1
|
Wu Y, Huang H, Jing F, Wang Y, Chen S, Wang L, Li Y, Hou S. A fluorescent probe based on the ESIPT (excited state intramolecular proton transfer) mechanism for rapid detection of endogenous and exogenous H 2O 2 (hydrogen peroxide) in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123394. [PMID: 37714104 DOI: 10.1016/j.saa.2023.123394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Hydrogen peroxide (H2O2) is one of the important reactive oxygen species in the body and can be used as a marker of some diseases such as cancer and neurodegenerative diseases. Therefore, it is of great significance to develop fluorescent probes that can detect H2O2 in living organisms for early diagnosis of diseases. However, slow response time and low fluorescence quantum yield limit the application of many probes. In this study, using 2-(2-hydroxyphenyl) benzothiazole (HBT) as the fluorophore, the introduction of weakly absorbing bromine atoms can accelerate the speed of electron transfer during the recognition process. Three ESIPT (excited state intramolecular proton transfer) fluorescent probes JLO/JLM/JLP were designed and synthesized. The detection of H2O2 can be achieved with all three probes, and we screened a probe JLO with the fastest response time (30 min) and highest fluorescence quantum yield (Ф = 0.731). The probe also has a large Stokes shift, which can reduce fluorescence self-absorption and background interference, and also has a high sensitivity, which is designed to accurately detect endogenous and exogenous H2O2 in living cells, which has great potential for biological applications.
Collapse
Affiliation(s)
- Yuanyuan Wu
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Hanling Huang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Fengyang Jing
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yaping Wang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Shijun Chen
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yiyi Li
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
2
|
Grissi C, Taverna Porro M, Perona M, Atia M, Negrin L, Moreno MS, Sacanell J, Olivera MS, Del Grosso M, Durán H, Ibañez IL. Superparamagnetic iron oxide nanoparticles induce persistent large foci of DNA damage in human melanoma cells post-irradiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023:10.1007/s00411-023-01037-0. [PMID: 37452828 DOI: 10.1007/s00411-023-01037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
The synergy of superparamagnetic iron oxide nanoparticles (SPIONs) and ionizing radiation (IR), attributed to reactive oxygen species (ROS) and DNA double-strand breaks (DSBs) increase, was widely investigated in different cancers, but scarcely in melanoma. Herein, SPIONs were evaluated as radiosensitizers in A-375 human melanoma cells. Moreover, the effect of the combined treatment of SPIONs and gamma irradiation (SPIONs-IR) was assessed at the DNA level, where DSBs induction and their repair capacity were studied. SPIONs were synthesized, stabilized by poly(ethylene glycol) methyl ether and physicochemically characterized by high resolution-transmission electron microscopy (HR-TEM), X-ray diffraction and magnetometry and dynamic light scattering. The obtained nanoparticles showing superparamagnetic behavior and low dispersion in shape and sizes were tested in A-375 cells. The intracellular internalization of SPIONs was verified by HR-TEM and quantified by inductively coupled plasma atomic emission spectroscopy. Cells treated with SPIONs exhibited high ROS levels without associated cytotoxicity. Next, a significant radiosensitization in SPIONs-IR vs. control (IR) cells was demonstrated at 1 Gy of gamma radiation. Furthermore, a decreased DSBs repair capacity in SPIONs-IR vs. IR-treated cells was evidenced by the size increase of persistent phosphorylated H2AX foci at 24 h post-irradiation. In conclusion, these nanoparticles show the potential to radiosensitize melanoma cells by the induction of unrepairable DNA damage.
Collapse
Affiliation(s)
- Cecilia Grissi
- Subgerencia de Tecnología y Aplicaciones de Aceleradores, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz, 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - Marisa Taverna Porro
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Junín 954 (C1113AAD), Ciudad Autónoma de Buenos Aires, Argentina
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Campus Miguelete (B1650KNA), San Martín, Provincia de Buenos Aires, Argentina
| | - Marina Perona
- División Bioquímica Nuclear, Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. General Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - Mariel Atia
- Subgerencia de Tecnología y Aplicaciones de Aceleradores, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz, 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - Lara Negrin
- Laboratorio de Radiobiología y Biodosimetría, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Centro de Medicina Nuclear y Radioterapia - Instituto de Tecnologías Nucleares Para La Salud (INTECNUS), Av. Bustillo Km. 9,5 (R8402AGP), S.C. de Bariloche, Río Negro, Argentina
| | - M Sergio Moreno
- Instituto de Nanociencia y Nanotecnología (INN), Comisión Nacional de Energía Atómica (CNEA) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Bariloche, Centro Atómico Bariloche, Av. Bustillo Km. 9,5 (R8402AGP), S.C. de Bariloche, Río Negro, Argentina
| | - Joaquín Sacanell
- Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - María Silvina Olivera
- Departamento Coordinación BNCT, Comisión Nacional de Energía Atómica (CNEA), Centro Atómico Constituyentes, Av. General Paz 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - Mariela Del Grosso
- Subgerencia de Tecnología y Aplicaciones de Aceleradores, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz, 1499 (B1650KNA), San Martín, Buenos Aires, Argentina
| | - Hebe Durán
- Subgerencia de Tecnología y Aplicaciones de Aceleradores, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz, 1499 (B1650KNA), San Martín, Buenos Aires, Argentina.
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Campus Miguelete (B1650KNA), San Martín, Provincia de Buenos Aires, Argentina.
| | - Irene L Ibañez
- Subgerencia de Tecnología y Aplicaciones de Aceleradores, Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (CNEA), Instituto de Nanociencia y Nanotecnología (INN), CNEA - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Nodo Constituyentes, Av. General Paz, 1499 (B1650KNA), San Martín, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Chen S, Fan W, Sun Z, Zheng E, Wang L, Wu Y, Hou S, Ma X. Acetyl group assisted rapid intramolecular recognition of hydrogen peroxide: A novel promising approach for efficient hydrogen peroxide probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121162. [PMID: 35397454 DOI: 10.1016/j.saa.2022.121162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
As a vital biomolecule, hydrogen peroxide (H2O2) is involved in many physiological and pathological processes. Therefore, it is important to detect H2O2 in vivo conveniently and efficiently. In this paper, we report a new method of nucleophilic addition of H2O2 to the acetyl group to promote the rapid intramolecular reaction, which can be used to develop an efficient H2O2 probe. Based on this unique auxiliary recognition part, a fluorescent probe for H2O2 detection was designed and synthesized. This probe has the advantages of high sensitivity (limits of detection 7.0 × 10-8 M or even lower.), fast response (within 3 min) and large Stokes shift (225 nm), which not only can monitor exogenous and endogenous H2O2 in cells but also successfully achieves the change of endogenous H2O2 level caused by drug sexual organ injury in zebrafish.
Collapse
Affiliation(s)
- Shijun Chen
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Wenkang Fan
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Zhen Sun
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - En Zheng
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Yuanyuan Wu
- College of Science, China Agricultural University, Beijing 100193, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing 100193, PR China.
| | - Xiaodong Ma
- College of Science, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
4
|
Jia F, Sun MY, Zhang XJ, Zhou XZ. Total alkaloids of Sophora alopecuroides- and matrine-induced reactive oxygen species impair biofilm formation of Staphylococcus epidermidis and increase bacterial susceptibility to ciprofloxacin. CHINESE HERBAL MEDICINES 2020; 12:390-398. [PMID: 36120175 PMCID: PMC9476472 DOI: 10.1016/j.chmed.2020.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 11/28/2022] Open
Abstract
Objective To investigate the mechanism by which total alkaloids of Sophora alopecuroides (TASA) and matrine (MT) impair biofilm to increase the susceptibility of Staphylococcus epidermidis (S. epidermidis) to ciprofloxacin. Methods The minimum biofilm inhibitory concentration (mBIC) was determined using a 2-fold dilution method. Structure of biofilm of S. epidermidis was examined by Confocal Laser Scanning Microscope (CLSM). The cellular reactive oxygen species (ROS) was determined using a DCFH-DA assay. The key factors related to the regulation of ROS were accessed using respective kits. Results TASA and MT were more beneficial to impair biofilm of S. epidermidis than ciprofloxacin (CIP) (P < 0.05). TASA and MT were not easily developed resistance to biofilm-producing S. epidermidis. The mBIC of CIP decreased by 2–6-fold following the treatment of sub-biofilm inhibitory concentration (sub-BIC) TASA and MT, whereas the mBIC of CIP increased by 2-fold following a treatment of sub-BIC CIP from the first to sixth generations. TASA and MT can improve the production of ROS in biofilm-producing S. epidermidis. The ROS content was decreased 23%−33% following the treatment of sub-mBIC CIP, whereas ROS content increased 7%−24% following treatment with TASA + CIP and MT + CIP combination from the first to sixth generations. Nitric oxide (NO) as a ROS, which was consistent with the previously confirmed relationship between ROS and drug resistance. Related regulatory factors-superoxide dismutase (SOD) and glutathione peroxidase (GSH) could synergistically maintain the redox balance in vivo. Conclusion TASA and MT enhanced reactive oxygen species to restore the susceptibility of S. epidermidis to ciprofloxacin.
Collapse
|
5
|
Bracalente C, Salguero N, Notcovich C, Müller CB, da Motta LL, Klamt F, Ibañez IL, Durán H. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis. Oncotarget 2018; 7:41142-41153. [PMID: 27206672 PMCID: PMC5173048 DOI: 10.18632/oncotarget.9220] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/28/2016] [Indexed: 12/11/2022] Open
Abstract
Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy.
Collapse
Affiliation(s)
- Candelaria Bracalente
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, C1033AAJ, Argentina
| | - Noelia Salguero
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina
| | - Carolina B Müller
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035 003, Brasil
| | - Leonardo L da Motta
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035 003, Brasil
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035 003, Brasil
| | - Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, C1033AAJ, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, B1650KNA, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, C1033AAJ, Argentina.,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, B1650HMP, Argentina
| |
Collapse
|
6
|
Bracalente C, Ibañez IL, Berenstein A, Notcovich C, Cerda MB, Klamt F, Chernomoretz A, Durán H. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Upregulation of antioxidant genes correlates with regression of melanoma malignancy and with malignant progression when downregulated. Oncotarget 2018; 7:41154-41171. [PMID: 27206673 PMCID: PMC5173049 DOI: 10.18632/oncotarget.9273] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/02/2016] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are implicated in tumor transformation. The antioxidant system (AOS) protects cells from ROS damage. However, it is also hijacked by cancers cells to proliferate within the tumor. Thus, identifying proteins altered by redox imbalance in cancer cells is an attractive prognostic and therapeutic tool. Gene expression microarrays in A375 melanoma cells with different ROS levels after overexpressing catalase were performed. Dissimilar phenotypes by differential compensation to hydrogen peroxide scavenging were generated. The melanotic A375-A7 (A7) upregulated TYRP1, CNTN1 and UCHL1 promoting melanogenesis. The metastatic A375-G10 (G10) downregulated MTSS1 and TIAM1, proteins absent in metastasis. Moreover, differential coexpression of AOS genes (EPHX2, GSTM3, MGST1, MSRA, TXNRD3, MGST3 and GSR) was found in A7 and G10. Their increase in A7 improved its AOS ability and therefore, oxidative stress response, resembling less aggressive tumor cells. Meanwhile, their decrease in G10 revealed a disruption in the AOS and therefore, enhanced its metastatic capacity. These gene signatures, not only bring new insights into the physiopathology of melanoma, but also could be relevant in clinical prognostic to classify between non aggressive and metastatic melanomas.
Collapse
Affiliation(s)
- Candelaria Bracalente
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
| | - Ariel Berenstein
- Fundación Instituto Leloir and Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - María B Cerda
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Fabio Klamt
- Laboratório de Bioquímica Celular, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Ariel Chernomoretz
- Fundación Instituto Leloir and Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina.,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
7
|
Xie D, Wu X, Lan L, Shangguan F, Lin X, Chen F, Xu S, Zhang Y, Chen Z, Huang K, Wang R, Wang L, Song X, Liu Y, Lu B. Downregulation of TFAM inhibits the tumorigenesis of non-small cell lung cancer by activating ROS-mediated JNK/p38MAPK signaling and reducing cellular bioenergetics. Oncotarget 2017; 7:11609-24. [PMID: 26820294 PMCID: PMC4905497 DOI: 10.18632/oncotarget.7018] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/07/2016] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial transcription factor A (TFAM) is essential for the replication, transcription and maintenance of mitochondrial DNA (mtDNA). The role of TFAM in non-small cell lung cancer (NSCLC) remains largely unknown. Herein, we report that downregulation of TFAM in NSCLC cells resulted in cell cycle arrest at G1 phase and significantly blocked NSCLC cell growth and migration through the activation of reactive oxygen species (ROS)-induced c-Jun amino-terminal kinase(JNK)/p38 MAPK signaling and decreased cellular bioenergetics. We further found that TFAM downregulation in NSCLC cells led to increased apoptotic cell death and enhanced the sensitivity of NSCLC cells to cisplatin. Tissue microarray (TMA) data showed that elevated expression of TFAM was related to the histological grade and TNM stage of NSCLC patients. We also demonstrated that TFAM is an independent prognostic factor for overall survival of NSCLC patients. Taken together, our findings suggest that TFAM could serve as a potential diagnostic biomarker and molecular target for the treatment of NSCLC, as well as for prediction of the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Deyao Xie
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaoyi Wu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Linhua Lan
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Fugeng Shangguan
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaoming Lin
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Fuhong Chen
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shan Xu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China.,Huzhou Health School, Huzhou, Zhejiang 313100, P.R. China
| | - Ya Zhang
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zilei Chen
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Rongrong Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lu Wang
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xiaoxiao Song
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
8
|
Qian W, Gang X, Zhang T, Wei L, Yang X, Li Z, Yang Y, Song L, Wang P, Peng J, Cheng D, Xia Q. Protein kinase A-mediated phosphorylation of the Broad-Complex transcription factor in silkworm suppresses its transcriptional activity. J Biol Chem 2017; 292:12460-12470. [PMID: 28584058 PMCID: PMC5535021 DOI: 10.1074/jbc.m117.775130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/02/2017] [Indexed: 12/28/2022] Open
Abstract
The insect-specific transcription factor Broad-Complex (BR-C) is transcriptionally activated by the steroid 20-hydroxyecdysone (20E) and regulates the expression of many target genes involved in insect growth and development. However, although the transcriptional regulation of BR-C proteins has been well studied, how BR-C is regulated at post-transcription and -translation levels is poorly understood. To this end, using liquid chromatography-tandem mass spectrometry analysis, we identified residue Ser-186 as a phosphorylation site of BR-C in silkworm. Site-directed mutagenesis and treatment with specific kinase activators and inhibitors indicated that the Ser-186 residue in silkworm BR-C is phosphorylated by protein kinase A (PKA). Immunostaining assays disclosed that PKA-mediated phosphorylation of silkworm BR-C has no effect on its nuclear import. However, luciferase reporter analysis, electrophoretic mobility shift assays, and chromatin immunoprecipitation revealed that the PKA phosphorylation event suppresses the transcriptional activation of silkworm BR-C target genes and that this inhibition was caused by repression of BR-C binding to its DNA targets. Of note, both in vitro and ex vivo experiments disclosed that a continuous 20E signal inhibits the PKA-mediated BR-C phosphorylation and also the cAMP/PKA pathway, indicating that 20E's inhibitory effect on PKA-mediated phosphorylation of silkworm BR-C contributes to maintaining BR-C transcriptional activity. In conclusion, our findings indicate that PKA-mediated phosphorylation inhibits silkworm BR-C activity by interfering with its binding to DNA and that 20E signaling relieves PKA-mediated phosphorylation of BR-C, thereby maintaining its transcriptional activity.
Collapse
Affiliation(s)
- Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Xiaoxu Gang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Tianlei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Science, Southwest University, Chongqing 400715, China
| | - Xinxin Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Yan Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Liang Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Peng Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Qian W, Gang X, Zhang T, Wei L, Yang X, Li Z, Yang Y, Song L, Wang P, Peng J, Cheng D, Xia Q. Protein kinase A-mediated phosphorylation of the Broad-Complex transcription factor in silkworm suppresses its transcriptional activity. J Biol Chem 2017. [DOI: 10.1.74/jbc.m117.77513010.1074/jbc.m117.775130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Luo J, Chen Y, Li Q, Wang B, Zhou Y, Lan H. CRM-1 knockdown inhibits extrahepatic cholangiocarcinoma tumor growth by blocking the nuclear export of p27Kip1. Int J Mol Med 2016; 38:381-90. [PMID: 27279267 PMCID: PMC4935460 DOI: 10.3892/ijmm.2016.2628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 05/18/2016] [Indexed: 12/28/2022] Open
Abstract
Cholangiocarcinoma is a deadly disease which responds poorly to surgery and conventional chemotherapy or radiotherapy. Early diagnosis is difficult due to the anatomical and biological characteristics of cholangiocarcinoma. Cyclin-dependent kinase inhibitor 1B (p27Kip1) is a cyclin‑dependent kinase inhibitor and in the present study, we found that p27Kip1 expression was suppressed in the nucleus and increased in the cytoplasm in 53 samples of cholangiocarcinoma from patients with highly malignant tumors (poorly-differentiated and tumor-node-metastsis (TNM) stage III-IV) compared with that in samples from 10 patients with chronic cholangitis. The expression of phosphorylated (p-)p27Kip1 (Ser10), one of the phosphorylated forms of p27Kip1, was increased in the patient samples with increasing malignancy and clinical stage. Coincidentally, chromosome region maintenance 1 (CRM-1; also referred to as exportin 1 or Xpo1), a critical protein responsible for protein translocation from the nucleus to the cytoplasm, was also overexpressed in the tumor samples which were poorly differentiated and of a higher clinical stage. Through specific short hairpin RNA (shRNA)-mediated knockdown of CRM-1 in the cholangiocarcinoma cell line QBC939, we identified an elevation of cytoplasmic p27Kip1 and a decrease of nuclear p27Kip1. Furthermore, the viability and colony formation ability of QBC939 cells was largely reduced with G1 arrest. Consistent with the findings of the in vitro experiments, in a xenograft mouse model, the tumors formed in the CRM-1 knockdown group were markedly smaller and weighed less than those in the control group in vivo. Taken together, these findings demonstrated that the interplay between CRM-1 and p27Kip1 may provide potentially potent biomarkers and functional targets for the development of future cholangiocarcinoma treatments.
Collapse
Affiliation(s)
| | - Yongjun Chen
- Department of Bile Duct and Pancreatic Surgery and
| | - Qiang Li
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Bing Wang
- Department of Bile Duct and Pancreatic Surgery and
| | | | | |
Collapse
|
11
|
Okoh VO, Garba NA, Penney RB, Das J, Deoraj A, Singh KP, Sarkar S, Felty Q, Yoo C, Jackson RM, Roy D. Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells. Br J Cancer 2015; 112:1687-702. [PMID: 25965299 PMCID: PMC4430710 DOI: 10.1038/bjc.2014.586] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/10/2014] [Accepted: 10/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background: 17β-Oestradiol (E2)-induced reactive oxygen species (ROS) have been implicated in regulating the growth of breast cancer cells. However, the underlying mechanism of this is not clear. Here we show how ROS through a novel redox signalling pathway involving nuclear respiratory factor-1 (NRF-1) and p27 contribute to E2-induced growth of MCF-7 breast cancer cells. Methods: Chromatin immunoprecipitation, qPCR, mass spectrometry, redox western blot, colony formation, cell proliferation, ROS assay, and immunofluorescence microscopy were used to study the role of NRF-1. Results: The major novel finding of this study is the demonstration of oxidative modification of phosphatases PTEN and CDC25A by E2-generated ROS along with the subsequent activation of AKT and ERK pathways that culminated in the activation of NRF-1 leading to the upregulation of cell cycle genes. 17β-Oestradiol-induced ROS by influencing nuclear proteins p27 and Jab1 also contributed to the growth of MCF-7 cells. Conclusions: Taken together, our results present evidence in the support of E2-induced ROS-mediated AKT signalling leading to the activation of NRF-1-regulated cell cycle genes as well as the impairment of p27 activity, which is presumably necessary for the growth of MCF-7 cells. These observations are important because they provide a new paradigm by which oestrogen may contribute to the growth of breast cancer.
Collapse
Affiliation(s)
- V O Okoh
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - N A Garba
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - R B Penney
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72204, USA
| | - J Das
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - A Deoraj
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - K P Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH), Texas Tech University, Lubbock, TX 79409, USA
| | - S Sarkar
- Department of Neuroscience and Cell Biology, UTMB, Galveston, TX 77555, USA
| | - Q Felty
- Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA
| | - C Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA
| | - R M Jackson
- Research Service, VA Medical Center, 1201 NW 16th Street, Miami, FL 33125, USA
| | - D Roy
- 1] Department of Environmental and Occupational Health, Florida International University, 11200 SW 8th Street, Miami, FL 33199-0001, USA [2] Research Service, VA Medical Center, 1201 NW 16th Street, Miami, FL 33125, USA
| |
Collapse
|
12
|
Cellular Mechanisms of Oxidative Stress and Action in Melanoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:481782. [PMID: 26064422 PMCID: PMC4438193 DOI: 10.1155/2015/481782] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/21/2015] [Indexed: 12/14/2022]
Abstract
Most melanomas occur on the skin, but a small percentage of these life-threatening cancers affect other parts of the body, such as the eye and mucous membranes, including the mouth. Given that most melanomas are caused by ultraviolet radiation (UV) exposure, close attention has been paid to the impact of oxidative stress on these tumors. The possibility that key epigenetic enzymes cannot act on a DNA altered by oxidative stress has opened new perspectives. Therefore, much attention has been paid to the alteration of DNA methylation by oxidative stress. We review the current evidence about (i) the role of oxidative stress in melanoma initiation and progression; (ii) the mechanisms by which ROS influence the DNA methylation pattern of transformed melanocytes; (iii) the transformative potential of oxidative stress-induced changes in global and/or local gene methylation and expression; (iv) the employment of this epimutation as a biomarker for melanoma diagnosis, prognosis, and drug resistance evaluation; (v) the impact of this new knowledge in clinical practice for melanoma treatment.
Collapse
|
13
|
Ibañez IL, Notcovich C, Catalano PN, Bellino MG, Durán H. The redox-active nanomaterial toolbox for cancer therapy. Cancer Lett 2015; 359:9-19. [PMID: 25597786 DOI: 10.1016/j.canlet.2015.01.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/29/2014] [Accepted: 01/08/2015] [Indexed: 01/03/2023]
Abstract
Advances in nanomaterials science contributed in recent years to develop new devices and systems in the micro and nanoscale for improving the diagnosis and treatment of cancer. Substantial evidences associate cancer cells and tumor microenvironment with reactive oxygen species (ROS), while conventional cancer treatments and particularly radiotherapy, are often mediated by ROS increase. However, the poor selectivity and the toxicity of these therapies encourage researchers to focus efforts in order to enhance delivery and to decrease side effects. Thus, the development of redox-active nanomaterials is an interesting approach to improve selectivity and outcome of cancer treatments. Herein, we describe an overview of recent advances in redox nanomaterials in the context of current and emerging strategies for cancer therapy based on ROS modulation.
Collapse
Affiliation(s)
- Irene L Ibañez
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | - Cintia Notcovich
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina
| | - Paolo N Catalano
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Martín G Bellino
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica, San Martín, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| |
Collapse
|
14
|
Municoy S, Ibañez IL, Durán H, Bellino MG. A catalase-magnetic switch for cell proliferation. RSC Adv 2014. [DOI: 10.1039/c4ra01257g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The combination of enzymes to tackle cell messengers with magnetite nanoparticles was exploited to control cell behavior by means of magnetic fields.
Collapse
Affiliation(s)
- Sofia Municoy
- Departamento de Micro y Nanotecnología
- Comisión Nacional de Energía Atómica
- Buenos Aires, Argentina
| | - Irene L. Ibañez
- Departamento de Micro y Nanotecnología
- Comisión Nacional de Energía Atómica
- Buenos Aires, Argentina
| | - Hebe Durán
- Departamento de Micro y Nanotecnología
- Comisión Nacional de Energía Atómica
- Buenos Aires, Argentina
| | - Martín G. Bellino
- Departamento de Micro y Nanotecnología
- Comisión Nacional de Energía Atómica
- Buenos Aires, Argentina
| |
Collapse
|
15
|
Fan JP, Fan C, Dong WM, Gao B, Yuan W, Gong JS. Free radical scavenging and anti-oxidative activities of an ethanol-soluble pigment extract prepared from fermented Zijuan Pu-erh tea. Food Chem Toxicol 2013; 59:527-33. [PMID: 23831194 DOI: 10.1016/j.fct.2013.06.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/19/2013] [Accepted: 06/23/2013] [Indexed: 12/24/2022]
Abstract
An ethanol-soluble pigment extract was separated from fermented Zijuan Pu-erh tea. The compositions of the ethanol soluble pigment extract were analyzed by high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS). The extract was prepared into a series of ethanol solutions and analyzed for free radical-scavenging activities (against two free radicals: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO)) and in vitro anti-oxidative properties. Electron spin resonance spectroscopy showed that the peaks of DPPH and TEMPO decreased with increasing extract concentration, suggesting that the extract had excellent free radical-scavenging activities. In vitro cell culture suggested that, at 50-200 mg/L, the extract had no measurable effect on the viability of vascular endothelial cells (ECV340) but produced significant protective effects for cells that underwent oxidative injuries due to hydrogen peroxide (H₂O₂) treatment. Compared with the H₂O₂ treatment alone cells group, 200 mg/L of the extract increased the activity of superoxide dismutase (SOD) in cells by 397.3%, and decreased the concentration of malondialdehyde (MDA) and the activity of lactate acid dehydrogenase (LDH) by 47.8% and 69.6%, respectively. These results suggest that the extract has excellent free radical scavenging and anti-oxidative properties.
Collapse
Affiliation(s)
- Jiang Ping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | | | | | | | | | | |
Collapse
|