1
|
Johnstone M, Leck A, Lange T, Wilcher K, Shephard MS, Paranjpe A, Schutte S, Wells S, Kappes F, Salomonis N, Privette Vinnedge LM. The chromatin remodeler DEK promotes proliferation of mammary epithelium and is associated with H3K27me3 epigenetic modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612116. [PMID: 39314335 PMCID: PMC11419013 DOI: 10.1101/2024.09.09.612116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The DEK chromatin remodeling protein was previously shown to confer oncogenic phenotypes to human and mouse mammary epithelial cells using in vitro and knockout mouse models. However, its functional role in normal mammary gland epithelium remained unexplored. We developed two novel mouse models to study the role of Dek in normal mammary gland biology in vivo . Mammary gland-specific Dek over-expression in mice resulted in hyperproliferation of cells that visually resembled alveolar cells, and a transcriptional profile that indicated increased expression of cell cycle, mammary stem/progenitor, and lactation-associated genes. Conversely, Dek knockout mice exhibited an alveologenesis or lactation defect, resulting in dramatically reduced pup survival. Analysis of previously published single-cell RNA-sequencing of mouse mammary glands revealed that Dek is most highly expressed in mammary stem cells and alveolar progenitor cells, and to a lesser extent in basal epithelial cells, supporting the observed phenotypes. Mechanistically, we discovered that Dek is a modifier of Ezh2 methyltransferase activity, upregulating the levels of histone H3 trimethylation on lysine 27 (H3K27me3) to control gene transcription. Combined, this work indicates that Dek promotes proliferation of mammary epithelial cells via cell cycle deregulation. Furthermore, we report a novel function for Dek in alveologenesis and histone H3 K27 trimethylation.
Collapse
|
2
|
Lyu C, Bhimani AK, Draus WT, Weigel R, Chen S. Active Gα i/o Mutants Accelerate Breast Tumor Metastasis via the c-Src Pathway. Mol Cell Biol 2023; 43:650-663. [PMID: 38099640 PMCID: PMC10761066 DOI: 10.1080/10985549.2023.2285833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
Constitutively active mutations in the Gαi2 and GαoA subunits of heterotrimeric G proteins have been found in various human cancers, including breast cancer, but their precise roles in tumor formation, progression, and metastasis remain poorly understood. This study focused on GαoAR243H and Gαi2R179C mutants in breast cancer. These mutants alone were insufficient to initiate mammary tumor formation in mice. However, when introduced into transgenic mouse models of breast cancer induced by Neu expression or PTEN loss, the Gαi2R179C mutant notably enhanced spontaneous lung metastasis, without affecting primary tumor initiation and growth. Ectopic expression of the GαoAR243H and Gαi2R179C mutants in tumor cells promoted cell migration in vitro and dissemination into multiple organs in vivo by activating the c-Src signaling pathway. These mutants activate c-Src through direct interaction, involving specific residues in the switch domains II of Gαi subunits, which only partially overlap with those involved in inhibiting adenylyl cyclases. This study uncovers a critical role of Gαi/o signaling in accelerating breast cancer metastasis through the c-Src pathway. These findings hold clinical significance as they may pave the way for personalized therapies targeting c-Src to inhibit breast cancer metastasis in patients with active Gαi/o mutations or elevated Gαi/o signaling.
Collapse
Affiliation(s)
- Cancan Lyu
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Aarzoo K. Bhimani
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - William T. Draus
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ronald Weigel
- The Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Songhai Chen
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Mohapatra BC, Mirza S, Bele A, Gurumurthy CB, Raza M, Saleem I, Storck MD, Sarkar A, Kollala SS, Shukla SK, Southekal S, Wagner KU, Qiu F, Lele SM, Alsaleem MA, Rakha EA, Guda C, Singh PK, Cardiff RD, Band H, Band V. Ecdysoneless Overexpression Drives Mammary Tumorigenesis through Upregulation of C-MYC and Glucose Metabolism. Mol Cancer Res 2022; 20:1391-1404. [PMID: 35675041 PMCID: PMC9437571 DOI: 10.1158/1541-7786.mcr-22-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 01/09/2023]
Abstract
Ecdysoneless (ECD) protein is essential for embryogenesis, cell-cycle progression, and cellular stress mitigation with an emerging role in mRNA biogenesis. We have previously shown that ECD protein as well as its mRNA are overexpressed in breast cancer and ECD overexpression predicts shorter survival in patients with breast cancer. However, the genetic evidence for an oncogenic role of ECD has not been established. Here, we generated transgenic mice with mammary epithelium-targeted overexpression of an inducible human ECD transgene (ECDTg). Significantly, ECDTg mice develop mammary hyperplasia, preneoplastic lesions, and heterogeneous tumors with occasional lung metastasis. ECDTg tumors exhibit epithelial to mesenchymal transition and cancer stem cell characteristics. Organoid cultures of ECDTg tumors showed ECD dependency for in vitro oncogenic phenotype and in vivo growth when implanted in mice. RNA sequencing (RNA-seq) analysis of ECDTg tumors showed a c-MYC signature, and alterations in ECD levels regulated c-MYC mRNA and protein levels as well as glucose metabolism. ECD knockdown-induced decrease in glucose uptake was rescued by overexpression of mouse ECD as well as c-MYC. Publicly available expression data analyses showed a significant correlation of ECD and c-MYC overexpression in breast cancer, and ECD and c-MYC coexpression exhibits worse survival in patients with breast cancer. Taken together, we establish a novel role of overexpressed ECD as an oncogenesis driver in the mouse mammary gland through upregulation of c-MYC-mediated glucose metabolism. IMPLICATIONS We demonstrate ECD overexpression in the mammary gland of mice led to the development of a tumor progression model through upregulation of c-MYC signaling and glucose metabolism.
Collapse
Affiliation(s)
- Bhopal C. Mohapatra
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aditya Bele
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Channabasavaiah B. Gurumurthy
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mohsin Raza
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irfana Saleem
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Matthew D. Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Aniruddha Sarkar
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surendra K. Shukla
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Siddesh Southekal
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fang Qiu
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Subodh M. Lele
- Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mansour A. Alsaleem
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Department of Applied Medical Sciences, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Emad A. Rakha
- Department of Pathology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chittibabu Guda
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pankaj K. Singh
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert D. Cardiff
- Department of Pathology and Laboratory Medicine, University of California, Davis, California
| | - Hamid Band
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
- Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
4
|
Bevilacqua G. The Viral Origin of Human Breast Cancer: From the Mouse Mammary Tumor Virus (MMTV) to the Human Betaretrovirus (HBRV). Viruses 2022; 14:1704. [PMID: 36016325 PMCID: PMC9412291 DOI: 10.3390/v14081704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
A Human Betaretrovirus (HBRV) has been identified in humans, dating as far back as about 4500 years ago, with a high probability of it being acquired by our species around 10,000 years ago, following a species jump from mice to humans. HBRV is the human homolog of the MMTV (mouse mammary tumor virus), which is the etiological agent of murine mammary tumors. The hypothesis of a HMTV (human mammary tumor virus) was proposed about 50 years ago, and has acquired a solid scientific basis during the last 30 years, with the demonstration of a robust link with breast cancer and with PBC, primary biliary cholangitis. This article summarizes most of what is known about MMTV/HMTV/HBRV since the discovery of MMTV at the beginning of last century, to make evident both the quantity and the quality of the research supporting the existence of HBRV and its pathogenic role. Here, it is sufficient to mention that scientific evidence includes that viral sequences have been identified in breast-cancer samples in a worldwide distribution, that the complete proviral genome has been cloned from breast cancer and patients with PBC, and that saliva contains HBRV, as a possible route of inter-human infection. Controversies that have arisen concerning results obtained from human tissues, many of them outdated by new scientific evidence, are critically discussed and confuted.
Collapse
|
5
|
Dual recombinase action in the normal and neoplastic mammary gland epithelium. Sci Rep 2021; 11:20775. [PMID: 34675248 PMCID: PMC8531329 DOI: 10.1038/s41598-021-00231-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022] Open
Abstract
We developed a transgenic mouse line that expresses the codon-optimized Flp recombinase under the control of the MMTV promoter in luminal epithelial cells of the mammary gland. In this report, we demonstrate the versatile applicability of the new MMTV-Flp strain to manipulate genes in a temporally and spatially controlled manner in the normal mammary gland, in luminal-type mammary tumors that overexpress ERBB2, and in a new KRAS-associated mammary cancer model. Although the MMTV-Flp is expressed in a mosaic pattern in the luminal epithelium, the Flp-mediated activation of a mutant KrasG12D allele resulted in basal-like mammary tumors that progressively acquired mesenchymal features. Besides its applicability as a tool for gene activation and cell lineage tracing to validate the cellular origin of primary and metastatic tumor cells, we employed the MMTV-Flp transgene together with the tamoxifen-inducible Cre recombinase to demonstrate that the combinatorial action of both recombinases can be used to delete or to activate genes in established tumors. In a proof-of-principle experiment, we conditionally deleted the JAK1 tyrosine kinase in KRAS-transformed mammary cancer cells using the dual recombinase approach and found that lack of JAK1 was sufficient to block the constitutive activation of STAT3. The collective results from the various lines of investigation showed that it is, in principle, feasible to manipulate genes in a ligand-controlled manner in neoplastic mammary epithelial cells, even when cancer cells acquire a state of cellular plasticity that may no longer support the expression of the MMTV-Flp transgene.
Collapse
|
6
|
Lyu C, Ye Y, Lensing MM, Wagner KU, Weigel RJ, Chen S. Targeting Gi/o protein-coupled receptor signaling blocks HER2-induced breast cancer development and enhances HER2-targeted therapy. JCI Insight 2021; 6:e150532. [PMID: 34343132 PMCID: PMC8492335 DOI: 10.1172/jci.insight.150532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
GPCRs are highly desirable drug targets for human disease. Although GPCR dysfunction drives development and progression of many tumors, including breast cancer (BC), targeting individual GPCRs has limited efficacy as a cancer therapy because numerous GPCRs are activated. Here, we sought a new way of blocking GPCR activation in HER2+ BC by targeting a subgroup of GPCRs that couple to Gi/o proteins (Gi/o-GPCRs). In mammary epithelial cells of transgenic mouse models, and BC cell lines, HER2 hyperactivation altered GPCR expression, particularly, Gi/o-GPCR expression. Gi/o-GPCR stimulation transactivated EGFR and HER2 and activated the PI3K/AKT and Src pathways. If we uncoupled Gi/o-GPCRs from their cognate Gi/o proteins by pertussis toxin (PTx), then BC cell proliferation and migration was inhibited in vitro and HER2-driven tumor formation and metastasis were suppressed in vivo. Moreover, targeting Gi/o-GPCR signaling via PTx, PI3K, or Src inhibitors enhanced HER2-targeted therapy. These results indicate that, in BC cells, HER2 hyperactivation drives aberrant Gi/o-GPCR signaling and Gi/o-GPCR signals converge on the PI3K/AKT and Src signaling pathways to promote cancer progression and resistance to HER2-targeted therapy. Our findings point to a way to pharmacologically deactivate GPCR signaling to block tumor growth and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Cancan Lyu
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Yuanchao Ye
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Maddison M Lensing
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine, Detroit, United States of America
| | - Ronald J Weigel
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Songhai Chen
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| |
Collapse
|
7
|
Rädler PD, Wehde BL, Triplett AA, Shrestha H, Shepherd JH, Pfefferle AD, Rui H, Cardiff RD, Perou CM, Wagner KU. Highly metastatic claudin-low mammary cancers can originate from luminal epithelial cells. Nat Commun 2021; 12:3742. [PMID: 34145248 PMCID: PMC8213728 DOI: 10.1038/s41467-021-23957-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Claudin-low breast cancer represents an aggressive molecular subtype that is comprised of mostly triple-negative mammary tumor cells that possess stem cell-like and mesenchymal features. Little is known about the cellular origin and oncogenic drivers that promote claudin-low breast cancer. In this study, we show that persistent oncogenic RAS signaling causes highly metastatic triple-negative mammary tumors in mice. More importantly, the activation of endogenous mutant KRAS and expression of exogenous KRAS specifically in luminal epithelial cells in a continuous and differentiation stage-independent manner induces preneoplastic lesions that evolve into basal-like and claudin-low mammary cancers. Further investigations demonstrate that the continuous signaling of oncogenic RAS, as well as regulators of EMT, play a crucial role in the cellular plasticity and maintenance of the mesenchymal and stem cell characteristics of claudin-low mammary cancer cells.
Collapse
Affiliation(s)
- Patrick D Rädler
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Barbara L Wehde
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aleata A Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hridaya Shrestha
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA
| | - Jonathan H Shepherd
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam D Pfefferle
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert D Cardiff
- Center of Comparative Medicine, University of California, Davis, CA, USA
| | - Charles M Perou
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
8
|
Crosby EJ, Acharya CR, Haddad AF, Rabiola CA, Lei G, Wei JP, Yang XY, Wang T, Liu CX, Wagner KU, Muller WJ, Chodosh LA, Broadwater G, Hyslop T, Shepherd JH, Hollern DP, He X, Perou CM, Chai S, Ashby BK, Vincent BG, Snyder JC, Force J, Morse MA, Lyerly HK, Hartman ZC. Stimulation of Oncogene-Specific Tumor-Infiltrating T Cells through Combined Vaccine and αPD-1 Enable Sustained Antitumor Responses against Established HER2 Breast Cancer. Clin Cancer Res 2020; 26:4670-4681. [PMID: 32732224 DOI: 10.1158/1078-0432.ccr-20-0389] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Despite promising advances in breast cancer immunotherapy, augmenting T-cell infiltration has remained a significant challenge. Although neither individual vaccines nor immune checkpoint blockade (ICB) have had broad success as monotherapies, we hypothesized that targeted vaccination against an oncogenic driver in combination with ICB could direct and enable antitumor immunity in advanced cancers. EXPERIMENTAL DESIGN Our models of HER2+ breast cancer exhibit molecular signatures that are reflective of advanced human HER2+ breast cancer, with a small numbers of neoepitopes and elevated immunosuppressive markers. Using these, we vaccinated against the oncogenic HER2Δ16 isoform, a nondriver tumor-associated gene (GFP), and specific neoepitopes. We further tested the effect of vaccination or anti-PD-1, alone and in combination. RESULTS We found that only vaccination targeting HER2Δ16, a driver of oncogenicity and HER2-therapeutic resistance, could elicit significant antitumor responses, while vaccines targeting a nondriver tumor-specific antigen or tumor neoepitopes did not. Vaccine-induced HER2-specific CD8+ T cells were essential for responses, which were more effective early in tumor development. Long-term tumor control of advanced cancers occurred only when HER2Δ16 vaccination was combined with αPD-1. Single-cell RNA sequencing of tumor-infiltrating T cells revealed that while vaccination expanded CD8 T cells, only the combination of vaccine with αPD-1 induced functional gene expression signatures in those CD8 T cells. Furthermore, we show that expanded clones are HER2-reactive, conclusively demonstrating the efficacy of this vaccination strategy in targeting HER2. CONCLUSIONS Combining oncogenic driver targeted vaccines with selective ICB offers a rational paradigm for precision immunotherapy, which we are clinically evaluating in a phase II trial (NCT03632941).
Collapse
Affiliation(s)
- Erika J Crosby
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Chaitanya R Acharya
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Anthony-Fayez Haddad
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Christopher A Rabiola
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Gangjun Lei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Jun-Ping Wei
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Xiao-Yi Yang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Tao Wang
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Cong-Xiao Liu
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina
| | - Kay U Wagner
- Department of Oncology, Wayne State University, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - William J Muller
- Departments of Biochemistry and Medicine, Goodman Cancer Center, McGill University, Montreal, Quebec
| | - Lewis A Chodosh
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gloria Broadwater
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Terry Hyslop
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Jonathan H Shepherd
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Daniel P Hollern
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Xiaping He
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Shengjie Chai
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin K Ashby
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina.,Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, North Carolina.,Computational Medicine Program, University of North Carolina, Chapel Hill, North Carolina
| | - Joshua C Snyder
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina.,Department of Cell Biology, Duke University, Durham, North Carolina
| | - Jeremy Force
- Department of Medicine, Duke University, Durham, North Carolina
| | - Michael A Morse
- Department of Medicine, Duke University, Durham, North Carolina
| | - Herbert K Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina.,Department of Immunology, Duke University, Durham, North Carolina.,Department of Pathology, Duke University, Durham, North Carolina
| | - Zachary C Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University, Durham North Carolina. .,Department of Pathology, Duke University, Durham, North Carolina
| |
Collapse
|
9
|
Phoon YP, Chivukula IV, Tsoi YL, Kanatani S, Uhlén P, Kuiper R, Lendahl U. Notch activation in the mouse mammary luminal lineage leads to ductal hyperplasia and altered partitioning of luminal cell subtypes. Exp Cell Res 2020; 395:112156. [PMID: 32707133 DOI: 10.1016/j.yexcr.2020.112156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022]
Abstract
Hyperactivated Notch signalling has been implicated in breast cancer, but how elevated levels of Notch signalling contribute to mammary dysplasia and tumorigenesis is not fully understood. In this study, we express an activated form of Notch1 in the mouse mammary luminal lineage and analyse the consequences for tumour formation and the transcriptomic landscape in the luminal lineage. Simultaneous conditional activation of a Notch1 intracellular domain (Notch1 ICD) and EGFP in the luminal lineage was achieved by removal of a stop cassette by CRE-recombinase expression from the whey acidic protein (WAP) promoter. Mice in which Notch1 ICD was activated in the luminal lineage (WAP-CRE;R26-N1ICD mice) exhibit ductal hyperplasia after lactation with an increase in branching frequency and in the number of side-branch ends in the ductal tree. A subset of the mice developed mammary tumours and the majority of the tumour cells expressed EGFP (as a proxy for Notch1 ICD), indicating that the tumours originate from the Notch1 ICD-expressing cells. Single-cell transcriptome analysis of the EGFP-positive mammary cells identified six subtypes of luminal cells. The same six subtypes were found in control mice (WAP-CRE;R26-tdTomato mice expressing the tdTomato reporter from WAP-CRE-mediated activation), but the proportion of cells in the various subtypes differed between the WAP-CRE;R26-N1ICD and control WAP-CRE;R26-tdTomato mice. In conclusion, we show that Notch1 ICD expression in the luminal lineage produces a ductal hyperplasia and branching phenotype accompanied by altered luminal cell subtype partitioning.
Collapse
Affiliation(s)
- Yee Peng Phoon
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Indira V Chivukula
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Yat Long Tsoi
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Raoul Kuiper
- Department of Laboratory Medicine, Karolinska Institutet, SE-141 52, Huddinge, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
10
|
Sakamoto K, Rädler PD, Wehde BL, Triplett AA, Shrestha H, Ferraiuolo RM, Amari F, Coppola V, Klinakis A, Efstratiadis A, Wagner KU. Efficient tissue-type specific expression of target genes in a tetracycline-controlled manner from the ubiquitously active Eef1a1 locus. Sci Rep 2020; 10:207. [PMID: 31937792 PMCID: PMC6959320 DOI: 10.1038/s41598-019-57052-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022] Open
Abstract
Using an efficient gene targeting approach, we developed a novel mouse line that expresses the tetracycline-controlled transactivator (tTA) from the constitutively active Eef1a1 locus in a Cre recombinase-inducible manner. The temporally and spatially controlled expression of the EF1-LSL-tTA knockin and activation of tTA-driven responder transgenes was tested using four transgenic lines that express Cre under tissue-specific promoters of the pancreas, mammary gland and other secretory tissues, as well as an interferon-inducible promoter. In all models, the endogenous Eef1a1 promoter facilitated a cell-type-specific activation of target genes at high levels without exogenous enhancer elements. The applicability of the EF1-LSL-tTA strain for biological experiments was tested in two studies related to mammary gland development and tumorigenesis. First, we validated the crucial role of active STAT5 as a survival factor for functionally differentiated epithelial cells by expressing a hyperactive STAT5 mutant in the mammary gland during postlactational remodeling. In a second experiment, we assessed the ability of the EF1-tTA to initiate tumor formation through upregulation of mutant KRAS. The collective results show that the EF1-LSL-tTA knockin line is a versatile genetic tool that can be applied to constitutively express transgenes in specific cell types to examine their biological functions at defined developmental stages.
Collapse
Affiliation(s)
- Kazuhito Sakamoto
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198-5950, USA
| | - Patrick D Rädler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198-5950, USA
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI, 48201, USA
| | - Barbara L Wehde
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198-5950, USA
| | - Aleata A Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198-5950, USA
| | - Hridaya Shrestha
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI, 48201, USA
| | - Rosa-Maria Ferraiuolo
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI, 48201, USA
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Apostolos Klinakis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Argiris Efstratiadis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI, 48201, USA.
| |
Collapse
|
11
|
Rabieifar P, Zhuang T, Costa TDF, Zhao M, Strömblad S. Normal mammary gland development after MMTV-Cre mediated conditional PAK4 gene depletion. Sci Rep 2019; 9:14436. [PMID: 31594963 PMCID: PMC6783434 DOI: 10.1038/s41598-019-50819-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/03/2019] [Indexed: 12/30/2022] Open
Abstract
p21-activated kinases (PAKs) are serine/threonine kinases functioning as downstream effectors of the small GTPases Rac1 and Cdc42. Members of the PAK family are overexpressed in human breast cancer, but their role in mammary gland development is not fully explored. Here we examined the functional role of PAK4 in mammary gland development by creating a mouse model of MMTV-Cre driven conditional PAK4 gene depletion in the mammary gland. The PAK4 conditional knock-out mice were born healthy, with no observed developmental deficits. Mammary gland whole-mounts revealed no defects in ductal formation or elongation of the mammary tree through the fat pad. PAK4 gene depletion also did not alter proliferation and invasion of the mammary epithelium in young virgin mice. Moreover, adult mice gave birth to healthy pups with normal body weight upon weaning. This implies that MMTV-Cre induced gene depletion of PAK4 in mice does not impair normal mammary gland development and thereby provides an in vivo model that can be explored for examination of the potential function of PAK4 in breast cancer.
Collapse
Affiliation(s)
- Parisa Rabieifar
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Ting Zhuang
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, P.R. China
| | - Tânia D F Costa
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Miao Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Neuro-Oncology, Uppsala University, Uppsala, Sweden
| | - Staffan Strömblad
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Lee J, Jeong JH, Kim T, Kim S, Kim K, Seong JK, Lee SH. Induction of squamous cell carcinoma after MAP3K8 overexpression in murine salivry gland epithelial cells. Head Neck 2019; 41:924-929. [DOI: 10.1002/hed.25411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/30/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jun‐Han Lee
- Department of Otorhinolaryngology‐Head and Neck Surgery, Kangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul Korea
| | - Joseph H. Jeong
- Department of Developmental Biology and Genomics, College of Veterinary Medicine, Korea Mouse Phenotyping CenterSeoul National University Seoul Korea
| | - Tae‐Hwan Kim
- Department of Otorhinolaryngology‐Head and Neck Surgery, Kangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul Korea
| | - So‐yeon Kim
- Department of Otorhinolaryngology‐Head and Neck Surgery, Kangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul Korea
| | - Kyung‐Eun Kim
- Department of Pathology, Kangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul Korea
| | - Je Kyung Seong
- Department of Developmental Biology and Genomics, College of Veterinary Medicine, Korea Mouse Phenotyping CenterSeoul National University Seoul Korea
| | - Sang Hyuk Lee
- Department of Otorhinolaryngology‐Head and Neck Surgery, Kangbuk Samsung HospitalSungkyunkwan University School of Medicine Seoul Korea
| |
Collapse
|
13
|
Zboray K, Mohrherr J, Stiedl P, Pranz K, Wandruszka L, Grabner B, Eferl R, Moriggl R, Stoiber D, Sakamoto K, Wagner K, Popper H, Casanova E, Moll HP. AKT3 drives adenoid cystic carcinoma development in salivary glands. Cancer Med 2018; 7:445-453. [PMID: 29282901 PMCID: PMC5806106 DOI: 10.1002/cam4.1293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/26/2017] [Accepted: 11/26/2017] [Indexed: 12/14/2022] Open
Abstract
Salivary gland cancer is an aggressive and painful cancer, but a rare tumor type accounting for only ~0.5% of cancer cases. Tumors of the salivary gland exhibit heterogeneous histologic and genetic features and they are subdivided into different subtypes, with adenoid cystic carcinomas (ACC) being one of the most abundant. Treatment of ACC patients is afflicted by high recurrence rates, the high potential of the tumors to metastasize, as well as the poor response of ACC to chemotherapy. A prerequisite for the development of targeted therapies is insightful genetic information for driver core cancer pathways. Here, we developed a transgenic mouse model toward establishment of a preclinical model. There is currently no available mouse model for adenoid cystic carcinomas as a rare disease entity to serve as a test system to block salivary gland tumors with targeted therapy. Based on tumor genomic data of ACC patients, a key role for the activation of the PI3K-AKT-mTOR pathway was suggested in tumors of secretory glands. Therefore, we investigated the role of Akt3 expression in tumorigenesis and report that Akt3 overexpression results in ACC of salivary glands with 100% penetrance, while abrogation of transgenic Akt3 expression could revert the phenotype. In summary, our findings validate a novel mouse model to study ACC and highlight the druggable potential of AKT3 in the treatment of salivary gland patients.
Collapse
Affiliation(s)
- Katalin Zboray
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Julian Mohrherr
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Patricia Stiedl
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Klemens Pranz
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Laura Wandruszka
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Beatrice Grabner
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
| | - Robert Eferl
- Institute of Cancer ResearchMedical University of ViennaComprehensive Cancer Center (CCC)ViennaAustria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
- Institute of Animal Breeding and GeneticsUniversity of Veterinary MedicineViennaAustria
- Medical University of ViennaViennaAustria
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
- Institute of PharmacologyCenter for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - Kazuhito Sakamoto
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraska
| | - Kay‐Uwe Wagner
- Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraska
| | - Helmut Popper
- Institute of PathologyResearch Unit Molecular Lung and Pleura PathologyMedical University of GrazGraz8036Austria
| | - Emilio Casanova
- Ludwig Boltzmann Institute for Cancer Research (LBI‐CR)ViennaAustria
- Department of PhysiologyCenter of Physiology and PharmacologyComprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Herwig P. Moll
- Department of PhysiologyCenter of Physiology and PharmacologyComprehensive Cancer CenterMedical University of ViennaViennaAustria
| |
Collapse
|
14
|
Crosby EJ, Wei J, Yang XY, Lei G, Wang T, Liu CX, Agarwal P, Korman AJ, Morse MA, Gouin K, Knott SRV, Lyerly HK, Hartman ZC. Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology 2018; 7:e1421891. [PMID: 29721371 PMCID: PMC5927534 DOI: 10.1080/2162402x.2017.1421891] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 01/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and molecularly diverse breast cancer subtype typified by the presence of p53 mutations (∼80%), elevated immune gene signatures and neoantigen expression, as well as the presence of tumor infiltrating lymphocytes (TILs). As these factors are hypothesized to be strong immunologic prerequisites for the use of immune checkpoint blockade (ICB) antibodies, multiple clinical trials testing single ICBs have advanced to Phase III, with early indications of heterogeneous response rates of <20% to anti-PD1 and anti-PDL1 ICB. While promising, these modest response rates highlight the need for mechanistic studies to understand how different ICBs function, how their combination impacts functionality and efficacy, as well as what immunologic parameters predict efficacy to different ICBs regimens in TNBC. To address these issues, we tested anti-PD1 and anti-CTLA4 in multiple models of TNBC and found that their combination profoundly enhanced the efficacy of either treatment alone. We demonstrate that this efficacy is due to anti-CTLA4-driven expansion of an individually unique T-cell receptor (TCR) repertoire whose functionality is enhanced by both intratumoral Treg suppression and anti-PD1 blockade of tumor expressed PDL1. Notably, the individuality of the TCR repertoire was observed regardless of whether the tumor cells expressed a nonself antigen (ovalbumin) or if tumor-specific transgenic T-cells were transferred prior to sequencing. However, responsiveness was strongly correlated with systemic measures of tumor-specific T-cell and B-cell responses, which along with systemic assessment of TCR expansion, may serve as the most useful predictors for clinical responsiveness in future clinical trials of TNBC utilizing anti-PD1/anti-CTLA4 ICB.
Collapse
Affiliation(s)
- Erika J Crosby
- Department of Surgery, Duke University, Durham, NC, United States
| | - Junping Wei
- Department of Surgery, Duke University, Durham, NC, United States
| | - Xiao Yi Yang
- Department of Surgery, Duke University, Durham, NC, United States
| | - Gangjun Lei
- Department of Surgery, Duke University, Durham, NC, United States
| | - Tao Wang
- Department of Surgery, Duke University, Durham, NC, United States
| | - Cong-Xiao Liu
- Department of Surgery, Duke University, Durham, NC, United States
| | - Pankaj Agarwal
- Department of Surgery, Duke University, Durham, NC, United States
| | - Alan J Korman
- Immuno-Oncology Discovery, Bristol-Myers Squibb Company, Redwood City, CA, United States
| | - Michael A Morse
- Department of Surgery, Duke University, Durham, NC, United States.,Department of Medicine, Duke University, Durham, NC, United States
| | - Kenneth Gouin
- Department of Biomedical Sciences, Cedars-Sinai Medical Institute, Los Angeles, CA, United States
| | - Simon R V Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Institute, Los Angeles, CA, United States
| | - H Kim Lyerly
- Department of Surgery, Duke University, Durham, NC, United States.,Department of Pathology/Immunology, Duke University, Durham, NC, United States
| | | |
Collapse
|
15
|
Rädler PD, Wehde BL, Wagner KU. Crosstalk between STAT5 activation and PI3K/AKT functions in normal and transformed mammary epithelial cells. Mol Cell Endocrinol 2017; 451:31-39. [PMID: 28495456 PMCID: PMC5515553 DOI: 10.1016/j.mce.2017.04.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/01/2023]
Abstract
Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) have been shown to function downstream of several peptide hormones and cytokines that are required for postnatal development and secretory function of the mammary gland. As part of an extended network, these signal transducers can engage in crosstalk with other pathways to facilitate synergistic, and sometimes antagonistic, actions of different growth factors. Specifically, signaling through the JAK2/STAT5 cascade has been demonstrated to be indispensable for the specification, proliferation, differentiation, and survival of secretory mammary epithelial cells. Following a concise description of major cellular programs in mammary gland development and the role of growth factors that rely on JAK/STAT signaling to orchestrate these programs, this review highlights the significance of active STAT5 and its crosstalk with the PI3 kinase and AKT1 for mediating the proliferation of alveolar progenitors and survival of their functionally differentiated descendants in the mammary gland. Based on its ability to provide self-sufficiency in growth signals that are also capable of overriding intrinsic cell death programs, persistently active STAT5 can serve as a potent oncoprotein that contributes to the genesis of breast cancer. Recent experimental evidence demonstrated that, similar to normal developmental programs, oncogenic functions of STAT5 rely on molecular crosstalk with PI3K/AKT signaling for the initiation, and in some instances the progression, of breast cancer. The multitude by which STATs can interact with individual mediators of the PI3K/AKT signaling cascade may provide novel avenues for targeting signaling nodes within molecular networks that are crucial for the survival of cancer cells.
Collapse
Affiliation(s)
- Patrick D Rädler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Barbara L Wehde
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| |
Collapse
|
16
|
Vercollone JR, Balzar M, Litvinov SV, Yang W, Cirulli V. MMTV/LTR Promoter-Driven Transgenic Expression of EpCAM Leads to the Development of Large Pancreatic Islets. J Histochem Cytochem 2015. [PMID: 26216137 DOI: 10.1369/0022155415583876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our previous work demonstrated an important role of EpCAM in the regulation of pancreatic cell adhesion, growth and differentiation. Here we investigated the consequences of human EpCAM (hEpCAM) overexpression under the control of the MMTV-LTR promoter, known to drive robust gene expression in a number of ductal epithelia, including the pancreas. In this animal model (MMTV-hEpCAM) we uncovered a striking pancreatic phenotype exhibiting a 12-fold increase in the islet cell mass, with normal expression patterns of insulin and the transcription factor PDX-1. Intriguingly, these large islet clusters revealed an altered architectural organization of α- and δ-cells that appeared interspersed with β-cells in the islet cores. This suggests an effect of the hEpCAM transgene on the function of other cell adhesion molecules that we have previously shown to regulate islet cell type segregation. Consistent with this finding, we show that the pancreatic epithelium in MMTV-hEpCAM transgenic mice exhibits a redistribution of β-catenin, a known regulator of E-cadherin-mediated adhesions. Collectively, these results provide an important in vivo validation of hEpCAM signaling properties in normal epithelia and offer unique opportunities to further explore the function of this glycoprotein in select pancreatic cell lineages to elicit islet cell expansion, and/or regeneration in diabetes.
Collapse
Affiliation(s)
- Jeffrey R Vercollone
- Department of Medicine, Diabetes & Obesity Center of Excellence, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington (JRV, WY, VC)
| | - Maarten Balzar
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands (MB, SVL)
| | - Sergey V Litvinov
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands (MB, SVL)
| | - Wendy Yang
- Department of Medicine, Diabetes & Obesity Center of Excellence, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington (JRV, WY, VC)
| | - Vincenzo Cirulli
- Department of Medicine, Diabetes & Obesity Center of Excellence, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington (JRV, WY, VC)
| |
Collapse
|
17
|
Abstract
Breast cancer is the most common cause of cancer death in women worldwide. This malignancy is a complex disease, which is defined by an intrinsic heterogeneity on the histopathological and molecular level as well as response to therapy and outcome. In addition to classical histopathological features, breast cancer can be categorized into at least five major subtypes based on comprehensive gene expression profiling: luminal A, luminal B, basal-like, ERBB2-positive, and normal-like breast cancer. Genetically engineered mouse models can serve as tools to study the molecular underpinnings for this disease. Given the genetic complexity that drives the initiation and progression of individual breast cancer subtypes, it is evident that certain models can reflect only particular aspects of this malignancy. In this book chapter, we will primarily focus on advances in modeling breast cancer at defined stages of carcinogenesis using genetically engineered mice. We will discuss the ability as well as shortcomings of these models to faithfully recapitulate the spectrum of human breast cancer subtypes.
Collapse
|
18
|
Stat5 regulates the phosphatidylinositol 3-kinase/Akt1 pathway during mammary gland development and tumorigenesis. Mol Cell Biol 2014; 34:1363-77. [PMID: 24469394 DOI: 10.1128/mcb.01220-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Stat5 (signal transducer and activator of transcription 5) is an essential mediator of cytokine receptor signaling and plays important roles in the proliferation of alveolar progenitors and the survival of functionally differentiated epithelial cells in the mammary gland. A deregulated expression and activation of Stat5 leads to precocious alveolar development in the absence of pregnancy hormones, impaired mammary gland remodeling following the cessation of lactation, and mammary tumor formation. We reported previously that Stat5 induces the transcription of the Akt1 gene from a novel promoter. In this report, we provide experimental evidence that Akt1 is an essential mediator for the biological function of Stat5 as a survival factor. Additionally, Stat5 controls the expression of the regulatory and catalytic subunits of the phosphatidylinositol 3-kinase (PI3K) (p85α and p110α), thereby greatly augmenting signaling through the prosurvival PI3K/Akt pathway. In agreement with this model, we observed that the constitutive activation of Stat5 cooperates with the loss of function of the tumor suppressor PTEN by accelerating the formation of preneoplastic lesions and mammary tumors. The mammary gland-specific ablation of Stat5 is sufficient to prevent mammary carcinogenesis in a genuine mouse model for Cowden syndrome. Therefore, targeting the Jak2/Stat5 pathway might be a suitable strategy to prevent breast cancer in patients that carry a mutant PTEN allele.
Collapse
|
19
|
Lin WC, Schmidt JW, Creamer BA, Triplett AA, Wagner KU. Gain-of-function of Stat5 leads to excessive granulopoiesis and lethal extravasation of granulocytes to the lung. PLoS One 2013; 8:e60902. [PMID: 23565285 PMCID: PMC3614894 DOI: 10.1371/journal.pone.0060902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/05/2013] [Indexed: 11/25/2022] Open
Abstract
The Signal Transducer and Activator of Transcription 5 (Stat5) plays a significant role in normal hematopoiesis and a variety of hematopoietic malignancies. Deficiency in Stat5 causes impaired cytokine-mediated proliferation and survival of progenitors and their differentiated descendants along major hematopoietic lineages such as erythroid, lymphoid, and myeloid cells. Overexpression and persistent activation of Stat5 are sufficient for neoplastic transformation and development of multi-lineage leukemia in a transplant model. Little is known, however, whether a continuous activation of this signal transducer is essential for the maintenance of hematopoietic malignancies. To address this issue, we developed transgenic mice that express a hyperactive mutant of Stat5 in hematopoietic progenitors and derived lineages in a ligand-controlled manner. In contrast to the transplant model, expression of mutant Stat5 did not adversely affect normal hematopoiesis in the presence of endogenous wildtype Stat5 alleles. However, the gain-of-function of this signal transducer in mice that carry Stat5a/b hypomorphic alleles resulted in abnormally high numbers of circulating granulocytes that caused severe airway obstruction. Downregulation of hyperactive Stat5 in diseased animals restored normal granulopoiesis, which also resulted in a swift clearance of granulocytes from the lung. Moreover, we demonstrate that Stat5 promotes the initiation and maintenance of severe granulophilia in a cell autonomous manner. The results of this study show that the gain-of-function of Stat5 causes excessive granulopoiesis and prolonged survival of granulocytes in circulation. Collectively, our findings underline the critical importance of Stat5 in maintaining a normal balance between myeloid and lymphoid cells during hematopoiesis, and we provide direct evidence for a function of Stat5 in granulophilia–associated pulmonary dysfunction.
Collapse
Affiliation(s)
- Wan-chi Lin
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jeffrey W. Schmidt
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Bradley A. Creamer
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Aleata A. Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|