zeng Y, Ali MK, Du J, Li X, Yang X, Yang J, Pu X, Yang L, Hong J, Mou B, Li L, Zhou Y. Resistant Starch in Rice: Its Biosynthesis and Mechanism of Action Against Diabetes-Related Diseases. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yawen Zeng
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Muhammad Kazim Ali
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Juan Du
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xia Li
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaomeng Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Jiazhen Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaoying Pu
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Li’E Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jingan Hong
- Clinical Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Bo Mou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Yan Zhou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
14
|
|
15
|
Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. PLANT COMMUNICATIONS 2021; 2:100237. [PMID: 34746765 PMCID: PMC8554040 DOI: 10.1016/j.xplc.2021.100237] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/13/2023]
Abstract
Starch is a vital energy source for living organisms and is a key raw material and additive in the food and non-food industries. Starch has received continuous attention in multiple research fields. The endosperm of cereals (e.g., rice, corn, wheat, and barley) is the most important site for the synthesis of storage starch. Around 2010, several excellent reviews summarized key progress in various fields of starch research, serving as important references for subsequent research. In the past 10 years, many achievements have been made in the study of starch synthesis and regulation in cereals. The present review provides an update on research progress in starch synthesis of cereal endosperms over the past decade, focusing on new enzymes and non-enzymatic proteins involved in starch synthesis, regulatory networks of starch synthesis, and the use of elite alleles of starch synthesis-related genes in cereal breeding programs. We also provide perspectives on future research directions that will further our understanding of cereal starch biosynthesis and regulation to support the rational design of ideal quality grain.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Chen K, Łyskowski A, Jaremko Ł, Jaremko M. Genetic and Molecular Factors Determining Grain Weight in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:605799. [PMID: 34322138 PMCID: PMC8313227 DOI: 10.3389/fpls.2021.605799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 06/22/2021] [Indexed: 05/06/2023]
Abstract
Grain weight is one of the major factors determining single plant yield production of rice and other cereal crops. Research has begun to reveal the regulatory mechanisms underlying grain weight as well as grain size, highlighting the importance of this research for plant molecular biology. The developmental trait of grain weight is affected by multiple molecular and genetic aspects that lead to dynamic changes in cell division, expansion and differentiation. Additionally, several important biological pathways contribute to grain weight, such as ubiquitination, phytohormones, G-proteins, photosynthesis, epigenetic modifications and microRNAs. Our review integrates early and more recent findings, and provides future perspectives for how a more complete understanding of grain weight can optimize strategies for improving yield production. It is surprising that the acquired wealth of knowledge has not revealed more insights into the underlying molecular mechanisms. To accelerating molecular breeding of rice and other cereals is becoming an emergent and critical task for agronomists. Lastly, we highlighted the importance of leveraging gene editing technologies as well as structural studies for future rice breeding applications.
Collapse
Affiliation(s)
- Ke Chen
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Andrzej Łyskowski
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Faculty of Chemistry, Rzeszow University of Technology, Rzeszow, Poland
| | - Łukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
17
|
Selvaraj R, Singh AK, Singh VK, Abbai R, Habde SV, Singh UM, Kumar A. Superior haplotypes towards development of low glycemic index rice with preferred grain and cooking quality. Sci Rep 2021; 11:10082. [PMID: 33980871 PMCID: PMC8115083 DOI: 10.1038/s41598-021-87964-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/19/2021] [Indexed: 02/03/2023] Open
Abstract
Increasing trends in the occurrence of diabetes underline the need to develop low glycemic index (GI) rice with preferred grain quality. In the current study, a diverse set of 3 K sub-panel of rice consisting of 150 accessions was evaluated for resistant starch and predicted glycemic index, including nine other quality traits under transplanted situation. Significant variations were noticed among the accessions for the traits evaluated. Trait associations had shown that amylose content possess significant positive and negative association with resistant starch and predicted glycemic index. Genome-wide association studies with 500 K SNPs based on MLM model resulted in a total of 41 marker-trait associations (MTAs), which were further confirmed and validated with mrMLM multi-locus model. We have also determined the allelic effect of identified MTAs for 11 targeted traits and found favorable SNPs for 8 traits. A total of 11 genes were selected for haplo-pheno analysis to identify the superior haplotypes for the target traits where haplotypes ranges from 2 (Os10g0469000-GC) to 15 (Os06g18720-AC). Superior haplotypes for RS and PGI, the candidate gene Os06g11100 (H4-3.28% for high RS) and Os08g12590 (H13-62.52 as intermediate PGI). The identified superior donors possessing superior haplotype combinations may be utilized in Haplotype-based breeding to developing next-generation tailor-made high quality healthier rice varieties suiting consumer preference and market demand.
Collapse
Affiliation(s)
- Ramchander Selvaraj
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India
| | - Arun Kumar Singh
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India
| | - Vikas Kumar Singh
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India
| | - Ragavendran Abbai
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Sonali Vijay Habde
- South-Asia Regional Centre (SARC), International Rice Research Institute (IRRI), Varanasi, India
| | - Uma Maheshwar Singh
- South-Asia Regional Centre (SARC), International Rice Research Institute (IRRI), Varanasi, India
| | - Arvind Kumar
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India.
- South-Asia Regional Centre (SARC), International Rice Research Institute (IRRI), Varanasi, India.
| |
Collapse
|
18
|
Baysal C, He W, Drapal M, Villorbina G, Medina V, Capell T, Khush GS, Zhu C, Fraser PD, Christou P. Inactivation of rice starch branching enzyme IIb triggers broad and unexpected changes in metabolism by transcriptional reprogramming. Proc Natl Acad Sci U S A 2020; 117:26503-26512. [PMID: 33020297 PMCID: PMC7584904 DOI: 10.1073/pnas.2014860117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Starch properties can be modified by mutating genes responsible for the synthesis of amylose and amylopectin in the endosperm. However, little is known about the effects of such targeted modifications on the overall starch biosynthesis pathway and broader metabolism. Here we investigated the effects of mutating the OsSBEIIb gene encoding starch branching enzyme IIb, which is required for amylopectin synthesis in the endosperm. As anticipated, homozygous mutant plants, in which OsSBEIIb was completely inactivated by abolishing the catalytic center and C-terminal regulatory domain, produced opaque seeds with depleted starch reserves. Amylose content in the mutant increased from 19.6 to 27.4% and resistant starch (RS) content increased from 0.2 to 17.2%. Many genes encoding isoforms of AGPase, soluble starch synthase, and other starch branching enzymes were up-regulated, either in their native tissues or in an ectopic manner, whereas genes encoding granule-bound starch synthase, debranching enzymes, pullulanase, and starch phosphorylases were largely down-regulated. There was a general increase in the accumulation of sugars, fatty acids, amino acids, and phytosterols in the mutant endosperm, suggesting that intermediates in the starch biosynthesis pathway increased flux through spillover pathways causing a profound impact on the accumulation of multiple primary and secondary metabolites. Our results provide insights into the broader implications of perturbing starch metabolism in rice endosperm and its impact on the whole plant, which will make it easier to predict the effect of metabolic engineering in cereals for nutritional improvement or the production of valuable metabolites.
Collapse
Affiliation(s)
- Can Baysal
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Wenshu He
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Margit Drapal
- Department of Biological Sciences, Royal Holloway University of London, TW20 0EX Egham, United Kingdom
| | - Gemma Villorbina
- Department of Chemistry, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Gurdev S Khush
- Department of Plant Sciences, University of California, Davis, CA 95616;
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain
| | - Paul D Fraser
- Department of Biological Sciences, Royal Holloway University of London, TW20 0EX Egham, United Kingdom
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, 25198 Lleida, Spain;
- Catalan Institute for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
19
|
Blennow A, Skryhan K, Tanackovic V, Krunic SL, Shaik SS, Andersen MS, Kirk H, Nielsen KL. Non-GMO potato lines, synthesizing increased amylose and resistant starch, are mainly deficient in isoamylase debranching enzyme. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2096-2108. [PMID: 32096588 PMCID: PMC7540516 DOI: 10.1111/pbi.13367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 05/04/2023]
Abstract
Solanum tuberosum potato lines with high amylose content were generated by crossing with the wild potato species Solanum sandemanii followed by repeated backcrossing to Solanum tuberosum lines. The trait, termed increased amylose (IAm), was recessive and present after three generations of backcrossing into S. tuberosum lines (6.25% S. sandemanii genes). The tubers of these lines were small, elongated and irregular with small and misshaped starch granules and high sugar content. Additional backcrossing resulted in less irregular tuber morphology, increased starch content (4.3%-9.5%) and increased amylose content (29%-37.9%) but indifferent sugar content. The amylose in the IAm starch granules was mainly located in peripheral spots, and large cavities were found in the granules. Starch pasting was suppressed, and the digestion-resistant starch (RS) content was increased. Comprehensive microarray polymer profiling (CoMPP) analysis revealed specific alterations of major pectic and glycoprotein cell wall components. This complex phenotype led us to search for candidate IAm genes exploiting its recessive trait. Hence, we sequenced genomic DNA of a pool of IAm lines, identified SNPs genome wide against the draft genome sequence of potato and searched for regions of decreased heterozygosity. Three regions, located on chromosomes 3, 7 and 10, respectively, displayed markedly less heterozygosity than average. The only credible starch metabolism-related gene found in these regions encoded the isoamylase-type debranching enzyme Stisa1. Decreased expression of mRNA (>500 fold) and reduced enzyme activity (virtually absent from IAm lines) supported Stisa1 as a candidate gene for IAm.
Collapse
Affiliation(s)
- Andreas Blennow
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Katsiaryna Skryhan
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Vanja Tanackovic
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Susanne L. Krunic
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Shahnoor S. Shaik
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | | | | | - Kåre L. Nielsen
- Department of Chemistry and BiologyAalborg UniversityAalborgDenmark
| |
Collapse
|
20
|
Parween S, Anonuevo JJ, Butardo VM, Misra G, Anacleto R, Llorente C, Kosik O, Romero MV, Bandonill EH, Mendioro MS, Lovegrove A, Fernie AR, Brotman Y, Sreenivasulu N. Balancing the double-edged sword effect of increased resistant starch content and its impact on rice texture: its genetics and molecular physiological mechanisms. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1763-1777. [PMID: 31945237 PMCID: PMC7336377 DOI: 10.1111/pbi.13339] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/15/2019] [Accepted: 01/05/2020] [Indexed: 05/07/2023]
Abstract
Resistant starch (RS) is the portion of starch that escapes gastrointestinal digestion and acts as a substrate for fermentation of probiotic bacteria in the gut. Aside from enhancing gut health, RS contributes to a lower glycemic index. A genome-wide association study coupled with targeted gene association studies was conducted utilizing a diverse panel of 281 resequenced Indica rice lines comprising of ~2.2 million single nucleotide polymorphisms. Low-to-intermediate RS phenotypic variations were identified in the rice diversity panel, resulting in novel associations of RS to several genes associated with amylopectin biosynthesis and degradation. Selected rice lines encoding superior alleles of SSIIa with medium RS and inferior alleles with low RS groups were subjected to detailed transcriptomic, metabolomic, non-starch dietary fibre (DF), starch structural and textural attributes. The gene regulatory networks highlighted the importance of a protein phosphatase alongside multiple genes of starch metabolism. Metabolomics analyses resulted in the identification of several metabolite hubs (carboxylic acid, sugars and polyamines) in the medium RS group. Among DF, mannose and galactose from the water-insoluble fraction were found to be highly associated with low and medium RS lines, respectively. Starch structural analyses revealed that a moderate increase in RS is also linked to an elevation of amylose 1 and amylose 2 fractions. Although rice lines with medium RS content negatively affected textural and viscosity properties in comparison to low RS, the textural property of medium RS lines was in the same acceptable range as IR64, a rice mega variety popular in Asia.
Collapse
Affiliation(s)
- Sabiha Parween
- International Rice Research InstituteMetro ManilaPhilippines
| | | | - Vito M. Butardo
- International Rice Research InstituteMetro ManilaPhilippines
- Present address:
Department of Chemistry and BiotechnologyFaculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornVictoriaAustralia
| | - Gopal Misra
- International Rice Research InstituteMetro ManilaPhilippines
| | - Roslen Anacleto
- International Rice Research InstituteMetro ManilaPhilippines
| | - Cindy Llorente
- International Rice Research InstituteMetro ManilaPhilippines
| | - Ondrej Kosik
- Department of Plant SciencesRothamsted ResearchHarpendenHertsUK
| | - Marissa V. Romero
- Philippine Rice Research InstituteMaligayaScience City of MuñozPhilippines
| | | | - Merlyn S. Mendioro
- Institute of Biological SciencesCollege of Arts and ScienceUniversity of PhilippinesLos BanosPhilippines
| | | | | | - Yariv Brotman
- Department of Life SciencesBen‐Gurion University of the NegevBeershebaIsrael
| | | |
Collapse
|
21
|
Yang R, Piao Z, Wan C, Lee G, Ruan X, Bai J. Breeding for three-line japonica hybrid rice combinations with high resistant starch content using molecular marker-assisted selection. BREEDING SCIENCE 2020; 70:409-414. [PMID: 32714065 PMCID: PMC7372024 DOI: 10.1270/jsbbs.20005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Resistant starch (RS) is beneficial for human health, and especially for diabetics. Considering the high cost and low productivity of the Jiangtangdao 1 rice variety with high RS content, breeding high RS rice varieties exhibiting high productivity is essential. A molecular marker-assisted selection strategy was applied to increase RS content in a three-line hybrid rice variety. The functional rice variety Jiangtangdao 1, which contains sbe3-rs (on chr2) that controls the RS content, was used as the high RS content donor parent. Subsequently, male sterile maintainer and restorer lines containing homozygous sbe3-rs were bred using molecular marker-assisted selection combined with traditional breeding methods. The male sterile line was crossed with the restorer lines to identify the optimal hybrid combination with a high RS content. We obtained four combinations for which the yields were >50% higher than those of the control Jiangtangdao 1. In addition, there was no significant difference in the RS content between the combinations and Jiangtangdao 1. The hybrid rice plants with high RS content exhibited favorable agronomic traits and therefore have broad prospects for commercial application.
Collapse
Affiliation(s)
- Ruifang Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China
| | - Zhongze Piao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China
| | - Changzhao Wan
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China
| | - Gangseob Lee
- National Academy of Agricultural Science (South Korea), Suwon City, Korea 441-857
| | - Xinmin Ruan
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Anhui, China
| | - Jianjiang Bai
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Fengxian District, Shanghai 201403, China
| |
Collapse
|
22
|
Zhao M, Lin Y, Chen H. Improving nutritional quality of rice for human health. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1397-1413. [PMID: 31915876 DOI: 10.1007/s00122-019-03530-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/30/2019] [Indexed: 05/27/2023]
Abstract
This review surveys rice nutritional value, mainly focusing on breeding achievements via adoption of both genetic engineering and non-transgenic strategies to improve key nutrients associated with human health. Rice (Oryza sativa) is an essential component of the diets and livelihoods of over 3.5 billion people. Polished rice is mostly consumed as staple food, fulfilling daily energy demands and part of the protein requirement. Brown rice is comparatively more nutritious, containing more lipids, minerals, vitamins, dietary fiber, micronutrients, and bioactive compounds. In this article, we review the nutritional facts about rice including the level of γ-aminobutyric acid, resistant starch, lysine, iron, zinc, β-carotene, folate, anthocyanin, various carotenoids, and flavonoids, focusing on their synthesis and metabolism and the advances in their biofortification via adoption of both conventional and genetic engineering strategies. We conclude that besides representing a staple food, rice has the potential to become a source of various essential nutrients or bioactive compounds through appropriate genetic improvements to benefit human health and prevent certain chronic diseases. Finally, we discuss the available, non-genetically engineering strategies for the nutritional improvement of rice, including their main strengths and constraints.
Collapse
Affiliation(s)
- Mingchao Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
23
|
Wang H, Ham TH, Im DE, Lar SM, Jang SG, Lee J, Mo Y, Jeung JU, Kim ST, Kwon SW. A New SNP in Rice Gene Encoding Pyruvate Phosphate Dikinase (PPDK) Associated with Floury Endosperm. Genes (Basel) 2020; 11:genes11040465. [PMID: 32344582 PMCID: PMC7230733 DOI: 10.3390/genes11040465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/26/2023] Open
Abstract
Rice varieties with suitable flour-making qualities are required to promote the rice processed-food industry and to boost rice consumption. A rice mutation, Namil(SA)-flo1, produces grains with floury endosperm. Overall, grains with low grain hardness, low starch damage, and fine particle size are more suitable for use in flour processing grains with waxy, dull endosperm with normal grain hardness and a high amylose content. In this study, fine mapping found a C to T single nucleotide polymorphism (SNP) in exon 2 of the gene encoding cytosolic pyruvate phosphate dikinase (cyOsPPDK). The SNP resulted in a change of serine to phenylalanine acid at amino acid position 101. The gene was named FLOURY ENDOSPERM 4-5 (FLO4-5). Co-segregation analysis with the developed cleaved amplified polymorphic sequence (CAPS) markers revealed co-segregation between the floury phenotype and the flo4-5. This CAPS marker could be applied directly for marker-assisted selection. Real-time RT-PCR experiments revealed that PPDK was expressed at considerably higher levels in the flo4-5 mutant than in the wild type during the grain filling stage. Plastid ADP-glucose pyrophosphorylase small subunit (AGPS2a and AGPS2b) and soluble starch synthase (SSIIb and SSIIc) also exhibited enhanced expression in the flo4-5 mutant.
Collapse
Affiliation(s)
- Heng Wang
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tae-Ho Ham
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Korea; (T.-H.H.); (J.L.)
| | - Da-Eun Im
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - San Mar Lar
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - Seong-Gyu Jang
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - Joohyun Lee
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Korea; (T.-H.H.); (J.L.)
| | - Youngjun Mo
- National Institute of Crop Science, Rural Development Administration, Jeonju 54874, Korea; (Y.M.); (J.-U.J.)
| | - Ji-Ung Jeung
- National Institute of Crop Science, Rural Development Administration, Jeonju 54874, Korea; (Y.M.); (J.-U.J.)
| | - Sun Tae Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
| | - Soon-Wook Kwon
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (H.W.); (D.-E.I.); (S.M.L.); (S.-G.J.); (S.T.K.)
- Correspondence: ; Tel.: +82-55-350-5506
| |
Collapse
|
24
|
Tang L, Zhang F, Liu A, Sun J, Mei S, Wang X, Liu Z, Liu W, Lu Q, Chen S. Genome-Wide Association Analysis Dissects the Genetic Basis of the Grain Carbon and Nitrogen Contents in Milled Rice. RICE (NEW YORK, N.Y.) 2019; 12:101. [PMID: 31889226 PMCID: PMC6937365 DOI: 10.1186/s12284-019-0362-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/20/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Carbon (C) and nitrogen (N) are two fundamental components of starch and protein, which are important determinants of grain yield and quality. The food preferences of consumers and the expected end-use of grains in different rice-growing regions require diverse varieties that differ in terms of the grain N content (GNC) and grain C content (GCC) of milled rice. Thus, it is important that quantitative trait loci (QTLs)/genes with large effects on the variation of GNC and GCC are identified in breeding programs. RESULTS To dissect the genetic basis of the variation of GNC and GCC in rice, the Dumas combustion method was used to analyze 751 diverse accessions regarding the GNC, GCC, and C/N ratio of the milled grains. The GCC and GNC differed significantly among the rice subgroups, especially between Xian/Indica (XI) and Geng/Japonica (GJ). Interestingly, in the GJ subgroup, the GNC was significantly lower in modern varieties (MV) than in landraces (LAN). In the XI subgroup, the GCC was significantly higher in MV than in LAN. One, six, and nine QTLs, with 55 suggestively associated single nucleotide polymorphisms, were detected for the GNC, GCC, and C/N ratio in three panels during a single-locus genome-wide association study (GWAS). Three of these QTLs were also identified in a multi-locus GWAS. We screened 113 candidate genes in the 16 QTLs in gene-based haplotype analyses. Among these candidate genes, LOC_Os01g06240 at qNC-1.1, LOC_Os05g33300 at qCC-5.1, LOC_Os01g04360 at qCN-1.1, and LOC_Os05g43880 at qCN-5.2 may partially explain the significant differences between the LAN and MV. These candidate genes should be cloned and may be useful for molecular breeding to rapidly improve the GNC, GCC, and C/N ratio of rice. CONCLUSIONS Our findings represent valuable information regarding the genetic basis of the GNC and GCC and may be relevant for enhancing the application of favorable haplotypes of candidate genes for the molecular breeding of new rice varieties with specific grain N and C contents.
Collapse
Affiliation(s)
- Liang Tang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing, 100081, China.
| | - Anjin Liu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Song Mei
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun Street, Haidian District, Beijing, 100081, China
| | - Xin Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhongyuan Liu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wanying Liu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qing Lu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuangjie Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
25
|
Tian QQ, Li X, Lu CM, Fang XW. Breeding Rice lines for physio-functional food through indica ‘Zhaxima’ × japonica ‘Nanjing 46’ haploid technique. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractResistant starch (RS) encompasses those forms of starch which are not accessible to human digestive enzymes and are fermented in the colons producing short chain fatty acids. The plant materials containing RS are few in the world. In this contribution, the culture ability of callus from anthers of F1 plants from, landraces, ‘Zhaxima’(Oryza sativa var. indica, high-RS rice line with 7.705 ± 0.142, g/100 g) × ‘Nanjing 46’ (Oryza sativa var. japonica, rice variety with RS content (g/100 g) of 0.200 ± 0.001 crosses were studied for obtaining high RS rice plants. The results showed that when M8 basic induction medium was added with 1.5 mg /L 2,4-D、2 mg /LNAA and 0.3 mg /L KT, the inductivity of callus was high as 32.14% for 21 d after pretreatment at 4 °C for 3 d; When MS differentiation basic medium was added with 2 mg /LKT and 3 mg /L ABA, the frequency of regeneration for callus was 50.3% with only a regeneration frequency of 4.55% grown into green seedlings. The RS content in the seeds was between those of the two parents and was partially normally distributed, the highest RS contents of the regenerated plants was as high as 7.66 ± 1.197%. This produced an efficient technology for regenerating stable rice lines with high RS and good eating quality using anthers culture.
Collapse
|
26
|
GWAS for Starch-Related Parameters in Japonica Rice ( Oryza sativa L.). PLANTS 2019; 8:plants8080292. [PMID: 31430915 PMCID: PMC6724095 DOI: 10.3390/plants8080292] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 08/13/2019] [Indexed: 11/28/2022]
Abstract
Rice quality is mainly related to the following two starch components, apparent amylose content (AAC) and resistant starch (RS). The former affects grain cooking properties, while RS acts as a prebiotic. In the present study, a Genome Wide Association Scan (GWAS) was performed using 115 rice japonica accessions, including tropical and temperate genotypes, with the purpose of expanding the knowledge of the genetic bases affecting RS and AAC. High phenotypic variation was recorded for the two traits, which positively correlated. Moreover, both the parameters correlated with seed length (positive correlation) and seed width (negative correlation). A correlational selection according to human preferences has been hypothesized for the two starch traits and grain size. In addition, human selection has been proposed as the causal agent even for the different phenotypes related to starch and grain size showed by the tropical and temperate japonica accessions utilized in this study. The present GWAS led to the identification of 11 associations for RS on seven chromosomes and five associations for AAC on chromosome 6. Candidate genes and co-positional relationships with quantitative trait loci (QTLs) previously identified as affecting RS and AAC were identified for 6 associations. The candidate genes and the new RS- and/or AAC-associated regions detected provide valuable sources for future functional characterizations and for breeding programs aimed at improving rice grain quality.
Collapse
|
27
|
Anacleto R, Badoni S, Parween S, Butardo VM, Misra G, Cuevas RP, Kuhlmann M, Trinidad TP, Mallillin AC, Acuin C, Bird AR, Morell MK, Sreenivasulu N. Integrating a genome-wide association study with a large-scale transcriptome analysis to predict genetic regions influencing the glycaemic index and texture in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1261-1275. [PMID: 30549178 PMCID: PMC6575982 DOI: 10.1111/pbi.13051] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 11/15/2018] [Accepted: 11/25/2018] [Indexed: 05/19/2023]
Abstract
Reliably generating rice varieties with low glycaemic index (GI) is an important nutritional intervention given the high rates of Type II diabetes incidences in Asia where rice is staple diet. We integrated a genome-wide association study (GWAS) with a transcriptome-wide association study (TWAS) to determine the genetic basis of the GI in rice. GWAS utilized 305 re-sequenced diverse indica panel comprising ~2.4 million single nucleotide polymorphisms (SNPs) enriched in genic regions. A novel association signal was detected at a synonymous SNP in exon 2 of LOC_Os05g03600 for intermediate-to-high GI phenotypic variation. Another major hotspot region was predicted for contributing intermediate-to-high GI variation, involves 26 genes on chromosome 6 (GI6.1). These set of genes included GBSSI, two hydrolase genes, genes involved in signalling and chromatin modification. The TWAS and methylome sequencing data revealed cis-acting functionally relevant genetic variants with differential methylation patterns in the hot spot GI6.1 region, narrowing the target to 13 genes. Conversely, the promoter region of GBSSI and its alternative splicing allele (G allele of Wxa ) explained the intermediate-to-high GI variation. A SNP (C˃T) at exon-10 was also highlighted in the preceding analyses to influence final viscosity (FV), which is independent of amylose content/GI. The low GI line with GC haplotype confirmed soft texture, while other two low GI lines with GT haplotype were characterized as hard and cohesive. The low GI lines were further confirmed through clinical in vivo studies. Gene regulatory network analysis highlighted the role of the non-starch polysaccharide pathway in lowering GI.
Collapse
Affiliation(s)
| | - Saurabh Badoni
- International Rice Research InstituteLos BañosPhilippines
| | - Sabiha Parween
- International Rice Research InstituteLos BañosPhilippines
| | - Vito M. Butardo
- International Rice Research InstituteLos BañosPhilippines
- Department of Chemistry and BiotechnologyFaculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornVic.Australia
| | - Gopal Misra
- International Rice Research InstituteLos BañosPhilippines
| | | | - Markus Kuhlmann
- The Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | | | | | - Cecilia Acuin
- International Rice Research InstituteLos BañosPhilippines
| | | | | | | |
Collapse
|
28
|
Pan T, Lin L, Zhang L, Zhang C, Liu Q, Wei C. Changes in kernel properties,
in situ
gelatinization, and physicochemical properties of waxy rice with inhibition of starch branching enzyme during cooking. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ting Pan
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| | - Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| | - Changquan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education Yangzhou University Yangzhou 225009 China
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri‐Product Safety of the Ministry of Education Yangzhou University Yangzhou 225009 China
| |
Collapse
|
29
|
Xia J, Zhu D, Wang R, Cui Y, Yan Y. Crop resistant starch and genetic improvement: a review of recent advances. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2495-2511. [PMID: 30374526 DOI: 10.1007/s00122-018-3221-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/24/2018] [Indexed: 05/12/2023]
Abstract
Resistant starch (RS), as a healthy dietary fiber, meets with great human favor along with the rapid development and improvement of global living standards. RS shows direct effects in reducing postprandial blood glucose levels, serum cholesterol levels and glycemic index. Therefore, RS plays an important role in preventing and improving non-communicable diseases, such as obesity, diabetes, colon cancer, cardiovascular diseases and chronic kidney disease. In addition, RS leads to its potential applied value in the development of high-quality foodstuffs, such as bread, noodles and dumplings. This paper reviews the recent advances in RS research, focusing mainly on RS classification and measurement, formation, quantitative trait locus mapping, genome-wide association studies, molecular marker development and genetic improvement through induced mutations, plant breeding combined with marker-assisted selection and genetic transformation. Challenges and perspectives on further RS research are also discussed.
Collapse
Affiliation(s)
- Jian Xia
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Dong Zhu
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Ruomei Wang
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yue Cui
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China
| | - Yueming Yan
- Laboratory of Molecular Genetics and Proteomics, College of Life Science, Capital Normal University, 100048, Beijing, China.
| |
Collapse
|
30
|
Kumar A, Sahoo U, Baisakha B, Okpani OA, Ngangkham U, Parameswaran C, Basak N, Kumar G, Sharma S. Resistant starch could be decisive in determining the glycemic index of rice cultivars. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2017.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Bao J, Zhou X, Xu F, He Q, Park YJ. Genome-wide association study of the resistant starch content in rice grains. STARCH-STARKE 2017. [DOI: 10.1002/star.201600343] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinsong Bao
- Department of Plant Resources; College of Industrial Science; Kongju National University; Yesan Republic of Korea
- Institute of Nuclear Agricultural Science; College of Agriculture and Biotechnology; Zhejiang University, Huajiachi Campus; Hangzhou P.R. China
| | - Xin Zhou
- Institute of Nuclear Agricultural Science; College of Agriculture and Biotechnology; Zhejiang University, Huajiachi Campus; Hangzhou P.R. China
| | - Feifei Xu
- Department of Plant Resources; College of Industrial Science; Kongju National University; Yesan Republic of Korea
- Institute of Nuclear Agricultural Science; College of Agriculture and Biotechnology; Zhejiang University, Huajiachi Campus; Hangzhou P.R. China
- Food Science Institute; Zhejiang Academy of Agricultural Sciences; Hangzhou Zhejiang P.R. China
| | - Qiang He
- Department of Plant Resources; College of Industrial Science; Kongju National University; Yesan Republic of Korea
| | - Yong-Jin Park
- Department of Plant Resources; College of Industrial Science; Kongju National University; Yesan Republic of Korea
- Center for Crop Genetic Resource and Breeding (CCGRB); Kongju National University; Cheonan Republic of Korea
| |
Collapse
|
32
|
Krunic SL, Skryhan K, Mikkelsen L, Ruzanski C, Shaik SS, Kirk HG, Palcic M, Blennow A. Non-GMO potato lines with an altered starch biosynthesis pathway confer increased-amylose and resistant starch properties. STARCH-STARKE 2017. [DOI: 10.1002/star.201600310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Susanne L. Krunic
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Katsiaryna Skryhan
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Lisbeth Mikkelsen
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Christian Ruzanski
- CMC Biologics, Søborg; Copenhagen Denmark
- Carlsberg Laboratory, Valby; Copenhagen Denmark
| | - Shahnoor S. Shaik
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | | | - Monica Palcic
- Carlsberg Laboratory, Valby; Copenhagen Denmark
- Department of Biochemistry and Microbiology; University of Victoria; British Columbia Canada
| | - Andreas Blennow
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
33
|
Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proc Natl Acad Sci U S A 2016; 113:12844-12849. [PMID: 27791174 DOI: 10.1073/pnas.1615104113] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Changes in human lifestyle and food consumption have resulted in a large increase in the incidence of type-2 diabetes, obesity, and colon disease, especially in Asia. These conditions are a growing threat to human health, but consumption of foods high in resistant starch (RS) can potentially reduce their incidence. Strategies to increase RS in rice are limited by a lack of knowledge of its molecular basis. Through map-based cloning of a RS locus in indica rice, we have identified a defective soluble starch synthase gene (SSIIIa) responsible for RS production and further showed that RS production is dependent on the high expression of the Waxya (Wxa ) allele, which is prevalent in indica varieties. The resulting RS has modified granule structure; high amylose, lipid, and amylose-lipid complex; and altered physicochemical properties. This discovery provides an opportunity to increase RS content of cooked rice, especially in the indica varieties, which predominates in southern Asia.
Collapse
|
34
|
Yang R, Bai J, Fang J, Wang Y, Lee G, Piao Z. A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice. BREEDING SCIENCE 2016; 66:481-489. [PMID: 27795673 PMCID: PMC5010312 DOI: 10.1270/jsbbs.16037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/18/2016] [Indexed: 05/07/2023]
Abstract
Foods rich in resistant starch can help prevent various diseases, including diabetes, colon cancers, diarrhea, and chronic renal and hepatic diseases. Variations in starch biosynthesis enzymes could contribute to the high content of resistant starch in some cultivars of rice (Oryza sativa L.). Our previously published work indicated that the sbe3-rs gene in the rice mutant line, 'Jiangtangdao1' was a putative allele of the rice starch branching enzyme gene SBEIIb (previously known as SBE3); sbe3-rs might control the biosynthesis of the high resistant starch content in the rice line. Biomolecular analysis showed that the activity of SBEs was significantly lower in soluble extracts of immature seeds harvested from 'Jiangtangdao1' 15 days after flowering than in the extracts of the wild-type rice line 'Huaqingdao'. We performed gene complementation assays by introducing the wild-type OsSBEIIb into the sbe3-rs mutant 'Jiangtangdao1'. The genetically complemented lines demonstrated restored seed-related traits. The structures of endosperm amylopectin and the morphological and physicochemical properties of the starch granules in the transformants recovered to wild-type levels. This study provides evidence that sbe3-rs is a novel allele of OsSBEIIb, responsible for biosynthesis of high resistant starch in 'Jiangtangdao1'.
Collapse
Affiliation(s)
- Ruifang Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Jianjiang Bai
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Jun Fang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Ying Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Gangseob Lee
- National Academy of Agricultural Science (South Korea),
Suwon City,
Korea 441-857
| | - Zhongze Piao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| |
Collapse
|
35
|
Butardo VM, Sreenivasulu N. Tailoring Grain Storage Reserves for a Healthier Rice Diet and its Comparative Status with Other Cereals. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:31-70. [DOI: 10.1016/bs.ircmb.2015.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Kong X, Chen Y, Zhu P, Sui Z, Corke H, Bao J. Relationships among Genetic, Structural, and Functional Properties of Rice Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:6241-8. [PMID: 26083191 DOI: 10.1021/acs.jafc.5b02143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We determined the relationships among the structural properties, in vitro digestibility, and genetic factors in starches of 14 rice cultivars. Weight-based chain-length distributions in amylopectin ranged from 18.07% to 24.71% (fa, DP 6-12), 45.01% to 55.67% (fb1, DP 13-24), 12.72% to 14.05% (fb2, DP 25-36), and 10.80 to 20.72% (fb3, DP > 36), respectively. The contents of rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) ranged from 78.5% to 87.5%, 1.2% to 6.0%, and 10.1% to 18.0%, respectively. AAC was negatively correlated with RDS content but positively correlated with RS content in rice starch. The proportion of short chains in amylopectin, i.e. the amount of fraction IIa (FrIIa) fractionated by gel permeation chromatography (GPC), was positively correlated with RDS. Starch synthase IIa (SSIIa) gene controlled the degree of crystallinity, the amount of fa chains of amylopectin. SSIIIa gene controlled the amount of fb1 chains. Wx gene controlled the FrI, FrIIa, RDS, and RS. Starch debranching enzyme isoamylase II (ISA2) gene also controlled the RDS, which may suggest that RDS was also affected by amylopectin structure, although no correlation between them was found. This study indicated that genetics (i.e., starch biosynthesis related genes) controlled the structural properties of starch, and both amylose content and amylopectin fine structure determined functional properties of rice starch (i.e., the digestion), each in a different way. Understanding the "genetics-structure-function" relationships in rice starches will assist plant breeders and food processors in developing new rice varieties and functional foods.
Collapse
Affiliation(s)
- Xiangli Kong
- †Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Yaling Chen
- †Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Ping Zhu
- †Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| | - Zhongquan Sui
- ‡Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Harold Corke
- §School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
- ∥Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Jinsong Bao
- †Institute of Nuclear Agricultural Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China
| |
Collapse
|
37
|
Shu X, Sun J, Wu D. Effects of grain development on formation of resistant starch in rice. Food Chem 2014; 164:89-97. [PMID: 24996310 DOI: 10.1016/j.foodchem.2014.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
Three rice mutants with different contents of resistant starch (RS) were selected to investigate the effects of grain filling process on the formation of resistant starch. During grain development, the content of RS was increased with grain maturation and showed negative correlations with the grain weight and the starch molecular weight (Mn, Mw) and a positive correlation with the distribution of molecular mass (polydispersity, Pd). The morphologies of starch granules in high-RS rice were almost uniform in single starch granules and exhibited different proliferation modes from common rice. The lower activities of ADP-glucose pyrophosphorylase and starch branching enzyme and the higher activity of starch synthase and starch de-branching enzyme observed in high-RS rice might be responsible for the formation of small irregular starch granules with large spaces between them. In addition, the lower molecular weight and the broad distribution of molecular weights lead to differences in the physiochemical properties of starch.
Collapse
Affiliation(s)
- Xiaoli Shu
- State Key Lab of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Jian Sun
- State Key Lab of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, PR China
| | - Dianxing Wu
- State Key Lab of Rice Biology and Key Lab of the Ministry of Agriculture for Nuclear Agricultural Sciences, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, PR China.
| |
Collapse
|
38
|
Blennow A, Jensen SL, Shaik SS, Skryhan K, Carciofi M, Holm PB, Hebelstrup KH, Tanackovic V. Future Cereal Starch Bioengineering: Cereal Ancestors Encounter Gene Technology and Designer Enzymes. Cereal Chem 2013. [DOI: 10.1094/cchem-01-13-0010-fi] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Corresponding author. Phone: +45 35333304. Fax: +45 35333333. E-mail:
| | - Susanne L. Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Shahnoor S. Shaik
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Katsiaryna Skryhan
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| | - Massimiliano Carciofi
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Preben B. Holm
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Kim H. Hebelstrup
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Denmark
| | - Vanja Tanackovic
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
| |
Collapse
|