1
|
Song G, Yu X, Shi H, Sun B, Amateau S. miRNAs in HCC, pathogenesis, and targets. Hepatology 2024:01515467-990000000-01097. [PMID: 39626210 DOI: 10.1097/hep.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Liver cancer is the third leading cause of cancer-related mortality worldwide. HCC, the most common type of primary liver cancer, is driven by complex genetic, epigenetic, and environmental factors. MicroRNAs, a class of naturally occurring small noncoding RNAs, play crucial roles in HCC by simultaneously modulating the expression of multiple genes in a fine-tuning manner. Significant progress has been made in understanding how miRNAs influence key oncogenic pathways, including cell proliferation, apoptosis, angiogenesis, and epithelial-mesenchymal transition (EMT), as well as their role in modulating the immune microenvironment in HCC. Due to the unexpected stability of miRNAs in the blood and fixed HCC tumors, recent advancements also highlight their potential as noninvasive diagnostic tools. Restoring or inhibiting specific miRNAs has offered promising strategies for targeted HCC treatment by suppressing malignant hepatocyte growth and enhancing antitumor immunity. In this comprehensive review, we consolidate previous research and provide the latest insights into how miRNAs regulate HCC and their therapeutic and diagnostic potential. We delve into the dysregulation of miRNA biogenesis in HCC, the roles of miRNAs in the proliferation and apoptosis of malignant hepatocytes, angiogenesis and metastasis of HCC, the immune microenvironment in HCC, and drug resistance. We also discuss the therapeutic and diagnostic potential of miRNAs and delivery approaches of miRNA drugs to overcome the limitations of current HCC treatment options. By thoroughly summarizing the roles of miRNAs in HCC, our goal is to advance the development of effective therapeutic drugs with minimal adverse effects and to establish precise tools for early diagnosis of HCC.
Collapse
Affiliation(s)
- Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaofan Yu
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hongtao Shi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Bo Sun
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stuart Amateau
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Trevelyan CJ, MacCannell ADV, Stewart L, Tarousa T, Taylor HA, Murray M, Bageghni SA, Hemmings KE, Drinkhill MJ, Roberts LD, Smith AJ, Porter KE, Forbes KA, Turner NA. MiR-214-3p regulates Piezo1, lysyl oxidases and mitochondrial function in human cardiac fibroblasts. Matrix Biol 2024; 132:34-46. [PMID: 38925225 DOI: 10.1016/j.matbio.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Cardiac fibroblasts are pivotal regulators of cardiac homeostasis and are essential in the repair of the heart after myocardial infarction (MI), but their function can also become dysregulated, leading to adverse cardiac remodelling involving both fibrosis and hypertrophy. MicroRNAs (miRNAs) are noncoding RNAs that target mRNAs to prevent their translation, with specific miRNAs showing differential expression and regulation in cardiovascular disease. Here, we show that miR-214-3p is enriched in the fibroblast fraction of the murine heart, and its levels are increased with cardiac remodelling associated with heart failure, or in the acute phase after experimental MI. Tandem mass tagging proteomics and in-silico network analyses were used to explore protein targets regulated by miR-214-3p in cultured human cardiac fibroblasts from multiple donors. Overexpression of miR-214-3p by miRNA mimics resulted in decreased expression and activity of the Piezo1 mechanosensitive cation channel, increased expression of the entire lysyl oxidase (LOX) family of collagen cross-linking enzymes, and decreased expression of an array of mitochondrial proteins, including mitofusin-2 (MFN2), resulting in mitochondrial dysfunction, as measured by citrate synthase and Seahorse mitochondrial respiration assays. Collectively, our data suggest that miR-214-3p is an important regulator of cardiac fibroblast phenotypes and functions key to cardiac remodelling, and that this miRNA represents a potential therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Christopher J Trevelyan
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Amanda D V MacCannell
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Leander Stewart
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Theodora Tarousa
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hannah A Taylor
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Michael Murray
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Sumia A Bageghni
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Karen E Hemmings
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mark J Drinkhill
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew J Smith
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Karen E Porter
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Karen A Forbes
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Neil A Turner
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
3
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2024:10.1007/s10528-024-10897-0. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Ucdal M, Burus A, Celtikci B. Cross talk between genetics and biochemistry in the pathogenesis of hepatocellular carcinoma. HEPATOLOGY FORUM 2024; 5:150-160. [PMID: 39006147 PMCID: PMC11237245 DOI: 10.14744/hf.2023.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/21/2023] [Accepted: 11/15/2023] [Indexed: 07/16/2024]
Abstract
The liver is a crucial organ in the regulation of metabolism, signaling, and homeostasis. Using recent advanced sequencing technologies, several mutations of genes in major metabolic and signaling pathways have been discovered in the pathogenesis of hepatocellular carcinoma (HCC). These gene signatures alter expression and ultimately affect biochemical pathways by modifying enzyme/protein levels, resulting in numerous clinical outcomes related to HCC. It comes with varying forms of genetic and biochemical alterations, associated with carbohydrate, lipid, nucleic acid, and amino acid metabolism, as well as signaling pathways linked to tumorigenesis. Here, we aim to summarize the main components and mechanisms involved in the progression of HCC with a special focus on the metabolic regulation of key effectors of tumorigenesis, through the crosstalk between genetics and biochemistry. This paper provides an overview of hepatocellular carcinoma, underlying the fundamental effect of gene variations on metabolic and signaling pathways. Since there is still an unmet need for biomarkers and novel therapeutic targets, some of these signature genes or proteins can be used as novel biomarkers for diagnosis, prognosis, and novel potential therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Mete Ucdal
- Department of Internal Medicine, Hacettepe University School of Medicine, Ankara, Turkiye
| | - Ayse Burus
- Department of Medical Biochemistry, Hacettepe University, School of Medicine, Ankara, Turkiye
| | - Basak Celtikci
- Department of Medical Biochemistry, Hacettepe University, School of Medicine, Ankara, Turkiye
| |
Collapse
|
5
|
Sileo P, Simonin C, Melnyk P, Chartier-Harlin MC, Cotelle P. Crosstalk between the Hippo Pathway and the Wnt Pathway in Huntington's Disease and Other Neurodegenerative Disorders. Cells 2022; 11:cells11223631. [PMID: 36429058 PMCID: PMC9688160 DOI: 10.3390/cells11223631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hippo pathway consists of a cascade of kinases that controls the phosphorylation of the co-activators YAP/TAZ. When unphosphorylated, YAP and TAZ translocate into the nucleus, where they mainly bind to the TEAD transcription factor family and activate genes related to cell proliferation and survival. In this way, the inhibition of the Hippo pathway promotes cell survival, proliferation, and stemness fate. Another pathway can modulate these processes, namely the Wnt/β-catenin pathway that is indeed involved in cellular functions such as proliferation and cell survival, as well as apoptosis, growth, and cell renewal. Wnt signaling can act in a canonical or noncanonical way, depending on whether β-catenin is involved in the process. In this review, we will focus only on the canonical Wnt pathway. It has emerged that YAP/TAZ are components of the β-catenin destruction complex and that there is a close relationship between the Hippo pathway and the canonical Wnt pathway. Furthermore, recent data have shown that both of these pathways may play a role in neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, or Amyotrophic Lateral Sclerosis. Thus, this review analyzes the Hippo pathway and the Wnt pathway, their crosstalk, and their involvement in Huntington's disease, as well as in other neurodegenerative disorders. Altogether, these data suggest possible therapeutic approaches targeting key players of these pathways.
Collapse
Affiliation(s)
- Pasquale Sileo
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Clémence Simonin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Centre de Référence Maladie de Huntington, CHU Lille, F-59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| | - Philippe Cotelle
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- ENSCL-Centrale Lille, CS 90108, F-59652 Villeneuve d’Ascq, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| |
Collapse
|
6
|
Copeland J, Wilson K, Simoes-Costa M. Micromanaging pattern formation: miRNA regulation of signaling systems in vertebrate development. FEBS J 2022; 289:5166-5175. [PMID: 34310060 DOI: 10.1111/febs.16139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
Early embryogenesis requires the establishment of fields of progenitor cells with distinct molecular signatures. A balance of intrinsic and extrinsic cues determines the boundaries of embryonic territories and pushes progenitor cells toward different fates. This process involves multiple layers of regulation, including signaling systems, transcriptional networks, and post-transcriptional control. In recent years, microRNAs (miRNAs) have emerged as undisputed regulators of developmental processes. Here, we discuss how miRNAs regulate pattern formation during vertebrate embryogenesis. We survey how miRNAs modulate the activity of signaling pathways to optimize transcriptional responses in embryonic cells. We also examine how localized RNA interference can generate spatial complexity during early development. Unraveling the complex crosstalk between miRNAs, signaling systems and cell fate decisions will be crucial for our understanding of developmental outcomes and disease.
Collapse
Affiliation(s)
- Jacqueline Copeland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Kayla Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Marcos Simoes-Costa
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
7
|
Panoramic view of microRNAs in regulating cancer stem cells. Essays Biochem 2022; 66:345-358. [PMID: 35996948 DOI: 10.1042/ebc20220007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/17/2022]
Abstract
Cancer stem cells (CSCs) are a subgroup of tumor cells, possessing the abilities of self-renewal and generation of heterogeneous tumor cell lineages. They are believed to be responsible for tumor initiation, metastasis, as well as chemoresistance in human malignancies. MicroRNAs (miRNAs) are small noncoding RNAs that play essential roles in various cellular activities including CSC initiation and CSC-related properties. Mature miRNAs with ∼22 nucleotides in length are generated from primary miRNAs via its precursors by miRNA-processing machinery. Extensive studies have demonstrated that mature miRNAs modulate CSC initiation and stemness features by regulating multiple pathways and targeting stemness-related factors. Meanwhile, both miRNA precursors and miRNA-processing machinery can also affect CSC properties, unveiling a new insight into miRNA function. The present review summarizes the roles of mature miRNAs, miRNA precursors, and miRNA-processing machinery in regulating CSC properties with a specific focus on the related molecular mechanisms, and also outlines the potential application of miRNAs in cancer diagnosis, predicting prognosis, as well as clinical therapy.
Collapse
|
8
|
De Feo A, Pazzaglia L, Ciuffarin L, Mangiagli F, Pasello M, Simonetti E, Pellegrini E, Ferrari C, Bianchi G, Spazzoli B, Scotlandi K. miR-214-3p Is Commonly Downregulated by EWS-FLI1 and by CD99 and Its Restoration Limits Ewing Sarcoma Aggressiveness. Cancers (Basel) 2022; 14:cancers14071762. [PMID: 35406534 PMCID: PMC8997046 DOI: 10.3390/cancers14071762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Ewing’s sarcoma (EWS), the second most frequent primary tumor of bone in the pediatric population, is a very aggressive, undifferentiated mesenchymal malignancy with a high tendency to develop lung and/or bone metastasis. The prognosis of patients with metastasis remains dismal, and new strategies are needed to control the dissemination of EWS cells. EWS is driven by alterations induced by the EWS-FLI1 chimera which acts as an aberrant transcriptional factor that induces the complete reprograming of the gene expression. EWS cells are also characterized by high expression of CD99, a cell surface molecule that interacts with EWS-FLI1 to sustain EWS malignancy. This study shows that miR-214-3p is a common mediator of EWS-FLI1 and CD99, and we report that miR-214-3p acts as on oncosuppressor in EWS. MiR-214-3p is constitutively repressed in cell lines and clinical samples but is re-expressed after the silencing of EWS-FLI1 and/or CD99. The restoration of miR-214-3p limits EWS cell growth and migration and represses the expression of its target HMGA1, supporting the potential role of this miRNA as a marker of tumor aggressiveness. Abstract Ewing’s sarcoma (EWS), an aggressive pediatric bone and soft-tissue sarcoma, has a very stable genome with very few genetic alterations. Unlike in most cancers, the progression of EWS appears to depend on epigenetic alterations. EWS–FLI1 and CD99, the two hallmarks of EWS, are reported to severely impact the malignancy of EWS cells, at least partly by regulating the expression of several types of non-coding RNAs. Here, we identify miR-214-3p as a common mediator of either EWS-FLI1 or CD99 by in silico analysis. MiR-214-3p expression was lower in EWS cells and in clinical samples than in bone marrow mesenchymal stem cells, and this miRNA was barely expressed in metastatic lesions. Silencing of EWS-FLI1 or CD99 restored the expression of miR-214-3p, leading to a reduced cell growth and migration. Mechanistically, miR-214-3p restoration inhibits the expression of the high-mobility group AT-hook 1 (HMGA1) protein, a validated target of miR-214-3p and a major regulator of the transcriptional machinery. The decrease in HMGA1 expression reduced the growth and the migration of EWS cells. Taken together, our results support that the miR-214-3p is constitutively repressed by both EWS-FLI1 and CD99 because it acts as an oncosuppressor limiting the dissemination of EWS cells.
Collapse
Affiliation(s)
- Alessandra De Feo
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
- Correspondence: (A.D.F.); (K.S.); Tel.: +39-051-6366760 (K.S.); +39-051-6366937 (A.D.F.); Fax: +39-051-6366763 (A.D.F. & K.S.)
| | - Laura Pazzaglia
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Lisa Ciuffarin
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Fabio Mangiagli
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Michela Pasello
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Elisa Simonetti
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Evelin Pellegrini
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Cristina Ferrari
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Giuseppe Bianchi
- IRCCS Istituto Ortopedico Rizzoli, Third Orthopaedic Clinic and Traumatology, 40136 Bologna, Italy; (G.B.); (B.S.)
| | - Benedetta Spazzoli
- IRCCS Istituto Ortopedico Rizzoli, Third Orthopaedic Clinic and Traumatology, 40136 Bologna, Italy; (G.B.); (B.S.)
| | - Katia Scotlandi
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
- Correspondence: (A.D.F.); (K.S.); Tel.: +39-051-6366760 (K.S.); +39-051-6366937 (A.D.F.); Fax: +39-051-6366763 (A.D.F. & K.S.)
| |
Collapse
|
9
|
Role of miR-498 Combined with CREB1 in Apoptosis and Invasion of Hepatoma Cell Line. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9621764. [PMID: 35251300 PMCID: PMC8894061 DOI: 10.1155/2022/9621764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022]
Abstract
Objective To detect the expression levels of miR-498 in the hepatoma cells and to clarify the biological roles of miR-498 in hepatoma by investigating CREB1, which is the target of miR-498. This study provides a new biomarker for the early diagnosis and targeted therapies for hepatoma. Methods The expression of miR-498 between hepatoma cells and hepatocytes was detected by qRT-PCR. miR-498 was overexpressed in hepatoma cells, and then, flow cytometry was used to analyze the cell apoptosis rate. Cell migration and invasion ability were evaluated by Transwell migration assay and Matrigel invasion assay. The downstream targets of miR-498 were searched in the biological database or related software, and the result can be verified by luciferase reporter assay. The knockdown of the downstream target using RNA interference detected its biological functions in hepatoma cells and was confirmed by cotransfection experiments. Results miR-498 was downregulated in hepatoma cell lines compared with hepatocytes. The overexpression of miR-498 significantly promoted apoptosis. Luciferase reporter assays showed that miR-498 could target CREB1 3′UTR and CREB1 was one of the targets of miR-498. Knockdown of CREB1 also inhibited hepatoma cells' malignant potential and increased the apoptosis rate of hepatoma cells. CREB1 was able to alleviate the changes caused by miR-498 overexpression. Conclusions miR-498 is downregulated in hepatoma cell lines. Therefore, miR-498 can be one of the potential molecular markers for hepatoma diagnosis. miR-498 plays a role in tumor suppression through regulating CREB1.
Collapse
|
10
|
Knockdown of microRNA-214-3p Promotes Tumor Growth and Epithelial-Mesenchymal Transition in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13235875. [PMID: 34884984 PMCID: PMC8656576 DOI: 10.3390/cancers13235875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Prostate Cancer is the second leading cause of cancer-related deaths in the United States. In this study, we analyzed a molecule known as a microRNA, which regulates the expression of genes. microRNAs are involved in processes related to cancer onset and progression. Abnormal expression of microRNAs can promote prostate cancer. This study showed that knockdown of microRNA miR-214-3p enhanced the progression and of prostate cancer. In addition, miR-214 regulated the expression of many genes. These results are useful to better understand the function of miR-214-3p in prostate cancer and can be a useful target in the treatment of the disease. Abstract Abnormal expression of microRNA miR-214-3p (miR-214) is associated with multiple cancers. In this study, we assessed the effects of CRISPR/Cas9 mediated miR-214 depletion in prostate cancer (PCa) cells and the underlying mechanisms. Knockdown of miR-214 promoted PCa cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and increased resistance to anoikis, a key feature of PCa cells that undergo metastasis. The reintroduction of miR-214 in miR-214 knockdown cells reversed these effects and significantly suppressed cell proliferation, migration, and invasion. These in vitro studies are consistent with the role of miR-214 as a tumor suppressor. Moreover, miR-214 knockout increased tumor growth in PCa xenografts in nude mice supporting its anti-oncogenic role in PCa. Knockdown of miR-214 increased the expression of its target protein, Protein Tyrosine Kinase 6 (PTK6), a kinase shown to promote oncogenic signaling and tumorigenesis in PCa. In addition, miR-214 modulated EMT as exhibited by differential regulation of E-Cadherin, N-Cadherin, and Vimentin both in vitro and in vivo. RNA-seq analysis of miR-214 knockdown cells revealed altered gene expression related to PCa tumor growth pathways, including EMT and metastasis. Collectively, our findings reveal that miR-214 is a key regulator of PCa oncogenesis and is a potential novel therapeutic target for the treatment of the disease.
Collapse
|
11
|
Long Noncoding RNA FENDRR Inhibits Lung Fibroblast Proliferation via a Reduction of β-Catenin. Int J Mol Sci 2021; 22:ijms22168536. [PMID: 34445242 PMCID: PMC8395204 DOI: 10.3390/ijms22168536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive, and usually lethal lung disease and it has been widely accepted that fibroblast proliferation is one of the key characteristics of IPF. Long noncoding RNAs (lncRNAs) play vital roles in the pathogenesis of many diseases. In this study, we investigated the role of lncRNA FENDRR on fibroblast proliferation. Human lung fibroblasts stably overexpressing FENDRR showed a reduced cell proliferation compared to those expressing the control vector. On the other hand, FENDRR silencing increased fibroblast proliferation. FENDRR bound serine-arginine rich splicing factor 9 (SRSF9) and inhibited the phosphorylation of p70 ribosomal S6 kinase 1 (PS6K), a downstream protein of the mammalian target of rapamycin (mTOR) signaling. Silencing SRSF9 reduced fibroblast proliferation. FENDRR reduced β-catenin protein, but not mRNA levels. The reduction of β-catenin protein levels in lung fibroblasts by gene silencing or chemical inhibitor decreased fibroblast proliferation. Adenovirus-mediated FENDRR transfer to the lungs of mice reduced asbestos-induced fibrotic lesions and collagen deposition. RNA sequencing of lung tissues identified 7 cell proliferation-related genes that were up-regulated by asbestos but reversed by FENDRR. In conclusion, FENDRR inhibits fibroblast proliferation and functions as an anti-fibrotic lncRNA.
Collapse
|
12
|
Hu CL, Zhang YJ, Zhang XF, Fei X, Zhang H, Li CG, Sun B. 3D Culture of Circulating Tumor Cells for Evaluating Early Recurrence and Metastasis in Patients with Hepatocellular Carcinoma. Onco Targets Ther 2021; 14:2673-2688. [PMID: 33888992 PMCID: PMC8057830 DOI: 10.2147/ott.s298427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Circulating tumor cells (CTCs) are considered to be a key factor involved in tumor metastasis. However, the isolation and culture of CTCs in vitro remains challenging, and their clinical application for predicting prognosis and survival is still limited. The development of accurate evaluating system for CTCs will benefit for clinical assessment of HCC. Methods Density gradient centrifugation and magnetic separation based on CD45 antibody were used to isolate CTCs. 3D culture was used to maintain and amplify CTCs and HCC cells. Cellular immunofluorescence was used to identify CTCs and spheroids. The cutoff value of CTC spheroid was calculated using X-tile software. The relationship between clinicopathological variables and CTC spheroids in HCC patients is analyzed. In vivo models were used to evaluate tumor growth and metastasis of CTC spheroids. Results Patient-derived CTCs/HCC cells were isolated and expanded to form spheroids using 3D culture. CTC spheroids could be used to predict short-term recurrence of CTCs compared with conventional CTC enumeration. Different cell lines exhibited different formation rates and grew to different sizes. Identification of CTC spheroids revealed that EpCAM and β-catenin were expressed in spheroids derived from HCC cells and in the HCC/CTCs. EpCAM-positive HCC cells exhibited improved spheroid formation in 3D culture and were more tumorigenic and likely to metastasize to the lung in vivo. Abnormal activation of the Wnt/β-catenin signaling pathway was observed in EpCAM positive cells. Conclusion CTC spheroids could predict prognosis of HCC more precisely compared with conventional CTC enumeration. EpCAM may participate in the formation and survival of CTC spheroids which dependent on Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Cong-Li Hu
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, People's Republic of China.,Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Yan-Jun Zhang
- School of Health and Social Care, Shanghai Urban Construction Vocational College, Shanghai, 201415, People's Republic of China
| | - Xiao-Feng Zhang
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Xiang Fei
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, People's Republic of China
| | - Chun-Guang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Bin Sun
- Department of Molecular Oncology, Eastern Hepatobiliary Surgical Hospital & National Center for Liver Cancer, Second Military Medical University, Shanghai, 200438, People's Republic of China
| |
Collapse
|
13
|
Liu Y, Wu H, Wang Z, Wu J, Ying S, Huang M, Li Y. Integrated expression profiles of mRNA and miRNA in a gerbil model of fatty liver fibrosis treated with exenatide. Clin Res Hepatol Gastroenterol 2021; 45:101312. [PMID: 33592427 DOI: 10.1016/j.clinre.2019.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The morbidity of nonalcoholic fatty liver disease (NAFLD) has increased consistently in recent years. Exenatide could reverse liver fibrosis and lower the occurrence of fatty liver. The aim of the study was to identify and characterize mRNA and miRNA expression to elucidate the mechanism of exenatide in the gerbil model. METHODS Gerbils were fed a high-fat diet for 8 weeks to induce a fibrosis model; then, the gerbil models were treated with exenatide for 4 weeks. The total RNA extracted from the liver tissue samples was used to prepare the library and sequence on a HiSeq 2000. Bioinformatic methods were employed to analyze the sequence data to identify the mRNAs and miRNAs and to acquire the miRNA-mRNA regulatory network. RESULTS By RNA-seq, 2344 differentially expressed genes (DEGs) and 72 miRNAs were found in the model group. Compared with the model group, 591 DEGs and 19 miRNAs were found in the quercetin group, whereas 876 DEGs and 18 miRNAs were found in the treatment group. The miRNA-mRNA regulatory network was constructed in a gerbil model. Immunohistochemistry and RNA sequencing confirmed that the therapeutic effect of exenatide may be derived from extrahepatic signal transduction. The key differential genes are CYP3A, CYP4A11, ACAA1, ACSM, PHX1, MAO, FMO, UGT, ACOX2, ABAT, PIK3C and PLCG1. The key miRNAs are miR-15a, miR-27b, miR-532-3P, miR-627, miR-3596, miR-142-3P, Let-7e-5p, miR-214-5, miR-101-3p, miR-378d. New miRNAs, such as novel_127, novel_143, novel_15, novel_204 are associated with liver fibrosis, while novel_127, novel_15, and novel_54 are associated with reverse treated with exenatide. CONCLUSIONS Our research represents the first description of mRNA/miRNA profiles in a gerbil model of fatty liver fibrosis treated with exenatide, which may provide insights into the pathogenesis or treatment of the metabolic syndrome.
Collapse
Affiliation(s)
- Yuehuan Liu
- Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Hongru Wu
- Department of Gastroenterology, The first Affiliated Hospital, College of Medicine, Zhejiang University, 79, Qignchun Road, Hangzhou 310003, China
| | - Zhiyuan Wang
- Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Jiusheng Wu
- College of animal sciences, Zhejiang university, Hangzhou, China
| | - Shibo Ying
- Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Minjie Huang
- College of animal sciences, Zhejiang university, Hangzhou, China
| | - Youming Li
- Department of Gastroenterology, The first Affiliated Hospital, College of Medicine, Zhejiang University, 79, Qignchun Road, Hangzhou 310003, China.
| |
Collapse
|
14
|
Zhang Y, Li C, Qin Y, Cepparulo P, Millman M, Chopp M, Kemper A, Szalad A, Lu X, Wang L, Zhang ZG. Small extracellular vesicles ameliorate peripheral neuropathy and enhance chemotherapy of oxaliplatin on ovarian cancer. J Extracell Vesicles 2021; 10:e12073. [PMID: 33728031 PMCID: PMC7931803 DOI: 10.1002/jev2.12073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/07/2021] [Accepted: 02/13/2021] [Indexed: 12/17/2022] Open
Abstract
There are no effective treatments for chemotherapy induced peripheral neuropathy (CIPN). Small extracellular vesicles (sEVs) facilitate intercellular communication and mediate nerve function and tumour progression. We found that the treatment of mice bearing ovarian tumour with sEVs derived from cerebral endothelial cells (CEC-sEVs) in combination with a chemo-drug, oxaliplatin, robustly reduced oxaliplatin-induced CIPN by decreasing oxaliplatin-damaged myelination and nerve fibres of the sciatic nerve and significantly amplified chemotherapy of oxaliplatin by reducing tumour size. The combination therapy substantially increased a set of sEV cargo-enriched miRNAs, but significantly reduced oxaliplatin-increased proteins in the sciatic nerve and tumour tissues. Bioinformatics analysis revealed the altered miRNAs and proteins formed two distinct networks that regulate neuropathy and tumour growth, respectively. Intravenously administered CEC-sEVs were internalized by axons of the sciatic nerve and cancer cells. Reduction of CEC-sEV cargo miRNAs abolished the effects of CEC-sEVs on oxaliplatin-inhibited axonal growth and on amplification of the anti-cancer effect in ovarian cancer cells, suggesting that alterations in the networks of miRNAs and proteins in recipient cells contribute to the therapeutic effect of CEC-sEVs on CIPN. Together, the present study demonstrates that CEC-sEVs suppressed CIPN and enhanced chemotherapy of oxaliplatin in the mouse bearing ovarian tumour.
Collapse
Affiliation(s)
- Yi Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Chao Li
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Yi Qin
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | | | | | - Michael Chopp
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
- Department of PhysicsOakland UniversityRochesterMichiganUSA
| | - Amy Kemper
- Department of PathologyHenry Ford Health SystemDetroitMichiganUSA
| | - Alexandra Szalad
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Xuerong Lu
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Lei Wang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| | - Zheng Gang Zhang
- Department of NeurologyHenry Ford Health SystemDetroitMichiganUSA
| |
Collapse
|
15
|
MicroRNA-214 enriched exosomes from human cerebral endothelial cells (hCEC) sensitize hepatocellular carcinoma to anti-cancer drugs. Oncotarget 2021; 12:185-198. [PMID: 33613846 PMCID: PMC7869574 DOI: 10.18632/oncotarget.27879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor worldwide. Current medical therapy for HCC has limited efficacy. The present study tests the hypothesis that human cerebral endothelial cell-derived exosomes carrying elevated miR-214 (hCEC-Exo-214) can amplify the efficacy of anti-cancer drugs on HCC cells. Treatment of HepG2 and Hep3B cells with hCEC-Exo-214 in combination with anti-cancer agents, oxaliplatin or sorafenib, significantly reduced cancer cell viability and invasion compared with monotherapy with either drug. Additionally, the therapeutic effect of the combination therapy was detected in primary tumor cells derived from patients with HCC. The ability of hCEC-Exo-214 in sensitizing HCC cells to anti-cancer drugs was specific, in that combination therapy did not affect the viability and invasion of human liver epithelial cells and non-cancer primary cells. Furthermore, compared to monotherapy with oxaliplatin and sorafenib, hCEC-Exo-214 in combination with either drug substantially reduced protein levels of P-glycoprotein (P-gp) and splicing factor 3B subunit 3 (SF3B3) in HCC cells. P-gp and SF3B3 are among miR-214 target genes and are known to mediate drug resistance and cancer cell proliferation, respectively. In conclusion, the present in vitro study provides evidence that hCEC-Exo-214 significantly enhances the anti-tumor efficacy of oxaliplatin and sorafenib on HCC cells.
Collapse
|
16
|
Morishita A, Oura K, Tadokoro T, Fujita K, Tani J, Masaki T. MicroRNAs in the Pathogenesis of Hepatocellular Carcinoma: A Review. Cancers (Basel) 2021; 13:cancers13030514. [PMID: 33572780 PMCID: PMC7866004 DOI: 10.3390/cancers13030514] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the most frequently occurring cancers, and the prognosis for late-stage HCC remains poor. A better understanding of the pathogenesis of HCC is expected to improve outcomes. MicroRNAs (miRNAs) are small, noncoding, single-stranded RNAs that regulate the expression of various target genes, including those in cancer-associated genomic regions or fragile sites in various human cancers. We summarize the central roles of miRNAs in the pathogenesis of HCC and discuss their potential utility as valuable biomarkers and new therapeutic agents for HCC. Abstract Hepatocellular carcinoma (HCC) is the seventh most frequent cancer and the fourth leading cause of cancer mortality worldwide. Despite substantial advances in therapeutic strategies, the prognosis of late-stage HCC remains dismal because of the high recurrence rate. A better understanding of the etiology of HCC is therefore necessary to improve outcomes. MicroRNAs (miRNAs) are small, endogenous, noncoding, single-stranded RNAs that modulate the expression of their target genes at the posttranscriptional and translational levels. Aberrant expression of miRNAs has frequently been detected in cancer-associated genomic regions or fragile sites in various human cancers and has been observed in both HCC cells and tissues. The precise patterns of aberrant miRNA expression differ depending on disease etiology, including various causes of hepatocarcinogenesis, such as viral hepatitis, alcoholic liver disease, or nonalcoholic steatohepatitis. However, little is known about the underlying mechanisms and the association of miRNAs with the pathogenesis of HCC of various etiologies. In the present review, we summarize the key mechanisms of miRNAs in the pathogenesis of HCC and emphasize their potential utility as valuable diagnostic and prognostic biomarkers, as well as innovative therapeutic targets, in HCC diagnosis and treatment.
Collapse
|
17
|
Bantounas I, Lopes FM, Rooney KM, Woolf AS, Kimber SJ. The miR-199a/214 Cluster Controls Nephrogenesis and Vascularization in a Human Embryonic Stem Cell Model. Stem Cell Reports 2021; 16:134-148. [PMID: 33306987 PMCID: PMC7897558 DOI: 10.1016/j.stemcr.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are gene expression regulators and they have been implicated in acquired kidney diseases and in renal development, mostly through animal studies. We hypothesized that the miR-199a/214 cluster regulates human kidney development. We detected its expression in human embryonic kidneys by in situ hybridization. To mechanistically study the cluster, we used 2D and 3D human embryonic stem cell (hESC) models of kidney development. After confirming expression in each model, we inhibited the miRNAs using lentivirally transduced miRNA sponges. This reduced the WT1+ metanephric mesenchyme domain in 2D cultures. Sponges did not prevent the formation of 3D kidney-like organoids. These organoids, however, contained dysmorphic glomeruli, downregulated WT1, aberrant proximal tubules, and increased interstitial capillaries. Thus, the miR-199a/214 cluster fine-tunes differentiation of both metanephric mesenchymal-derived nephrons and kidney endothelia. While clinical implications require further study, it is noted that patients with heterozygous deletions encompassing this miRNA locus can have malformed kidneys.
Collapse
Affiliation(s)
- Ioannis Bantounas
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK.
| | - Filipa M Lopes
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK
| | - Kirsty M Rooney
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK; Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, and the Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
18
|
Chen B, Liao Z, Qi Y, Zhang H, Su C, Liang H, Zhang B, Chen X. miR-631 Inhibits Intrahepatic Metastasis of Hepatocellular Carcinoma by Targeting PTPRE. Front Oncol 2020; 10:565266. [PMID: 33344226 PMCID: PMC7746836 DOI: 10.3389/fonc.2020.565266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) have been reported to play critical roles in the pathological development of hepatocellular carcinoma (HCC), one of the most common cancers in the world. Our study aims to explore the expression, function and mechanism of miR-631 in HCC. Our findings are that expression of miR-631 is significantly down-regulated in HCC tissue compared with that in adjacent non-cancerous tissue, and low expression of miR-631 in HCC tissue is associated with cirrhosis, multiple tumors, incomplete tumor encapsulation, poor tumor differentiation, and high TNM stage. Our test results showed that miR-631 could inhibit migration, invasion, epithelial–mesenchymal transition (EMT) and intrahepatic metastasis of HCC. Receptor-type protein tyrosine phosphatase epsilon (PTPRE) as a downstream target of miR-631 could promote migration, invasion and EMT of HCC cells. Besides, the expression of PTPRE had a negative correlation with the expression of miR-631 both in vivo and in vitro, and increasing expression of PTPRE could reverse inhibitory effects of miR-631 in HCC cells. In sum, our study first demonstrated that miR-631 targeted PTPRE to inhibit intrahepatic metastasis in HCC. We gain insights from these findings into the mechanism of miRNAs regulation in HCC metastasis and further introduce a novel therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Bingqing Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Yongqiang Qi
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Chen Su
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Science and Technology Department of Hubei Province, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
19
|
Duan Y, Wu Y, Yin X, Li T, Chen F, Wu P, Zhang S, Wang J, Zhang G. MicroRNA-214 Inhibits Chicken Myoblasts Proliferation, Promotes Their Differentiation, and Targets the TRMT61A Gene. Genes (Basel) 2020; 11:genes11121400. [PMID: 33255823 PMCID: PMC7760887 DOI: 10.3390/genes11121400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022] Open
Abstract
The proliferation and differentiation of myoblasts is an important process of skeletal muscle development. In this process, microRNAs (miRNAs) play an important role in the proliferation and differentiation of chicken primary myoblasts (CPMs). Our previous study found that miR-214 and the tRNA methyltransferase 61A (TRMT61A) gene were differentially expressed in different stages of proliferation and differentiation. Therefore, this study aimed to explore the effect of miR-214 on the proliferation and differentiation of CPMs and the functional relationship between miR-214 and TRMT61A. In this study, we detected the effect of miR-214 on the proliferation of CPMs by qPCR, flow cytometry, CCK-8, and EdU after the overexpression and interference of miR-214. qPCR, Western blotting, and indirect immunofluorescence were used to detect the effect of miR-214 on the differentiation of the CPMs. The expression patterns of miR-214 and TRMT61A were observed at different time points of differentiation induced by the CPMs. The results show that miR-214 inhibited the proliferation of the CPMs and promoted the differentiation of the CPMs. The Dual-Luciferase Reporter assay and the expression pattern of miR-214 and TRMT61A suggested that they had a negative regulatory target relationship. This study revealed the function and regulatory mechanism of miR-214 in the proliferation and differentiation of CPMs.
Collapse
|
20
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
21
|
Kyriazi AA, Papiris E, Kitsos Kalyvianakis K, Sakellaris G, Baritaki S. Dual Effects of Non-Coding RNAs (ncRNAs) in Cancer Stem Cell Biology. Int J Mol Sci 2020; 21:ijms21186658. [PMID: 32932969 PMCID: PMC7556003 DOI: 10.3390/ijms21186658] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of cancer stem cells (CSCs) as initiators of carcinogenesis has revolutionized the era of cancer research and our perception for the disease treatment options. Additional CSC features, including self-renewal and migratory and invasive capabilities, have further justified these cells as putative diagnostic, prognostic, and therapeutic targets. Given the CSC plasticity, the identification of CSC-related biomarkers has been a serious burden in CSC characterization and therapeutic targeting. Over the past decades, a compelling amount of evidence has demonstrated critical regulatory functions of non-coding RNAs (ncRNAs) on the exclusive features of CSCs. We now know that ncRNAs may interfere with signaling pathways, vital for CSC phenotype maintenance, such as Notch, Wnt, and Hedgehog. Here, we discuss the multifaceted contribution of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as representative ncRNA classes, in sustaining the CSC-like traits, as well as the underlying molecular mechanisms of their action in various CSC types. We further discuss the use of CSC-related ncRNAs as putative biomarkers of high diagnostic, prognostic, and therapeutic value.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - Efstathios Papiris
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - Konstantinos Kitsos Kalyvianakis
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - George Sakellaris
- Surgery Unit, University General Hospital, 71500 Heraklion (PAGNH), Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
- Correspondence: ; Tel.: +30-2810394727
| |
Collapse
|
22
|
Li N, Jiang S, Shi J, Fu R, Wu H, Lu M. Construction of a potential microRNA, transcription factor and mRNA regulatory network in hepatocellular carcinoma. Transl Cancer Res 2020; 9:5528-5543. [PMID: 35117917 PMCID: PMC8799260 DOI: 10.21037/tcr-20-686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and the third leading cause of cancer-related death. MicroRNAs and transcription factors (TFs) cooperate to regulate the same target gene, thus affecting the progression of HCC. Methods Differentially expressed miRNAs and mRNAs were screened. Functional enrichment analysis of these HCC-related mRNAs was performed, and a protein-protein interaction network was constructed. TFs that regulate these miRNAs and hub genes were also screened. Results Ten differentially upregulated miRNAs and 5 differentially downregulated miRNAs were screened. Additionally, 183 downregulated mRNAs and 303 upregulated mRNAs that are potentially bound to these differentially expressed miRNAs were identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that the differentially expressed mRNAs were significantly enriched in pathways in cancer, the Wnt signaling pathway, and the Rap1 signaling pathway. Then, 220 TFs were identified for 5 candidate genes of the downregulated mRNAs, and 258 TFs were identified for 9 candidate genes of the upregulated mRNAs. Finally, the 9 upregulated hub genes were related to higher overall survival (OS) in the low-expression group, and 4/5 downregulated hub genes were related to higher OS in the high-expression group. Conclusions This study constructed a potential regulatory network between candidate molecules and that need to be further verified. These regulatory relationships are expected to clarify the new molecular mechanisms of the occurrence and development of HCC.
Collapse
Affiliation(s)
- Ning Li
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shaotao Jiang
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiewei Shi
- Department of General Surgery, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rongdang Fu
- Department of Hepatic Surgery, the First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Huijie Wu
- Department of Obstetrics, the First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Minqiang Lu
- Department of HBP SURGERY II, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
23
|
Gu Y, Zheng X, Ji J. Liver cancer stem cells as a hierarchical society: yes or no? Acta Biochim Biophys Sin (Shanghai) 2020; 52:723-735. [PMID: 32490517 DOI: 10.1093/abbs/gmaa050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer stem cells (CSCs) are cells possessing abilities of self-renewal, differentiation, and tumorigenicity in NOD/SCID mice. Based on this definition, multiple cell surface markers (such as CD24, CD133, CD90, and EpCAM) as well as chemical methods are discovered to enrich liver CSCs in the recent decade. Accumulated studies have revealed molecular signatures and signaling pathways involved in regulating different liver CSCs. Among liver CSCs positive for different markers, some molecular features and regulatory pathways are commonly shared, while some are only unique in certain CSC populations. These studies imply that liver CSCs exhibit diverse heterogeneity, while a functional relationship also exists. The aim of this review is to revisit the society of liver CSCs and summarize the common or unique molecular features of known liver CSCs. We hope to call for attention of researchers on the relationship of the liver CSC subgroups and to provide clues on the hierarchical structure of the liver CSC society.
Collapse
Affiliation(s)
- Yuanzhuo Gu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xin Zheng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
24
|
Elhendawy M, Abdul-Baki EA, Abd-Elsalam S, Hagras MM, Zidan AA, Abdel-Naby AY, Watny M, Elkabash IA, Salem ML, Elshanshoury M, Soliman S, Abdou S. MicroRNA signature in hepatocellular carcinoma patients: identification of potential markers. Mol Biol Rep 2020; 47:4945-4953. [PMID: 32430845 DOI: 10.1007/s11033-020-05521-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) play important roles in liver pathologies and they are potential biomarkers for diagnosis of liver diseases progression. Changes in miRNA sera expression can be used as non-invasive biomarkers for hepatocellular carcinoma (HCC). The aim of the study was to identify the miRNome profiling of HCC and its diagnostic value in distinguishing HCC from healthy individuals. Expression profiles of miRNAs in serum samples of 20 HCC patients and 10 healthy controls were detected. Whole miRNome profiling was done using next generation sequencing. Receiver operating characteristic (ROC) analysis was performed to assess the diagnostic performance of the deregulated miRNAs for discriminating HCC cases from healthy controls. MiRNA 142 was highly expressed in HCC (P value = 0.023) while miRNAs 191, 22, and 126 were higher in the controls (P value = 0.005, 0.034, 0.010 respectively). We have identified 5 novel miRNAs and they were highly expressed in HCC than controls. Analysis of ROC curve demonstrated that these deregulated miRNAs can be used as a reliable biomarker for detection of HCC with high diagnostic accuracy (AUC = 0.93). We have detected a panel of serum miRNAs that can be used as a reliable noninvasive screening biomarker of HCC. The study recommends further research to shed light on a possible role of the newly discovered novel miRNAs in HCC pathogenesis.
Collapse
Affiliation(s)
- Mohammed Elhendawy
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, El-Giash Street, Tanta, 31527, Egypt
| | - Enas A Abdul-Baki
- Physiology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sherief Abd-Elsalam
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, El-Giash Street, Tanta, 31527, Egypt.
| | - Maha M Hagras
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Abdul-Aziz Zidan
- Immunology & Physiology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Amira Y Abdel-Naby
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mona Watny
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ibrahem Ali Elkabash
- Public Health & Community Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | - Shaimaa Soliman
- Public Health & Community Medicine Department, Faculty of Medicine, Menoufia University, Shibin el Kom, Egypt
| | - Said Abdou
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
25
|
Fei X, Zhang P, Pan Y, Liu Y. MicroRNA-98-5p Inhibits Tumorigenesis of Hepatitis B Virus-Related Hepatocellular Carcinoma by Targeting NF-κB-Inducing Kinase. Yonsei Med J 2020; 61:460-470. [PMID: 32469170 PMCID: PMC7256008 DOI: 10.3349/ymj.2020.61.6.460] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/23/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE MicroRNAs play key regulatory roles in the tumorigenesis of hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). This study aimed to explore the regulatory effects of microRNA-98-5p (miR-98-5p) on the proliferation, migration, invasion, and apoptosis of HBV-HCC cells, as well as the underlying mechanisms involving nuclear factor-κB-inducing kinase (NIK). MATERIALS AND METHODS The expressions of miR-98-5p and NIK in HBV-HCC tissues and cells, and the level of HBV DNA in HBV-HCC cells were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The proliferation, migration, invasion, and apoptosis of HBV-HCC cells were analyzed by cell counting kit-8, wound healing, transwell, and flow cytometry assay, respectively. The targeting relationship between miR-98-5p and NIK was predicted by StarBase3.0 and verified by dual-luciferase reporter assay. HBV-HCC xenograft tumor model was constructed in mice to observe the tumor growth in vivo. RESULTS The expression of miR-98-5p was declined in HBV-HCC tissues and cells. Overexpression of miR-98-5p markedly reduced the level of HBV DNA; inhibited the proliferation, migration, and invasion; and promoted the apoptosis of HBV-HCC cells. NIK was a target of miR-98-5p. Overexpression of miR-98-5p markedly decreased the protein expression of NIK in MHCC97H-HBV cells. NIK reversed the tumor-suppressing effect of miR-98-5p on HBV-HCC cells. Furthermore, overexpression of miR-98-5p significantly inhibited the xenograft tumor growth and decreased the expression of NIK in mice. CONCLUSION MiR-98-5p inhibits the secretion of HBV, proliferation, migration, and invasion of HBV-HCC cells by targeting NIK.
Collapse
Affiliation(s)
- Xiukun Fei
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Peipei Zhang
- Department of Liver Disease, Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang, China
| | - Yu Pan
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Zaozhuang Maternal and Child Health Care Hospital, Zaozhuang, China.
| |
Collapse
|
26
|
Xu H, Wu S, Shen X, Shi Z, Wu D, Yuan Y, Jiang W, Wang Q, Ke Q, Mao Q, Li X, Liu Y, Yuan P, Zhang Q, Huang E, Chen X. Methylation-mediated miR-214 regulates proliferation and drug sensitivity of renal cell carcinoma cells through targeting LIVIN. J Cell Mol Med 2020; 24:6410-6425. [PMID: 32395888 PMCID: PMC7294148 DOI: 10.1111/jcmm.15287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/31/2020] [Accepted: 03/28/2020] [Indexed: 12/21/2022] Open
Abstract
LIVIN, a member of the inhibitor of apoptosis proteins (IAPs), is reported playing important roles in the development and progression of multiple human cancers. However, its underlined mechanisms in human renal cell carcinoma (RCC) are still needed to be clarified. In the present study, we reported that inhibition of miR‐214 promoted the expression of LIVIN, then facilitated RCC cells growth and reduced the sensitivity of RCC cells to chemotherapeutic drugs. In constant, overexpression of miR‐214 had contradictory effects. Further investigation showed that miR‐214 was down‐regulated in RCC because of abnormal methylation. In addition, DNA methyltransferase DNMT1, miR‐214 and LIVIN are directly correlated in RCC patients. In conclusion, these results suggest that abnormal miR‐214 methylation negatively regulates LIVIN, which may promote RCC cells growth and reduced the sensitivity of RCC cells to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Hao Xu
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Shangjun Wu
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Xin Shen
- Department of Abdominal and Pelvic Medical Oncology II, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Zhan Shi
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ding Wu
- Department of Urology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan Yuan
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Wei Jiang
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Qianliang Wang
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Qin Ke
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Qing Mao
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Xianlong Li
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Yong Liu
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Pingcheng Yuan
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Qinghan Zhang
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Enying Huang
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Xiaogang Chen
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| |
Collapse
|
27
|
Lakhia R, Yheskel M, Flaten A, Ramalingam H, Aboudehen K, Ferrè S, Biggers L, Mishra A, Chaney C, Wallace DP, Carroll T, Igarashi P, Patel V. Interstitial microRNA miR-214 attenuates inflammation and polycystic kidney disease progression. JCI Insight 2020; 5:133785. [PMID: 32182218 DOI: 10.1172/jci.insight.133785] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Renal cysts are the defining feature of autosomal dominant polycystic kidney disease (ADPKD); however, the substantial interstitial inflammation is an often-overlooked aspect of this disorder. Recent studies suggest that immune cells in the cyst microenvironment affect ADPKD progression. Here we report that microRNAs (miRNAs) are new molecular signals in this crosstalk. We found that miR-214 and its host long noncoding RNA Dnm3os are upregulated in orthologous ADPKD mouse models and cystic kidneys from humans with ADPKD. In situ hybridization revealed that interstitial cells in the cyst microenvironment are the primary source of miR-214. While genetic deletion of miR-214 does not affect kidney development or homeostasis, surprisingly, its inhibition in Pkd2- and Pkd1-mutant mice aggravates cyst growth. Mechanistically, the proinflammatory TLR4/IFN-γ/STAT1 pathways transactivate the miR-214 host gene. miR-214, in turn as a negative feedback loop, directly inhibits Tlr4. Accordingly, miR-214 deletion is associated with increased Tlr4 expression and enhanced pericystic macrophage accumulation. Thus, miR-214 upregulation is a compensatory protective response in the cyst microenvironment that restrains inflammation and cyst growth.
Collapse
Affiliation(s)
- Ronak Lakhia
- Department of Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Matanel Yheskel
- Department of Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Andrea Flaten
- Department of Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Harini Ramalingam
- Department of Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Karam Aboudehen
- Department of Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Silvia Ferrè
- Department of Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA.,Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Laurence Biggers
- Department of Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Abheepsa Mishra
- Department of Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher Chaney
- Department of Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Darren P Wallace
- Department of Medicine and the Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Thomas Carroll
- Department of Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA.,Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota School of Medicine, Minneapolis, Minnesota, USA
| | - Vishal Patel
- Department of Internal Medicine, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
28
|
Yang J, Li R, Zhao D, Zheng S. Downregulation of microRNA-214 improves therapeutic potential of allogeneic bone marrow-derived mesenchymal stem cell by targeting PIM-1 in rats with acute liver failure. J Cell Biochem 2019; 120:12887-12903. [PMID: 30938885 DOI: 10.1002/jcb.28560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 01/08/2023]
Abstract
Acute liver failure (ALF) is a disease resulted from diverse etiology, which generally leads to a rapid degenerated hepatic function. However, transplantation bone marrow-derived mesenchymal stem cells (BMSCs) transplantation has been suggested to relieve ALF. Interestingly, microRNA-214 (miR-214) could potentially regulate differentiation and migration of BMSCs. The present study aims to inquire whether miR-214 affects therapeutic potential of BMSCs transplantation by targeting PIM-1 in ALF. 120 male Wistar rats were induced as ALF model rats and transplanted with BMSCs post-alteration of miR-214 or PIM-1 expression. Further experiments were performed to detect biochemical index (alanine aminotransferase [ALT], aspartate transaminase [AST], total bilirubin [TBiL]), and expression of miR-214, PIM-1, hepatocyte growth factor (HGF), caspase 3, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) in rat serum. Apart from the above detection, apoptosis of hepatocytes and Ki67 protein expression in hepatic tissues of rats were additionally assessed. After BMSCs transplantation with miR-214 inhibition, a decreased expression of ALT, AST, and TBiL yet an increased expression of HGF was shown, coupled with a decline in the expression of caspase 3, TNF-α, and IL-10. Meanwhile, alleviated hepatic injury and decreased apoptotic index of hepatic cells were observed and the positive rate of Ki67 protein expression was significantly increased. Moreover, miR-214 and caspase 3, TNF-α, and IL-10 decreased notably, while PIM-1 was upregulated in response to miR-214 inhibition. Strikingly, the inhibition of PIM-1 reversed effects triggered by miR-214 inhibition. These findings indicated that downregulation of miR-214 improves therapeutic potential of BMSCs transplantation by upregulating PIM-1 for ALF.
Collapse
Affiliation(s)
- Juan Yang
- Department of Gastroenterology and Hepatology, The Third People's Hospital of Yunnan Province, Kunming, People's Republic of China
| | - Rui Li
- Department of Obstetrics, Kunming Dongfang Hospital, Kunming, People's Republic of China
| | - Dan Zhao
- Life Science Academy of Yunnan University, Kunming, People's Republic of China
| | - Sheng Zheng
- Department of Gastroenterology and Hepatology, The Third People's Hospital of Yunnan Province, Kunming, People's Republic of China
| |
Collapse
|
29
|
Prabhakar K, Rodrίguez CI, Jayanthy AS, Mikheil DM, Bhasker AI, Perera RJ, Setaluri V. Role of miR-214 in regulation of β-catenin and the malignant phenotype of melanoma. Mol Carcinog 2019; 58:1974-1984. [PMID: 31338875 DOI: 10.1002/mc.23089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/05/2019] [Accepted: 07/10/2019] [Indexed: 12/15/2022]
Abstract
Wnt/β-catenin signaling plays an important role in melanocyte biology, especially in the early stages of melanocyte transformation and melanomagenesis. β-catenin, encoded by the gene CTNNB1, is an intracellular signal transducer of Wnt signaling and activates transcription of genes important for cell proliferation and survival. Wnt/β-catenin signaling is frequently activated in melanoma through oncogenic mutations of β-catenin and elevated β-catenin levels are positively correlated with melanoma aggressiveness. Molecular mechanisms that regulate β-catenin expression in melanoma are not fully understood. MicroRNA-214 is known to function as a tumor suppressor by targeting β-catenin in several types of cancer cells. Here, we investigated the regulation of β-catenin by miR-214 and its role in melanoma. We show that β-catenin mRNA levels are negatively correlated with miR-214 in melanoma. However, overexpression of miR-214 paradoxically increased β-catenin protein levels and promoted malignant properties of melanoma cells including resistance to mitogen-activated protein kinase inhibitors (MAPKi). RNA-seq analysis revealed that melanoma cells predominantly express a β-catenin mRNA isoform lacking miR-214 target site. Using matched miRNA and mRNA-seq and bioinformatics analysis, we identified novel miR-214 targets, ankyrin repeat domain 6 (ANKRD6) and C-terminal binding protein 1 (CTBP1), that are involved in negative regulation of Wnt signaling. Overexpression of miR-214 or knockdown of the novel miR-214 targets, ANKRD6 or CTBP1, increased melanoma cell proliferation, migration, and decreased sensitivity to MAPKi. Our data suggest that in melanoma cells β-catenin is not regulated by miR-214 and the functions of miR-214 in melanoma are mediated partly by regulating proteins involved in attenuation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Kirthana Prabhakar
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Carlos I Rodrίguez
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ashika S Jayanthy
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Dareen M Mikheil
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aishwarya Iyer Bhasker
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ranjan J Perera
- Sanford-Burham Prebys Medical Discovery Institute, Orlando, Florida
| | - Vijayasaradhi Setaluri
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
30
|
Jin Y, Wong YS, Goh BKP, Chan CY, Cheow PC, Chow PKH, Lim TKH, Goh GBB, Krishnamoorthy TL, Kumar R, Ng TP, Chong SS, Tan HH, Chung AYF, Ooi LLPJ, Chang JPE, Tan CK, Lee CGL. Circulating microRNAs as Potential Diagnostic and Prognostic Biomarkers in Hepatocellular Carcinoma. Sci Rep 2019; 9:10464. [PMID: 31320713 PMCID: PMC6639394 DOI: 10.1038/s41598-019-46872-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer with high mortality, due to late diagnosis and limited treatment options. Blood miRNAs, which circulate in a highly stable, cell-free form, show promise as novel potential biomarkers for early detection of HCC. Whole miRNome profiling was performed to identify deregulated miRNAs between HCC and normal healthy (NH) volunteers. These deregulated miRNAs were validated in an independent cohort of HCC, NH and chronic Hepatitis B (CHB) volunteers and finally in a 3rd cohort comprising NH, CHB, cirrhotic and HCC volunteers to evaluate miRNA changes during disease progression. The associations between circulating miRNAs and liver-damage markers, clinicopathological characteristics and survival outcomes were analysed to identify prognostic markers. Twelve miRNAs are differentially expressed between HCC and NH individuals in all three cohorts. Five upregulated miRNAs (miR-122-5p, miR-125b-5p, miR-885-5p, miR-100-5p and miR-148a-3p) in CHB, cirrhosis and HCC patients are potential biomarkers for CHB infection, while miR-34a-5p can be a biomarker for cirrhosis. Notably, four miRNAs (miR-1972, miR-193a-5p, miR-214-3p and miR-365a-3p) can distinguish HCC from other non-HCC individuals. Six miRNAs are potential prognostic markers for overall survival.
Collapse
Affiliation(s)
- Yu Jin
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Ye Shen Wong
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Brian K P Goh
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Chung Yip Chan
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Peng Chung Cheow
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - Pierce K H Chow
- Division of Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Tony K H Lim
- Department of Pathology, Singapore General Hospital, Singapore, Singapore
| | - George B B Goh
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
| | | | - Rajneesh Kumar
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Tze Pin Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Samuel S Chong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Hwee Huang Tan
- Blood Services Group, Health Sciences Authority, Singapore, Singapore
| | - Alexander Y F Chung
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore
| | - London Lucien P J Ooi
- Department of Hepato-pancreato-biliary & Transplant Surgery, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jason P E Chang
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Chee Kiat Tan
- Department of Gastroenterology & Hepatology, Singapore General Hospital, Singapore, Singapore.
| | - Caroline G L Lee
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore. .,Duke-NUS Graduate Medical School, Singapore, Singapore. .,Department of Biochemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
31
|
Song H, Liu Y, Jin X, Liu Y, Yang Y, Li L, Wang X, Li G. Long non-coding RNA LINC01535 promotes cervical cancer progression via targeting the miR-214/EZH2 feedback loop. J Cell Mol Med 2019; 23:6098-6111. [PMID: 31273925 PMCID: PMC6714211 DOI: 10.1111/jcmm.14476] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Long non‐coding RNAs (lncRNAs) have shown critical roles in multiple cancers via competitively binding common microRNAs. miR‐214 has been proved to play tumour suppressive roles in various cancers, including cervical cancer. In this study, we identified that lncRNA LINC01535 physically binds miR‐214, relieves the repressive roles of miR‐214 on its target EZH2, and therefore up‐regulates EZH2 protein expression. Intriguingly, we also found that EZH2 directly represses the expression of miR‐214. Thus, miR‐214 and EZH2 form double negative regulatory loop. Through up‐regulating EZH2, LINC01535 further represses miR‐214 expression. Functional experiments showed that enhanced expression of LINC01535 promotes cervical cancer cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Reciprocally, LINC01535 knockdown suppresses cervical cancer cell growth, migration and invasion. Activation of the miR‐214/EZH2 regulatory loop by overexpression of miR‐214 or silencing of EZH2 reverses the roles of LINC01535 in promoting cervical canc`er cell growth, migration and invasion in vitro and cervical cancer xenograft growth in vivo. Clinically, LINC01535 is significantly up‐regulated in cervical cancer tissues and correlated with advanced clinical stage and poor prognosis. Moreover, the expression of LINC01535 is reversely associated with the expression of miR‐214 and positively associated with the expression of EZH2 in cervical cancer tissues. In conclusion, this study reveals that LINC01535 promotes cervical cancer progression via repressing the miR‐214/EZH2 regulatory loop.
Collapse
Affiliation(s)
- Hongjuan Song
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Yuan Liu
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Xin Jin
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Yang Liu
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Yanling Yang
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Lei Li
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Xuan Wang
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| | - Guilin Li
- Department of Gynecology, Xuzhou Maternal & Child Health Care Hospital, Xuzhou, China
| |
Collapse
|
32
|
Cagle P, Niture S, Srivastava A, Ramalinga M, Aqeel R, Rios-Colon L, Chimeh U, Suy S, Collins SP, Dahiya R, Kumar D. MicroRNA-214 targets PTK6 to inhibit tumorigenic potential and increase drug sensitivity of prostate cancer cells. Sci Rep 2019; 9:9776. [PMID: 31278310 PMCID: PMC6611815 DOI: 10.1038/s41598-019-46170-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer in men with African American men disproportionally suffering from the burden of this disease. Biomarkers that could discriminate indolent from aggressive and drug resistance disease are lacking. MicroRNAs are small non-coding RNAs that affect numerous physiological and pathological processes, including cancer development and have been suggested as biomarkers and therapeutic targets. In the present study, we investigated the role of miR-214 on prostate cancer cell survival/migration/invasion, cell cycle regulation, and apoptosis. miR-214 was differentially expressed between Caucasian and African American prostate cancer cells. Importantly, miR-214 overexpression in prostate cancer cells induced apoptosis, inhibiting cell proliferation and colony forming ability. miR-214 expression in prostate cancer cells also inhibited cell migration and 3D spheroid invasion. Mechanistically, miR-214 inhibited prostate cancer cell proliferation by targeting protein tyrosine kinase 6 (PTK6). Restoration of PTK6 expression attenuated the inhibitory effect of miR-214 on cell proliferation. Moreover, simultaneous inhibition of PTK6 by ibrutinib and miR-214 significantly reduced cell proliferation/survival. Our data indicates that miR-214 could act as a tumor suppressor in prostate cancer and could potentially be utilized as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Patrice Cagle
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, United States
| | - Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, United States
| | - Anvesha Srivastava
- Cancer Research Laboratory, Division of Science and Mathematics, University of the District of Columbia, Washington, DC, 20008, United States
| | - Malathi Ramalinga
- Cancer Research Laboratory, Division of Science and Mathematics, University of the District of Columbia, Washington, DC, 20008, United States
| | - Rasha Aqeel
- Cancer Research Laboratory, Division of Science and Mathematics, University of the District of Columbia, Washington, DC, 20008, United States
| | - Leslimar Rios-Colon
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, United States
| | - Uchechukwu Chimeh
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, United States
| | - Simeng Suy
- Department of Radiation Medicine, Georgetown University, Washington, DC, 20057, United States
| | - Sean P Collins
- Department of Radiation Medicine, Georgetown University, Washington, DC, 20057, United States
| | - Rajvir Dahiya
- VA Medical Center and University of California San Francisco, San Francisco, CA, 94121, United States
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, 27707, United States. .,Cancer Research Laboratory, Division of Science and Mathematics, University of the District of Columbia, Washington, DC, 20008, United States. .,Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC, 27707, United States.
| |
Collapse
|
33
|
Mollashahi B, Aghamaleki FS, Movafagh A. The Roles of miRNAs in Medulloblastoma: A Systematic Review. J Cancer Prev 2019; 24:79-90. [PMID: 31360688 PMCID: PMC6619858 DOI: 10.15430/jcp.2019.24.2.79] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/27/2019] [Accepted: 05/13/2019] [Indexed: 01/10/2023] Open
Abstract
Medulloblastoma is considered one of the most threatening malignant brain tumors with an extremely high mortality rate in children. In the medulloblastoma, there are several genes and mutations found to work in an unregulated manner that works together to push the cells into a cancerous state. With the discovery of non-coding RNAs such as microRNAs (miRNAs), it has been shown that a different layer of gene regulations may be disrupted which would cause cancer. This fact led scientists to put their focus on the role of miRNAs in cancer. A mature miRNA contains a seed sequence which gives the miRNA to identify and attach to the interest mRNA; this attachment may lead degradation of mRNA or suppress of translation of the mRNA. The expression of miRNAs in medulloblastoma shows that some of these non-coding RNAs are overexpressed (OncomiRs) which help cells to proliferate and keep their stemness features. On the other hand, there are other forms of these miRNAs which normally inhibit cell proliferation and promote cell differentiation (tumor suppressor). These are down-regulated during cancer progression. In this systematic review, we attempted to gather several important studies on miRNAs’ role in medulloblastoma tumors and the importance of these non-coding RNAs in the future study of cancer.
Collapse
Affiliation(s)
- Behrouz Mollashahi
- Department of Cellular-Molecular Biology, Faculty of Biological Sciences and Technologies, Shahid Beheshti University, Tehran, Iran
| | - Fateme Shaabanpour Aghamaleki
- Department of Cellular-Molecular Biology, Faculty of Biological Sciences and Technologies, Shahid Beheshti University, Tehran, Iran
| | - Abolfazl Movafagh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Li Y, Yan X, Shi J, He Y, Xu J, Lin L, Chen W, Lin X, Lin X. Aberrantly expressed miR-188-5p promotes gastric cancer metastasis by activating Wnt/β-catenin signaling. BMC Cancer 2019; 19:505. [PMID: 31138169 PMCID: PMC6537442 DOI: 10.1186/s12885-019-5731-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background Gastric cancer (GC) is one of the most common human cancers with the high rate of recurrence, metastasis and mortality. Aberrantly expressed microRNAs (miRNAs) are associated with invasion and metastasis in various human cancers. Recently, miR-188-5p has been indicated as an oncogene in GC since it promotes GC cell growth and metastasis. However, the underlying molecular mechanism remains to be fully defined. Methods Using Significance Analysis of Microarrays (SAM) screening, we identified that miR-188-5p is associated with overall survival and lymph node metastasis in patients with GC. The functional impact of miR-188-5p on GC metastasis was validated using in vitro and in vivo assays. The regulatory function of miR-188-5p on Wnt/β-catenin signaling activation through directly targeting PTEN was proven using quantitative real-time PCR, western blot analysis, a dual-luciferase assay, a Transwell assay, and immunofluorescence. Immunohistochemical analyses further confirmed the clinical significance of miR-188-5p in GC. Results MiR-188-5p diminishes tumor suppressor PTEN expression, and further increases phospho-Ser9 of GSK3β to activate Wnt/β-catenin signaling in GC. Consequently, miR-188-5p enhanced the migration and invasion of GC cells in vitro and tumor metastasis in vivo, whereas inhibition of miR-188-5p had the opposite effects. Moreover, miR-188-5p was negatively correlated with PTEN expression but positively correlated with nuclear β-catenin staining in GC samples. Conclusions Our findings revealed a model of the miR-188-5p-PTEN-β-catenin axis in GC, which mediates the constitutive activation of Wnt/β-catenin signaling and promotes tumor metastasis, inferring that miR-188-5p is a potential therapeutic target to treat GC. Electronic supplementary material The online version of this article (10.1186/s12885-019-5731-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.,Institute of Tissue Transplantation and Immunology and Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaoli Yan
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Jiajian Shi
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Yun He
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Jie Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Liying Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Wannan Chen
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China. .,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
35
|
Epigenetic Regulation of EMT (Epithelial to Mesenchymal Transition) and Tumor Aggressiveness: A View on Paradoxical Roles of KDM6B and EZH2. EPIGENOMES 2018; 3:epigenomes3010001. [PMID: 34991274 PMCID: PMC8594212 DOI: 10.3390/epigenomes3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 01/21/2023] Open
Abstract
EMT (epithelial to mesenchymal transition) is a plastic phenomenon involved in metastasis formation. Its plasticity is conferred in a great part by its epigenetic regulation. It has been reported that the trimethylation of lysine 27 histone H3 (H3K27me3) was a master regulator of EMT through two antagonist enzymes that regulate this mark, the methyltransferase EZH2 (enhancer of zeste homolog 2) and the lysine demethylase KDM6B (lysine femethylase 6B). Here we report that EZH2 and KDM6B are overexpressed in numerous cancers and involved in the aggressive phenotype and EMT in various cell lines by regulating a specific subset of genes. The first paradoxical role of these enzymes is that they are antagonistic, but both involved in cancer aggressiveness and EMT. The second paradoxical role of EZH2 and KDM6B during EMT and cancer aggressiveness is that they are also inactivated or under-expressed in some cancer types and linked to epithelial phenotypes in other cancer cell lines. We also report that new cancer therapeutic strategies are targeting KDM6B and EZH2, but the specificity of these treatments may be increased by learning more about the mechanisms of action of these enzymes and their specific partners or target genes in different cancer types.
Collapse
|
36
|
Nie H, Nie D, Men L. Role of miR-214 in modulating proliferation and invasion of human colon cancer SW620 cells. Oncol Lett 2018; 16:7175-7179. [PMID: 30546454 PMCID: PMC6256325 DOI: 10.3892/ol.2018.9521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/14/2018] [Indexed: 12/23/2022] Open
Abstract
This study investigated the role of miR-214 in modulating proliferation and invasion of human colon cancer SW620 cells. Fifty-five patients with colon cancer who were treated in China-Japan Union Hospital of Jilin University from March 2014 to March 2015 were enrolled into this study. Their cancer and corresponding paracancerous tissues were collected and the expression levels of miR-214 were determined by RT-qPCR. A miR-214 expression vector was constructed. SW620 cells were transfected with the miR-214 expression vector and a blank vector. Cells transfected with the miR-214 expression vector were assigned to the miR-214 positive group and cells transfected with the blank vector were assigned to the miR-214 negative group. Cell proliferation, invasion and apoptosis were assessed by MTT assay, Transwell migration assay and TUNEL apoptosis assay, respectively. The RT-qPCR results showed that the expression level of miR-214 in colon cancer tissue, as well as in miR-214 negative cells, was significantly lower than that in paracancerous tissue (P<0.05 for both). In cell comparison, the expression level of miR-214 in the miR-214 positive group was significantly higher than that in the miR-214 negative group (0.483±0.001 vs. 0.172±0.001; P<0.05). The proliferation level of SW620 cells in the miR-214 positive group was lower than that in the miR-214 negative group (P<0.05). The Transwell migration assay indicated that there were less cells penetrating the membrane in the miR-214 positive group than in the miR-214 negative group (P<0.05). In addition, The apoptosis rate of cells in the miR-214 negative group was significantly lower than that in the miR-214 positive group (P<0.05). Finally, the low expression of miR-214 was found in colon cancer, indicating that miR-214 is a cancer suppressor playing an opposing role in colon cancer onset and progression. Therefore, miR-214 can promote apoptosis of colon cancer cells SW620 by inhibiting their proliferation and invasion.
Collapse
Affiliation(s)
- Haiying Nie
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dandan Nie
- Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, Jilin 130062, P.R. China
| | - Lan Men
- Department of Gastrointestinal Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
37
|
Liu F, Lou K, Zhao X, Zhang J, Chen W, Qian Y, Zhao Y, Zhu Y, Zhang Y. miR-214 regulates papillary thyroid carcinoma cell proliferation and metastasis by targeting PSMD10. Int J Mol Med 2018; 42:3027-3036. [PMID: 30272290 PMCID: PMC6202080 DOI: 10.3892/ijmm.2018.3902] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/25/2018] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) have important effects on cancer occurrence and development by adjusting gene expression. The aim of the present study was to examine the role of miR-214 in papillary thyroid carcinoma cell proliferation and metastasis, and its molecular mechanisms. miR-214 was demonstrated to be markedly downregulated in papillary thyroid carcinoma tissues and cells compared with normal, and this was significantly associated with lymph node metastasis, tumor size and TNM stage. Upregulation of miR-214 significantly decreased cell proliferation, and promoted cell apoptosis and cell cycle arrest in papillary thyroid carcinoma cell lines in vitro. By contrast, downregulation of miR-214 resulted in the opposite effects. In addition, miR-214 mimics significantly decreased papillary thyroid carcinoma cell migration and invasion, which was correlated with decreased expression levels of matrix metallopeptidase (MMP)-2 and MMP-9. Restoration of miR-214 expression in papillary thyroid carcinoma cells decreased the activities associated with epithelial-mesenchymal transition (EMT). Furthermore, proteasome 26S subunit non-ATPase 10 (PSMD10) was predicted to be a target of miR-214. Experimental results demonstrated that miR-214 negatively regulated PSMD10 expression by targeting its 3′ untranslated region directly. Knockdown of PSMD10 reduced papillary thyroid carcinoma cell clone formation, migration and invasion, most likely by repressing glycogen synthase kinase (GSK)-3β/β-catenin and AKT signaling. Finally, a negative correlation was observed between the expression levels of miR-214 and PSMD10 in papillary thyroid carcinoma tissues. Taken together, these data suggested that miR-214 might be a candidate target for the treatment of papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Fangzhou Liu
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Kexin Lou
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Xiaotong Zhao
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Jia Zhang
- PET‑CT Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Wei Chen
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yichun Qian
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yanbin Zhao
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yan Zhu
- Department of Pathology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210000, P.R. China
| | - Yuan Zhang
- Department of Head and Neck Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
38
|
Zhu X, Li W, Li H. miR-214 ameliorates acute kidney injury via targeting DKK3 and activating of Wnt/β-catenin signaling pathway. Biol Res 2018; 51:31. [PMID: 30180910 PMCID: PMC6122444 DOI: 10.1186/s40659-018-0179-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background miR-214 was demonstrated to be upregulated in models of renal disease and promoted fibrosis in renal injury independent of TGF-β signaling in vivo. However, the detailed role of miR-214 in acute kidney injury (AKI) and its underlying mechanism are still largely unknown. Methods In this study, an I/R-induced rat AKI model and a hypoxia-induced NRK-52E cell model were used to study AKI. The concentrations of kidney injury markers serum creatinine, blood urea nitrogen, and kidney injury molecule-1 were measured. The expressions of miR-214, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, were detected by RT-qPCR. The protein levels of Bcl-2, Bax, Dickkopf-related protein 3, β-catenin, c-myc, and cyclinD1 were determined by western blot. Cell apoptosis and caspase 3 activity were evaluated by flow cytometry analysis and caspase 3 activity assay, respectively. Luciferase reporter assay was used to confirm the interaction between miR-214 and Dkk3. Results miR-214 expression was induced in ischemia–reperfusion (I/R)-induced AKI rat and hypoxic incubation of NRK-52E cells. Overexpression of miR-214 alleviated hypoxia-induced NRK-52E cell apoptosis while inhibition of miR-214 expression exerted the opposite effect. Dkk3 was identified as a target of miR-214. Anti-miR-214 abolished the inhibitory effects of DKK3 knockdown on hypoxia-induced NRK-52E cell apoptosis by inactivation of Wnt/β-catenin signaling. Moreover, miR-214 ameliorated AKI in vivo by inhibiting apoptosis and fibrosis through targeting Dkk3 and activating Wnt/β-catenin pathway. Conclusion miR-214 ameliorates AKI by inhibiting apoptosis through targeting Dkk3 and activating Wnt/β-catenin signaling pathway, offering the possibility of miR-214 in the therapy of ischemic AKI. Electronic supplementary material The online version of this article (10.1186/s40659-018-0179-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoguang Zhu
- Department of Nephrology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng, 475000, China.
| | - Wenwen Li
- Department of Cardiology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Huicong Li
- Department of Nephrology, Huaihe Hospital of Henan University, No. 8, Baobei Road, Gulou District, Kaifeng, 475000, China
| |
Collapse
|
39
|
Pajares MA, Pérez-Sala D. Mammalian Sulfur Amino Acid Metabolism: A Nexus Between Redox Regulation, Nutrition, Epigenetics, and Detoxification. Antioxid Redox Signal 2018; 29:408-452. [PMID: 29186975 DOI: 10.1089/ars.2017.7237] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transsulfuration allows conversion of methionine into cysteine using homocysteine (Hcy) as an intermediate. This pathway produces S-adenosylmethionine (AdoMet), a key metabolite for cell function, and provides 50% of the cysteine needed for hepatic glutathione synthesis. The route requires the intake of essential nutrients (e.g., methionine and vitamins) and is regulated by their availability. Transsulfuration presents multiple interconnections with epigenetics, adenosine triphosphate (ATP), and glutathione synthesis, polyol and pentose phosphate pathways, and detoxification that rely mostly in the exchange of substrates or products. Major hepatic diseases, rare diseases, and sensorineural disorders, among others that concur with oxidative stress, present impaired transsulfuration. Recent Advances: In contrast to the classical view, a nuclear branch of the pathway, potentiated under oxidative stress, is emerging. Several transsulfuration proteins regulate gene expression, suggesting moonlighting activities. In addition, abnormalities in Hcy metabolism link nutrition and hearing loss. CRITICAL ISSUES Knowledge about the crossregulation between pathways is mostly limited to the hepatic availability/removal of substrates and inhibitors. However, advances regarding protein-protein interactions involving oncogenes, identification of several post-translational modifications (PTMs), and putative moonlighting activities expand the potential impact of transsulfuration beyond methylations and Hcy. FUTURE DIRECTIONS Increasing the knowledge on transsulfuration outside the liver, understanding the protein-protein interaction networks involving these enzymes, the functional role of their PTMs, or the mechanisms controlling their nucleocytoplasmic shuttling may provide further insights into the pathophysiological implications of this pathway, allowing design of new therapeutic interventions. Antioxid. Redox Signal. 29, 408-452.
Collapse
Affiliation(s)
- María A Pajares
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain .,2 Molecular Hepatology Group, Instituto de Investigación Sanitaria La Paz (IdiPAZ) , Madrid, Spain
| | - Dolores Pérez-Sala
- 1 Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas (CSIC) , Madrid, Spain
| |
Collapse
|
40
|
Lou W, Liu J, Gao Y, Zhong G, Ding B, Xu L, Fan W. MicroRNA regulation of liver cancer stem cells. Am J Cancer Res 2018; 8:1126-1141. [PMID: 30094089 PMCID: PMC6079154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023] Open
Abstract
MicroRNAs (miRNAs), a class of emerging small non-coding RNAs, serve as vital players in modulating multiple biological processes via the post-transcriptional regulation of gene expression. Dysregulated expression of miRNAs in liver cancer is well documented, and the involvement of miRNAs in liver cancer initiation and progression has also been described. Cancer stem cells (CSCs) are a subset of cells known to be at the root of cancer recurrence and resistance to therapy. In this review, we highlight recent reports indicating that miRNAs participate in the regulation of liver cancer stem cells (LCSCs). The Wnt signaling pathway, TGF-beta signaling pathway, JAK/STAT signaling pathway and epithelial-mesenchymal transition (EMT) are all closely correlated with the miRNA modulation of LCSCs. In addition, several miRNAs have been demonstrated to be involved in the regulation of LCSCs in response to therapy sensitivity. Targeting LCSCs by regulating the expression of these miRNAs represents a potential therapeutic strategy for treating cancer drug resistance, metastasis and recurrence in the near future.
Collapse
Affiliation(s)
- Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
| | - Jingxing Liu
- Department of Intensive Care Unit, Changxing People’s Hospital of ZhejiangHuzhou 313100, Zhejiang Province, China
| | - Yanjia Gao
- Department of Anesthesiology, International Hospital of Zhejiang University, Shulan (Hangzhou) HospitalHangzhou 310003, Zhejiang Province, China
| | - Guansheng Zhong
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical CollegeHangzhou 310000, Zhejiang Province, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
| | - Liang Xu
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Organ TransplantationHangzhou 310003, Zhejiang Province, China
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public HealthHangzhou 310000, China
- Department of Pathology and Laboratory Medicine, Medical University of South CarolinaCharleston, SC 29425, USA
| |
Collapse
|
41
|
Nie X, Liu Y, Chen WD, Wang YD. Interplay of miRNAs and Canonical Wnt Signaling Pathway in Hepatocellular Carcinoma. Front Pharmacol 2018; 9:657. [PMID: 29977206 PMCID: PMC6021530 DOI: 10.3389/fphar.2018.00657] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/01/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma is one of the leading causes of cancer death worldwide and the activation of canonical Wnt signaling pathway is universal in hepatocellular carcinoma patients. MicroRNAs are found to participate in the pathogenesis of hepatocellular carcinoma by activating or inhibiting components in the canonical Wnt signaling pathway. Meanwhile, transcriptional activation of microRNAs by canonical Wnt signaling pathway also contributes to the occurrence and progression of hepatocellular carcinoma. Pharmacological inhibition of hepatocellular carcinoma pathogenesis and other cancers by microRNAs are now in clinical trials despite the challenges of identifying efficient microRNAs candidates and safe delivery vehicles. The focus of this review is on the interplay mechanisms between microRNAs and canonical Wnt signaling pathway in hepatocellular carcinoma, and a deep understanding of the crosstalk will promote to develop a better management of this disease.
Collapse
Affiliation(s)
- Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China
| | - Yiran Liu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China.,Department of Pathology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
42
|
|
43
|
Zhao J, Fu Y, Wu J, Li J, Huang G, Qin L. The Diverse Mechanisms of miRNAs and lncRNAs in the Maintenance of Liver Cancer Stem Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8686027. [PMID: 29888282 PMCID: PMC5977062 DOI: 10.1155/2018/8686027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022]
Abstract
Liver cancer is the second leading cause of cancer-related death worldwide. The high frequency of recurrence and metastasis is the main reason for poor prognosis. Liver cancer stem cells (CSCs) have unlimited self-renewal, differentiation, and tumor-regenerating capacities. The maintenance of CSCs may account for the refractory features of liver cancer. Despite extensive investigations, the underlying regulatory mechanisms of liver CSCs remain elusive. miRNA and lncRNA, two major classes of the ncRNA family, can exert important roles in various biological processes, and their diverse regulatory mechanisms in CSC maintenance have acquired increasing attention. However, to the best of our knowledge, there is a lack of reviews summarizing these findings. Therefore, we systematically recapitulated the latest studies on miRNAs and lncRNAs in sustaining liver CSCs. Moreover, we highlighted the potential clinical application of these dysregulated ncRNAs as novel diagnostic and prognostic biomarkers and therapeutic targets. This review not only sheds new light to fully understand liver CSCs but also provides valuable clues on targeting ncRNAs to block or eradicate CSCs in cancer treatment.
Collapse
Affiliation(s)
- Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Juan Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Guangjian Huang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
44
|
Meng J. Distinct functions of dynamin isoforms in tumorigenesis and their potential as therapeutic targets in cancer. Oncotarget 2018; 8:41701-41716. [PMID: 28402939 PMCID: PMC5522257 DOI: 10.18632/oncotarget.16678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/09/2017] [Indexed: 12/22/2022] Open
Abstract
Dynamins and their related proteins participate in the regulation of neurotransmission, antigen presentation, receptor internalization, growth factor signalling, nutrient uptake, and pathogen infection. Recently, emerging findings have shown dynamin proteins can also contribute to the genesis of cancer. This up-to-date review herein focuses on the functionality of dynamin in cancer development. Dynamin 1 and 2 both enhance cancer cell proliferation, tumor invasion and metastasis, whereas dynamin 3 has tumor suppression role. Antisense RNAs encoded on the DNA strand opposite a dynamin gene regulate the function of dynamin, and manipulate oncogenes and tumor suppressor genes. Certain dynamin-related proteins are also upregulated in distinct cancer conditions, resulting in apoptotic resistance, cell migration and poor prognosis. Altogether, dynamins are potential biomarkers as well as representing promising novel therapeutic targets for cancer treatment. This study also summarizes the current available dynamin-targeted therapeutics and suggests the potential strategy based on signalling pathways involved, providing important information to aid the future development of novel cancer therapeutics by targeting these dynamin family members.
Collapse
Affiliation(s)
- Jianghui Meng
- Charles Institute of Dermatology, School of Medicine and Medical Sciences, University College Dublin, Belfield, Dublin, Ireland.,International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
45
|
Roberto VP, Gavaia P, Nunes MJ, Rodrigues E, Cancela ML, Tiago DM. Evidences for a New Role of miR-214 in Chondrogenesis. Sci Rep 2018; 8:3704. [PMID: 29487295 PMCID: PMC5829070 DOI: 10.1038/s41598-018-21735-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/08/2018] [Indexed: 12/27/2022] Open
Abstract
miR-214 is known to play a role in mammalian skeletal development through inhibition of osteogenesis and stimulation of osteoclastogenesis, but data regarding other vertebrates, as well as a possible role in chondrogenesis, remain unknown. Here, we show that miR-214 expression is detected in bone and cartilage of zebrafish skeleton, and is downregulated during murine ATDC5 chondrocyte differentiation. Additionally, we observed a conservation of the transcriptional regulation of miR-214 primary transcript Dnm3os in vertebrates, being regulated by Ets1 in ATDC5 chondrogenic cells. Moreover, overexpression of miR-214 in vitro and in vivo mitigated chondrocyte differentiation probably by targeting activating transcription factor 4 (Atf4). Indeed, miR-214 overexpression in vivo hampered cranial cartilage formation of zebrafish and coincided with downregulation of atf4 and of the key chondrogenic players sox9 and col2a1. We show that miR-214 overexpression exerts a negative role in chondrogenesis by impacting on chondrocyte differentiation possibly through conserved mechanisms.
Collapse
Affiliation(s)
- Vânia Palma Roberto
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal.,PhD Program in Biomedical Sciences, DCBM, University of Algarve, 8005-139, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal
| | - Paulo Gavaia
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal
| | - Maria João Nunes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Elsa Rodrigues
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Maria Leonor Cancela
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal. .,Algarve Biomedical Center, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Department of Biomedical Sciences and Medicine, University of Algarve, 8005-139, Faro, Portugal.
| | - Daniel Martins Tiago
- Centre of Marine Sciences (CCMAR/CIMAR-LA), University of Algarve, 8005-139, Faro, Portugal.
| |
Collapse
|
46
|
Liu F, Liu Y, Shen J, Zhang G, Han J. MicroRNA-224 inhibits proliferation and migration of breast cancer cells by down-regulating Fizzled 5 expression. Oncotarget 2018; 7:49130-49142. [PMID: 27323393 PMCID: PMC5226496 DOI: 10.18632/oncotarget.9734] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/25/2016] [Indexed: 12/22/2022] Open
Abstract
The Wnt/β-catenin signaling is crucial for the proliferation and migration of breast cancer cells. However, the expression of microRNA-224 (miR-224) in the different types of breast cancers and its role in the Wnt/β-catenin signaling and the proliferation and migration of breast cancer cells are poorly understood. In this study, the levels of miR-224 in different types of breast cancer tissues and cell lines were examined by quantitative RT-PCR and the potential targets of miR-224 in the Wnt/β-catenin signaling were investigated. The effects of altered miR-224 expression on the frequency of CD44+CD24− cancer stem-like cells (CSC), proliferation and migration of MCF-7 and MDA-MB-231 cells were examined by flow cytometry, MTT and transwell migration. We found that the levels of miR-224 expression in different types of breast cancer tissues and cell lines were associated inversely with aggressiveness of breast cancers. Enhanced miR-224 expression significantly reduced the fizzled 5-regulated luciferase activity in 293T cells, fizzled 5 expression in MCF-7 and MDA-MB-231 cells, the β-dependent luciferase activity in MCF-7 cells, and the nuclear translocation of β-catenin in MDA-MB-231 cells. miR-224 inhibition significantly increased the percentages of CSC in MCF-7 cells and enhanced proliferation and migration of MCF-7 cells. Enhanced miR-224 expression inhibited proliferation and migration of MDA-MB-231 cells, and the growth of implanted breast cancers in vivo. Induction of frizzled 5 over-expression mitigated the miR-224-mediated inhibition of breast cancer cell proliferation. Collectively, these data indicated that miR-224 down-regulated the Wnt/β-catenin signaling possibly by binding to frizzled 5 and inhibited proliferation and migration of breast cancer cells.
Collapse
Affiliation(s)
- Feng Liu
- Department of Breast Surgery, Cancer Hospital of Harbin Medical University, Harbin 150081, China
| | - Yang Liu
- Department of Breast Surgery, Cancer Hospital of Harbin Medical University, Harbin 150081, China
| | - Jingling Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
| | - Guoqiang Zhang
- Department of Breast Surgery, Cancer Hospital of Harbin Medical University, Harbin 150081, China
| | - Jiguang Han
- Department of Breast Surgery, Cancer Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
47
|
Sandiford OA, Moore CA, Du J, Boulad M, Gergues M, Eltouky H, Rameshwar P. Human Aging and Cancer: Role of miRNA in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1056:137-152. [PMID: 29754179 DOI: 10.1007/978-3-319-74470-4_9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human aging is an inevitable and complex phenomenon characterized by a progressive, gradual degradation of physiological and cellular processes that leads from vulnerability to death. Mammalian somatic cells display limited proliferative properties in vitro that results in a process of permanent cell cycle arrest commonly known as senescence. Events leading to cellular senescence are complex but may be due to the increase in tumor suppressor genes, caused by lifetime somatic mutations. Cumulative mutation leaves an imprint on the genome of the cell, an important risk factor for the occurrence of cancer. Adults over the age of 65+ are vulnerable to age related diseases such as cancers but such changes may begin at middle age. MicroRNAs (miRNAs), which are small non-coding RNA, can regulate cancer progression, recurrence and metastasis. This chapter discusses the role of miRNA in tumor microenvironment, consequent to aging.
Collapse
Affiliation(s)
- Oleta A Sandiford
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Caitlyn A Moore
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Jun Du
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Mathieu Boulad
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Marina Gergues
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Hussam Eltouky
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA
| | - Pranela Rameshwar
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers School of Biomedical Health Science, Newark, NJ, USA.
| |
Collapse
|
48
|
Zhang Z, Wu WS. Application of TALE-Based Approach for Dissecting Functional MicroRNA-302/367 in Cellular Reprogramming. Methods Mol Biol 2018; 1733:255-263. [PMID: 29435939 DOI: 10.1007/978-1-4939-7601-0_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
MicroRNAs are small 18-24 nt single-stranded noncoding RNA molecules involved in many biological processes, including stemness maintenance and cellular reprogramming. Current methods used in loss-of-function studies of microRNAs have several limitations. Here, we describe a new approach for dissecting miR-302/367 functions by transcription activator-like effectors (TALEs), which are natural effector proteins secreted by Xanthomonas and Ralstonia bacteria. Knockdown of the miR-302/367 cluster uses the Kruppel-associated box repressor domain fused with specific TALEs designed to bind the miR-302/367 cluster promoter. Knockout of the miR-302/367 cluster uses two pairs of TALE nucleases (TALENs) to delete the miR-302/367 cluster in human primary cells. Together, both TALE-based transcriptional repressor and TALENs are two promising approaches for loss-of-function studies of microRNA cluster in human primary cells.
Collapse
Affiliation(s)
- Zhonghui Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Wen-Shu Wu
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
49
|
Tang Q, Wang Q, Zhang Q, Lin SY, Zhu Y, Yang X, Guo AY. Gene expression, regulation of DEN and HBx induced HCC mice models and comparisons of tumor, para-tumor and normal tissues. BMC Cancer 2017; 17:862. [PMID: 29254483 PMCID: PMC5735680 DOI: 10.1186/s12885-017-3860-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of cancer mortality. Chemical and virus induction are two major risk factors, however, the potential molecular mechanisms of their differences remain elusive. In this study, to identify the similarities and differences between chemical and virus induced HCC models, we compared the gene expression profiles between DEN and HBx mice models, as well as the differences among tumor, para-tumor and normal tissues. METHODS We sequenced both gene and microRNA (miRNA) expression for HCC tumor tissues, para-tumor and normal liver tissues from DEN model mice (30-week-old) and downloaded the corresponding microarray expression data of HBx model from GEO database. Then differentially expressed genes (DEGs), miRNAs and transcription factors (TFs) were detected by R packages and performed functional enrichment analysis. To explore the gene regulatory network in HCC models, miRNA and TF regulatory networks were constructed by target prediction. RESULTS For model comparison, although DEGs between tumor and normal tissues in DEN and HBx models only had a small part of overlapping, they shared common pathways including lipid metabolism, oxidation-reduction process and immune process. For tissue comparisons in each model, genes in oxidation-reduction process were down-regulated in tumor tissues and genes in inflammatory response showed the highest expression level in para-tumor tissues. Genes highly expressed in both tumor and para-tumor tissues in two models mainly participated in immune and inflammatory response. Genes expressed in HBx model were also involved in cell proliferation and cell migration etc. Network analysis revealed that several miRNAs such as miR-381-3p, miR-142a-3p, miR-214-3p and TFs such as Egr1, Atf3 and Klf4 were the core regulators in HCC. CONCLUSIONS Through the comparative analyses, we found that para-tumor tissue is a highly inflammatory tissue while the tumor tissue is specific with both inflammatory and cancer signaling pathways. The DEN and HBx mice models have different gene expression pattern but shared pathways. This work will help to elucidate the molecular mechanisms underlying different HCC models.
Collapse
Affiliation(s)
- Qin Tang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Qi Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiong Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Sheng-Yan Lin
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - An-Yuan Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.
| |
Collapse
|
50
|
Wu KH, Xiao QR, Yang Y, Xu JL, Zhang F, Liu CM, Zhang ZM, Lu YQ, Huang NP. MicroRNA-34a modulates the Notch signaling pathway in mice with congenital heart disease and its role in heart development. J Mol Cell Cardiol 2017; 114:300-308. [PMID: 29175286 DOI: 10.1016/j.yjmcc.2017.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/03/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
The objective of the study was to elucidate the mechanism by which microRNA-34a (miR-34a) influences heart development and participates in the pathogenesis of congenital heart disease (CHD) by targeting NOTCH-1 through the Notch signaling pathway. Forty D7 pregnant mice were recruited for the purposes of the study and served as the CHD (n=20, successfully established as CHD model) and normal (n=20) groups. The positive expression of the NOTCH-1 protein was evaluated by means of immunohistochemistry. Embryonic endocardial cells (ECCs) were assigned into the normal, blank, negative control (NC), miR-34a mimics, miR-34a inhibitors, miR-34a inhibitors+siRNA-NOTCH-1, siRNA-NOTCH-1, miR-34a mimics+NOTCH-1 OE and miR-34a mimics+crispr/cas9 (mutant NOTCH-1) groups. The expressions of miR-34a, NOTCH-1, Jagged1, Hes1, Hey2 and Csx in cardiac tissues and ECCs were determined by both RT-qPCR and western blotting methods. MTT assay and flow cytometry were conducted for cell proliferation and apoptosis measurement. A dual luciferase reporter assay was applied to demonstrate that NOTCH-1 was the target gene of miR-34a. In comparison to the normal group, the expressions of miR-34a, Jagged1, Hes1 and Hey2 displayed up-regulated levels, while the expressions of NOTCH-1 and Csx were down-regulated in the CHD group. Compared with the blank and NC groups, the miR-34a mimics and siRNA-NOTCH-1 groups displayed reduced expressions of NOTCH-1 and Csx as well as a decreased proliferation rate, higher miR-34a, Jagged1, Hes1 and Hey2 expressions and an increased rate of apoptosis; while an reverse trend was observed in the miR-34a inhibitors group. The expressions of MiR-34a recorded increased levels in the miR-34a mimics+NOTCH-1 OE and miR-34a mimics+crispr/cas9 (mutant NOTCH-1) groups, however no changes in the expressions of NOTCH-1, Jagged1, Hes1, Hey2, Csx, as well as cell proliferation and apoptosis were observed when compared to the blank and NC groups. The results of our study demonstrated that miR-34a increases the risk of CHD through its downregulation of NOTCH-1 by modulating the Notch signaling pathway.
Collapse
Affiliation(s)
- Kai-Hong Wu
- Cardiovascular Center, Children's Hospital of Nanjing Medical University, Nanjing 210036, PR China.
| | - Qian-Ru Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Yu Yang
- Cardiovascular Center, Children's Hospital of Nanjing Medical University, Nanjing 210036, PR China
| | - Jia-Li Xu
- Cardiovascular Center, Children's Hospital of Nanjing Medical University, Nanjing 210036, PR China
| | - Feng Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Chao-Ming Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Zhao-Ming Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Ying-Qi Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|