1
|
Gill NB, Dowker-Key PD, Hedrick M, Bettaieb A. Unveiling the Role of Oxidative Stress in Cochlear Hair Cell Death: Prospective Phytochemical Therapeutics against Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4272. [PMID: 38673858 PMCID: PMC11050722 DOI: 10.3390/ijms25084272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing loss represents a multifaceted and pervasive challenge that deeply impacts various aspects of an individual's life, spanning psychological, emotional, social, and economic realms. Understanding the molecular underpinnings that orchestrate hearing loss remains paramount in the quest for effective therapeutic strategies. This review aims to expound upon the physiological, biochemical, and molecular aspects of hearing loss, with a specific focus on its correlation with diabetes. Within this context, phytochemicals have surfaced as prospective contenders in the pursuit of potential adjuvant therapies. These compounds exhibit noteworthy antioxidant and anti-inflammatory properties, which hold the potential to counteract the detrimental effects induced by oxidative stress and inflammation-prominent contributors to hearing impairment. Furthermore, this review offers an up-to-date exploration of the diverse molecular pathways modulated by these compounds. However, the dynamic landscape of their efficacy warrants recognition as an ongoing investigative topic, inherently contingent upon specific experimental models. Ultimately, to ascertain the genuine potential of phytochemicals as agents in hearing loss treatment, a comprehensive grasp of the molecular mechanisms at play, coupled with rigorous clinical investigations, stands as an imperative quest.
Collapse
Affiliation(s)
- Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Mark Hedrick
- Department of Audiology & Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN 37996-0240, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| |
Collapse
|
2
|
Osakabe N, Modafferi S, Ontario ML, Rampulla F, Zimbone V, Migliore MR, Fritsch T, Abdelhameed AS, Maiolino L, Lupo G, Anfuso CD, Genovese E, Monzani D, Wenzel U, Calabrese EJ, Vabulas RM, Calabrese V. Polyphenols in Inner Ear Neurobiology, Health and Disease: From Bench to Clinics. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2045. [PMID: 38004094 PMCID: PMC10673256 DOI: 10.3390/medicina59112045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
There is substantial experimental and clinical interest in providing effective ways to both prevent and slow the onset of hearing loss. Auditory hair cells, which occur along the basilar membrane of the cochlea, often lose functionality due to age-related biological alterations, as well as from exposure to high decibel sounds affecting a diminished/damaged auditory sensitivity. Hearing loss is also seen to take place due to neuronal degeneration before or following hair cell destruction/loss. A strategy is necessary to protect hair cells and XIII cranial/auditory nerve cells prior to injury and throughout aging. Within this context, it was proposed that cochlea neural stem cells may be protected from such aging and environmental/noise insults via the ingestion of protective dietary supplements. Of particular importance is that these studies typically display a hormetic-like biphasic dose-response pattern that prevents the occurrence of auditory cell damage induced by various model chemical toxins, such as cisplatin. Likewise, the hormetic dose-response also enhances the occurrence of cochlear neural cell viability, proliferation, and differentiation. These findings are particularly important since they confirmed a strong dose dependency of the significant beneficial effects (which is biphasic), whilst having a low-dose beneficial response, whereas extensive exposures may become ineffective and/or potentially harmful. According to hormesis, phytochemicals including polyphenols exhibit biphasic dose-response effects activating low-dose antioxidant signaling pathways, resulting in the upregulation of vitagenes, a group of genes involved in preserving cellular homeostasis during stressful conditions. Modulation of the vitagene network through polyphenols increases cellular resilience mechanisms, thus impacting neurological disorder pathophysiology. Here, we aimed to explore polyphenols targeting the NF-E2-related factor 2 (Nrf2) pathway to neuroprotective and therapeutic strategies that can potentially reduce oxidative stress and inflammation, thus preventing auditory hair cell and XIII cranial/auditory nerve cell degeneration. Furthermore, we explored techniques to enhance their bioavailability and efficacy.
Collapse
Affiliation(s)
- Naomi Osakabe
- Department of Bioscience and Engineering, Shibaura Institute Technology, Saitama 337-8570, Japan;
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Francesco Rampulla
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Vincenzo Zimbone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Maria Rita Migliore
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | | | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Luigi Maiolino
- Department of Medical, Surgical Advanced Technologies “G. F. Ingrassia”, University of Catania, 95125 Catania, Italy;
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| | - Elisabetta Genovese
- Department of Maternal and Child and Adult Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniele Monzani
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, 37100 Verona, Italy;
| | - Uwe Wenzel
- Institut für Ernährungswissenschaft, Justus Liebig Universitat Giessen, 35392 Giessen, Germany
| | - Edward J. Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA;
| | - R. Martin Vabulas
- Charité-Universitätsmedizin Berlin, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (M.L.O.); (F.R.); (V.Z.); (M.R.M.); (G.L.); (C.D.A.)
| |
Collapse
|
3
|
Preventive Effect of Cocoa Flavonoids via Suppression of Oxidative Stress-Induced Apoptosis in Auditory Senescent Cells. Antioxidants (Basel) 2022; 11:antiox11081450. [PMID: 35892652 PMCID: PMC9330887 DOI: 10.3390/antiox11081450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Presbycusis or Age-related hearing loss (ARHL) is a sensorineural hearing loss that affects communication, leading to depression and social isolation. Currently, there are no effective treatments against ARHL. It is known that cocoa products have high levels of polyphenol content (mainly flavonoids), that are potent anti-inflammatory and antioxidant agents with proven benefits for health. The objective is to determine the protective effect of cocoa at the cellular and molecular levels in Presbycusis. For in vitro study, we used House Ear Institute-Organ of Corti 1 (HEI-OC1), stria vascularis (SV-k1), and organ of Corti (OC-k3) cells (derived from the auditory organ of a transgenic mouse). Each cell line was divided into a control group (CTR) and an H2O2 group (induction of senescence by an oxygen radical). Additionally, every group of every cell line was treated with the cocoa polyphenolic extract (CPE), measuring different markers of apoptosis, viability, the activity of antioxidant enzymes, and oxidative/nitrosative stress. The data show an increase of reactive oxidative and nitrogen species (ROS and RNS, respectively) in senescent cells compared to control ones. CPE treatment effectively reduced these high levels and correlated with a significant reduction in apoptosis cells by inhibiting the mitochondrial-apoptotic pathway. Furthermore, in senescence cells, the activity of antioxidant enzymes (Superoxide dismutase, SOD; Catalase, CAT; and Glutathione peroxidase, GPx) was recovered after CPE treatment. Administration of CPE also decreased oxidative DNA damage in the auditory senescent cells. In conclusion, CPE inhibits the activation of senescence-related apoptotic signaling by decreasing oxidative stress in auditory senescent cells.
Collapse
|
4
|
Lim JO, Ko JW, Shin NR, Jung TY, Moon C, Kim HC, Shin IS, Kim JC. Cisplatin-induced ototoxicity involves interaction of PRMT3 and cannabinoid system. Arch Toxicol 2019; 93:2335-2346. [PMID: 31256211 DOI: 10.1007/s00204-019-02507-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/26/2019] [Indexed: 01/14/2023]
Abstract
This study investigated whether protein arginine methyltransferase (PRMT) and the cannabinoid system are involved in cisplatin-induced ototoxicity. Cisplatin increased cytosine-cytosine-adenosine-adenosine-thymidine-enhancer-binding protein homologous protein expression. This effect is indicative of an increase in endoplasmic reticulum (ER) stress, and apoptosis signaling including cleavage of caspase-3, caspase-9, poly-adenosine diphosphate-ribose polymerase, and phospho-p53, as well as expression of PRMT3, PRMT4 and fatty acid amide hydrolase (FAAH)1 in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. In addition, overexpression of PRMT3 or PRMT4 increased the expression of FAAH1 expression, apoptosis, and ER stress signaling in HEI-OC1 cells, whereas PRMT3 or PRMT4 knockdown had the opposite effect. Furthermore, overexpression of FAAH1 increased apoptosis and ER stress, but expression of the PRMTs was unchanged. In addition, a cannabinoid 1 receptor agonist and FAAH inhibitor attenuated apoptosis and ER stress, while cisplatin increased the binding of PRMT3 with FAAH1. In the in vivo experiments, cisplatin was injected intraperitoneally at 6 mg/kg/day into C57BL/6 mice, and 7 days later, this study confirmed that PRMT3 and PRMT4 were upregulated in the organ of Corti of the mice. These results indicate that cisplatin-induced ototoxicity was correlated with PRMT3, PRMT4 and the cannabinoid system, and PRMT3 binding with FAAH1 was increased by cisplatin in HEI-OC1 cells. Therefore, this study suggests that PRMT3 mediates cisplatin-induced ototoxicity via interaction with FAAH1 in vitro and in vivo.
Collapse
Affiliation(s)
- Je-Oh Lim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Na-Rae Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Tae-Yang Jung
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Changjong Moon
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - In-Sik Shin
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Jong-Choon Kim
- College of Veterinary Medicine (BK21 Plus Project Team), Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
5
|
Castañeda R, Natarajan S, Jeong SY, Hong BN, Kang TH. Traditional oriental medicine for sensorineural hearing loss: Can ethnopharmacology contribute to potential drug discovery? JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:409-428. [PMID: 30439402 DOI: 10.1016/j.jep.2018.11.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Traditional Oriental Medicine (TOM), the development of hearing pathologies is related to an inadequate nourishment of the ears by the kidney and other organs involved in regulation of bodily fluids and nutrients. Several herbal species have historically been prescribed for promoting the production of bodily fluids or as antiaging agents to treat deficiencies in hearing. AIM OF REVIEW The prevalence of hearing loss has been increasing in the last decade and is projected to grow considerably in the coming years. Recently, several herbal-derived products prescribed in TOM have demonstrated a therapeutic potential for acquired sensorineural hearing loss and tinnitus. Therefore, the aims of this review are to provide a comprehensive overview of the current known efficacy of the herbs used in TOM for preventing different forms of acquired sensorineural hearing loss and tinnitus, and associate the traditional principle with the demonstrated pharmacological mechanisms to establish a solid foundation for directing future research. METHODS The present review collected the literature related to herbs used in TOM or related compounds on hearing from Chinese, Korean, and Japanese herbal classics; library catalogs; and scientific databases (PubMed, Scopus, Google Scholar; and Science Direct). RESULTS This review shows that approximately 25 herbal species and 40 active compounds prescribed in TOM for hearing loss and tinnitus have shown in vitro or in vivo beneficial effects for acquired sensorineural hearing loss produced by noise, aging, ototoxic drugs or diabetes. The inner ear is highly vulnerable to ischemia and oxidative damage, where several TOM agents have revealed a direct effect on the auditory system by normalizing the blood supply to the cochlea and increasing the antioxidant defense in sensory hair cells. These strategies have shown a positive impact on maintaining the inner ear potential, sustaining the production of endolymph, reducing the accumulation of toxic and inflammatory substances, preventing sensory cell death and preserving sensory transmission. There are still several herbal species with demonstrated therapeutic efficacy whose mechanisms have not been deeply studied and others that have been traditionally used in hearing loss but have not been tested experimentally. In clinical studies, Ginkgo biloba, Panax ginseng, and Astragalus propinquus have demonstrated to improve hearing thresholds in patients with sensorineural hearing loss and alleviated the symptoms of tinnitus. However, some of these clinical studies have been limited by small sample sizes, lack of an adequate control group or contradictory results. CONCLUSIONS Current therapeutic strategies have proven that the goal of the traditional oriental medicine principle of increasing bodily fluids is a relevant approach for reducing the development of hearing loss by improving microcirculation in the blood-labyrinth barrier and increasing cochlear blood flow. The potential benefits of TOM agents expand to a multi-target approach on different auditory structures of the inner ear related to increased cochlear blood flow, antioxidant, anti-inflammatory, anti-apoptotic and neuroprotective activities. However, more research is required, given the evidence is very limited in terms of the mechanism of action at the preclinical in vivo level and the scarce number of clinical studies published.
Collapse
Affiliation(s)
- Rodrigo Castañeda
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Sathishkumar Natarajan
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Seo Yule Jeong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| | - Bin Na Hong
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea.
| | - Tong Ho Kang
- Graduate School of Biotechnology, Kyung Hee University, Republic of Korea; Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea.
| |
Collapse
|
6
|
Liu C, Guo Y, Zhao F, Qin H, Lu H, Fang L, Wang J, Min W. Potential mechanisms mediating the protective effects of a peptide from walnut (Juglans mandshuricaMaxim.) against hydrogen peroxide induced neurotoxicity in PC12 cells. Food Funct 2019; 10:3491-3501. [DOI: 10.1039/c8fo02557f] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel neuroprotective peptide EVSGPGLSPN, which was identified from walnut protein hydrolysates, protected PC12 cells by blocking the NF-κB/caspase pathways.
Collapse
Affiliation(s)
- Chunlei Liu
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Yong Guo
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Fanrui Zhao
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Hanxiong Qin
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Hongyan Lu
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Li Fang
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Ji Wang
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| | - Weihong Min
- College of Food Science and Engineering
- Jilin Agricultural University
- Changchun 130118
- P.R. China
- National Engineering Laboratory of Wheat and Corn Deep Processing
| |
Collapse
|
7
|
Sánchez-Rodríguez C, Cuadrado E, Riestra-Ayora J, Sanz-Fernández R. Polyphenols protect against age-associated apoptosis in female rat cochleae. Biogerontology 2018; 19:159-169. [PMID: 29363005 DOI: 10.1007/s10522-018-9747-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/18/2018] [Indexed: 01/13/2023]
Abstract
Dietary antioxidants, polyphenols, have been found to be beneficial in protecting against the generation of oxidative stress in various diseases associated with aging. Age-related hearing loss (AHL) is the number one neurodegenerative disorder on our aged population. Sprague-Dawley rats divided into five groups according to their age (3, 6, 12, 18 and 24 months old) and treated with 100 mg/day/kg body weight of polyphenols were used. Then, cochleae were harvested to measure caspase activities (- 3, - 8 and - 9), caspase-3 gene expression, ATP levels, Bax, BcL-2 and p53 levels. 8-OHdG levels (marker of DNA oxidative damage) and annexin-V were also measured in cochleae. Increased levels of caspase-3 and 9 in cochlea were observed with age and this effect was attenuated by polyphenol treatment. In addition, ATP and Bcl-2 levels in older rats were recovered after administration of polyphenols, while Bax and p53 levels protein decreased. Oral supplementation with polyphenols also reduces DNA oxidative damage of cochlear cell. Treatment with polyphenols inhibits the activation of age-related apoptotic signaling by decreasing oxidative stress inside the rat cochlea.
Collapse
Affiliation(s)
| | - Esperanza Cuadrado
- Department of biochemistry, University Hospital of Getafe, Carretera de Toledo, km 12, Getafe, 500, Madrid, Spain
| | - Juan Riestra-Ayora
- European University of Madrid, Calle del Tajo S/N, Villaviciosa de Odón, 28670, Madrid, Spain
- Department of Otolaryngology, University Hospital of Getafe, Carretera de Toledo, km 12, Getafe, 500, Madrid, Spain
| | - Ricardo Sanz-Fernández
- European University of Madrid, Calle del Tajo S/N, Villaviciosa de Odón, 28670, Madrid, Spain
- Department of Otolaryngology, University Hospital of Getafe, Carretera de Toledo, km 12, Getafe, 500, Madrid, Spain
| |
Collapse
|
8
|
Rondanelli M, Perna S, Peroni G, Guido D. A bibliometric study of scientific literature in Scopus on botanicals for treatment of androgenetic alopecia. J Cosmet Dermatol 2015; 15:120-30. [DOI: 10.1111/jocd.12198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Mariangela Rondanelli
- Endocrinology and Nutrition Unit; Section of Human Nutrition; Department of Public Health, Experimental and Forensic Medicine; Azienda di Servizi alla Persona; University of Pavia; Pavia Italy
| | - Simone Perna
- Endocrinology and Nutrition Unit; Section of Human Nutrition; Department of Public Health, Experimental and Forensic Medicine; Azienda di Servizi alla Persona; University of Pavia; Pavia Italy
| | - Gabriella Peroni
- Endocrinology and Nutrition Unit; Section of Human Nutrition; Department of Public Health, Experimental and Forensic Medicine; Azienda di Servizi alla Persona; University of Pavia; Pavia Italy
| | - Davide Guido
- Endocrinology and Nutrition Unit; Section of Human Nutrition; Department of Public Health, Experimental and Forensic Medicine; Azienda di Servizi alla Persona; University of Pavia; Pavia Italy
- Medical and Genomic Statistics Unit; Department of Brain and Behavioral Sciences; University of Pavia; Pavia Italy
- Biostatistics and Clinical Epidemiology Unit; Department of Public Health, Experimental and Forensic Medicine; University of Pavia; Pavia Italy
| |
Collapse
|
9
|
Jeong JY, Park MN, Cho ES, Jang HJ, Park S, Lee HJ. Epigallocatechin-3-gallate-induced free-radical production upon adipogenic differentiation in bovine bone-marrow mesenchymal stem cells. Cell Tissue Res 2015; 362:87-96. [PMID: 25971931 DOI: 10.1007/s00441-015-2191-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/02/2015] [Indexed: 12/13/2022]
Abstract
Epigallocatechin-3-gallate (EGCG), a major component of catechin in green tea, has known effects on cancer, diabetes and obesity. We recently reported that the expression levels of various genes and proteins involved in adipogenesis decreases following EGCG treatment. We also assessed apoptosis in EGCG-exposed cells. Here, we explore the variability in free-radical production in bovine bone-marrow mesenchymal stem cells (BMSCs) treated with EGCG. Upon adipogenic differentiation, BMSCs were exposed to various EGCG concentrations (0, 0.1, 1, 5, or 10 μM) for 2, 4, or 6 days. We found that EGCG reduced cell viability and arrested the cell cycle at the gap 2/mitosis phase and that EGCG potentially enhanced the production of free radicals, including reactive oxygen species and reactive nitrogen species, in a concentration- and time-dependent manner. Immunostaining revealed that the expression of genes encoding CCAAT/enhancer-binding protein alpha and stearoyl-CoA desaturase were diminished by EGCG treatment. These findings suggest that EGCG alters free-radical production activity during adipogenic differentiation in BMSCs.
Collapse
Affiliation(s)
- Jin Young Jeong
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea.,Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Mi Na Park
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea
| | - Eun Seok Cho
- Department of Animal Resources Development Swine Science Division, National Institute of Animal Science, Rural Development Adminstration, 114,Sinbang 1-St, Seonghwan-eup, Seobuk-gu, Cheonan-city, Chungcheongnam-do, 331-801, Republic of Korea
| | - Hyun-Jun Jang
- College of Phamacy, Dankook University, 119 Dandae-ro, Cheonan, 330-714, Republic of Korea
| | - Sungkwon Park
- Department of Food Science and Technology, Sejong University, 98 Gun-ja-dong, Seoul, 143-747, Republic of Korea
| | - Hyun-Jeong Lee
- Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, Rural Development Administration, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 565-851, Republic of Korea.
| |
Collapse
|
10
|
Salameh A, Einenkel A, Kühne L, Grassl M, von Salisch S, Kiefer P, Vollroth M, Dähnert I, Dhein S. Hippocampal Neuroprotection by Minocycline and Epigallo-Catechin-3-Gallate Against Cardiopulmonary Bypass-Associated Injury. Brain Pathol 2015; 25:733-42. [PMID: 25582287 DOI: 10.1111/bpa.12242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/17/2014] [Indexed: 02/05/2023] Open
Abstract
Surgical correction of congenital cardiac malformations mostly implies the use of cardiopulmonary bypass (CPB). However, a possible negative impact of CPB on cerebral structures like the hippocampus cannot be neglected. Therefore, we investigated the effect of CPB on hippocampus CA1 and CA3 regions without or with the addition of epigallocatechin-3-gallate (EGCG) or minocycline. We studied 42 piglets and divided them into six experimental groups: control without or with EGCG or minocycline, CPB without or with EGCG or minocycline. The piglets underwent 90 minutes CPB and subsequently, a 120-minute recovery and reperfusion phase. Thereafter, histology of the hippocampus was performed and the adenosine triphosphate (ATP) content was measured. Histologic evaluation revealed that CPB produced a significant peri-cellular edema in both CA regions. Moreover, we found an increased number of cells stained with markers for hypoxia, apoptosis and nitrosative stress. Most of these alterations were significantly reduced to or near to control levels by application of EGCG or minocycline. ATP content was significantly reduced within the hippocampus after CPB. This reduction could not be antagonized by EGCG or minocycline. In conclusion, CPB had a significant negative impact on the integrity of hippocampal neural cells. This cellular damage could be significantly attenuated by addition of EGCG or minocycline.
Collapse
Affiliation(s)
- Aida Salameh
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
| | - Anne Einenkel
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
| | - Lydia Kühne
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
| | - Maria Grassl
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
| | - Sandy von Salisch
- Clinic for Cardiac Surgery, University of Leipzig, Heart Centre, Leipzig, Germany
| | - Phillip Kiefer
- Clinic for Cardiac Surgery, University of Leipzig, Heart Centre, Leipzig, Germany
| | - Marcel Vollroth
- Clinic for Cardiac Surgery, University of Leipzig, Heart Centre, Leipzig, Germany
| | - Ingo Dähnert
- Clinic for Pediatric Cardiology, University of Leipzig, Heart Centre, Leipzig, Germany
| | - Stefan Dhein
- Clinic for Cardiac Surgery, University of Leipzig, Heart Centre, Leipzig, Germany
| |
Collapse
|
11
|
Al-Ajmi N, Al-Maghrebi M, Renno WM. (-)-Epigallocatechin-3-gallate Modulates the Differential Expression of Survivin Splice Variants and Protects Spermatogenesis During Testicular Torsion. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:259-65. [PMID: 23946684 PMCID: PMC3741481 DOI: 10.4196/kjpp.2013.17.4.259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/02/2013] [Accepted: 05/16/2013] [Indexed: 12/14/2022]
Abstract
The anti-apoptotic effect of (-)-epigallocatechin-3-gallate (EGCG) during unilateral testicular torsion and detorsion (TT/D) was established in our previous study. In mice, the smallest inhibitor of apoptosis, survivin, is alternatively spliced into three variants, each suggested to have a unique function. Here, we assessed how EGCG exerts its protective effect through the expression of the different survivin splice variants and determined its effect on the morphology of the seminiferous tubules during TT/D. Three mouse groups were used: sham, TT/D+vehicle and TT/D treated with EGCG. The expression of the survivin variants (140 and 40) and other apoptosis genes (p53, Bax and Bcl-2) was measured with semi-quantitative RT-PCR. Histological analysis was performed to assess DNA fragmentation, damage to spermatogenesis and morphometric changes in the seminiferous tubules. In the TT/D+vehicle group, survivin 140 expression was markedly decreased, whereas survivin 40 expression was not significantly different. In parallel, there was an increase in the mRNA level of p53 and the Bax to Bcl-2 ratio in support of apoptosis induction. Histological analyses revealed increased DNA fragmentation and increased damage to spermatogenesis associated with decreased seminiferous tubular diameter and decreased germinal epithelial cell thickness in the TT/D+vehicle group. These changes were reversed to almost sham levels upon EGCG treatment. Our data indicate that EGCG protects the testis from TT/D-induced damage by protecting the morphology of the seminiferous tubules and modulating survivin 140 expression.
Collapse
Affiliation(s)
- Nada Al-Ajmi
- Department of Natural Sciences, College of Health Sciences, The Public Authority for Applied Education & Training, Safat 13092, Kuwait
| | | | | |
Collapse
|