1
|
Sarott RC, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Relocalizing transcriptional kinases to activate apoptosis. Science 2024; 386:eadl5361. [PMID: 39361741 DOI: 10.1126/science.adl5361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/15/2024] [Indexed: 10/05/2024]
Abstract
Kinases are critical regulators of cellular function that are commonly implicated in the mechanisms underlying disease. Most drugs that target kinases are molecules that inhibit their catalytic activity, but here we used chemically induced proximity to convert kinase inhibitors into activators of therapeutic genes. We synthesized bivalent molecules that link ligands of the transcription factor B cell lymphoma 6 (BCL6) to inhibitors of cyclin-dependent kinases (CDKs). These molecules relocalized CDK9 to BCL6-bound DNA and directed phosphorylation of RNA polymerase II. The resulting expression of pro-apoptotic, BCL6-target genes caused killing of diffuse large B cell lymphoma cells and specific ablation of the BCL6-regulated germinal center response. Genomics and proteomics corroborated a gain-of-function mechanism in which global kinase activity was not inhibited but rather redirected. Thus, kinase inhibitors can be used to context-specifically activate transcription.
Collapse
Affiliation(s)
- Roman C Sarott
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Sai Gourisankar
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Basel Karim
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Sabin Nettles
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Haopeng Yang
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brendan G Dwyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Jason Tse
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Hind Abuzaid
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Li J, Chen Q, Ni S, Dong X, Mi T, Xie Y, Yuan X, Luo X, Wang H. CENPF May Act as a Novel Marker and Highlight the Influence of Pericyte in Infantile Hemangioma. Angiology 2024:33197241262373. [PMID: 38898633 DOI: 10.1177/00033197241262373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Infantile hemangioma (IH), a benign microvascular tumor, is marked by early and extensive proliferation of immature hemangioma endothelial cells (Hem-ECs) that naturally regress through differentiation into fibroblasts or adipocytes. However, a challenge persists, as the unique biological behavior of IH remains elusive, despite its general sensitivity to propranolol treatment. Recent evidence suggests that abnormal volume proliferation in IH is primarily attributed to the accumulation of hemangioma pericytes (Hem-Pericytes), in addition to Hem-ECs. Centromere protein F (CENPF) is involved in regulating mitotic processes and has been associated with malignant tumor cell proliferation. It is a key player in maintaining genomic stability during cell division. Our findings revealed specific expression of CENPF in Hem-Pericytes, with a proliferation index (PI) approximately half that of Ki67 (3.28 vs 6.97%) during the proliferative phase of IH. This index decreased rapidly in the involuting phase (P < .05), suggesting that the contribution of pericytes to IH development was comparable to that of Hem-ECs. Tumor expansion and shrinkage may be due to the proliferation, reduction, and differentiation of Hem-Pericytes. In conclusion, we speculate CENPF as a novel marker for clinical pathological diagnosis and a potential therapeutic target, fostering advancements in drug development.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, Kunming Children's Hospital, Kunming, China
| | - Qiang Chen
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Sili Ni
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Dong
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Mi
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yimin Xie
- Department of Pediatric Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xingang Yuan
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Luo
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Wang
- Department of Dermatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Li P, Ma G, Cui Z, Zhang S, Su Q, Cai Z. FOXM1 and CENPF are associated with a poor prognosis through promoting proliferation and migration in lung adenocarcinoma. Oncol Lett 2023; 26:518. [PMID: 37920441 PMCID: PMC10618931 DOI: 10.3892/ol.2023.14105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is a clinically challenging disease due to its poor prognosis and limited therapeutic methods. The aim of the present study was to identify prognosis-related genes and therapeutic targets for LUAD. Raw data from the GSE32863, GSE41271 and GSE42127 datasets were downloaded from the Gene Expression Omnibus database. Following normalization, the data were merged into a matrix, which was first used to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) and survival analysis were performed to screen potential prognosis-related genes. Gene overlaps among DEGs, survival-related genes and WGCNA genes were finally constructed to obtain candidate genes. An analysis with the STRING database was performed to construct a protein-protein interaction network and hub genes were selected using Cytoscape. The candidate genes were finally identified by univariate and multivariate Cox regression analysis. Furthermore, in vivo and in vitro experiments, including immunohistochemistry, immunofluorescence, Cell Counting Kit-8, colony-formation and migration assays, were performed to validate the potential mechanism of these genes in LUAD. Two genes, namely forkhead box M1 (FOXM1) and centromere protein F (CENPF), were identified as unfavorable indicators of prognosis in patients with LUAD. High expression of FOXM1 and CENPF were associated with poor survival. Furthermore, LUAD cells with FOXM1 and CENPF knockdown showed a significant reduction in proliferation and migration (P<0.05). FOXM1 and CENPF may have an essential role in the prognosis of patients with LUAD by influencing cell proliferation and migration, and they provide potential molecular targets for LUAD therapy.
Collapse
Affiliation(s)
- Peipei Li
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Department of Pulmonary and Critical Care Medicine, Hengshui People's Hospital, Hengshui, Hebei 053000, P.R. China
| | - Geng Ma
- Department of Gastroenterology, Hengshui People's Hospital, Hengshui, Hebei 053000, P.R. China
| | - Zhaobo Cui
- Department of Pulmonary and Critical Care Medicine, Hengshui People's Hospital, Hengshui, Hebei 053000, P.R. China
| | - Shusen Zhang
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Department of Pulmonary and Critical Care Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei 054001, P.R. China
| | - Qiao Su
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhigang Cai
- The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
- Hebei Key Laboratory of Respiratory Critical Care Medicine, The First Department of Pulmonary and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
4
|
Sarott R, Gourisankar S, Karim B, Nettles S, Yang H, Dwyer BG, Simanauskaite JM, Tse J, Abuzaid H, Krokhotin A, Zhang T, Hinshaw SM, Green MR, Crabtree GR, Gray NS. Borrowing Transcriptional Kinases to Activate Apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563687. [PMID: 37961702 PMCID: PMC10634765 DOI: 10.1101/2023.10.23.563687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Protein kinases are disease drivers whose therapeutic targeting traditionally centers on inhibition of enzymatic activity. Here chemically induced proximity is leveraged to convert kinase inhibitors into context-specific activators of therapeutic genes. Bivalent molecules that link ligands of the transcription factor B-cell lymphoma 6 (BCL6) to ATP-competitive inhibitors of cyclin-dependent kinases (CDKs) were developed to re-localize CDK to BCL6-bound loci on chromatin and direct phosphorylation of RNA Pol II. The resulting BCL6-target proapoptotic gene expression translated into killing of diffuse large B-cell lymphoma (DLBCL) cells at 72 h with EC50s of 0.9 - 10 nM and highly specific ablation of the BCL6-regulated germinal center response in mice. The molecules exhibited 10,000-fold lower cytotoxicity in normal lymphocytes and are well tolerated in mice. Genomic and proteomic evidence corroborated a gain-of-function mechanism where, instead of global enzyme inhibition, a fraction of total kinase activity is borrowed and re-localized to BCL6-bound loci. The strategy demonstrates how kinase inhibitors can be used to context-specifically activate transcription, accessing new therapeutic space.
Collapse
|
5
|
Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer 2023; 22:172. [PMID: 37853437 PMCID: PMC10583419 DOI: 10.1186/s12943-023-01877-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Luo
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
6
|
Bukowski K, Marciniak B, Kciuk M, Mujwar S, Mojzych M, Kontek R. Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides as Novel Potential Anticancer Agents: Apoptosis, Oxidative Stress, and Cell Cycle Analysis. Int J Mol Sci 2023; 24:ijms24108504. [PMID: 37239848 DOI: 10.3390/ijms24108504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The current study continues the evaluation of the anticancer potential of three de novo synthesized pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides-MM129, MM130, and MM131-against human cancer cells of HeLa, HCT 116, PC-3, and BxPC-3 lines. The pro-apoptotic activity of the investigated sulfonamides was shown by observations of changes in the mitochondrial transmembrane potential of the tested cells, externalization of phosphatidylserine on the cellular membrane surface, and cell morphology in microscopic imaging. The computational studies have shown that MM129 exhibited the lowest binding energy values when docked against CDK enzymes. In addition, the highest stability was shown for complexes formed between MM129 and CDK5/8 enzymes. All examined compounds induced cell cycle arrest in the G0/G1 phase in the BxPC-3 and PC-3 cells and simultaneously caused the accumulation of cells in the S phase in the HCT 116 cells. In addition, the increase in the subG1 fraction was observed in PC-3 and HeLa cells. The application of a fluorescent H2DCFDA probe revealed the high pro-oxidative properties of the tested triazine derivatives, especially MM131. In conclusion, the obtained results suggest that MM129, MM130, and MM131 exhibited strong pro-apoptotic properties towards investigated cells, mainly against the HeLa and HCT 116 cell lines, and high pro-oxidative potential as well. Moreover, it is suggested that the anticancer activity of the tested compounds may be associated with their ability to inhibit CDK enzymes activities.
Collapse
Affiliation(s)
- Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
7
|
Wu C, Xie T, Guo Y, Wang D, Qiu M, Han R, Qing G, Liang K, Liu H. CDK13 phosphorylates the translation machinery and promotes tumorigenic protein synthesis. Oncogene 2023; 42:1321-1330. [PMID: 36882522 DOI: 10.1038/s41388-023-02653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023]
Abstract
Cyclin-dependent kinase 13 (CDK13) has been suggested to phosphorylate RNA polymerase II and is involved in transcriptional activation. However, whether CDK13 catalyzes other protein substrates and how CDK13 contributes to tumorigenesis remain largely unclear. We here identify key translation machinery components, 4E-BP1 and eIF4B, as novel CDK13 substrates. CDK13 directly phosphorylates 4E-BP1 at Thr46 and eIF4B at Ser422; genetically or pharmacologically inhibiting CDK13 disrupts mRNA translation. Polysome profiling analysis shows that MYC oncoprotein synthesis strictly depends on CDK13-regulated translation in colorectal cancer (CRC), and CDK13 is required for CRC cell proliferation. As mTORC1 is implicated in 4E-BP1 and eIF4B phosphorylation, inactivation of CDK13 in combination with the mTORC1 inhibitor rapamycin further dephosphorylates 4E-BP1 and eIF4B and blocks protein synthesis. As a result, dual inhibition of CDK13 and mTORC1 induces more profound tumor cell death. These findings clarify the pro-tumorigenic role of CDK13 by direct phosphorylation of translation initiation factors and enhancing protein synthesis. Therefore, therapeutic targeting of CDK13 alone or in combination with rapamycin may pave a new way for cancer treatment.
Collapse
Affiliation(s)
- Chao Wu
- Department of Hematology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China.,Frontier Science Center of Immunology and Metabolism, Wuhan University, 430071, Wuhan, China
| | - Ting Xie
- Department of Hematology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China.,Frontier Science Center of Immunology and Metabolism, Wuhan University, 430071, Wuhan, China
| | - Ying Guo
- Frontier Science Center of Immunology and Metabolism, Wuhan University, 430071, Wuhan, China
| | - Donghai Wang
- Frontier Science Center of Immunology and Metabolism, Wuhan University, 430071, Wuhan, China
| | - Min Qiu
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Ruyi Han
- Frontier Science Center of Immunology and Metabolism, Wuhan University, 430071, Wuhan, China
| | - Guoliang Qing
- Frontier Science Center of Immunology and Metabolism, Wuhan University, 430071, Wuhan, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, China
| | - Hudan Liu
- Department of Hematology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430071, Wuhan, China. .,Frontier Science Center of Immunology and Metabolism, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
8
|
Zhang K, Xu J, Chen R. Silencing proline-rich coiled-coil 2C inhibit the proliferation and metastasis of liver cancer cells. J Gastrointest Oncol 2023; 14:287-301. [PMID: 36915448 PMCID: PMC10007939 DOI: 10.21037/jgo-23-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Proline-rich coiled-coil 2C (PRRC2C) is located in the chromosome region lq where hepatocellular carcinoma (HCC) frequently undergoes genomic fragment amplification, but its role in HCC is unknown. In this study, we aimed to explore the correlation of PRRC2C with HCC diagnosis and progression, as well as its influence on the biological behavior of HCC cells. METHODS The Cancer Genome Atlas (TCGA) RNA-sequencing datasets of 371 cases of primary liver cancer and 50 normal liver tissue specimens were obtained to analyze correlation between PRRC2C expression and HCC staging, grades, and overall survival. After confirming expression of PRRC2C in HCC cells, PRRC2C silencing was performed. Celigo cell counting, cell clone formation, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and Flow cytometry were used to detect the cell proliferation and apoptosis; wound healing and Transwell assays were used to detect the invasion abilities of cells. Xenograft transplantation in nude mice was performed to investigate the impact of PRRC2C knockdown on tumorigenic capabilities. In addition, the expression levels of EMT (epithelial-mesenchymal transition)-related genes, including E-cadherin, N-cadherin, Twistl, Snail, Slug, and Smad2/3/4, were detected. RESULTS Analysis of TCGA data sets revealed that patients with high PRRC2C expression had significantly shorter overall survival. PRRC2C was abundantly expressed in four human hepatocarcinoma cell lines. After knockdown PRRC2C, the proliferation of HCC cells were suppressed and the numbers of apoptotic cells increased. Migration and invasion ability of HCC cells were inhibited by PRRC2C knockdown. Meanwhile, PRRC2C silencing inhibited the tumor formation (indicated by reduced tumor volume and weight compared to the control group) in BALB/c (Bagg Albino Laboratory-bred strain) nude mice. The expressions of EMT-related genes N-cadherin and Vimentin were significantly lower in the PRRC2C knockdown group than in the control group. CONCLUSIONS PRRC2C promotes the proliferation and metastasis of liver cancer cells and inhibited apoptosis, potentially through upregulation of EMT related N-cadherin and Vimentin.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oncology Surgery, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| | - Jiaming Xu
- Department of Oncology Surgery, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| | - Ran Chen
- Department of Gynaecology, Yuebei People’s Hospital Affiliated to Shantou University Medical College, Shaoguan, China
| |
Collapse
|
9
|
Zhang J, Wang Z, Liu Z, Chen Z, Jiang J, Ji Y, Zhang Y, Zhu H, Zheng B. CENPF promotes the proliferation of renal cell carcinoma in vitro. Transl Androl Urol 2023; 12:320-329. [PMID: 36915885 PMCID: PMC10006003 DOI: 10.21037/tau-22-797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023] Open
Abstract
Background Metastasis and drug resistance are the main causes of renal cell carcinoma (RCC) mortality. Currently, there are still a limited number of targeted therapies against advanced RCC. It is critical to develop new effective clinical biomarkers and drug targets in RCC. Several studies have shown that centromere protein F (CENPF), a microtubule binding protein, promotes cancer progression in various types of cancer. The purpose of this study was to explore the role of CENPF in RCC. Methods Peripheral blood and corresponding tissue samples of 23 RCC patients and 23 normal physical examination patients who were treated in our hospital from 2018 to 2020 were collected, and CENPF expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blot, and immunohistochemical (IHC) methods. The expression of CENPF was downregulated by small interfering RNA (siRNA) transfection, and the proliferation of the corresponding RCC cells and the corresponding cell cycle were detected. Results According to The Cancer Genome Atlas (TCGA) data analysis, CENPF is highly expressed in RCC, and its expression level is significantly related to the overall survival (OS) and recurrence-free survival (RFS) of RCC. In addition, high expression of CENPF was found in the tissues of RCC patients in our hospital. Knockdown of CENPF significantly reduced the proliferation of RCC cells in vitro, and knockdown of CENPF regulated the cell cycle by inhibiting the expression of cyclins such as CDK4, CDK6, and CyclinD1. Conclusions CENPF can be used as an independent prognostic factor of RCC and regulate the proliferation ability and cell cycle of RCC cells. CENPF is a potential oncogene and prognostic marker in RCC.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenyu Wang
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhenmin Liu
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Zhan Chen
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Jiang
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yuhang Ji
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yong Zhang
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Zhu
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Bing Zheng
- Department of Urology, Nantong First People's Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
10
|
Liu Y, Liu Y, Luo J, Zhao W, Hu C, Chen G. Hsa_circ_0002082 up-regulates Centromere Protein F via abolishing miR-508-3p to promote breast cancer progression. J Clin Lab Anal 2022; 36:e24697. [PMID: 36161346 DOI: 10.1002/jcla.24697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) dysregulation has been revealed to function in the pathological processes of cancers. Herein, the role and mechanisms of hsa_circ_0002082 in breast cancer (BC) progression were elucidated. METHODS In vivo and in vitro functional experiments were conducted, and the interaction between miR-508-3p and hsa_circ_0002082 or Centromere Protein F (CENPF) was elucidated. RESULTS Hsa_circ_0002082 expression was higher in BC tissues and cell lines. Functionally, knockdown of hsa_circ_0002082 induced apoptosis and suppressed proliferation and metastasis in BC cells in vitro. Mechanistically, hsa_circ_0002082 targeted miR-508-3p, which was confirmed to be decreased in BC. MiR-508-3p overexpression suppressed BC cell malignant phenotypes, moreover, inhibition of miR-508-3p attenuated the anticancer action of hsa_circ_0002082 silencing on BC cells. Besides that, miR-508-3p targeted CENPF, CENPF was highly expressed in BC, CENPF up-regulation reversed the suppressive impacts of miR-508-3p on BC cell growth and metastasis. Besides, hsa_circ_0002082 silencing impeded BC growth in nude mice. CONCLUSION Knockdown of hsa_circ_0002082 suppresses breast cancer growth and metastasis by miR-508-3p/CENPF axis, suggesting that hsa_circ_0002082 may be a promising target for breast cancer treatment.
Collapse
Affiliation(s)
- Yu Liu
- Ultrasound Imaging Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Yun Liu
- Radiology Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Jinyong Luo
- Ultrasound Imaging Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Wen Zhao
- Ultrasound Imaging Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Chunhui Hu
- Ultrasound Imaging Department, Minda Hospital of Hubei Minzu University, Enshi, China
| | - Gongquan Chen
- Ultrasound Imaging Department, Minda Hospital of Hubei Minzu University, Enshi, China
| |
Collapse
|
11
|
Neums L, Koestler DC, Xia Q, Hu J, Patel S, Bell-Glenn S, Pei D, Zhang B, Boyd S, Chalise P, Thompson JA. Assessing equivalent and inverse change in genes between diverse experiments. FRONTIERS IN BIOINFORMATICS 2022; 2:893032. [PMID: 36304274 PMCID: PMC9580844 DOI: 10.3389/fbinf.2022.893032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/22/2022] [Indexed: 05/26/2024] Open
Abstract
Background: It is important to identify when two exposures impact a molecular marker (e.g., a gene's expression) in similar ways, for example, to learn that a new drug has a similar effect to an existing drug. Currently, statistically robust approaches for making comparisons of equivalence of effect sizes obtained from two independently run treatment vs. control comparisons have not been developed. Results: Here, we propose two approaches for evaluating the question of equivalence between effect sizes of two independent studies: a bootstrap test of the Equivalent Change Index (ECI), which we previously developed, and performing Two One-Sided t-Tests (TOST) on the difference in log-fold changes directly. The ECI of a gene is computed by taking the ratio of the effect size estimates obtained from the two different studies, weighted by the maximum of the two p-values and giving it a sign indicating if the effects are in the same or opposite directions, whereas TOST is a test of whether the difference in log-fold changes lies outside a region of equivalence. We used a series of simulation studies to compare the two tests on the basis of sensitivity, specificity, balanced accuracy, and F1-score. We found that TOST is not efficient for identifying equivalently changed gene expression values (F1-score = 0) because it is too conservative, while the ECI bootstrap test shows good performance (F1-score = 0.95). Furthermore, applying the ECI bootstrap test and TOST to publicly available microarray expression data from pancreatic cancer showed that, while TOST was not able to identify any equivalently or inversely changed genes, the ECI bootstrap test identified genes associated with pancreatic cancer. Additionally, when investigating publicly available RNAseq data of smoking vs. vaping, no equivalently changed genes were identified by TOST, but ECI bootstrap test identified genes associated with smoking. Conclusion: A bootstrap test of the ECI is a promising new statistical approach for determining if two diverse studies show similarity in the differential expression of genes and can help to identify genes which are similarly influenced by a specific treatment or exposure. The R package for the ECI bootstrap test is available at https://github.com/Hecate08/ECIbootstrap.
Collapse
Affiliation(s)
- Lisa Neums
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Qing Xia
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Jinxiang Hu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Shachi Patel
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Shelby Bell-Glenn
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Dong Pei
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Bo Zhang
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Samuel Boyd
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| | - Jeffrey A. Thompson
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
- University of Kansas Cancer Center, Kansas City, KS, United States
| |
Collapse
|
12
|
Cyclin-dependent kinases as potential targets for colorectal cancer: past, present and future. Future Med Chem 2022; 14:1087-1105. [PMID: 35703127 DOI: 10.4155/fmc-2022-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer in the world and its prevalence is increasing in developing countries. Deregulated cell cycle traverse is a hallmark of malignant transformation and is often observed in CRC as a result of imprecise activity of cell cycle regulatory components, viz. cyclins and cyclin-dependent kinases (CDKs). Apart from cell cycle regulation, some CDKs also regulate processes such as transcription and have also been shown to be involved in colorectal carcinogenesis. This article aims to review cyclin-dependent kinases as potential targets for CRC. Furthermore, therapeutic candidates to target CDKs are also discussed.
Collapse
|
13
|
Mohammadi A, Alijani S, Rafat S, Abdollahi-Arpanahi R. Single-step genome-wide association study and candidate genes networks affecting reproductive traits in Iranian Holstein cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
hMSCs-derived exosome circCDK13 inhibits liver fibrosis by regulating the expression of MFGE8 through miR-17-5p/KAT2B. Cell Biol Toxicol 2022:10.1007/s10565-022-09714-4. [PMID: 35484432 DOI: 10.1007/s10565-022-09714-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/06/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To investigate the effects of human bone marrow mesenchymal stem cells (hMSCs)-derived exosome circCDK13 on liver fibrosis and its mechanism. METHODS Exosomes derived from hMSCs were extracted and identified by flow cytometry and osteogenic and adipogenic induction, and the expressions of marker proteins on the surface of exosomes were detected by western blot. Cell proliferation was measured by CCK8 assay, the expression of active markers of HSCs by immunofluorescence, and the expressions of fibrosis-related factors by western blot. A mouse model of liver fibrosis was established by intraperitoneal injection of thioacetamide (TAA). Fibrosis was detected by HE staining, Masson staining, and Sirius red staining. Western blot was utilized to test the expressions of PI3K/AKT and NF-κB pathway related proteins, dual-luciferase reporter assay and RIP assay to validate the binding between circCDK13 and miR-17-5p as well as between miR-17-5p and KAT2B, and ChIP to validate the effect of KAT2B on H3 acetylation and MFGE8 transcription. RESULTS hMSCs-derived exosomes inhibited liver fibrosis mainly through circCDK13. Dual-luciferase reporter assay and RIP assay demonstrated the binding between circCDK13 and miR-17-5p as well as between miR-17-5p and KAT2B. Further experimental results indicated that circCDK13 mediated liver fibrosis by regulating the miR-17-5p/KAT2B axis, and KAT2B promoted MFGE8 transcription by H3 acetylation. Exo-circCDK13 inhibited PI3K/AKT and NF-κB signaling pathways activation through regulating the miR-17-5p/KAT2B axis. CONCLUSION hMSCs-derived exosome circCDK13 inhibited liver fibrosis by regulating the expression of MFGE8 through miR-17-5p/KAT2B axis.
Collapse
|
15
|
Zhou S, Han H, Yang L, Lin H. MiR-1-3p targets CENPF to repress tumor-relevant functions of gastric cancer cells. BMC Gastroenterol 2022; 22:145. [PMID: 35346060 PMCID: PMC8961954 DOI: 10.1186/s12876-022-02203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Here we noted significantly downregulated miR-1-3p in gastric cancer (GC) tissue compared with adjacent normal tissue through qRT-PCR. Lowly expressed miR-1-3p correlated GC progression. Overexpressing miR-1-3p could restrain tumor-relevant cell behaviors in GC, while miR-1-3p inhibitor treatment triggered the opposite results. Moreover, dual-luciferase reporter gene detection identified specific binding sites of miR-1-3p in CENPF 3’untranslated region. Upregulating miR-1-3p constrained cell progression of GC via CENPF downregulation. Western blot, qRT-PCR and dual-luciferase detections manifested that miR-1-3p negatively mediated CENPF expression in GC cells. Thus, we demonstrated that miR-1-3p negatively mediated CENPF to hamper GC progression. CENPF may be an underlying target for GC therapy.
Collapse
Affiliation(s)
- Shenkang Zhou
- Department of Gastrointestinal Surgery, Taizhou Hospital, Zhejiang University, Taizhou City, Zhejiang Province, People's Republic of China.,Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou City, People's Republic of China.,School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
| | - Hui Han
- School of Medicine, Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.,Department of General Surgery, The Second Affiliated Hospital of Shantou Medical College, Shantou City, Guangdong Province, People's Republic of China
| | - Leilei Yang
- Department of Gastrointestinal Surgery, Taizhou Hospital, Zhejiang University, Taizhou City, Zhejiang Province, People's Republic of China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Hangzhou City, 310016, Zhejiang Province, People's Republic of China.
| |
Collapse
|
16
|
Huang YG, Li D, Wang L, Su XM, Tang XB. CENPF/CDK1 signaling pathway enhances the progression of adrenocortical carcinoma by regulating the G2/M-phase cell cycle. J Transl Med 2022; 20:78. [PMID: 35123514 PMCID: PMC8818156 DOI: 10.1186/s12967-022-03277-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Background Adrenocortical carcinoma (ACC) is an aggressive and rare malignant tumor and is prone to local invasion and metastasis. And, overexpressed Centromere Protein F (CENPF) is closely related to the oncogenesis of various neoplasms, including ACC. However, the prognosis and exact biological function of CENPF in ACC remains largely unclear. Methods In the present essay, the expression patterns and prognostic value of CENPF in ACC were investigated in clinical specimens and public cancer databases, including GEO and TCGA. The potential signaling mechanism of CENPF in ACC was studied based on gene-set enrichment analysis (GSEA). Furthermore, a small RNA interference experiment was conducted to probe the underlying biological function of CENPF in the human ACC cell line, SW13 cells. Lastly, two available therapeutic strategies, including immunotherapy and chemotherapy, have been further explored. Results The expression of CENPF in human ACC samples, GEO, and TCGA databases depicted that CENPF was overtly hyper-expressed in ACC patients and positively correlated with tumor stage. The aberrant expression of CENPF was significantly correlated with unfavorable overall survival (OS) in ACC patients. Then, the GSEA analysis declared that CENPF was mainly involved in the G2/M-phase mediated cell cycle and p53 signaling pathway. Further, the in vitro experiment demonstrated that the interaction between CENPF and CDK1 augmented the G2/M-phase transition of mitosis, cell proliferation and might induce p53 mediated anti-tumor effect in human ACC cell line, SW13 cells. Lastly, immune infiltration analysis highlighted that ACC patients with high CENPF expression harbored significantly different immune cell populations, and high TMB/MSI score. The gene-drug interaction network stated that CENPF inhibitors, such as Cisplatin, Sunitinib, and Etoposide, might serve as potential drugs for the therapy of ACC. Conclusion The result points out that CENPF is significantly overexpressed in ACC patients. The overexpressed CENPF predicts a poor prognosis of ACC and might augment the progress of ACC. Thus, CENPF and related genes might serve as a novel prognostic biomarker or latent therapeutic target for ACC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03277-y.
Collapse
|
17
|
Qi S, Li J, He X, Zhou J, Chen Z, Li X, Zhang B, Ma H, You H, Huang J. Identification and Validation of Novel Serum Autoantibodies Biomarkers for Staging Liver Fibrosis in Patients With Chronic Hepatitis B. Front Med (Lausanne) 2022; 8:807087. [PMID: 35059422 PMCID: PMC8764302 DOI: 10.3389/fmed.2021.807087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: Liver fibrosis monitoring is essential in patients with chronic hepatitis B (CHB). However, less robust, noninvasive diagnostic methods for staging liver fibrosis, other than liver biopsy, are available. Our previous study demonstrated a panel of cellular proteins recognized by autoantibodies that may have potential value in discrimination of CHB and liver cirrhosis. We aim to assess the diagnostic value of these serum autoantibodies for staging liver fibrosis. Methods: Candidate autoantigens were screened and assessed by microarray analysis in 96 healthy controls and 227 CHB patients with pre-treatment biopsy-proven METAVIR fibrosis score, comprising 69, 115, and 43 cases with S0-1, S2-3, and S4 stages, respectively. Autoantibodies with potential diagnostic value for staging liver fibrosis were verified by enzyme-linked immunosorbent assays (ELISA). Receiver operating characteristic curve was conducted to evaluate autoantibody performance. Results: Microarray analysis identified autoantigens CENPF, ACY1, HSPA6, and ENO1 with potential diagnostic value for liver fibrosis staging, among which CENPF and ACY1 were validated using ELISA. CENPF and ACY1 autoantibodies had area under the curve values of 0.746 and 0.685, 58.14 and 74.42% sensitivity, and 88.41 and 60.87% specificity, respectively, for discriminating liver fibrosis stages S4 and S0-1. The prevalence of CENPF and ACY1 autoantibodies was not correlated with age, sex or level of inflammation. Conclusions: Autoimmune responses may be elicited during progression of liver fibrosis, and serum autoantibodies may be a valuable biomarker for staging liver fibrosis deserving of further study.
Collapse
Affiliation(s)
- Saiping Qi
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Li
- Department of Healthcare Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaomin He
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong Ma
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jian Huang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Thoma OM, Neurath MF, Waldner MJ. Cyclin-Dependent Kinase Inhibitors and Their Therapeutic Potential in Colorectal Cancer Treatment. Front Pharmacol 2021; 12:757120. [PMID: 35002699 PMCID: PMC8733931 DOI: 10.3389/fphar.2021.757120] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/26/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) are key players in cell cycle regulation. So far, more than ten CDKs have been described. Their direct interaction with cyclins allow progression through G1 phase, transitions to S and G2 phase and finally through mitosis (M). While CDK activation is important in cell renewal, its aberrant expression can lead to the development of malignant tumor cells. Dysregulations in CDK pathways are often encountered in various types of cancer, including all gastrointestinal (GI) tract tumors. This prompted the development of CDK inhibitors as novel therapies for cancer. Currently, CDK inhibitors such as CDK4/6 inhibitors are used in pre-clinical studies for cancer treatment. In this review, we will focus on the therapeutic role of various CDK inhibitors in colorectal cancer, with a special focus on the CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Oana-Maria Thoma
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian J Waldner
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- German Center for Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
19
|
Zheng Z, Yang X, Yao X, Li L. Prognostic value of HPV 16/18 genotyping and geminin mRNA quantification in low-grade cervical squamous intraepithelial lesion. Bioengineered 2021; 12:11482-11489. [PMID: 34874226 PMCID: PMC8810151 DOI: 10.1080/21655979.2021.2009959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Low-grade cervical squamous intraepithelial lesion is a precancerous neoplasia that has appreciable probability to evolve into malignancy. To explore the prognostic value of HPV 16/18 genotyping and geminin mRNA quantification in predicting the progressiveness of LSIL. We recruited 212 participants who were negative for intraepithelial lesion or malignancy (NILM 76), low-grade squamous intraepithelial lesion (LSIL 85), high-grade squamous intraepithelial lesion (HSIL 36) and cervical intraepithelial neoplasia grade cervical cancer grade 3, (CIN3 15) patients. Tissues were obtained during excisional treatment. HPV 16/18 genotyping and geminin mRNA qRT-PCR were performed. HPV 16/18 positivity rate and geminin mRNA level were integrated with the clinical parameters into a multivariate logistic model. Area under curve was yielded based on receiver operation curve derived from this multivariate logistic model. Follow-up visits were performed to LSIL patients with progression. HSIL patients have higher HPV 16/18 positivity rate and geminin mRNA levels than LSIL. Among HSIL, CIN3 have higher HPV 16/18 positivity rate and geminin mRNA levels. Multivariate logistic analysis showed that HPV 16/18 positivity and geminin mRNA expression status are independent factors for differentiating HSIL and LSIL. The baseline HPV 16/18 positivity rate and geminin mRNA levels of 18 LSIL patients who developed HSIL are significantly higher than non-progressive LSIL patients. The values examined at follow-up timepoints were also higher than baseline. These results suggest that geminin is implicated in the progression of LSIL and combining HPV 16/18 genotyping and geminin mRNA qRT-PCR could potentially differentiating the progressive LSIL and improve the efficacy of clinical intervention.
Collapse
Affiliation(s)
- Ziwen Zheng
- Department of Gynecologic Oncology, JiangXi University, JiangXi, China
| | - Xiaorong Yang
- Department of Gynecologic Oncology, JiangXi University, JiangXi, China
| | - Xinyu Yao
- Department of Oncology, JiangXi University, Nanchang, China
| | - Ling Li
- Department of Oncology, JiangXi University, Nanchang, China
| |
Collapse
|
20
|
Li X, Li Y, Xu A, Zhou D, Zhang B, Qi S, Chen Z, Wang X, Ou X, Cao B, Qu C, Huang J. Apoptosis-induced translocation of centromere protein F in its corresponding autoantibody production in hepatocellular carcinoma. Oncoimmunology 2021; 10:1992104. [PMID: 34676150 PMCID: PMC8525945 DOI: 10.1080/2162402x.2021.1992104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Serum autoantibodies against tumor-associated antigen have important value in the early diagnosis of hepatocellular carcinoma (HCC), but the mechanism of autoantibody production is poorly understood. We previously showed that autoantibodies against the centromere protein F (CENPF) may be useful as an early diagnostic marker for HCC. Here we explored the mechanism of cell apoptosis-based CENPF autoantibody production and verified the correlation of CENPF autoantibody level with HCC development. We demonstrated that CENPF was overexpressed and aberrantly localized throughout the nuclei and cytoplasm in human HCC cells compared with hepatic cells. CENPF overexpression promoted the production of CENPF autoantibodies in a manner that correlated with tumor growth of mouse HCC model. During apoptosis of HCC cells, CENPF protein translocated to apoptotic vesicles and relocalized at the cell surface. Through isolating apoptotic components, we found apoptotic body and blebs with lower CD31 and CD47 expression more effectively induced DC phagocytosis and maturation compared with apoptotic intact cells in vitro, and this DC response was independent of CENPF expression. Moreover, injection of mice with apoptotic bodies and blebs effectively induced an immune response and the production of CENPF-specific antibodies. Our findings provide a first elucidation of mechanisms underlying the CENPF autoantibody production via cell apoptosis-induced CENPF translocation, and demonstrate a direct correlation between CENPF autoantibody levels and HCC progression, suggesting the potential of CENPF autoantibody as an HCC diagnostic marker.
Collapse
Affiliation(s)
- Xiaojin Li
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yanmeng Li
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Donghu Zhou
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bei Zhang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Saiping Qi
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibin Chen
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaojuan Ou
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chunfeng Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Huang
- National Clinical Research Center for Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Guo Y, Hu J, Zhao Z, Zhong G, Gong J, Cai D. Identification of a Prognostic Model Based on 2-Gene Signature and Analysis of Corresponding Tumor Microenvironment in Alcohol-Related Hepatocellular Carcinoma. Front Oncol 2021; 11:719355. [PMID: 34646769 PMCID: PMC8503534 DOI: 10.3389/fonc.2021.719355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors with the poor prognosis. Nowadays, alcohol is becoming a leading risk factor of HCC in many countries. In our study, we obtained the DEGs in alcohol-related HCC through two databases (TCGA and GEO). Subsequently, we performed enrichment analyses (GO and KEGG), constructed the PPI network and screened the 53 hub genes by Cytoscape. Two genes (BUB1B and CENPF) from hub genes was screened by LASSO and Cox regression analyses to construct the prognostic model. Then, we found that the high risk group had the worse prognosis and verified the clinical value of the risk score in alcohol-related HCC. Finally, we analyzed the tumor microenvironment between high and low risk groups through CIBERSORT and ESTIMATE. In summary, we constructed the two-gene prognostic model that could predict the poor prognosis in patients with alcohol-related HCC.
Collapse
Affiliation(s)
- Yong Guo
- Department of Hepatobiliary Surgery, People's Hospital of Changshou, Chongqing, China
| | - Jiejun Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhibo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guochao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Ramírez-Moya J, Miliotis C, Baker AR, Gregory RI, Slack FJ, Santisteban P. An ADAR1-dependent RNA editing event in the cyclin-dependent kinase CDK13 promotes thyroid cancer hallmarks. Mol Cancer 2021; 20:115. [PMID: 34496885 PMCID: PMC8424981 DOI: 10.1186/s12943-021-01401-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Adenosine deaminases acting on RNA (ADARs) modify many cellular RNAs by catalyzing the conversion of adenosine to inosine (A-to-I), and their deregulation is associated with several cancers. We recently showed that A-to-I editing is elevated in thyroid tumors and that ADAR1 is functionally important for thyroid cancer cell progression. The downstream effectors regulated or edited by ADAR1 and the significance of ADAR1 deregulation in thyroid cancer remain, however, poorly defined. Methods We performed whole transcriptome sequencing to determine the consequences of ADAR1 deregulation for global gene expression, RNA splicing and editing. The effects of gene silencing or RNA editing were investigated by analyzing cell viability, proliferation, invasion and subnuclear localization, and by protein and gene expression analysis. Results We report an oncogenic function for CDK13 in thyroid cancer and identify a new ADAR1-dependent RNA editing event that occurs in the coding region of its transcript. CDK13 was significantly over-edited (c.308A > G) in tumor samples and functional analysis revealed that this editing event promoted cancer cell hallmarks. Finally, we show that CDK13 editing increases the nucleolar abundance of the protein, and that this event might explain, at least partly, the global change in splicing produced by ADAR1 deregulation. Conclusions Overall, our data support A-to-I editing as an important pathway in cancer progression and highlight novel mechanisms that might be used therapeutically in thyroid and other cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-021-01401-y.
Collapse
Affiliation(s)
- Julia Ramírez-Moya
- Instituto, de Investigaciones Biomédicas "Alberto Sols"; Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain.,Department of Pathology, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Departments of Biological Chemistry and Molecular Pharmacology, and Pediatrics, Harvard Medical School, Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Christos Miliotis
- Department of Pathology, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Allison R Baker
- Department of Pathology, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Richard I Gregory
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital, Departments of Biological Chemistry and Molecular Pharmacology, and Pediatrics, Harvard Medical School, Harvard Medical School Initiative for RNA Medicine, Boston, MA, USA
| | - Frank J Slack
- Department of Pathology, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Pilar Santisteban
- Instituto, de Investigaciones Biomédicas "Alberto Sols"; Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC) Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
23
|
Zou PA, Yang ZX, Wang X, Tao ZW. Upregulation of CENPF is linked to aggressive features of osteosarcoma. Oncol Lett 2021; 22:648. [PMID: 34386070 PMCID: PMC8299040 DOI: 10.3892/ol.2021.12909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Centromere protein F (CENPF) plays a key role in the regulation of the cell cycle. The present study revealed that CENPF was overexpressed in a variety of tumors and associated with the poor prognosis of osteosarcoma. The mRNA expression levels of CENPF were analyzed using the Gene Expression Profiling Interactive Analysis database and the protein levels of CENPF were detected in the specimens from patients with osteosarcoma using immunohistochemistry. Cell proliferation, cell cycle and flow cytometry assays were performed after the transfection of control or CENPF plasmids into osteosarcoma cells. A xenografts assay was used to determine the effects of CENPF on tumor growth in vivo. The results showed that CENPF was upregulated in osteosarcoma tissues and associated with high-grade tumor stage (P=0.023) and intraglandular dissemination (P=0.046). The transfection-induced depletion of CENPF in human osteosarcoma MG-63 and U-2 OS cell lines inhibited cell proliferation, stimulated apoptosis and induced cell cycle arrest. Induced CENPF depletion in MG-63 cells inhibited tumor growth of osteosarcoma cells in mice. These findings suggested that elevated CENPF levels contributed to increased cell proliferation by mediating apoptosis and cell cycle in osteosarcoma. Therefore, CENPF might be a potential biomarker for poor prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Ping-An Zou
- Department of Bone and Soft Tissue Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Zheng-Xu Yang
- Department of Bone and Soft Tissue Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Xi Wang
- Department of Bone and Soft Tissue Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Zhi-Wei Tao
- Department of Bone and Soft Tissue Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| |
Collapse
|
24
|
High mRNA Expression of CENPL and Its Significance in Prognosis of Hepatocellular Carcinoma Patients. DISEASE MARKERS 2021; 2021:9971799. [PMID: 34457090 PMCID: PMC8387183 DOI: 10.1155/2021/9971799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/30/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022]
Abstract
Centromere proteins (CENPs) are the main constituent proteins of kinetochore, which are essential for cell division. In recent years, several studies have revealed that several CENPs were aberrantly expressed in hepatocellular carcinoma (HCC). However, numerous centromere proteins have not been studied in HCC. In this study, we used databases of Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), the Kaplan-Meier Plotter, cBioPortal, the Human Protein Atlas (HPA), and TIMER (Tumor Immune Estimation Resource) and immunohistochemical staining of clinical specimens to investigate the expression of 15 major centromere proteins in HCC to evaluate their potential prognostic value. We found that the mRNA levels of 4 out of 15 centromere proteins (CENPL, CENPQ, CENPR, and CENPU) were significantly higher in HCC than in normal tissues, and their mRNA levels were associated with the tumor stages (p values < 0.01). Patients with higher mRNA levels of CENPL had poorer overall survival, progression-free survival, relapse-free survival, and disease-specific survival (p values < 0.05). Furthermore, the higher levels of CENPL mRNA were associated with worse overall survival in males without hepatitis virus infection (p values < 0.05). The protein expression level of CENPL in human HCC tissue was higher than that in normal liver tissue. In addition, the expression of CENPL was positively correlated with the levels of the tumor-infiltrating lymphocytes. The results suggest that the high mRNA expression of CENPL may be a potential predictor of prognosis in HCC patients.
Collapse
|
25
|
Kurkowiak M, Grasso G, Faktor J, Scheiblecker L, Winniczuk M, Mayordomo MY, O'Neill JR, Oster B, Vojtesek B, Al-Saadi A, Marek-Trzonkowska N, Hupp TR. An integrated DNA and RNA variant detector identifies a highly conserved three base exon in the MAP4K5 kinase locus. RNA Biol 2021; 18:2556-2575. [PMID: 34190025 PMCID: PMC8632122 DOI: 10.1080/15476286.2021.1932345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
RNA variants that emerge from editing and alternative splicing form important regulatory stages in protein signalling. In this report, we apply an integrated DNA and RNA variant detection workbench to define the range of RNA variants that deviate from the reference genome in a human melanoma cell model. The RNA variants can be grouped into (i) classic ADAR-like or APOBEC-like RNA editing events and (ii) multiple-nucleotide variants (MNVs) including three and six base pair in-frame non-canonical unmapped exons. We focus on validating representative genes of these classes. First, clustered non-synonymous RNA edits (A-I) in the CDK13 gene were validated by Sanger sequencing to confirm the integrity of the RNA variant detection workbench. Second, a highly conserved RNA variant in the MAP4K5 gene was detected that results most likely from the splicing of a non-canonical three-base exon. The two RNA variants produced from the MAP4K5 locus deviate from the genomic reference sequence and produce V569E or V569del isoform variants. Low doses of splicing inhibitors demonstrated that the MAP4K5-V569E variant emerges from an SF3B1-dependent splicing event. Mass spectrometry of the recombinant SBP-tagged MAP4K5V569E and MAP4K5V569del proteins pull-downs in transfected cell systems was used to identify the protein-protein interactions of these two MAP4K5 isoforms and propose possible functions. Together these data highlight the utility of this integrated DNA and RNA variant detection platform to detect RNA variants in cancer cells and support future analysis of RNA variant detection in cancer tissue.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland
| | - Giuseppa Grasso
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lisa Scheiblecker
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Małgorzata Winniczuk
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland
| | - Marcos Yebenes Mayordomo
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - J Robert O'Neill
- Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Bodil Oster
- QIAGEN Aarhus, Silkeborgvej 2, 8000 Aarhus, Denmark
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ali Al-Saadi
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ted R Hupp
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| |
Collapse
|
26
|
Bazzi ZA, Tai IT. CDK10 in Gastrointestinal Cancers: Dual Roles as a Tumor Suppressor and Oncogene. Front Oncol 2021; 11:655479. [PMID: 34277407 PMCID: PMC8278820 DOI: 10.3389/fonc.2021.655479] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Cyclin-dependent kinase 10 (CDK10) is a CDC2-related serine/threonine kinase involved in cellular processes including cell proliferation, transcription regulation and cell cycle regulation. CDK10 has been identified as both a candidate tumor suppressor in hepatocellular carcinoma, biliary tract cancers and gastric cancer, and a candidate oncogene in colorectal cancer (CRC). CDK10 has been shown to be specifically involved in modulating cancer cell proliferation, motility and chemosensitivity. Specifically, in CRC, it may represent a viable biomarker and target for chemoresistance. The development of therapeutics targeting CDK10 has been hindered by lack a specific small molecule inhibitor for CDK10 kinase activity, due to a lack of a high throughput screening assay. Recently, a novel CDK10 kinase activity assay has been developed, which will aid in the development of small molecule inhibitors targeting CDK10 activity. Discovery of a small molecular inhibitor for CDK10 would facilitate further exploration of its biological functions and affirm its candidacy as a therapeutic target, specifically for CRC.
Collapse
Affiliation(s)
- Zainab A Bazzi
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia (BC) Cancer, Vancouver, BC, Canada
| | - Isabella T Tai
- Division of Gastroenterology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, British Columbia (BC) Cancer, Vancouver, BC, Canada
| |
Collapse
|
27
|
Mining the plasma-proteome associated genes in patients with gastro-esophageal cancers for biomarker discovery. Sci Rep 2021; 11:7590. [PMID: 33828156 PMCID: PMC8027878 DOI: 10.1038/s41598-021-87037-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Gastro-esophageal (GE) cancers are one of the major causes of cancer-related death in the world. There is a need for novel biomarkers in the management of GE cancers, to yield predictive response to the available therapies. Our study aims to identify leading genes that are differentially regulated in patients with these cancers. We explored the expression data for those genes whose protein products can be detected in the plasma using the Cancer Genome Atlas to identify leading genes that are differentially regulated in patients with GE cancers. Our work predicted several candidates as potential biomarkers for distinct stages of GE cancers, including previously identified CST1, INHBA, STMN1, whose expression correlated with cancer recurrence, or resistance to adjuvant therapies or surgery. To define the predictive accuracy of these genes as possible biomarkers, we constructed a co-expression network and performed complex network analysis to measure the importance of the genes in terms of a ratio of closeness centrality (RCC). Furthermore, to measure the significance of these differentially regulated genes, we constructed an SVM classifier using machine learning approach and verified these genes by using receiver operator characteristic (ROC) curve as an evaluation metric. The area under the curve measure was > 0.9 for both the overexpressed and downregulated genes suggesting the potential use and reliability of these candidates as biomarkers. In summary, we identified leading differentially expressed genes in GE cancers that can be detected in the plasma proteome. These genes have potential to become diagnostic and therapeutic biomarkers for early detection of cancer, recurrence following surgery and for development of targeted treatment.
Collapse
|
28
|
Huang Y, Chen X, Wang L, Wang T, Tang X, Su X. Centromere Protein F ( CENPF) Serves as a Potential Prognostic Biomarker and Target for Human Hepatocellular Carcinoma. J Cancer 2021; 12:2933-2951. [PMID: 33854594 PMCID: PMC8040902 DOI: 10.7150/jca.52187] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
Overexpression of Centromere Protein F (CENPF) is associated with tumorigenesis of many human malignant tumors. But the molecular mechanism and prognostic value of CENPF in patients with hepatocellular carcinoma (HCC) are still unclear. In this essay, expression of CENPF in HCC tumors were evaluated in a series of databases, including GEO, TCGA, Oncomine, GEPIA, The Human Protein Atlas and Kaplan-Meier plotter. It was apparent that mRNA and protein expression levels of CENPF were significantly increased in patients with HCC and were manifestly associated with the tumor stage of HCC. Aberrant expressions of CENPF were significantly linked with worse overall survival (OS) and progression-free survival (PFS) in HCC patients. Then, immunohistochemistry of CENPF in human HCC samples was carried out to suggest that CENPF protein was over-expressed in HCC tissues, compared with paired adjacent non-cancerous samples. And small interfering RNAs of CENPF in the human HepG2 cells were further performed to reveal that down-regulation of CENPF significantly inhibited cell proliferation, cell migration, and cell invasion, but slightly promoted cell apoptosis in human HepG2 cells. Moreover, the gene-set enrichment analysis (GSEA) was conducted to probe the biology process and molecular signaling pathway of CENPF in HCC. The GSEA analysis pointed out that CENPF was principally enriched in cell cycle and closely related to E2F1 and CDK1 in the regulation of cell cycle, especially during G2/M transition of mitosis in HCC. Additionally, immune infiltration analysis by CIBERSORTx revealed that mutilpe immune cells, including Treg, etc., were significantly different in HCC samples with CENPFhigh, compared with CENPFlow. These results collectively demonstrated that CENPF might serve as a potential prognostic biomarker and novel therapeutic target for HCC. However, further research is needed to validate our findings and promote the clinical application of CENPF in HCC.
Collapse
Affiliation(s)
- Yugang Huang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Hubei 44200, China
| | - Xiuwen Chen
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Hubei 44200, China
| | - Li Wang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Hubei 44200, China
| | - Tieyan Wang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Hubei 44200, China
| | - Xianbin Tang
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Hubei 44200, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Tianjin 300110, China
| |
Collapse
|
29
|
Han Y, Xu S, Cheng K, Diao C, Liu S, Zou W, Bi Y. CENPF promotes papillary thyroid cancer progression by mediating cell proliferation and apoptosis. Exp Ther Med 2021; 21:401. [PMID: 33680123 PMCID: PMC7918471 DOI: 10.3892/etm.2021.9832] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
Papillary thyroid cancer (PTHCA) accounts for ~85% cases of thyroid cancer and exhibits high incidence. Targeted therapy is an effective method to combat this disease; however, novel therapeutic targets are required. Centromere protein F (CENPF), a member of centromere proteins and a transient kinetochore protein, regulates various cellular processes such as cell migration and mitosis, and its upregulation has been observed in multiple types of cancer, including breast cancer and gastric cancer. However, the potential role of CENPF in PTHCA progression is remains unclear. The results of the current study demonstrated that CENPF expression was enhanced in human PTHCA tissues through IHC assays. Furthermore, the expression of CENPF was correlated with the prognosis and the clinicopathological features, including T stage (P=0.021) and intraglandular dissemination (P=0.042) in patients with PTHCA. CENPF regulated the proliferation, apoptosis and cell cycle of PTHCA cells in vitro, which was confirmed through colony formation, MTT and flow cytometry assays, and affected tumor growth in vivo in mice. In conclusion, the current study reported the involvement of CENPF in PTHCA progression and provided a promising therapeutic target for PTHCA treatment.
Collapse
Affiliation(s)
- Yong Han
- Department of Breast and Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Shujian Xu
- Department of Breast and Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Kai Cheng
- Department of Breast and Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Caimei Diao
- Department of Health Management, The People's Hospital of South District of Qingdao, Qingdao, Shandong 266000, P.R. China
| | - Song Liu
- Department of Breast and Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Weiwei Zou
- Department of Breast and Thyroid Surgery, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| | - Yueyang Bi
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou, Shandong 256603, P.R. China
| |
Collapse
|
30
|
Zhao Y, Pi J, Liu L, Yan W, Ma S, Hong L. Identification of the Hub Genes Associated with the Prognosis of Ovarian Cancer Patients via Integrated Bioinformatics Analysis and Experimental Validation. Cancer Manag Res 2021; 13:707-721. [PMID: 33542655 PMCID: PMC7851396 DOI: 10.2147/cmar.s282529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/31/2022] Open
Abstract
Background This study aimed to identify the hub genes associated with prognosis of patients with ovarian cancer by using integrated bioinformatics analysis and experimental validation. Methods Four microarray datasets (GSE12470, GSE14407, GSE18521 and GSE46169) were analyzed by the GEO2R tool to screen common differentially expressed genes (DEGs). Gene Ontology, the Kyoto Encyclopedia of Genes and Genomes, the (KEGG) pathway and Reactome pathway enrichment analysis, protein–protein interaction (PPI) construction, and the identification of hub genes were performed. Furthermore, we performed the survival and expression analysis of the hub genes. In vitro functional assays were performed to assess the effects of hub genes on ovarian cancer cell proliferation, caspase-3/7 activity and invasion. Results A total of 89 common DEGs were identified among these four datasets. The KEGG and Reactome pathway results showed that the DEGs were mainly associated with cell cycle, mitotic and p53 signaling pathway. A total of 20 hub genes were identified from the PPI network by using sub-module analysis. The survival analysis revealed that high expression of six hub genes (AURKA, BUB1B, CENPF, KIF11, KIF23 and TOP2A) were significantly correlated with shorter overall survival and progression-free survival of patients with ovarian cancer. Furthermore, the expression of the six hub genes were validated by the GEPIA database and Human Protein Atlas, and functional studies revealed that knockdown of KIF11 and KIF23 suppressed the SKOV3 cell proliferation, increased caspase-3/7 activity and attenuated invasive potentials of SKOV3 cells. In addition, knockdown of KIF11 and KIF23 up-regulated E-cadherin mRNA expression but down-regulated N-cadherin and vimentin mRNA expression in SKOV3 cells. Conclusion Our results showed that six hub genes were up-regulated in ovarian cancer tissues and may predict poor prognosis of patients with ovarian cancer. KIF11 and KIF23 may play oncogenic roles in ovarian cancer cell progression via promoting ovarian cancer cell proliferation and invasion.
Collapse
Affiliation(s)
- Yuzi Zhao
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jie Pi
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lihua Liu
- Department of Gynaecology and Obstetrics, Huanggang Huangzhou Maternity and Child Health Care Hospital, Huanggang, People's Republic of China
| | - Wenjie Yan
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shufang Ma
- Reproductive Medicine Center, Wuhan Kangjian Women and Infants Hospital, Wuhan, People's Republic of China
| | - Li Hong
- Department of Gynaecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
31
|
Li MX, Zhang MY, Dong HH, Li AJ, Teng HF, Liu AL, Xu N, Qu YQ. Overexpression of CENPF is associated with progression and poor prognosis of lung adenocarcinoma. Int J Med Sci 2021; 18:494-504. [PMID: 33390818 PMCID: PMC7757141 DOI: 10.7150/ijms.49041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Background and aim: The molecular signatures of lung adenocarcinoma (LUAD) are not well understood. Centromere protein F (CENPF) has been shown to promote oncogenesis in many cancers; however, its role in LUAD has not been illustrated. We explored the role of CENPF in LUAD. Methods: CENPF expression level was investigated in public online database firstly, the prognosis of CENPF in LUAD were also assessed by Kaplan-Meier analysis. Then quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed using 13 matched pairs of clinical LUAD tissue samples. Subsequently, the impact of CENPF expression on cell proliferation, cell cycle, apoptosis, colony formation was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), flow cytometric analysis and colony formation assay, respectively. Finally, experimental xenograft lung cancer model of nude mice armpit of right forelimb to determine the effect of CENPF on LUAD tumorigenesis. Results: CENPF mRNA expression was significantly elevated in LUAD tissues compared with adjacent non-tumor lung tissues in Gene Expression Profiling Interactive Analysis (GEPIA) (P < 0.001). Up-regulated CENPF was remarkably positively associated with pathological stage, relapse free survival (RFS) as well as overall survival (OS) of LUAD patients. Besides, CENPF knockdown greatly suppressed A549 cell proliferation, induced S phase arrest, promoted apoptosis and decreased colony numbers of LUAD cells. Furthermore, knockdown of CENPF significantly inhibited the tumor growth of the LUAD cells in an experimental xenograft lung cancer model of nude mice armpit of right forelimb. Conclusion: Taken together, these results demonstrated that CENPF may serve as a potential biomarker of prognostic relevance and a potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Mei-Xiang Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Meng-Yu Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Huan-Huan Dong
- Department of Pathology, Weihai Municipal Hospital, Weihai 264200, China
| | - Ai-Jun Li
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Hai-Feng Teng
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Ai-Ling Liu
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Ning Xu
- Department of Respiratory Medicine, Weihai Municipal Hospital, Weihai 264200, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
32
|
Cheng C, Wu X, Shen Y, Li Q. KIF14 and KIF23 Promote Cell Proliferation and Chemoresistance in HCC Cells, and Predict Worse Prognosis of Patients with HCC. Cancer Manag Res 2020; 12:13241-13257. [PMID: 33380832 PMCID: PMC7767722 DOI: 10.2147/cmar.s285367] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common human malignant tumors. The prognosis of HCC patients is still unsatisfying. In this study, we performed the integrated bioinformatics analysis to identify potential biomarkers and biological pathways in HCC. Methods Gene expression profiles were obtained from the Gene Expression Omnibus database (GSE55048, GSE55758, and GSE56545) for the screening of the common differentially expressed genes (DEGs) between HCC tissues and matched non-tumor tissues. DEGs were subjected to Gene Ontology, KEGG pathway, and Reactome pathway analysis. The hub genes were identified by using protein–protein interaction (PPI) network analysis. The hub genes in HCC were further subjected to overall survival analysis of HCC patients. The hub genes were further validated by in vitro functional assays. Results A total of 544 common differentially expressed genes were screened from three datasets. Gene Ontology, KEGG and Reactome analysis results showed that DEGs are significantly associated with the biological process of cell cycle, cell division, and DNA replication. PPI network analysis identified 20 hub genes from the DEGs. These hub genes except CENPE were all significantly up-regulated in the HCC tissues when compared to non-tumor tissues. The Kaplan–Meier survival analysis results showed that the high expression of the 20 hub genes was associated with shorter survival of the HCC patients. Further validation studies showed that knockdown of KIF14 and KIF23 both suppressed the proliferative potential, increased the caspase-3/-7 activity, up-regulated Bax expression, and promoted the invasive and migratory abilities in the HCC cells. In addition, knockdown of KIF14 and KIF23 enhanced chemosensitivity to cisplatin and sorafenib in the HCC cells. Finally, the high expression of KIF14 and KIF23 was associated with shorter progression-free survival, recurrence-free survival, and disease-specific survival of patients with HCC. Conclusion In conclusion, the present study performed the integrated bioinformatics analysis and showed that KIF14 and KIF23 silence attenuated cell proliferation, invasion, and migration, and promoted chemosensitivity of HCC cells. KIF14 and KIF23 may serve as potential biomarkers for predicting the worse prognosis of patients with HCC.
Collapse
Affiliation(s)
- Chunxia Cheng
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| | - Xingxing Wu
- Deparment of Pediatric Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| | - Yu Shen
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| | - Quanxi Li
- Department of Hepatobiliary Surgery, The Second People's Hospital of Lianyungang, Liangyungang City 222023, People's Republic of China
| |
Collapse
|
33
|
The promise and current status of CDK12/13 inhibition for the treatment of cancer. Future Med Chem 2020; 13:117-141. [PMID: 33295810 DOI: 10.4155/fmc-2020-0240] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
CDK12 and CDK13 are Ser/Thr protein kinases that regulate transcription and co-transcriptional processes. Genetic silencing of CDK12 is associated with genomic instability in a variety of cancers, including difficult-to-treat breast, ovarian, colorectal, brain and pancreatic cancers, and is synthetic lethal with PARP, MYC or EWS/FLI inhibition. CDK13 is amplified in hepatocellular carcinoma. Consequently, selective CDK12/13 inhibitors constitute powerful research tools as well as promising anti-cancer therapeutics, either alone or in combination therapy. Herein the authors discuss the role of CDK12 and CDK13 in normal and cancer cells, describe their utility as a biomarker and therapeutic target, review the medicinal chemistry optimization of existing CDK12/13 inhibitors and outline strategies for the rational design of CDK12/13 selective inhibitors.
Collapse
|
34
|
Lu XL, Zhan R, Zhao GM, Qian ZH, Gong CC, Li YQ. Expression of CDK13 Was Associated with Prognosis and Expression of HIF-1α and beclin1 in Breast Cancer Patients. J INVEST SURG 2020; 35:442-447. [PMID: 33292020 DOI: 10.1080/08941939.2020.1852344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate role and clinical significance of CDK13 in breast cancer patients. METHODS A total of 189 cases of breast cancer were enrolled during March 2013 to March 2015. Immunohistochemistry (IHC) was used for measurement of CDK13, HIF-1α and beclin1. Clinical characteristics of age, BMI, TNM stage, pathological types, and tumor diameter, were recorded. Patients' 5-year overall survival and recurrence were followed up. All patients were followed up for 5 years or to the last follow-up. RESULTS The expression levels of CDK13 and HIF-1αin breast cancer tissues were up-regulated and beclin1 was down-regulated than in the paracancerous non-tumor tissues. CDK13 was positively correlated with HIF-1α and negatively correlated with beclin1 in breast cancer tissues. The patients with higher expression of CDK13 showed significantly higher rates of TNM III-IV, higher rates of lymph node metastasis, distant metastasis and larger tumor size. The mortality and recurrence rates were higher in high expression CDK13 patients than in low CDK13 expression patients, however with no significant difference. K-M curve showed patients with higher CDK13 showed lower 5-year overall survival and lower disease-free survival time, however with no significant difference. CONCLUSION CDK13 was overexpressed in breast cancer tissues, and patients with higher CDK13 had poorer clinical outcomes. Further studies are still needed to reveal the clinical significance of CDK13 in breast cancer.
Collapse
Affiliation(s)
- Xia-Liang Lu
- Department of Pathology, Suzhou Ninth People's Hospital Affiliated Wujiang Hospital of Nantong University, Suzhou, Jiangsu, China
| | - Rui Zhan
- Department of Pathology, Suzhou Ninth People's Hospital Affiliated Wujiang Hospital of Nantong University, Suzhou, Jiangsu, China
| | - Guang-Ming Zhao
- Department of Pathology, Suzhou Ninth People's Hospital Affiliated Wujiang Hospital of Nantong University, Suzhou, Jiangsu, China
| | - Zhen-Hua Qian
- Department of Pathology, Suzhou Ninth People's Hospital Affiliated Wujiang Hospital of Nantong University, Suzhou, Jiangsu, China
| | - Chan-Chan Gong
- Department of Pathology, Suzhou Ninth People's Hospital Affiliated Wujiang Hospital of Nantong University, Suzhou, Jiangsu, China
| | - Yan-Qing Li
- Department of Pathology, Suzhou Ninth People's Hospital Affiliated Wujiang Hospital of Nantong University, Suzhou, Jiangsu, China
| |
Collapse
|
35
|
Wang S, Wu J, Guo C, Shang H, Yao J, Liao L, Dong J. Identification and Validation of Novel Genes in Anaplastic Thyroid Carcinoma via Bioinformatics Analysis. Cancer Manag Res 2020; 12:9787-9799. [PMID: 33116838 PMCID: PMC7550107 DOI: 10.2147/cmar.s250792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The conventional interventions of anaplastic thyroid carcinoma (ATC) patients are mainly through surgery, chemotherapy, and radiotherapy; however, it is hardly to improve survival rate. We aimed to investigate the differential expressed genes (DEGs) between ATC and normal thyroid gland through bioinformatics analysis of the microarray datasets and find new potential therapeutic targets for ATC. Methods Microarray datasets GSE9115, GSE29265, GSE33630, GSE53072, and GSE65144 were downloaded from Gene Expression Omnibus (GEO) database. Compared with the normal tissue, GEO2R was conducted to screen the DEGs in each chip under the condition of |log FC| > l, adjusted P‐values (adj. P) < 0.05. The Retrieval of Interacting Genes (STRING) database was used to calculate PPI networks of DEGs with a combined score >0.4 as the cut-off criteria. The hub genes in the PPI network were visualized and selected according to screening conditions in Cytoscape software. In addition, the novel genes in ATC were screened for survival analysis using Kaplan–Meier plotter from those hub genes and validated by RT-qPCR. Results A total of 284 overlapping DEGs were obtained, including 121 upregulated and 161 downregulated DEGs. A total of 232 DEGs were selected by STRING database. The 50 hub genes in the PPI network were chosen according to three screening conditions. In addition, the Kaplan–Meier plotter database confirmed that high expressions of ANLN, CENPF, KIF2C, TPX2, and NDC80 were negatively correlated with poor overall survival of ATC patients. Finally, RT-qPCR experiments showed that KIF2C and CENPF were significantly upregulated in ARO cells and CAL-62 cells when compared to Nthy-ori 3–1 cells, TPX2 was upregulated only in CAL-62 cells, while ANLN and NDC80 were obviously decreased in ARO cells and CAL-62 cells. Conclusion Our study suggested that CENPF, KIF2C, and TPX2 might play a significant role in the development of ATC, which could be further explored as potential biomarkers for the treatment of ATC.
Collapse
Affiliation(s)
- Shengnan Wang
- Laboratory of Endocrinology, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China.,Department of Occupational Disease, Yantai Shan Hospital, Yantai, People's Republic of China
| | - Jing Wu
- Laboratory of Endocrinology, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Congcong Guo
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hongxia Shang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Jinming Yao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China
| | - Lin Liao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University, Jinan, People's Republic of China.,Department of Endocrinology and Metabology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jianjun Dong
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
36
|
Fan Z, Devlin JR, Hogg SJ, Doyle MA, Harrison PF, Todorovski I, Cluse LA, Knight DA, Sandow JJ, Gregory G, Fox A, Beilharz TH, Kwiatkowski N, Scott NE, Vidakovic AT, Kelly GP, Svejstrup JQ, Geyer M, Gray NS, Vervoort SJ, Johnstone RW. CDK13 cooperates with CDK12 to control global RNA polymerase II processivity. SCIENCE ADVANCES 2020; 6:eaaz5041. [PMID: 32917631 PMCID: PMC7190357 DOI: 10.1126/sciadv.aaz5041] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/10/2020] [Indexed: 05/04/2023]
Abstract
The RNA polymerase II (POLII)-driven transcription cycle is tightly regulated at distinct checkpoints by cyclin-dependent kinases (CDKs) and their cognate cyclins. The molecular events underpinning transcriptional elongation, processivity, and the CDK-cyclin pair(s) involved remain poorly understood. Using CRISPR-Cas9 homology-directed repair, we generated analog-sensitive kinase variants of CDK12 and CDK13 to probe their individual and shared biological and molecular roles. Single inhibition of CDK12 or CDK13 induced transcriptional responses associated with cellular growth signaling pathways and/or DNA damage, with minimal effects on cell viability. In contrast, dual kinase inhibition potently induced cell death, which was associated with extensive genome-wide transcriptional changes including widespread use of alternative 3' polyadenylation sites. At the molecular level, dual kinase inhibition resulted in the loss of POLII CTD phosphorylation and greatly reduced POLII elongation rates and processivity. These data define substantial redundancy between CDK12 and CDK13 and identify both as fundamental regulators of global POLII processivity and transcription elongation.
Collapse
Affiliation(s)
- Zheng Fan
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Jennifer R Devlin
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Simon J Hogg
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
| | - Maria A Doyle
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Paul F Harrison
- Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
- Monash Bioinformatics Platform, Monash University, Clayton, 3800 VIC, Australia
| | - Izabela Todorovski
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Leonie A Cluse
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
| | - Deborah A Knight
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, Parkville, 3052 VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, 3052 VIC, Australia
| | - Gareth Gregory
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
| | - Andrew Fox
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia
| | - Traude H Beilharz
- Monash Biomedicine Discovery Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Nicholas Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Parkville, 3052 VIC, Australia
| | | | - Gavin P Kelly
- Bioinformatics and Biostatistics, The Francis Crick Institute, London NW1 1AT, UK
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Stephin J Vervoort
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, 3000 VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, 3052 VIC, Australia
| |
Collapse
|
37
|
Kohlmeyer JL, Gordon DJ, Tanas MR, Monga V, Dodd RD, Quelle DE. CDKs in Sarcoma: Mediators of Disease and Emerging Therapeutic Targets. Int J Mol Sci 2020; 21:E3018. [PMID: 32344731 PMCID: PMC7215455 DOI: 10.3390/ijms21083018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Sarcomas represent one of the most challenging tumor types to treat due to their diverse nature and our incomplete understanding of their underlying biology. Recent work suggests cyclin-dependent kinase (CDK) pathway activation is a powerful driver of sarcomagenesis. CDK proteins participate in numerous cellular processes required for normal cell function, but their dysregulation is a hallmark of many pathologies including cancer. The contributions and significance of aberrant CDK activity to sarcoma development, however, is only partly understood. Here, we describe what is known about CDK-related alterations in the most common subtypes of sarcoma and highlight areas that warrant further investigation. As disruptions in CDK pathways appear in most, if not all, subtypes of sarcoma, we discuss the history and value of pharmacologically targeting CDKs to combat these tumors. The goals of this review are to (1) assess the prevalence and importance of CDK pathway alterations in sarcomas, (2) highlight the gap in knowledge for certain CDKs in these tumors, and (3) provide insight into studies focused on CDK inhibition for sarcoma treatment. Overall, growing evidence demonstrates a crucial role for activated CDKs in sarcoma development and as important targets for sarcoma therapy.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
| | - David J Gordon
- The Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Munir R Tanas
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Varun Monga
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Rebecca D Dodd
- The Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (V.M.); (R.D.D.)
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- The Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, 2-570 Bowen Science Bldg., Iowa City, IA 52242, USA
- The Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
38
|
Li R, Wang X, Zhao X, Zhang X, Chen H, Ma Y, Liu Y. Centromere protein F and Forkhead box M1 correlation with prognosis of non-small cell lung cancer. Oncol Lett 2020; 19:1368-1374. [PMID: 31966068 PMCID: PMC6956421 DOI: 10.3892/ol.2019.11232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer. Altered expression of centromere protein F (CENPF), a transient kinetochore protein, has been found in a variety of human cancers. However, its clinical significance in NSCLC remains unknown. In the present study the results of quantitative PCR and western blot analyses demonstrated that CENPF and Forkhead box M1 (FOXM1) were significantly higher in NSCLC tissues than in the non-cancerous controls at both transcriptional and translational levels. Immunohistochemical staining results showed 58.7% (44/75) and 64.0% (48/75) of NSCLC tissues displayed high expression of CENPF and FOXM1, respectively. CENPF protein expression showed a positive correlation with tumor size (P=0.0179), vital status (P=0.0008) and FOXM1 expression (P=0.0013) in NSCLC. Poor overall survival was correlated with high levels of CENPF and FOXM1 in NSCLC patients as evaluated by Kaplan-Meier and log rank test. Multivariate analyses showed that CENPF expression was an independent prognostic factor for NSCLC. In conclusion, our study provides evidence of the prognostic function of CENPF in NSCLC.
Collapse
Affiliation(s)
- Rui Li
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Xia Wang
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Xiaoqian Zhao
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Xiaohong Zhang
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Honghai Chen
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Yue Ma
- Department of Clinical Laboratory, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| | - Yandong Liu
- Admin Office, Shenyang Fifth People's Hospital, Shenyang, Liaoning 110021, P.R. China
| |
Collapse
|
39
|
Ahmed F. Integrated Network Analysis Reveals FOXM1 and MYBL2 as Key Regulators of Cell Proliferation in Non-small Cell Lung Cancer. Front Oncol 2019; 9:1011. [PMID: 31681566 PMCID: PMC6804573 DOI: 10.3389/fonc.2019.01011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/20/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Loss of control on cell division is an important factor for the development of non-small cell lung cancer (NSCLC), however, its molecular mechanism and gene regulatory network are not clearly understood. This study utilized the systems bioinformatics approach to reveal the “driver-network” involve in tumorigenic processes in NSCLC. Methods: A meta-analysis of gene expression data of NSCLC was integrated with protein-protein interaction (PPI) data to construct an NSCLC network. MCODE and iRegulone were used to identify the local clusters and its upstream transcription regulators involve in NSCLC. Pair-wise gene expression correlation was performed using GEPIA. The survival analysis was performed by the Kaplan-Meier plot. Results: This study identified a local “driver-network” with highest MCODE score having 26 up-regulated genes involved in the process of cell proliferation in NSCLC. Interestingly, the “driver-network” is under the regulation of TFs FOXM1 and MYBL2 as well as miRNAs. Furthermore, the overexpression of member genes in “driver-network” and the TFs are associated with poor overall survival (OS) in NSCLC patients. Conclusion: This study identified a local “driver-network” and its upstream regulators responsible for the cell proliferation in NSCLC, which could be promising biomarkers and therapeutic targets for NSCLC treatment.
Collapse
Affiliation(s)
- Firoz Ahmed
- Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia.,University of Jeddah Center for Scientific and Medical Research, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
40
|
Sun J, Huang J, Lan J, Zhou K, Gao Y, Song Z, Deng Y, Liu L, Dong Y, Liu X. Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer. Cancer Cell Int 2019; 19:264. [PMID: 31632198 PMCID: PMC6788011 DOI: 10.1186/s12935-019-0986-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background Centromere Protein F (CENPF) associates with the centromere-kinetochore complex and influences cell proliferation and metastasis in several cancers. The role of CENPF in breast cancer (BC) bone metastasis remains unclear. Methods Using the ONCOMINE database, we compared the expression of CENPF in breast cancer and normal tissues. Findings were confirmed in 60 BC patients through immunohistochemical (IHC) staining. Microarray data from GEO and Kaplan-Meier plots were used analyze the overall survival (OS) and relapse free survival (RFS). Using the GEO databases, we compared the expression of CENPF in primary lesions, lung metastasis lesions and bone metastasis lesions, and validated our findings in BALB/C mouse 4T1 BC models. Based on gene set enrichment analysis (GSEA) and western blot, we predicted the mechanisms by which CENPF regulates BC bone metastasis. Results The ONCOMINE database and immunohistochemical (IHC) showed higher CENPF expression in BC tissue compared to normal tissue. Kaplan-Meier plots also revealed that high CENPF mRNA expression correlated to poor survival and shorter progression-free survival (RFS). From BALB/C mice 4T1 BC models and the GEO database, CENPF was overexpressed in primary lesions, other target organs, and in bone metastasis. Based on gene set enrichment analysis (GSEA) and western blot, we predicted that CENPF regulates the secretion of parathyroid hormone-related peptide (PTHrP) through its ability to activate PI3K-AKT-mTORC1. Conclusion CENPF promotes BC bone metastasis by activating PI3K-AKT-mTORC1 signaling and represents a novel therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Jingbo Sun
- 1Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630 Guangdong China
| | - Jingzhan Huang
- 1Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630 Guangdong China
| | - Jin Lan
- 1Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630 Guangdong China
| | - Kun Zhou
- 1Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630 Guangdong China
| | - Yuan Gao
- 1Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630 Guangdong China
| | - Zhigao Song
- Department of Metabolic Surgery, General Hospital of Guangzhou Military Command, Southern Medical University, Guangzhou, 510515 China
| | - Yunyao Deng
- 1Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630 Guangdong China
| | - Lixin Liu
- 1Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630 Guangdong China
| | - Ying Dong
- 3Nursing Department, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630 Guangdong China
| | - Xiaolong Liu
- 1Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou, 510630 Guangdong China
| |
Collapse
|
41
|
Shen S, Dean DC, Yu Z, Duan Z. Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: Therapeutic potential of targeting the CDK signaling pathway. Hepatol Res 2019; 49:1097-1108. [PMID: 31009153 DOI: 10.1111/hepr.13353] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/23/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
Liver cancer is the fourth leading cause of cancer related mortality in the world, with hepatocellular carcinoma (HCC) representing the most common primary subtype. Two-thirds of HCC patients have advanced disease when diagnosed, and for these patients, treatment strategies remain limited. In addition, there is a high incidence of tumor recurrence after surgical resection with the current treatment regimens. The development of novel and more effective agents is required. Cyclin-dependent kinases (CDKs) constitute a family of 21 different protein kinases involved in regulating cell proliferation, apoptosis, and drug resistance, and are evaluated in preclinical and clinical trials as chemotherapeutics. To summarize and discuss the therapeutic potential of targeting CDKs in HCC, recent published articles identified from PubMed were comprehensively reviewed. The key words included hepatocellular carcinoma, cyclin-dependent kinases, and CDK inhibitors. This review focuses on the emerging evidence from studies describing the genetic and functional aspects of CDKs in HCC. We also present an overview of CDK inhibitors that have shown efficacy in laboratory studies of HCC. Although many of the studies assessing CDK-targeting therapies in HCC are at the preclinical stage, there is significant evidence that CDK inhibitors used alone or in combination with established chemotherapy drugs could have significant applications in HCC.
Collapse
Affiliation(s)
- Shen Shen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Dylan C Dean
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Zujiang Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Duan
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
42
|
Li Z, Sang M, Tian Z, Liu Z, Lv J, Zhang F, Shan B. Identification of key biomarkers and potential molecular mechanisms in lung cancer by bioinformatics analysis. Oncol Lett 2019; 18:4429-4440. [PMID: 31611952 PMCID: PMC6781723 DOI: 10.3892/ol.2019.10796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most widespread neoplasms worldwide. To identify the key biomarkers in its carcinogenesis and development, the mRNA microarray datasets GSE102287, GSE89047, GSE67061 and GSE74706 were obtained from the Gene Expression Omnibus database. GEO2R was used to identify the differentially expressed genes (DEGs) in lung cancer. The Database for Annotation, Visualization and Integrated Discovery was used to analyze the functions and pathways of the DEGs, while the Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape were used to obtain the protein-protein interaction (PPI) network. Kaplan Meier curves were used to analyze the effect of the hub genes on overall survival (OS). Module analysis was completed using Molecular Complex Detection in Cytoscape, and one co-expression network of these significant genes was obtained with cBioPortal. A total of 552 DEGs were identified among the four microarray datasets, which were mainly enriched in 'cell proliferation', 'cell growth', 'cell division', 'angiogenesis' and 'mitotic nuclear division'. A PPI network, composed of 44 nodes and 886 edges, was constructed, and its significant module had 16 hub genes in the whole network: Opa interacting protein 5, exonuclease 1, PCNA clamp-associated factor, checkpoint kinase 1, hyaluronan-mediated motility receptor, maternal embryonic leucine zipper kinase, non-SMC condensin I complex subunit G, centromere protein F, BUB1 mitotic checkpoint serine/threonine kinase, cyclin A2, thyroid hormone receptor interactor 13, TPX2 microtubule nucleation factor, nucleolar and spindle associated protein 1, kinesin family member 20A, aurora kinase A and centrosomal protein 55. Survival analysis of these hub genes revealed that they were markedly associated with poor OS in patients with lung cancer. In summary, the hub genes and DEGs delineated in the research may aid the identification of potential targets for diagnostic and therapeutic strategies in lung cancer.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Meixiang Sang
- Hebei Cancer Research Center, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhao Liu
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing 100142, P.R. China
| | - Jian Lv
- Second Department of Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Fan Zhang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Baoen Shan
- Hebei Cancer Research Center, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
43
|
Zhou CJ, Wang XY, Han Z, Wang DH, Ma YZ, Liang CG. Loss of CENPF leads to developmental failure in mouse embryos. Cell Cycle 2019; 18:2784-2799. [PMID: 31478449 DOI: 10.1080/15384101.2019.1661173] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aneuploidy caused by abnormal chromosome segregation during early embryo development leads to embryonic death or congenital malformation. Centromere protein F (CENPF) is a member of centromere protein family that regulates chromosome segregation during mitosis. However, its necessity in early embryo development has not been fully investigated. In this study, expression and function of CENPF was investigated in mouse early embryogenesis. Detection of CENPF expression and localization revealed a cytoplasm, spindle and nuclear membrane related dynamic pattern throughout mitotic progression. Farnesyltransferase inhibitor (FTI) was employed to inhibit CENPF farnesylation in zygotes. The results showed that CENPF degradation was inhibited and its specific localization on nuclear membranes in morula and blastocyst vanished after FTI treatment. Also, CAAX motif mutation leads to failure of CENPF-C630 localization in morula and blastocyst. These results indicate that farnesylation plays a key role during CENPF degradation and localization in early embryos. To further assess CENPF function in parthenogenetic or fertilized embryos development, morpholino (MO) and Trim-Away were used to disturb CENPF function. CENPF knockdown in Metaphase II (MII) oocytes, zygotes or embryos with MO approach resulted in failure to develop into morulae and blastocysts, revealing its indispensable role in both parthenogenetic and fertilized embryos. Disturbing of CENPF with Trim-Away approach in zygotes resulted in impaired development of 2-cell and 4-cell, but did not affect the morula and blastocyst formation because of the recovered expression of CENPF. Taken together, our data suggest CENPF plays an important role during early embryonic development in mice. Abbreviation: CENPF: centromere protein F; MO: morpholino; FTI: Farnesyltransferase inhibitor; CENPE: centromere protein E; IVF: in vitro fertilization; MII: metaphase II; SAC: spindle assembly checkpoint; Mad1: mitotic arrest deficient 1; BUB1: budding uninhibited by benzimidazole 1; BUBR1: BUB1 mitotic checkpoint serine/threonine kinase B; Cdc20: cell division cycle 20.
Collapse
Affiliation(s)
- Cheng-Jie Zhou
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Xing-Yue Wang
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Zhe Han
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Dong-Hui Wang
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| | - Yu-Zhen Ma
- Department of Obstetrics and Gynecology, Inner Mongolia People's Hospital , Hohhot , People's Republic of China
| | - Cheng-Guang Liang
- The Research Centre for Laboratory Animal Science, State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University , Hohhot , People's Republic of China
| |
Collapse
|
44
|
Nováková M, Hampl M, Vrábel D, Procházka J, Petrezselyová S, Procházková M, Sedláček R, Kavková M, Zikmund T, Kaiser J, Juan HC, Fann MJ, Buchtová M, Kohoutek J. Mouse Model of Congenital Heart Defects, Dysmorphic Facial Features and Intellectual Developmental Disorders as a Result of Non-functional CDK13. Front Cell Dev Biol 2019; 7:155. [PMID: 31440507 PMCID: PMC6694211 DOI: 10.3389/fcell.2019.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/23/2019] [Indexed: 12/16/2022] Open
Abstract
Congenital heart defects, dysmorphic facial features and intellectual developmental disorders (CHDFIDD) syndrome in humans was recently associated with mutation in CDK13 gene. In order to assess the loss of function of Cdk13 during mouse development, we employed gene trap knock-out (KO) allele in Cdk13 gene. Embryonic lethality of Cdk13-deficient animals was observed by the embryonic day (E) 16.5, while live embryos were observed on E15.5. At this stage, improper development of multiple organs has been documented, partly resembling defects observed in patients with mutated CDK13. In particular, overall developmental delay, incomplete secondary palate formation with variability in severity among Cdk13-deficient animals or complete midline deficiency, kidney failure accompanied by congenital heart defects were detected. Based on further analyses, the lethality at this stage is a result of heart failure most likely due to multiple heart defects followed by insufficient blood circulation resulting in multiple organs dysfunctions. Thus, Cdk13 KO mice might be a very useful model for further studies focused on delineating signaling circuits and molecular mechanisms underlying CHDFIDD caused by mutation in CDK13 gene.
Collapse
Affiliation(s)
- Monika Nováková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czechia
| | - Marek Hampl
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Dávid Vrábel
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czechia
| | - Jan Procházka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia.,Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Silvia Petrezselyová
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia.,Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Michaela Procházková
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia.,Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Radislav Sedláček
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia.,Czech Centre for Phenogenomics, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czechia
| | - Michaela Kavková
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Hsien-Chia Juan
- Department of Life Sciences, Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Ji Fann
- Department of Life Sciences, Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jiří Kohoutek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czechia
| |
Collapse
|
45
|
Wang J, Zhang Y, Lu L, Lu Y, Tang Q, Pu J. Insight into the molecular mechanism of LINC00152/miR-215/CDK13 axis in hepatocellular carcinoma progression. J Cell Biochem 2019; 120:18816-18825. [PMID: 31297882 DOI: 10.1002/jcb.29197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 01/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. Nevertheless, its underlying molecular mechanisms are largely unknown. LINC00152 are recently investigated in several cancer types. In our current investigation, we observed LINC00152 was obviously upregulated in HCC cells. LINC00152 was significantly downregulated by infecting LV-shLINC00152 in HepG2 and SNU449 cells. Loss of LINC00152 remarkably repressed HCC cell proliferation, cell colony formation, induced cell apoptosis, and restrained cell migration/invasion. Growing evidence has reported long noncoding RNAs can sponge microRNAs to modulate cancer process. Here, we indicated miR-215 was greatly decreased in HCC and LINC00152 regulated HCC development via sponging miR-215. For another, the binding association between LINC00152 and miR-215 was proved by a series of functional assays. CDK13 was predicted as the target of miR-215. Upregulation of miR-215 greatly depressed CDK13 in HCC cells. Subsequently, the in vivo results demonstrated that silence of LINC00152 restrained HCC development via modulating miR-215 to up-regulate CDK13. Therefore, it was revealed that LINC00152 contributed to the progression of HCC by the modulation of miR-215 and CDK13.
Collapse
Affiliation(s)
- Jianchu Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.,Clinic Medicine Research Center for Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Ying Zhang
- Clinic Medicine Research Center for Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China.,Library of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Libai Lu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.,Clinic Medicine Research Center for Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.,Clinic Medicine Research Center for Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Qianli Tang
- Clinic Medicine Research Center for Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China.,Clinic Medicine Research Center for Hepatobiliary Diseases, The Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
46
|
Xu B, Lv W, Li X, Zhang L, Lin J. Prognostic genes of hepatocellular carcinoma based on gene coexpression network analysis. J Cell Biochem 2019; 120:11616-11623. [PMID: 30775801 DOI: 10.1002/jcb.28441] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common subtype in liver cancer whose prognosis is affected by malignant progression associated with complex gene interactions. However, there is currently no available biomarkers associated with HCC progression in clinical application. In our study, RNA sequencing expression data of 50 normal samples and 374 tumor samples was analyzed and 9225 differentially expressed genes were screened. Weighted gene coexpression network analysis was then conducted and the blue module we were interested was identified by calculating the correlations between 17 gene modules and clinical features. In the blue module, the calculation of topological overlap was applied to select the top 30 genes and these 30 genes were divided into the green group (11 genes) and the yellow group (19 genes) through searching whether these genes were validated by in vitro or in vivo experiments. The genes in the green group which had never been validated by any experiments were recognized as hub genes. These hub genes were subsequently validated by a new data set GSE76427 and KM Plotter Online Tool, and the results indicated that 10 genes (FBXO43, ARHGEF39, MXD3, VIPR1, DNASE1L3, PHLDA1, CSRNP1, ADR2B, C1RL, and CDC37L1) could act as prognosis and progression biomarkers of HCC. In summary, 10 genes who have never been mentioned in HCC were identified to be associated with malignant progression and prognosis of patients. These findings may contribute to the improvement of the therapeutic decision, risk stratification, and prognosis prediction for HCC patients.
Collapse
Affiliation(s)
- Baojin Xu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Wu Lv
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Lina Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jie Lin
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
47
|
Zheng H, Chen T, Li C, Xu C, Ding C, Chen J, Ju S, Zhang Z, Liang Z, Cui Z, Zhao J. A circular RNA hsa_circ_0079929 inhibits tumor growth in hepatocellular carcinoma. Cancer Manag Res 2019; 11:443-454. [PMID: 30655696 PMCID: PMC6322497 DOI: 10.2147/cmar.s189338] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Most recently, circular RNAs (circRNAs) were considered playing regulatory roles in tumor initiation and development. The specific function of circRNAs in hepatocellular carcinoma (HCC) remains unknown. This study was designed to detect specific roles of a circRNA hsa_circ_0079299 in HCC. Methods The expression of hsa_circ_0079299 in HCC and tumor cell lines was detected using quantitative PCR (qPCR). Cell proliferation, migration, cell cycle and apoptosis after overexpression of the circRNA were measured using cell counting kit-8 (CCK8) assay, colony formation, 5-ethynyl-2′-deoxyuridine (EdU) assay, wound healing assay, transwell culture system and flow cytometry. Western blotting assay detected the protein expression of PI3K/AKT/mTOR signaling pathway and cyclin B1 (CCNB1). Overexpression of the circRNA in vivo was measured by nude mice tumorigenesis. Results The expression of hsa_circ_0079299 was lower in HCC tissues. Overexpression of hsa_circ_0079299 suppressed tumor growth in vitro and in vivo, retarded cell cycle progression while had no effect on cell migration and apoptosis. The inhibitory effect of hsa_circ_0079299 was partly mediated by PI3K/AKT/mTOR signaling pathway. Conclusion Our study shows that tumor suppressive role of hsa_circ_0079299 in HCC provides new recognition of circRNAs in cancers.
Collapse
Affiliation(s)
- Huifei Zheng
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tengfei Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Chang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Chun Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Cheng Ding
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Jun Chen
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Sheng Ju
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Zhiwei Zhang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Zhipan Liang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Zihan Cui
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| | - Jun Zhao
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China,
| |
Collapse
|
48
|
Cai C, Wang W, Tu Z. Aberrantly DNA Methylated-Differentially Expressed Genes and Pathways in Hepatocellular Carcinoma. J Cancer 2019; 10:355-366. [PMID: 30719129 PMCID: PMC6360310 DOI: 10.7150/jca.27832] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
Background: Methylation plays a significant role in the etiology and pathogenesis of hepatocellular carcinoma (HCC). The aim of the present study is to identify aberrantly methylated-diferentially expressed genes (DEGs) and dysregulated pathways associated with the development of HCC through integrated analysis of gene expression and methylation microarray. Method: Aberrantly methylated-DEGs were identified from gene expression microarrays (GSE62232, GSE74656) and gene methylation microarrays (GSE44909, GSE57958). Functional enrichment and pathway enrichment analyses were performed through the database of DAVID. Protein-protein interaction (PPI) network was established by STRING and visualized in Cytoscape. Subsequently, overall survival (OS) analysis of hub genes was performed by OncoLnc. Finally, we validated the expression level of CDCA5 by quantitative real-time PCR (qRT-PCR) and western blotting, and performed Immunohistochemical experiments utilizing a tissue microarray. Cell growth assay and flow cytometry were behaved to explore the function of CDCA5. Results: Aberrantly methylated-DEGs were enriched in biological process, molecular function, cellular component and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Among them, cell cycle was enriched most frequently, and some terms associated with cancer were enriched, such as p53 signaling pathway, pathways in cancers, PI3K-Akt signaling pathway and AMPK signaling pathway. After survival analysis and validation in TCGA database including methylation and gene expression status, 12 hub genes were identified. Furthermore, the expression level of new gene CDCA5 was validated in HCC cell lines and hepatic normal cell lines through qRT-PCR and western blotting. In additional, immunohistochemistry experiments revealed higher CDCA5 protein expression from HCC tumor tissues compared with paracancer tissues by tissue microarray. Finally, through loss of function, we demonstrated that CDCA5 promoted proliferation by regulating the cell cycle. Conclusions: In summary, the present study implied possible aberrantly methylated-differentially expressed genes and dysregulated pathways in HCC by bioinformatics analysis and experiments, which could be helpful in understanding the molecular mechanisms underlying the development and progression of HCC. Hub genes including CDC20, AURKB, BIRC5, RRM2, MCM2, PTTG1, CDKN2A, NEK2, CENPF, RACGAP1, GNA14 and especially the new gene CDCA5 may serve as biomarkers for diagnosis, treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Changzhou Cai
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Weilin Wang
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Ward of Liver transplant, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery. First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhenhua Tu
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Ward of Liver transplant, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery. First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, China
- Shenzhen Key Laboratory of Hepatobiliary Disease, Shenzhen Third People`s Hospital, Shenzhen 518112, China
| |
Collapse
|
49
|
Michalak M, Warnken U, Schnölzer M, Gabius HJ, Kopitz J. Detection of malignancy-associated phosphoproteome changes in human colorectal cancer induced by cell surface binding of growth-inhibitory galectin-4. IUBMB Life 2018; 71:364-375. [PMID: 30550624 DOI: 10.1002/iub.1987] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 01/28/2023]
Abstract
Emerging evidence on efficient tumor growth regulation by endogenous lectins directs interest to determine on a proof-of-principle level the range of information on alterations provided by full-scale analysis using phosphoproteomics. In our pilot study, we tested galectin-4 (gal-4) that is a growth inhibitor for colon cancer cells (CRC), here working with the LS 180 line. In order to cover monitoring of short- and long-term effects stable isotope labeling by amino acids in cell culture-based quantitative phosphoproteomic analyses were conducted on LS 180 cell preparations collected 1 and 72 h after adding gal-4 to the culture medium. After short-term treatment, 981 phosphosites, all of them S/T based, were detected by phosphoproteomics. Changes higher than 1.5-fold were seen for eight sites in seven proteins. Most affected were the BET1 homolog (BET1), whose level of phosphorylation at S50 was about threefold reduced, and centromere protein F (CENPF), extent of phosphorylation at S3119 doubling in gal-4-treated cells. Phosphoproteome analysis after 72 h of treatment revealed marked changes at 33 S/T-based phosphosites from 29 proteins. Prominent increase of phosphorylation was observed for cofilin-1 at position S3. Extent of phosphorylation of the glutamine transporter SLC1A5 at position S503 was decreased by a factor of 3. Altered phosphorylation of BET1, CENPF, and cofilin-1 as well as a significant effect of gal-4 treatment on glutamine uptake by cells were substantiated by independent methods in the Vaco 432, Colo 205, CX 1, and HCT 116 cell lines. With the example of gal-4 which functions as a tumor suppressor in CRC cells, we were able to prove that cell surface binding of the lectin not only markedly influences the cell proteome, but also has a bearing on malignancy-associated intracellular protein phosphorylation. These results underscore the potential of this approach to give further work on elucidating the details of signaling underlying galectin-triggered growth inhibition a clear direction. © 2018 IUBMB Life, 71(3):364-375, 2019.
Collapse
Affiliation(s)
- Malwina Michalak
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Schnölzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans-Joachim Gabius
- Faculty of Veterinary Medicine, Institute of Physiological Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jürgen Kopitz
- Department of Applied Tumor Biology, Institute of Pathology, Medical School of the Ruprecht-Karls-University, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
50
|
Abstract
The fact that many cancer types display transcriptional addiction driven by dysregulation of oncogenic enhancers and transcription factors has led to increased interest in a group of protein kinases, known as transcriptional cyclin dependent kinases (tCDKs), as potential therapeutic targets. Despite early reservations about targeting a process that is essential to healthy cell types, there is now evidence that targeting tCDKs could provide enough therapeutic window to be effective in the clinic. Here, we discuss recent developments in this field, with an emphasis on highly-selective inhibitors and the challenges to be addressed before these inhibitors could be used for therapeutic purposes. Abbreviations: CAK: CDK-activating kinase;CDK: cyclin-dependent kinase;CMGC group: CDK-, MAPK-, GSK3-, and CLK-like;CTD: C-terminal repeat domain of the RPB1 subunit of RNA polymerase II;DRB: 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole;mCRPC: metastatic castration-resistant prostate cancer;NSCLC: non-small cell lung cancer;P-TEFb: positive elongation factor b;RNAPII: RNA polymerase II;S2: serine-2 of CTD repeats;S5: serine-5 of CTD repeats;S7: serine-7 of CTD repeats;SEC: super elongation complex;tCDK: transcriptional cyclin-dependent kinase;TNBC: triple-negative breast cancer
Collapse
Affiliation(s)
- Matthew D Galbraith
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Heather Bender
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Joaquín M Espinosa
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,c Department of Molecular, Cellular and Developmental Biology , University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|