1
|
Fujinami K, Nishiguchi KM, Oishi A, Akiyama M, Ikeda Y. Specification of variant interpretation guidelines for inherited retinal dystrophy in Japan. Jpn J Ophthalmol 2024; 68:389-399. [PMID: 39078460 DOI: 10.1007/s10384-024-01063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 07/31/2024]
Abstract
Accurate interpretation of sequence variants in inherited retinal dystrophy (IRD) is vital given the significant genetic heterogeneity observed in this disorder. To achieve consistent and accurate diagnoses, establishment of standardized guidelines for variant interpretation is essential. The American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) guidelines for variant interpretation serve as the global "cross-disease" standard for classifying variants in Mendelian hereditary disorders. These guidelines propose a systematic approach for categorizing variants into 5 classes based on various types of evidence, such as population data, computational data, functional data, and segregation data. However, for clinical genetic diagnosis and to ensure standardized diagnosis and treatment criteria, additional specifications based on features associated with each disorder are necessary. In this context, we present a comprehensive framework outlining the newly specified ACMG/AMP rules tailored explicitly to IRD in the Japanese population on behalf of the Research Group on Rare and Intractable Diseases (Ministry of Health, Labour and Welfare of Japan). These guidelines consider disease frequencies, allele frequencies, and both the phenotypic and the genotypic characteristics unique to IRD in the Japanese population. Adjustments and modifications have been incorporated to reflect the specific requirements of the population. By incorporating these IRD-specific factors and refining the existing ACMG/AMP guidelines, we aim to enhance the accuracy and consistency of variant interpretation in IRD cases, particularly in the Japanese population. These guidelines serve as a valuable resource for ophthalmologists and clinical geneticists involved in the diagnosis and treatment of IRD, providing them with a standardized framework to assess and classify genetic variants.
Collapse
Affiliation(s)
- Kaoru Fujinami
- Laboratory of Visual Physiology, Division of Vision Research, National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo, 152-8902, Japan
| | - Koji M Nishiguchi
- Department of Ophthalmology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, 466-8550, Japan.
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8501, Japan
| | - Masato Akiyama
- Department of Ocular Pathology and Imaging Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| |
Collapse
|
2
|
Daich Varela M, Georgiadis A, Michaelides M. Genetic treatment for autosomal dominant inherited retinal dystrophies: approaches, challenges and targeted genotypes. Br J Ophthalmol 2023; 107:1223-1230. [PMID: 36038193 DOI: 10.1136/bjo-2022-321903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Inherited retinal diseases (IRDs) have been in the front line of gene therapy development for the last decade, providing a useful platform to test novel therapeutic approaches. More than 40 clinical trials have been completed or are ongoing, tackling autosomal recessive and X-linked conditions, mostly through adeno-associated viral vector delivery of a normal copy of the disease-causing gene. However, only recently has autosomal dominant (ad) disease been targeted, with the commencement of a trial for rhodopsin (RHO)-associated retinitis pigmentosa (RP), implementing antisense oligonucleotide (AON) therapy, with promising preliminary results (NCT04123626).Autosomal dominant RP represents 15%-25% of all RP, with RHO accounting for 20%-30% of these cases. Autosomal dominant macular and cone-rod dystrophies (MD/CORD) correspond to approximately 7.5% of all IRDs, and approximately 35% of all MD/CORD cases, with the main causative gene being BEST1 Autosomal dominant IRDs are not only less frequent than recessive, but also tend to be less severe and have later onset; for example, an individual with RHO-adRP would typically become severely visually impaired at an age 2-3 times older than in X-linked RPGR-RP.Gain-of-function and dominant negative aetiologies are frequently seen in the prevalent adRP genes RHO, RP1 and PRPF31 among others, which would not be effectively addressed by gene supplementation alone and need creative, novel approaches. Zinc fingers, RNA interference, AON, translational read-through therapy, and gene editing by clustered regularly interspaced short palindromic repeats/Cas are some of the strategies that are currently under investigation and will be discussed here.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Michel Michaelides
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
3
|
Liu W, Liu S, Li P, Yao K. Retinitis Pigmentosa: Progress in Molecular Pathology and Biotherapeutical Strategies. Int J Mol Sci 2022; 23:ijms23094883. [PMID: 35563274 PMCID: PMC9101511 DOI: 10.3390/ijms23094883] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is genetically heterogeneous retinopathy caused by photoreceptor cell death and retinal pigment epithelial atrophy that eventually results in blindness in bilateral eyes. Various photoreceptor cell death types and pathological phenotypic changes that have been disclosed in RP demand in-depth research of its pathogenic mechanism that may account for inter-patient heterogeneous responses to mainstream drug treatment. As the primary method for studying the genetic characteristics of RP, molecular biology has been widely used in disease diagnosis and clinical trials. Current technology iterations, such as gene therapy, stem cell therapy, and optogenetics, are advancing towards precise diagnosis and clinical applications. Specifically, technologies, such as effective delivery vectors, CRISPR/Cas9 technology, and iPSC-based cell transplantation, hasten the pace of personalized precision medicine in RP. The combination of conventional therapy and state-of-the-art medication is promising in revolutionizing RP treatment strategies. This article provides an overview of the latest research on the pathogenesis, diagnosis, and treatment of retinitis pigmentosa, aiming for a convenient reference of what has been achieved so far.
Collapse
|
4
|
Tachibana N, Hosono K, Nomura S, Arai S, Torii K, Kurata K, Sato M, Shimakawa S, Azuma N, Ogata T, Wada Y, Okamoto N, Saitsu H, Nishina S, Hotta Y. Maternal Uniparental Isodisomy of Chromosome 4 and 8 in Patients with Retinal Dystrophy: SRD5A3-Congenital Disorders of Glycosylation and RP1-Related Retinitis Pigmentosa. Genes (Basel) 2022; 13:genes13020359. [PMID: 35205402 PMCID: PMC8872353 DOI: 10.3390/genes13020359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/27/2023] Open
Abstract
Purpose: Uniparental disomy (UPD) is a rare chromosomal abnormality. We performed whole-exosome sequencing (WES) in cases of early-onset retinal dystrophy and identified two cases likely caused by UPD. Herein, we report these two cases and attempt to clarify the clinical picture of retinal dystrophies caused by UPD. Methods: WES analysis was performed for two patients and their parents, who were not consanguineous. Functional analysis was performed in cases suspected of congenital disorders of glycosylation (CDG). We obtained clinical case data and reviewed the literature. Results: In case 1, a novel c.57G>C, p.(Trp19Cys) variant in SRD5A3 was detected homozygously. Genetic analysis suggested a maternal UPD on chromosome 4, and functional analysis confirmed CDG. Clinical findings showed early-onset retinal dystrophy, intellectual disability, and epilepsy. In case 2, an Alu insertion (c.4052_4053ins328, p.[Tyr1352Alafs]) in RP1 was detected homozygously. Maternal UPD on chromosome 8 was suspected. The clinical picture was consistent with RP1-related retinitis pigmentosa. Although the clinical features of retinal dystrophy by UPD may vary, most cases present with childhood onset. Conclusions: There have been limited reports of retinal dystrophy caused by UPD, suggesting that it is rare. Genetic counseling may be encouraged in pediatric cases of retinal dystrophy.
Collapse
Affiliation(s)
- Nobutaka Tachibana
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (N.T.); (K.H.); (S.N.); (S.A.); (K.T.); (K.K.); (M.S.)
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (N.T.); (K.H.); (S.N.); (S.A.); (K.T.); (K.K.); (M.S.)
| | - Shuhei Nomura
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (N.T.); (K.H.); (S.N.); (S.A.); (K.T.); (K.K.); (M.S.)
| | - Shinji Arai
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (N.T.); (K.H.); (S.N.); (S.A.); (K.T.); (K.K.); (M.S.)
| | - Kaoruko Torii
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (N.T.); (K.H.); (S.N.); (S.A.); (K.T.); (K.K.); (M.S.)
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (N.T.); (K.H.); (S.N.); (S.A.); (K.T.); (K.K.); (M.S.)
| | - Miho Sato
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (N.T.); (K.H.); (S.N.); (S.A.); (K.T.); (K.K.); (M.S.)
| | - Shuichi Shimakawa
- Department of Pediatrics, Osaka Medical and Pharmaceutical University Hospital, Takatsuki 569-8686, Japan;
| | - Noriyuki Azuma
- National Center for Child Health and Development, Department of Ophthalmology and Laboratory for Visual Science, Tokyo 157-8535, Japan; (N.A.); (S.N.)
| | - Tsutomu Ogata
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (T.O.); (H.S.)
- Hamamatsu Medical Center, Department of Pediatrics, Hamamatsu 432-8580, Japan
| | - Yoshinao Wada
- Department of Molecular Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (Y.W.); (N.O.)
| | - Nobuhiko Okamoto
- Department of Molecular Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (Y.W.); (N.O.)
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (T.O.); (H.S.)
| | - Sachiko Nishina
- National Center for Child Health and Development, Department of Ophthalmology and Laboratory for Visual Science, Tokyo 157-8535, Japan; (N.A.); (S.N.)
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (N.T.); (K.H.); (S.N.); (S.A.); (K.T.); (K.K.); (M.S.)
- Correspondence: ; Tel.: +81-53-435-2256
| |
Collapse
|
5
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
6
|
Dhangar S, Panchal P, Ghatanatti J, Suralkar J, Shah A, Vundinti BR. Novel deletion of exon 3 in TYR gene causing Oculocutaneous albinism 1B in an Indian family along with intellectual disability associated with chromosomal copy number variations. BMC Med Genomics 2022; 15:2. [PMID: 34980106 PMCID: PMC8722050 DOI: 10.1186/s12920-021-01152-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Background Oculocutaneous albinism (OCA) is an autosomal recessive disorder characterized by hypo-pigmentation of skin, hair, and eyes. The OCA clinical presentation is due to a deficiency of melanin biosynthesis. Intellectual disability (ID) in OCA cases is a rare clinical presentation and appropriate diagnosis of ID is challenging through clinical examination. We report an Indian family with a rare co-inheritance of OCA1B and ID due to a novel TYR gene variant and chromosomal copy number variations. Methods We have done a study on three siblings (2 males and 1 female) of a family where all of them presented with hypopigmented skin, hair and eyes. The male children and their father was affected with ID. Targeted exome sequencing and multiplex ligation-dependent probe amplification analysis were carried out to identify the OCA1B and ID associated genomic changes. Further Array-CGH was performed using SurePrint G3 Human CGH + SNP, 8*60 K array. Results A rare homozygous deletion of exon 3 in TYR gene causing OCA1B was identified in all three children. The parents were found to be heterozygous carriers. The Array-CGH analysis revealed paternally inherited heterozygous deletion (1.9 MB) of 15q11.1-> 15q11.2 region in all three children. Additionally, paternally inherited heterozygous deletion (2.6 MB) of 10q23.2-> 10q23.31 region was identified in the first male child; this may be associated with ID as the father and the child both presented with ID. While the 2nd male child had a denovo duplication of 13q31.1-> 13q31.3 chromosomal region. Conclusion A rare homozygous TYR gene exon 3 deletion in the present study is the cause of OCA1B in all three children, and the additional copy number variations are associated with the ID. The study highlights the importance of combinational genetic approaches for diagnosing two different co-inherited disorders (OCA and ID). Hence, OCA cases with additional clinical presentation need to be studied in-depth for the appropriate management of the disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-021-01152-1.
Collapse
Affiliation(s)
- Somprakash Dhangar
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India
| | - Purvi Panchal
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India
| | - Jagdeeshwar Ghatanatti
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India
| | - Jitendra Suralkar
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India
| | - Anjali Shah
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, National Institute of Immunohaematology (ICMR), 13th floor, new multistoried building, K.E.M Hospital campus, Parel, Mumbai, 400012, India.
| |
Collapse
|
7
|
Mizobuchi K, Hayashi T, Oishi N, Kubota D, Kameya S, Higasa K, Futami T, Kondo H, Hosono K, Kurata K, Hotta Y, Yoshitake K, Iwata T, Matsuura T, Nakano T. Genotype-Phenotype Correlations in RP1-Associated Retinal Dystrophies: A Multi-Center Cohort Study in JAPAN. J Clin Med 2021; 10:jcm10112265. [PMID: 34073704 PMCID: PMC8197273 DOI: 10.3390/jcm10112265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Little is known about genotype–phenotype correlations of RP1-associated retinal dystrophies in the Japanese population. We aimed to investigate the genetic spectrum of RP1 variants and provide a detailed description of the clinical findings in Japanese patients. Methods: In total, 607 patients with inherited retinal diseases were examined using whole-exome/whole-genome sequencing (WES/WGS). PCR-based screening for an Alu element insertion (c.4052_4053ins328/p.Tyr1352AlafsTer9) was performed in 18 patients with autosomal-recessive (AR)-retinitis pigmentosa (RP) or AR-cone dystrophy (COD)/cone-rod dystrophy (CORD), including seven patients with heterozygous RP1 variants identified by WES/WGS analysis, and 11 early onset AR-RP patients, in whom no pathogenic variant was identified. We clinically examined 25 patients (23 families) with pathogenic RP1 variants, including five patients (five families) with autosomal-dominant (AD)-RP, 13 patients (11 families) with AR-RP, and seven patients (seven families) with AR-COD/CORD. Results: We identified 18 pathogenic RP1 variants, including seven novel variants. Interestingly, the Alu element insertion was the most frequent variant (32.0%, 16/50 alleles). The clinical findings revealed that the age at onset and disease progression occurred significantly earlier and faster in AR-RP patients compared to AD-RP or AR-COD/CORD patients. Conclusions: Our results suggest a genotype–phenotype correlation between variant types/locations and phenotypes (AD-RP, AR-RP, and AR-COD/CORD), and the Alu element insertion was the most major variant in Japanese patients with RP1-associated retinal dystrophies.
Collapse
Affiliation(s)
- Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan; (T.H.); (T.N.)
- Correspondence: ; Tel.: +81-3-3433-1111
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan; (T.H.); (T.N.)
- Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, 6-41-2 Aoto, Katsushika-ku, Tokyo 125-8506, Japan
| | - Noriko Oishi
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan; (N.O.); (D.K.); (S.K.)
| | - Daiki Kubota
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan; (N.O.); (D.K.); (S.K.)
| | - Shuhei Kameya
- Department of Ophthalmology, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari, Inzai, Chiba 270-1694, Japan; (N.O.); (D.K.); (S.K.)
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan;
| | - Takuma Futami
- Department of Ophthalmology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fu-kuoka 807-8555, Japan; (T.F.); (H.K.)
| | - Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku Kitakyushu-shi, Fu-kuoka 807-8555, Japan; (T.F.); (H.K.)
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Shizuoka, Hamamatsu 431-3192, Japan; (K.H.); (K.K.); (Y.H.)
| | - Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Shizuoka, Hamamatsu 431-3192, Japan; (K.H.); (K.K.); (Y.H.)
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Shizuoka, Hamamatsu 431-3192, Japan; (K.H.); (K.K.); (Y.H.)
| | - Kazutoshi Yoshitake
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan; (K.Y.); (T.I.)
| | - Takeshi Iwata
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-ku, Tokyo 152-8902, Japan; (K.Y.); (T.I.)
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan;
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan; (T.H.); (T.N.)
| |
Collapse
|
8
|
Wang J, Xiao X, Li S, Wang P, Sun W, Zhang Q. Dominant RP in the Middle While Recessive in Both the N- and C-Terminals Due to RP1 Truncations: Confirmation, Refinement, and Questions. Front Cell Dev Biol 2021; 9:634478. [PMID: 33681214 PMCID: PMC7935555 DOI: 10.3389/fcell.2021.634478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022] Open
Abstract
RP1 truncation variants, including frameshift, nonsense, and splicing, are a common cause of retinitis pigmentosa (RP). RP1 is a unique gene where truncations cause either autosomal dominant RP (adRP) or autosomal recessive RP (arRP) depending on the location of the variants. This study aims to clarify the boundaries between adRP and arRP caused by RP1 truncation variants based on a systemic analysis of 165 RP1 variants from our in-house exome-sequencing data of 7,092 individuals as well as a thorough review of 185 RP1 variants from published literature. In our cohort, potential pathogenic variants were detected in 16 families, including 11 new and five previously described families. Of the 16, seven families with adRP had heterozygous truncations in the middle portion, while nine families with either arRP (eight) or macular degeneration had biallelic variants in the N- and C-terminals, involving 10 known and seven novel variants. In the literature, 147 truncations in RP1 were reported to be responsible for either arRP (85) or adRP (58) or both (four). An overall evaluation of RP1 causative variants suggested three separate regions, i.e., the N-terminal from c.1 (p.1) to c.1837 (p.613), the middle portion from c.1981 (p.661) to c.2749 (p.917), and the C-terminal from c.2816 (p.939) to c.6471 (p.2157), where truncations in the middle portion were associated with adRP, while those in the N- and C-terminals were responsible for arRP. Heterozygous truncations alone in the N- and C- terminals were unlikely pathogenic. However, conflict reports with reverse situation were present for 13 variants, suggesting a complicated pathogenicity awaiting to be further elucidated. In addition, pathogenicity for homozygous truncations around c.5797 and thereafter might also need to be further clarified, so as for missense variants and for truncations located in the two gaps. Our data not only confirmed and refined the boundaries between dominant and recessive RP1 truncations but also revealed unsolved questions valuable for further investigation. These findings remind us that great care is needed in interpreting the results of RP1 variants in clinical gene testing as well as similar features may also be present in some other genes.
Collapse
Affiliation(s)
- Junwen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Pax6 modulates intra-retinal axon guidance and fasciculation of retinal ganglion cells during retinogenesis. Sci Rep 2020; 10:16075. [PMID: 32999322 PMCID: PMC7527980 DOI: 10.1038/s41598-020-72828-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Intra-retinal axon guidance involves a coordinated expression of transcription factors, axon guidance genes, and secretory molecules within the retina. Pax6, the master regulator gene, has a spatio-temporal expression typically restricted till neurogenesis and fate-specification. However, our observation of persistent expression of Pax6 in mature RGCs led us to hypothesize that Pax6 could play a major role in axon guidance after fate specification. Here, we found significant alteration in intra-retinal axon guidance and fasciculation upon knocking out of Pax6 in E15.5 retina. Through unbiased transcriptome profiling between Pax6fl/fl and Pax6−/− retinas, we revealed the mechanistic insight of its role in axon guidance. Our results showed a significant increase in the expression of extracellular matrix molecules and decreased expression of retinal fate specification and neuron projection guidance molecules. Additionally, we found that EphB1 and Sema5B are directly regulated by Pax6 owing to the guidance defects and improper fasciculation of axons. We conclude that Pax6 expression post fate specification of RGCs is necessary for regulating the expression of axon guidance genes and most importantly for maintaining a conducive ECM through which the nascent axons get guided and fasciculate to reach the optic disc.
Collapse
|
10
|
Huckfeldt RM, Grigorian F, Place E, Comander JI, Vavvas D, Young LH, Yang P, Shurygina M, Pierce EA, Pennesi ME. Biallelic RP1-associated retinal dystrophies: Expanding the mutational and clinical spectrum. Mol Vis 2020; 26:423-433. [PMID: 32565670 PMCID: PMC7300197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/01/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To evaluate the phenotypic spectrum of autosomal recessive RP1-associated retinal dystrophies and assess genotypic associations. METHODS A retrospective multicenter study was performed of patients with biallelic RP1-associated retinal dystrophies. Data including presenting symptoms and age, visual acuity, kinetic perimetry, full field electroretinogram, fundus examination, multimodal retinal imaging, and RP1 genotype were evaluated. RESULTS Nineteen eligible patients from 17 families were identified and ranged in age from 10 to 56 years at the most recent evaluation. Ten of the 21 unique RP1 variants identified were novel, and mutations within exon 2 accounted for nearly half of alleles across the cohort. Patients had clinical diagnoses of retinitis pigmentosa (13), cone-rod dystrophy (3), Leber congenital amaurosis (1), early-onset severe retinal dystrophy (1), and macular dystrophy (1). Macular atrophy was a common feature across the cohort. Symptom onset occurred between 4 and 30 years of age (mean 14.9 years, median 13 years), but there were clusters of onset age that correlated with the effects of RP1 mutations at a protein level. Patients with later-onset disease, including retinitis pigmentosa, had at least one missense variant in an exon 2 DCX domain. CONCLUSIONS Biallelic RP1 mutations cause a broad spectrum of retinal disease. Exon 2 missense mutations are a significant contributor to disease and can be associated with a considerably later onset of retinitis pigmentosa than that typically associated with biallelic RP1 mutations.
Collapse
Affiliation(s)
- Rachel M. Huckfeldt
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Florin Grigorian
- Casey Eye Institute, Oregon Health & Science University, Portland, OR,Department of Ophthalmology, University of Arkansas School of Medicine, Little Rock, AR
| | - Emily Place
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Jason I. Comander
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Demetrios Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Lucy H. Young
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR
| | - Maria Shurygina
- Casey Eye Institute, Oregon Health & Science University, Portland, OR,S.N. Fyodorov Eye Microsurgery Federal State Institution of the Russian Ministry of Health, Moscow, Russia
| | - Eric A. Pierce
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA
| | - Mark E. Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR
| |
Collapse
|
11
|
Verbakel SK, van Huet RAC, den Hollander AI, Geerlings MJ, Kersten E, Klevering BJ, Klaver CCW, Plomp AS, Wesseling NL, Bergen AAB, Nikopoulos K, Rivolta C, Ikeda Y, Sonoda KH, Wada Y, Boon CJF, Nakazawa T, Hoyng CB, Nishiguchi KM. Macular Dystrophy and Cone-Rod Dystrophy Caused by Mutations in the RP1 Gene: Extending the RP1 Disease Spectrum. Invest Ophthalmol Vis Sci 2019; 60:1192-1203. [PMID: 30913292 DOI: 10.1167/iovs.18-26084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To describe the clinical and genetic spectrum of RP1-associated retinal dystrophies. Methods In this multicenter case series, we included 22 patients with RP1-associated retinal dystrophies from 19 families from The Netherlands and Japan. Data on clinical characteristics, visual acuity, visual field, ERG, and retinal imaging were extracted from medical records over a mean follow-up of 8.1 years. Results Eleven patients were diagnosed with autosomal recessive macular dystrophy (arMD) or autosomal recessive cone-rod dystrophy (arCRD), five with autosomal recessive retinitis pigmentosa (arRP), and six with autosomal dominant RP (adRP). The mean age of onset was 40.3 years (range 14-56) in the patients with arMD/arCRD, 26.2 years (range 18-40) in adRP, and 8.8 years (range 5-12) in arRP patients. All patients with arMD/arCRD carried either the hypomorphic p.Arg1933* variant positioned close to the C-terminus (8 of 11 patients) or a missense variant in exon 2 (3 of 11 patients), compound heterozygous with a likely deleterious frameshift or nonsense mutation, or the p.Gln1916* variant. In contrast, all mutations identified in adRP and arRP patients were frameshift and/or nonsense variants located far from the C-terminus. Conclusions Mutations in the RP1 gene are associated with a broad spectrum of progressive retinal dystrophies. In addition to adRP and arRP, our study provides further evidence that arCRD and arMD are RP1-associated phenotypes as well. The macular involvement in patients with the hypomorphic RP1 variant suggests that macular function may remain compromised if expression levels of RP1 do not reach adequate levels after gene augmentation therapy.
Collapse
Affiliation(s)
- Sanne K Verbakel
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramon A C van Huet
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anneke I den Hollander
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maartje J Geerlings
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B Jeroen Klevering
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Astrid S Plomp
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nieneke L Wesseling
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A B Bergen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,The Netherlands Institute for Neuroscience (NIN-KNAW), Amsterdam, The Netherlands
| | - Konstantinos Nikopoulos
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Service of Medical Genetics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Yasuhiro Ikeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Camiel J F Boon
- Department of Ophthalmology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Toru Nakazawa
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Carel B Hoyng
- Department of Ophthalmology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Genome Editing as a Treatment for the Most Prevalent Causative Genes of Autosomal Dominant Retinitis Pigmentosa. Int J Mol Sci 2019; 20:ijms20102542. [PMID: 31126147 PMCID: PMC6567127 DOI: 10.3390/ijms20102542] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
: Inherited retinal dystrophies (IRDs) are a clinically and genetically heterogeneous group of diseases with more than 250 causative genes. The most common form is retinitis pigmentosa. IRDs lead to vision impairment for which there is no universal cure. Encouragingly, a first gene supplementation therapy has been approved for an autosomal recessive IRD. However, for autosomal dominant IRDs, gene supplementation therapy is not always pertinent because haploinsufficiency is not the only cause. Disease-causing mechanisms are often gain-of-function or dominant-negative, which usually require alternative therapeutic approaches. In such cases, genome-editing technology has raised hopes for treatment. Genome editing could be used to i) invalidate both alleles, followed by supplementation of the wild type gene, ii) specifically invalidate the mutant allele, with or without gene supplementation, or iii) to correct the mutant allele. We review here the most prevalent genes causing autosomal dominant retinitis pigmentosa and the most appropriate genome-editing strategy that could be used to target their different causative mutations.
Collapse
|
13
|
Garanto A. RNA-Based Therapeutic Strategies for Inherited Retinal Dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:71-77. [PMID: 31884591 DOI: 10.1007/978-3-030-27378-1_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inherited retinal dystrophies (IRDs) are genetic diseases affecting 1 in every 3000 individuals worldwide. Nowadays, more than 250 genes have been associated with different forms of IRD. In the last decade, it has been shown that gene therapy is a promising approach to correct the genetic defects underlying IRD. In fact, voretigene neparvovec-rzyl (Luxturna™), the first commercialized gene therapy drug to treat RPE65-associated Leber congenital amaurosis, has opened new venues. However, IRDs are highly heterogeneous at genetic level making the design of novel strategies complicated. Unfortunately, the size of several frequently mutated genes is not suitable for the approved conventional therapeutic viral vectors; therefore, there is an urgent need for the development of alternatives, such as those targeting the pre-mRNA. In this mini-review, the potential of RNA-based strategies for IRDs is discussed.
Collapse
Affiliation(s)
- Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Li S, Yang M, Liu W, Liu Y, Zhang L, Yang Y, Sundaresan P, Yang Z, Zhu X. Targeted Next-Generation Sequencing Reveals Novel RP1 Mutations in Autosomal Recessive Retinitis Pigmentosa. Genet Test Mol Biomarkers 2018; 22:109-114. [PMID: 29425069 DOI: 10.1089/gtmb.2017.0223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a group of rare inherited retinal dystrophies that result in a progressive loss of vision. Molecular diagnosis of RP is difficult due to its phenotypic and genetic heterogeneities. AIMS To investigate causative genetic mutations in a collection of RP cases: one Indian and two Chinese families with autosomal-recessive RP and two sporadic patients with RP. MATERIALS AND METHODS A total of 163 genes, which have previously been found to be involved in inherited retinal disorders, were selected for targeted next-generation sequencing (NGS). Stringent NGS data analyses followed by confirmation using Sanger sequencing and segregation analyses were applied to evaluate all identified pathogenic mutations. RESULTS Four novel frameshift mutations and two compound heterozygous mutations were identified in RP1. In addition, all mutations were found to co-segregate with the disease in the three familial cases; none of the mutations were detected in control samples. CONCLUSION This study expands the mutational spectrums of RP1 for RP.
Collapse
Affiliation(s)
- Shujin Li
- 1 Chengdu Institute of Biology , Chinese Academy of Sciences, Chengdu, P.R. China .,2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China .,3 University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Mu Yang
- 1 Chengdu Institute of Biology , Chinese Academy of Sciences, Chengdu, P.R. China .,2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China .,3 University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Wenjing Liu
- 2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China
| | - Yuqing Liu
- 2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China
| | - Lin Zhang
- 2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China
| | - Yeming Yang
- 2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China
| | - Periasamy Sundaresan
- 4 Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital , Madurai, Tamilnadu, India
| | - Zhenglin Yang
- 1 Chengdu Institute of Biology , Chinese Academy of Sciences, Chengdu, P.R. China .,2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China
| | - Xianjun Zhu
- 2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China .,5 Institute of Laboratory Animal Sciences , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, P.R. China .,6 Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan Translational Medicine Research Hospital , Chengdu, Sichuan, P.R. China
| |
Collapse
|
15
|
CLINICAL PROGRESS IN INHERITED RETINAL DEGENERATIONS: GENE THERAPY CLINICAL TRIALS AND ADVANCES IN GENETIC SEQUENCING. Retina 2017; 37:417-423. [PMID: 27753762 DOI: 10.1097/iae.0000000000001341] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Inherited retinal dystrophies are a significant cause of vision loss and are characterized by the loss of photoreceptors and the retinal pigment epithelium (RPE). Mutations in approximately 250 genes cause inherited retinal degenerations with a high degree of genetic heterogeneity. New techniques in next-generation sequencing are allowing the comprehensive analysis of all retinal disease genes thus changing the approach to the molecular diagnosis of inherited retinal dystrophies. This review serves to analyze clinical progress in genetic diagnostic testing and implications for retinal gene therapy. METHODS A literature search of PubMed and OMIM was conducted to relevant articles in inherited retinal dystrophies. RESULTS Next-generation genetic sequencing allows the simultaneous analysis of all the approximately 250 genes that cause inherited retinal dystrophies. Reported diagnostic rates range are high and range from 51% to 57%. These new sequencing tools are highly accurate with sensitivities of 97.9% and specificities of 100%. Retinal gene therapy clinical trials are underway for multiple genes including RPE65, ABCA4, CHM, RS1, MYO7A, CNGA3, CNGB3, ND4, and MERTK for which a molecular diagnosis may be beneficial for patients. CONCLUSION Comprehensive next-generation genetic sequencing of all retinal dystrophy genes is changing the paradigm for how retinal specialists perform genetic testing for inherited retinal degenerations. Not only are high diagnostic yields obtained, but mutations in genes with novel clinical phenotypes are also identified. In the era of retinal gene therapy clinical trials, identifying specific genetic defects will increasingly be of use to identify patients who may enroll in clinical studies and benefit from novel therapies.
Collapse
|
16
|
MacLaren RE, Bennett J, Schwartz SD. Gene Therapy and Stem Cell Transplantation in Retinal Disease: The New Frontier. Ophthalmology 2016; 123:S98-S106. [PMID: 27664291 PMCID: PMC5545086 DOI: 10.1016/j.ophtha.2016.06.041] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 06/07/2016] [Accepted: 06/12/2016] [Indexed: 12/31/2022] Open
Abstract
Gene and cell therapies have the potential to prevent, halt, or reverse diseases of the retina in patients with currently incurable blinding conditions. Over the past 2 decades, major advances in our understanding of the pathobiologic basis of retinal diseases, coupled with growth of gene transfer and cell transplantation biotechnologies, have created optimism that previously blinding retinal conditions may be treatable. It is now possible to deliver cloned genes safely and stably to specific retinal cell types in humans. Preliminary results testing gene augmentation strategies in human recessive diseases suggest promising safety and efficacy profiles, including improved visual function outcomes over extended periods. Additional gene-based strategies under development include approaches to autosomal dominant disease ("gain of function"), attempts to deliver genes encoding therapeutic proteins with proven mechanisms of action interfering with specific disease pathways, and approaches that could be used to render retinal cells other than atrophied photoreceptors light sensitive. In the programs that are the furthest along-pivotal regulatory safety and efficacy trials studying individuals with retinal degeneration resulting from RPE65 mutations-initial results reveal a robust safety profile and clinically significant improvements in visual function, thereby making this program a frontrunner for the first approved gene therapy product in the United States. Similar to gene therapy, progress in regenerative or stem cell-based transplantation strategies has been substantial. It is now possible to deliver safely stem cell-derived, terminally differentiated, biologically and genetically defined retinal pigment epithelium (RPE) to the diseased human eye. Although demonstration of clinical efficacy is still well behind the gene therapy field, multiple programs investigating regenerative strategies in RPE disease are beginning to enroll subjects, and initial results suggest possible signs of efficacy. Stem cells capable of becoming other retinal cell types, such as photoreceptors, are on the cusp of clinical trials. Stem cell-derived transplants can be delivered to precise target locations in the eye, and their ability to ameliorate, reverse, regenerate, or neuroprotect against disease processes can be assessed. Results from these studies will provide foundational knowledge that may lead to clinically significant therapies for currently untreatable retinal disease.
Collapse
Affiliation(s)
- Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford and Oxford University Eye Hospital, NHS Foundation Trust, NIHR Biomedical Research Centre, Oxford, United Kingdom; Moorfields Eye Hospital, NHS Foundation Trust, NIHR Biomedical Research Centre, London, United Kingdom.
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Steven D Schwartz
- Retina Division, Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
17
|
A reverse genetic approach identifies an ancestral frameshift mutation in RP1 causing recessive progressive retinal degeneration in European cattle breeds. Genet Sel Evol 2016; 48:56. [PMID: 27510606 PMCID: PMC4980790 DOI: 10.1186/s12711-016-0232-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/26/2016] [Indexed: 01/17/2023] Open
Abstract
Background Domestication and artificial selection have resulted in strong genetic drift, relaxation of purifying selection and accumulation of deleterious mutations. As a consequence, bovine breeds experience regular outbreaks of recessive genetic defects which might represent only the tip of the iceberg since their detection depends on the observation of affected animals with distinctive symptoms. Thus, recessive mutations resulting in embryonic mortality or in non-specific symptoms are likely to be missed. The increasing availability of whole-genome sequences has opened new research avenues such as reverse genetics for their investigation. Our aim was to characterize the genetic load of 15 European breeds using data from the 1000 bull genomes consortium and prove that widespread harmful mutations remain to be detected. Results We listed 2489 putative deleterious variants (in 1923 genes) segregating at a minimal frequency of 5 % in at least one of the breeds studied. Gene enrichment analysis showed major enrichment for genes related to nervous, visual and auditory systems, and moderate enrichment for genes related to cardiovascular and musculoskeletal systems. For verification purposes, we investigated the phenotypic consequences of a frameshift variant in the retinitis pigmentosa-1 gene segregating in several breeds and at a high frequency (27 %) in Normande cattle. As described in certain human patients, clinical and histological examination revealed that this mutation causes progressive degeneration of photoreceptors leading to complete blindness in homozygotes. We established that the deleterious allele was even more frequent in the Normande breed before 1975 (>40 %) and has been progressively counter-selected likely because of its associated negative effect on udder morphology. Finally, using identity-by-descent analysis we demonstrated that this mutation resulted from a unique ancestral event that dates back to ~2800 to 4000 years. Conclusions We provide a list of mutations that likely represent a substantial part of the genetic load of domestication in European cattle. We demonstrate that they accumulated non-randomly and that genes related to cognition and sensory functions are particularly affected. Finally, we describe an ancestral deleterious variant segregating in different breeds causing progressive retinal degeneration and irreversible blindness in adult animals. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0232-y) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Goldberg AFX, Moritz OL, Williams DS. Molecular basis for photoreceptor outer segment architecture. Prog Retin Eye Res 2016; 55:52-81. [PMID: 27260426 DOI: 10.1016/j.preteyeres.2016.05.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 01/11/2023]
Abstract
To serve vision, vertebrate rod and cone photoreceptors must detect photons, convert the light stimuli into cellular signals, and then convey the encoded information to downstream neurons. Rods and cones are sensory neurons that each rely on specialized ciliary organelles to detect light. These organelles, called outer segments, possess elaborate architectures that include many hundreds of light-sensitive membranous disks arrayed one atop another in precise register. These stacked disks capture light and initiate the chain of molecular and cellular events that underlie normal vision. Outer segment organization is challenged by an inherently dynamic nature; these organelles are subject to a renewal process that replaces a significant fraction of their disks (up to ∼10%) on a daily basis. In addition, a broad range of environmental and genetic insults can disrupt outer segment morphology to impair photoreceptor function and viability. In this chapter, we survey the major progress that has been made for understanding the molecular basis of outer segment architecture. We also discuss key aspects of organelle lipid and protein composition, and highlight distributions, interactions, and potential structural functions of key OS-resident molecules, including: kinesin-2, actin, RP1, prominin-1, protocadherin 21, peripherin-2/rds, rom-1, glutamic acid-rich proteins, and rhodopsin. Finally, we identify key knowledge gaps and challenges that remain for understanding how normal outer segment architecture is established and maintained.
Collapse
Affiliation(s)
- Andrew F X Goldberg
- Eye Research Institute, Oakland University, 417 Dodge Hall, Rochester, MI, 48309, USA.
| | - Orson L Moritz
- Department of Ophthalmology & Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David S Williams
- Department of Ophthalmology and Jules Stein Eye Institute, Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Bales KL, Gross AK. Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling. Exp Eye Res 2015; 150:71-80. [PMID: 26632497 DOI: 10.1016/j.exer.2015.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Retinal trafficking proteins are involved in molecular assemblies that govern protein transport, orchestrate cellular events involved in cilia formation, regulate signal transduction, autophagy and endocytic trafficking, all of which if not properly controlled initiate retinal degeneration. Improper function and or trafficking of these proteins and molecular networks they are involved in cause a detrimental cascade of neural retinal remodeling due to cell death, resulting as devastating blinding diseases. A universal finding in retinal degenerative diseases is the profound detection of retinal remodeling, occurring as a phased modification of neural retinal function and structure, which begins at the molecular level. Retinal remodeling instigated by aberrant trafficking of proteins encompasses many forms of retinal degenerations, such as the diverse forms of retinitis pigmentosa (RP) and disorders that resemble RP through mutations in the rhodopsin gene, retinal ciliopathies, and some forms of glaucoma and age-related macular degeneration (AMD). As a large majority of genes associated with these different retinopathies are overlapping, it is imperative to understand their underlying molecular mechanisms. This review will discuss some of the most recent discoveries in vertebrate retinal remodeling and retinal degenerations caused by protein mistrafficking.
Collapse
Affiliation(s)
- Katie L Bales
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alecia K Gross
- University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
20
|
Song D, Grieco S, Li Y, Hunter A, Chu S, Zhao L, Song Y, DeAngelis RA, Shi LY, Liu Q, Pierce EA, Nishina PM, Lambris JD, Dunaief JL. A murine RP1 missense mutation causes protein mislocalization and slowly progressive photoreceptor degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2721-9. [PMID: 25088982 DOI: 10.1016/j.ajpath.2014.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/04/2014] [Accepted: 06/10/2014] [Indexed: 11/28/2022]
Abstract
Mutations in the RP1 gene can cause retinitis pigmentosa. We identified a spontaneous L66P mutation caused by two adjacent point mutations in the Rp1 gene in a colony of C57BL/6J mice. Mice homozygous for the L66P mutation exhibited slow, progressive photoreceptor degeneration throughout their lifespan. Optical coherence tomography imaging found abnormal photoreceptor reflectivity at 1 month of age. Histology found shortening and disorganization of the photoreceptor inner and outer segments and progressive thinning of the outer nuclear layer. Electroretinogram a- and b-wave amplitudes were decreased with age. Western blot analysis found that the quantity and size of the mutated retinitis pigmentosa 1 (RP1) protein were normal. However, immunohistochemistry found that the mutant Rp1 protein partially mislocalized to the transition zone of the shortened axonemes. This mutation disrupted colocalization with cytoplasmic microtubules in vitro. In conclusion, the L66P mutation in the first doublecortin domain of the Rp1 gene impairs Rp1 protein localization and function, leading to abnormalities in photoreceptor outer segment structure and progressive photoreceptor degeneration. This is the first missense mutation in Rp1 shown to cause retinal degeneration. It provides a unique, slowly progressive photoreceptor degeneration model that mirrors the slow degeneration kinetics in most patients with retinitis pigmentosa.
Collapse
Affiliation(s)
- Delu Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steve Grieco
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yafeng Li
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Allan Hunter
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sally Chu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Liangliang Zhao
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ying Song
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert A DeAngelis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Qin Liu
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | - Eric A Pierce
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts
| | | | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
21
|
Tucker BA, Mullins RF, Stone EM. Stem cells for investigation and treatment of inherited retinal disease. Hum Mol Genet 2014; 23:R9-R16. [PMID: 24647603 PMCID: PMC4170716 DOI: 10.1093/hmg/ddu124] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vision is the most important human sense. It facilitates every major activity of daily living ranging from basic communication, mobility and independence to an appreciation of art and nature. Heritable diseases of the retina, such as age-related macular degeneration and retinitis pigmentosa, are the leading cause of blindness in the developed world, collectively affecting as many as one-third of all people over the age of 75, to some degree. For decades, scientists have dreamed of preventing vision loss or of restoring the vision of patients affected with retinal degeneration through some type of drug, gene or cell-based transplantation approach. In this review, we will discuss the current literature pertaining to retinal transplantation. We will focus on the use of induced pluripotent stem cells for interrogation of disease pathophysiology, analysis of drug and gene therapeutics and as a source of autologous cells for cell replacement.
Collapse
Affiliation(s)
| | | | - Edwin M Stone
- Stephen A. Wynn Institute for Vision Research and Howard Hughes Medical Institute, Department of Ophthalmology and Visual Science, Carver College of Medicine, University of Iowa, Iowa city, IA, USA
| |
Collapse
|
22
|
Corton M, Nishiguchi KM, Avila-Fernández A, Nikopoulos K, Riveiro-Alvarez R, Tatu SD, Ayuso C, Rivolta C. Exome sequencing of index patients with retinal dystrophies as a tool for molecular diagnosis. PLoS One 2013; 8:e65574. [PMID: 23940504 PMCID: PMC3683009 DOI: 10.1371/journal.pone.0065574] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Retinal dystrophies (RD) are a group of hereditary diseases that lead to debilitating visual impairment and are usually transmitted as a Mendelian trait. Pathogenic mutations can occur in any of the 100 or more disease genes identified so far, making molecular diagnosis a rather laborious process. In this work we explored the use of whole exome sequencing (WES) as a tool for identification of RD mutations, with the aim of assessing its applicability in a diagnostic context. METHODOLOGY/PRINCIPAL FINDINGS We ascertained 12 Spanish families with seemingly recessive RD. All of the index patients underwent mutational pre-screening by chip-based sequence hybridization and resulted to be negative for known RD mutations. With the exception of one pedigree, to simulate a standard diagnostic scenario we processed by WES only the DNA from the index patient of each family, followed by in silico data analysis. We successfully identified causative mutations in patients from 10 different families, which were later verified by Sanger sequencing and co-segregation analyses. Specifically, we detected pathogenic DNA variants (∼50% novel mutations) in the genes RP1, USH2A, CNGB3, NMNAT1, CHM, and ABCA4, responsible for retinitis pigmentosa, Usher syndrome, achromatopsia, Leber congenital amaurosis, choroideremia, or recessive Stargardt/cone-rod dystrophy cases. CONCLUSIONS/SIGNIFICANCE Despite the absence of genetic information from other family members that could help excluding nonpathogenic DNA variants, we could detect causative mutations in a variety of genes known to represent a wide spectrum of clinical phenotypes in 83% of the patients analyzed. Considering the constant drop in costs for human exome sequencing and the relative simplicity of the analyses made, this technique could represent a valuable tool for molecular diagnostics or genetic research, even in cases for which no genotypes from family members are available.
Collapse
Affiliation(s)
- Marta Corton
- Department of Genetics, IIS- Fundacion Jimenez Diaz, CIBERER, Madrid, Spain
| | - Koji M. Nishiguchi
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | - Sorina D. Tatu
- Department of Genetics, IIS- Fundacion Jimenez Diaz, CIBERER, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, IIS- Fundacion Jimenez Diaz, CIBERER, Madrid, Spain
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|