1
|
Identification of a Novel Anti-cancer Protein, FIP-bbo, from Botryobasidium botryosum and Protein Structure Analysis using Molecular Dynamic Simulation. Sci Rep 2019; 9:5818. [PMID: 30967569 PMCID: PMC6456589 DOI: 10.1038/s41598-019-42104-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
Fungal immunoregulatory proteins (FIP) are effective small molecule proteins with broad-spectrum immunomodulatory and anti-cancer activities and can be potential agents for the development of clinical drugs and health food additives. In this study, a new member of FIP named FIP-bbo was obtained through Botryobasidium botryosum genome mining. FIP-bbo has the typical characteristics of FIP but is genetically distant from other FIPs. Recombinant FIP-bbo (rFIP-bbo) was produced in an optimized E. coli expression system, and the pure protein was isolated using a Ni-NTA column. Antineoplastic experiments suggested that FIP-bbo is similar to LZ-8 in inhibiting various cancer cells (Hela, Spac-1, and A549) at lower concentrations, but it is not as potent as LZ-8. The molecular mechanism by which FIP-bbo, FIP-fve, and LZ-8 are cytotoxic to cancer cells has been discussed based on molecular dynamics simulation. Point mutations that may improve the thermal stability of FIP-fve and FIP-bbo were predicted. These results not only present a new candidate protein for the development of anticancer adjuvants, but also provide an approach for designing FIPs with high anticancer activity.
Collapse
|
2
|
Wang J, Chen F, Liu Y, Liu Y, Li K, Yang X, Liu S, Zhou X, Yang J. Spirostaphylotrichin X from a Marine-Derived Fungus as an Anti-influenza Agent Targeting RNA Polymerase PB2. JOURNAL OF NATURAL PRODUCTS 2018; 81:2722-2730. [PMID: 30516983 DOI: 10.1021/acs.jnatprod.8b00656] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new spirocyclic γ-lactam, named spirostaphylotrichin X (1), and three related known spirostaphylotrichins (2-4) were isolated from the marine-derived fungus Cochliobolus lunatus SCSIO41401. Their structures were determined by spectroscopic analyses. Spirostaphylotrichin X (1) displayed obvious inhibitory activities against multiple influenza virus strains, with IC50 values from 1.2 to 5.5 μM. Investigation of the mechanism showed that 1 inhibited viral polymerase activity and interfered with the production of progeny viral RNA. Homogeneous time-resolved fluorescence, surface plasmon resonance assays, and a molecular docking study revealed that 1 could inhibit polymerase PB2 protein activity by binding to the highly conserved region of the cap-binding domain of PB2. These results suggest that 1 inhibits the replication of influenza A virus by interfering with the activity of PB2 protein and that 1 represents a new type of potential lead compound for the development of anti-influenza therapeutics.
Collapse
Affiliation(s)
- Jianjiao Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Feimin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , People's Republic of China
| | - Yunhao Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , People's Republic of China
| | - Yuxuan Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , People's Republic of China
| | - Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , People's Republic of China
| | - Xiliang Yang
- Department of Pharmacy, Medical College , Wuhan University of Science and Technology , Wuhan 430065 , People's Republic of China
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , People's Republic of China
- State Key Laboratory of Organ Failure Research , Southern Medical University , Guangzhou 510515 , People's Republic of China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica , South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510301 , People's Republic of China
- State Key Laboratory of Organ Failure Research , Southern Medical University , Guangzhou 510515 , People's Republic of China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , People's Republic of China
| |
Collapse
|
3
|
Wang XJ, Zhang J, Wang SQ, Xu WR, Cheng XC, Wang RL. Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2255-62. [PMID: 25422585 PMCID: PMC4232041 DOI: 10.2147/dddt.s70383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The thiazolidinedione class peroxisome proliferator-activated receptor gamma (PPARγ) agonists are restricted in clinical use as antidiabetic agents because of side effects such as edema, weight gain, and heart failure. The single and selective agonism of PPARγ is the main cause of these side effects. Multitargeted PPARα/γ/δ pan agonist development is the hot topic in the antidiabetic drug research field. In order to identify PPARα/γ/δ pan agonists, a compound database was established by core hopping of rosiglitazone, which was then docked into a PPARα/γ/δ active site to screen out a number of candidate compounds with a higher docking score and better interaction with the active site. Further, absorption, distribution, metabolism, excretion, and toxicity prediction was done to give eight compounds. Molecular dynamics simulation of the representative Cpd#1 showed more favorable binding conformation for PPARs receptor than the original ligand. Cpd#1 could act as a PPARα/γ/δ pan agonist for novel antidiabetic drug research.
Collapse
Affiliation(s)
- Xue-Jiao Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jun Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Shu-Qing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Wei-Ren Xu
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, People's Republic of China
| | - Xian-Chao Cheng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
4
|
Cong S, Ma XT, Li YX, Wang JF. Structural Basis for the Mutation-Induced Dysfunction of Human CYP2J2: A Computational Study. J Chem Inf Model 2013; 53:1350-7. [DOI: 10.1021/ci400003p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shan Cong
- Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Center for Systems Biomedicine,
Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Tu Ma
- Key Laboratory of Systems Biomedicine
(Ministry of Education), Shanghai Center for Systems Biomedicine,
Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | |
Collapse
|
5
|
Liu Y, Liu BY, Hao P, Li X, Li YX, Wang JF. π-π Stacking mediated drug-drug interactions in human CYP2E1. Proteins 2013; 81:945-54. [PMID: 23349037 DOI: 10.1002/prot.24260] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/11/2013] [Indexed: 11/07/2022]
Abstract
Because of having many low molecular mass substrates, CYP2E1 is of particular interests to the pharmaceutical industry. Many evidences showed that this enzyme can adopt multiple substrates to significantly reduce the oxidation rate of the substrates. The detailed mechanism for this observation is still unclear. In the current study, we employed GPU-accelerated molecular dynamics simulations to study the multiple-binding mode of human CYP2E1, with an aim of offering a mechanistic explanation for the unexplained multiple-substrate binding. Our results showed that Thr303 and Phe478 were key factors for the substrate recognition and multiple-substrate binding. The former can form a significant hydrogen bond to recognize and position the substrate in the productive binding orientation in the active site. The latter acted as a mediator for the substrate communications via π-π stacking interactions. In the multiple-binding mode, the aforementioned π-π stacking interactions formed by the aromatic rings of both substrates and Phe478 drove the first substrate far away from the catalytic center, orienting in an additional binding position and going against the substrate metabolism. All these findings could give atomic insights into the detailed mechanism for the multiple-substrate binding in human CYP2E1, providing useful information for the drug metabolism mechanism and personalized use of clinical drugs.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | | | |
Collapse
|
6
|
Scaffold-based pan-agonist design for the PPARα, PPARβ and PPARγ receptors. PLoS One 2012; 7:e48453. [PMID: 23119024 PMCID: PMC3485212 DOI: 10.1371/journal.pone.0048453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/26/2012] [Indexed: 12/25/2022] Open
Abstract
As important members of nuclear receptor superfamily, Peroxisome proliferator-activated receptors (PPAR) play essential roles in regulating cellular differentiation, development, metabolism, and tumorigenesis of higher organisms. The PPAR receptors have 3 identified subtypes: PPARα, PPARβ and PPARγ, all of which have been treated as attractive targets for developing drugs to treat type 2 diabetes. Due to the undesirable side-effects, many PPAR agonists including PPARα/γ and PPARβ/γ dual agonists are stopped by US FDA in the clinical trials. An alternative strategy is to design novel pan-agonist that can simultaneously activate PPARα, PPARβ and PPARγ. Under such an idea, in the current study we adopted the core hopping algorithm and glide docking procedure to generate 7 novel compounds based on a typical PPAR pan-agonist LY465608. It was observed by the docking procedures and molecular dynamics simulations that the compounds generated by the core hopping and glide docking not only possessed the similar functions as the original LY465608 compound to activate PPARα, PPARβ and PPARγ receptors, but also had more favorable conformation for binding to the PPAR receptors. The additional absorption, distribution, metabolism and excretion (ADME) predictions showed that the 7 compounds (especially Cpd#1) hold high potential to be novel lead compounds for the PPAR pan-agonist. Our findings can provide a new strategy or useful insights for designing the effective pan-agonists against the type 2 diabetes.
Collapse
|