1
|
Kaushik R, Kumar N, Yadav P, Sircar S, Shete-Aich A, Singh A, Tomar S, Launey T, Malik YS. Comprehensive Genomics Investigation of Neboviruses Reveals Distinct Codon Usage Patterns and Host Specificity. Microorganisms 2024; 12:696. [PMID: 38674640 PMCID: PMC11052288 DOI: 10.3390/microorganisms12040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Neboviruses (NeVs) from the Caliciviridae family have been linked to enteric diseases in bovines and have been detected worldwide. As viruses rely entirely on the cellular machinery of the host for replication, their ability to thrive in a specific host is greatly impacted by the specific codon usage preferences. Here, we systematically analyzed the codon usage bias in NeVs to explore the genetic and evolutionary patterns. Relative Synonymous Codon Usage and Effective Number of Codon analyses indicated a marginally lower codon usage bias in NeVs, predominantly influenced by the nucleotide compositional constraints. Nonetheless, NeVs showed a higher codon usage bias for codons containing G/C at the third codon position. The neutrality plot analysis revealed natural selection as the primary factor that shaped the codon usage bias in both the VP1 (82%) and VP2 (57%) genes of NeVs. Furthermore, the NeVs showed a highly comparable codon usage pattern to bovines, as reflected through Codon Adaptation Index and Relative Codon Deoptimization Index analyses. Notably, yak NeVs showed considerably different nucleotide compositional constraints and mutational pressure compared to bovine NeVs, which appear to be predominantly host-driven. This study sheds light on the genetic mechanism driving NeVs' adaptability, evolution, and fitness to their host species.
Collapse
Affiliation(s)
- Rahul Kaushik
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Naveen Kumar
- Diagnostics and Vaccines Group, ICAR—National Institute of High Security Animal Diseases, Bhopal 462021, Madhya Pradesh, India;
| | - Pragya Yadav
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Shubhankar Sircar
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Anita Shete-Aich
- Maximum Containment Facility, ICMR—National Institute of Virology, Pune 411001, Maharashtra, India; (P.Y.); (A.S.-A.)
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India; (A.S.); (S.T.)
| | - Thomas Launey
- Biotechnology Research Center, Technology Innovation Institute, Masdar City, Abu Dhabi P.O. Box 9639, United Arab Emirates;
| | - Yashpal Singh Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, Punjab, India
| |
Collapse
|
2
|
Distributions of cherries and pitchforks for the Ford model. Theor Popul Biol 2023; 149:27-38. [PMID: 36566944 DOI: 10.1016/j.tpb.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Distributional properties of tree shape statistics under random phylogenetic tree models play an important role in investigating the evolutionary forces underlying the observed phylogenies. In this paper, we study two subtree counting statistics, the number of cherries and that of pitchforks for the Ford model, the alpha model introduced by Daniel Ford. It is a one-parameter family of random phylogenetic tree models which includes the proportional to distinguishable arrangement (PDA) and the Yule models, two tree models commonly used in phylogenetics. Based on a non-uniform version of the extended Pólya urn models in which negative entries are permitted for their replacement matrices, we obtain the strong law of large numbers and the central limit theorem for the joint distribution of these two statistics for the Ford model. Furthermore, we derive a recursive formula for computing the exact joint distribution of these two statistics. This leads to exact formulas for their means and higher order asymptotic expansions of their second moments, which allows us to identify a critical parameter value for the correlation between these two statistics. That is, when the number of tree leaves is sufficiently large, they are negatively correlated for 0≤α≤1/2 and positively correlated for 1/2<α<1.
Collapse
|
3
|
Van Poelvoorde LAE, Delcourt T, Vuylsteke M, De Keersmaecker SCJ, Thomas I, Van Gucht S, Saelens X, Roosens N, Vanneste K. A general approach to identify low-frequency variants within influenza samples collected during routine surveillance. Microb Genom 2022; 8. [PMID: 36169645 DOI: 10.1099/mgen.0.000867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza viruses exhibit considerable diversity between hosts. Additionally, different quasispecies can be found within the same host. High-throughput sequencing technologies can be used to sequence a patient-derived virus population at sufficient depths to identify low-frequency variants (LFV) present in a quasispecies, but many challenges remain for reliable LFV detection because of experimental errors introduced during sample preparation and sequencing. High genomic copy numbers and extensive sequencing depths are required to differentiate false positive from real LFV, especially at low allelic frequencies (AFs). This study proposes a general approach for identifying LFV in patient-derived samples obtained during routine surveillance. Firstly, validated thresholds were determined for LFV detection, whilst balancing both the cost and feasibility of reliable LFV detection in clinical samples. Using a genetically well-defined population of influenza A viruses, thresholds of at least 104 genomes per microlitre and AF of ≥5 % were established as detection limits. Secondly, a subset of 59 retained influenza A (H3N2) samples from the 2016-2017 Belgian influenza season was composed. Thirdly, as a proof of concept for the added value of LFV for routine influenza monitoring, potential associations between patient data and whole genome sequencing data were investigated. A significant association was found between a high prevalence of LFV and disease severity. This study provides a general methodology for influenza LFV detection, which can also be adopted by other national influenza reference centres and for other viruses such as SARS-CoV-2. Additionally, this study suggests that the current relevance of LFV for routine influenza surveillance programmes might be undervalued.
Collapse
Affiliation(s)
- Laura A E Van Poelvoorde
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Thomas Delcourt
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | | | | | - Isabelle Thomas
- National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Steven Van Gucht
- National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Xavier Saelens
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Nancy Roosens
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| |
Collapse
|
4
|
Doelger J, Kardar M, Chakraborty AK. Inferring the intrinsic mutational fitness landscape of influenzalike evolving antigens from temporally ordered sequence data. Phys Rev E 2022; 105:024401. [PMID: 35291059 DOI: 10.1103/physreve.105.024401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
There still are no effective long-term protective vaccines against viruses that continuously evolve under immune pressure such as seasonal influenza, which has caused, and can cause, devastating epidemics in the human population. To find such a broadly protective immunization strategy, it is useful to know how easily the virus can escape via mutation from specific antibody responses. This information is encoded in the fitness landscape of the viral proteins (i.e., knowledge of the viral fitness as a function of sequence). Here we present a computational method to infer the intrinsic mutational fitness landscape of influenzalike evolving antigens from yearly sequence data. We test inference performance with computer-generated sequence data that are based on stochastic simulations mimicking basic features of immune-driven viral evolution. Although the numerically simulated model does create a phylogeny based on the allowed mutations, the inference scheme does not use this information. This provides a contrast to other methods that rely on reconstruction of phylogenetic trees. Our method just needs a sufficient number of samples over multiple years. With our method, we are able to infer single as well as pairwise mutational fitness effects from the simulated sequence time series for short antigenic proteins. Our fitness inference approach may have potential future use for the design of immunization protocols by identifying intrinsically vulnerable immune target combinations on antigens that evolve under immune-driven selection. In the future, this approach may be applied to influenza and other novel viruses such as SARS-CoV-2, which evolves and, like influenza, might continue to escape the natural and vaccine-mediated immune pressures.
Collapse
Affiliation(s)
- Julia Doelger
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Arup K Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; and Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
5
|
Chindelevitch L, Hayati M, Poon AFY, Colijn C. Network science inspires novel tree shape statistics. PLoS One 2021; 16:e0259877. [PMID: 34941890 PMCID: PMC8699983 DOI: 10.1371/journal.pone.0259877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
The shape of phylogenetic trees can be used to gain evolutionary insights. A tree’s shape specifies the connectivity of a tree, while its branch lengths reflect either the time or genetic distance between branching events; well-known measures of tree shape include the Colless and Sackin imbalance, which describe the asymmetry of a tree. In other contexts, network science has become an important paradigm for describing structural features of networks and using them to understand complex systems, ranging from protein interactions to social systems. Network science is thus a potential source of many novel ways to characterize tree shape, as trees are also networks. Here, we tailor tools from network science, including diameter, average path length, and betweenness, closeness, and eigenvector centrality, to summarize phylogenetic tree shapes. We thereby propose tree shape summaries that are complementary to both asymmetry and the frequencies of small configurations. These new statistics can be computed in linear time and scale well to describe the shapes of large trees. We apply these statistics, alongside some conventional tree statistics, to phylogenetic trees from three very different viruses (HIV, dengue fever and measles), from the same virus in different epidemiological scenarios (influenza A and HIV) and from simulation models known to produce trees with different shapes. Using mutual information and supervised learning algorithms, we find that the statistics adapted from network science perform as well as or better than conventional statistics. We describe their distributions and prove some basic results about their extreme values in a tree. We conclude that network science-based tree shape summaries are a promising addition to the toolkit of tree shape features. All our shape summaries, as well as functions to select the most discriminating ones for two sets of trees, are freely available as an R package at http://github.com/Leonardini/treeCentrality.
Collapse
Affiliation(s)
- Leonid Chindelevitch
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, United Kingdom
- * E-mail:
| | - Maryam Hayati
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Art F. Y. Poon
- Department of Pathology & Laboratory Medicine, University of Western Ontario, London, ON, Canada
| | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
6
|
Ben Hamed S, Elargoubi A, Harrabi M, Srihi H, Souiai O, Mastouri M, Almalki MA, Gharbi J, Ben M’hadheb M. Phylogenetic analysis of the neuraminidase segment gene of Influenza A/H1N1 strains isolated from Monastir Region (Tunisia) during the 2017-2018 outbreak. Biologia (Bratisl) 2021; 76:1797-1806. [PMID: 33727729 PMCID: PMC7952816 DOI: 10.1007/s11756-021-00723-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Influenza A/H1N1 is widely considered to be a very evolutionary virus causing major public health problems. Since the pandemic of 2009, there has been a rapid rise in human Influenza virus characterization. However, little data is available in Tunisia regarding its genetic evolution. In light of this fact, our paper aim is to genetically characterize the Neuraminidase, known as the target of antiviral inhibitors, in Tunisian isolates circulating in Monastir region during 2017-2018. In total of 31 positive Influenza A/H1N1 detected by multiplex real-time PCR, RT-PCR of neuraminidase was performed. Among the 31 positive samples, 7 samples representing fatal and most severe cases were conducted for sequencing and genetic analysis. The results thus obtained showed genetic evolution of the A/H1N1 neuraminidase between 2009 and 2010 and 2018-2019 outbreaks. All Tunisian isolates were genetically related to the recommended vaccine strain with a specific evolution. Moreover, the phylogenetic analysis demonstrated that France and especially Italian strains were the major related strains. Interestingly, our results revealed a specific cluster of Tunisian isolates where two intragroup were evolved in correlation with the severity and the fatalities cases. From the outcome of our investigation, this study confirms the genetic evolution of the Influenza A virus circulating in Tunisia and gives a preliminary analysis for a better comprehension of new emerging Tunisian strain's virulence and thus, a more appropriate monitoring of Influenza virus A/H1N1 during each round of outbreaks. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11756-021-00723-y.
Collapse
Affiliation(s)
- Sabrine Ben Hamed
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| | - Aida Elargoubi
- Laboratoire de Recherche LR99ES27 “Maladies Transmissibles & Substances Biologiquement Actives”, Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, Tunisia
| | - Myriam Harrabi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
- Laboratoroire de “BioInformatique, bioMathematique & bioStatistique” (BIMS), Institut Pasteur de Tunis, BP 74, 13, place Pasteur Tunis, 1002 Tunis, Tunisia
| | - Haythem Srihi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| | - Oussema Souiai
- Laboratoroire de “BioInformatique, bioMathematique & bioStatistique” (BIMS), Institut Pasteur de Tunis, BP 74, 13, place Pasteur Tunis, 1002 Tunis, Tunisia
| | - Maha Mastouri
- Laboratoire de Recherche LR99ES27 “Maladies Transmissibles & Substances Biologiquement Actives”, Faculté de Pharmacie de Monastir, Avenue Avicenne, Monastir, Tunisia
| | - Mohammed Awadh Almalki
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982 Kingdom of Saudi Arabia
| | - Jawhar Gharbi
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982 Kingdom of Saudi Arabia
| | - Manel Ben M’hadheb
- Unité de Recherche UR17ES30 “Génomique Biotechnologie et Stratégies Antivirales” (ViroBiotech), Institut Supérieur de Biotechnologie, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir, 5000 Tunisia
| |
Collapse
|
7
|
Hayati M, Shadgar B, Chindelevitch L. A new resolution function to evaluate tree shape statistics. PLoS One 2019; 14:e0224197. [PMID: 31751352 PMCID: PMC6874070 DOI: 10.1371/journal.pone.0224197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023] Open
Abstract
Phylogenetic trees are frequently used in biology to study the relationships between a number of species or organisms. The shape of a phylogenetic tree contains useful information about patterns of speciation and extinction, so powerful tools are needed to investigate the shape of a phylogenetic tree. Tree shape statistics are a common approach to quantifying the shape of a phylogenetic tree by encoding it with a single number. In this article, we propose a new resolution function to evaluate the power of different tree shape statistics to distinguish between dissimilar trees. We show that the new resolution function requires less time and space in comparison with the previously proposed resolution function for tree shape statistics. We also introduce a new class of tree shape statistics, which are linear combinations of two existing statistics that are optimal with respect to a resolution function, and show evidence that the statistics in this class converge to a limiting linear combination as the size of the tree increases. Our implementation is freely available at https://github.com/WGS-TB/TreeShapeStats.
Collapse
Affiliation(s)
- Maryam Hayati
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | - Bita Shadgar
- School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
| | | |
Collapse
|
8
|
Avino M, Ng GT, He Y, Renaud MS, Jones BR, Poon AFY. Tree shape-based approaches for the comparative study of cophylogeny. Ecol Evol 2019; 9:6756-6771. [PMID: 31312429 PMCID: PMC6618157 DOI: 10.1002/ece3.5185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/21/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Cophylogeny is the congruence of phylogenetic relationships between two different groups of organisms due to their long-term interaction. We investigated the use of tree shape distance measures to quantify the degree of cophylogeny. We implemented a reverse-time simulation model of pathogen phylogenies within a fixed host tree, given cospeciation probability, host switching, and pathogen speciation rates. We used this model to evaluate 18 distance measures between host and pathogen trees including two kernel distances that we developed for labeled and unlabeled trees, which use branch lengths and accommodate different size trees. Finally, we used these measures to revisit published cophylogenetic studies, where authors described the observed associations as representing a high or low degree of cophylogeny. Our simulations demonstrated that some measures are more informative than others with respect to specific coevolution parameters especially when these did not assume extreme values. For real datasets, trees' associations projection revealed clustering of high concordance studies suggesting that investigators are describing it in a consistent way. Our results support the hypothesis that measures can be useful for quantifying cophylogeny. This motivates their usage in the field of coevolution and supports the development of simulation-based methods, i.e., approximate Bayesian computation, to estimate the underlying coevolutionary parameters.
Collapse
Affiliation(s)
- Mariano Avino
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
| | - Garway T Ng
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
| | - Yiying He
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
| | - Mathias S Renaud
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
| | - Bradley R Jones
- BC Centre for Excellence in HIV/AIDS Vancouver British Columbia Canada
| | - Art F Y Poon
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada.,Department of Applied Mathematics Western University London Ontario Canada
| |
Collapse
|
9
|
Flynn PJ, Moreau CS. Assessing the Diversity of Endogenous Viruses Throughout Ant Genomes. Front Microbiol 2019; 10:1139. [PMID: 31191479 PMCID: PMC6540820 DOI: 10.3389/fmicb.2019.01139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
Endogenous viral elements (EVEs) can play a significant role in the evolution of their hosts and have been identified in animals, plants, and fungi. Additionally, EVEs potentially provide an important snapshot of the evolutionary frequency of viral infection. The purpose of this study is to take a comparative host-centered approach to EVE discovery in ant genomes to better understand the relationship of EVEs to their ant hosts. Using a comprehensive bioinformatic pipeline, we screened all nineteen published ant genomes for EVEs. Once the EVEs were identified, we assessed their phylogenetic relationships to other closely related exogenous viruses. A diverse group of EVEs were discovered in all screened ant host genomes and in many cases are similar to previously identified exogenous viruses. EVEs similar to ssRNA viral proteins are the most common viral lineage throughout the ant hosts, which is potentially due to more chronic infection or more effective endogenization of certain ssRNA viruses in ants. In addition, both EVEs similar to viral glycoproteins and retrovirus-derived proteins are also abundant throughout ant genomes, suggesting their tendency to endogenize. Several of these newly discovered EVEs are found to be potentially functional within the genome. The discovery and analysis of EVEs is essential in beginning to understand viral–ant interactions over evolutionary time.
Collapse
Affiliation(s)
- Peter J Flynn
- Committee on Evolutionary Biology, The University of Chicago, Chicago, IL, United States.,Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL, United States
| | - Corrie S Moreau
- Department of Science and Education, Integrative Research Center, Field Museum of Natural History, Chicago, IL, United States.,Departments of Entomology and Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Telles GP, Araújo GS, Walter MEMT, Brigido MM, Almeida NF. Live neighbor-joining. BMC Bioinformatics 2018; 19:172. [PMID: 29769032 PMCID: PMC5956842 DOI: 10.1186/s12859-018-2162-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/25/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In phylogenetic reconstruction the result is a tree where all taxa are leaves and internal nodes are hypothetical ancestors. In a live phylogeny, both ancestral and living taxa may coexist, leading to a tree where internal nodes may be living taxa. The well-known Neighbor-Joining heuristic is largely used for phylogenetic reconstruction. RESULTS We present Live Neighbor-Joining, a heuristic for building a live phylogeny. We have investigated Live Neighbor-Joining on datasets of viral genomes, a plausible scenario for its application, which allowed the construction of alternative hypothesis for the relationships among virus that embrace both ancestral and descending taxa. We also applied Live Neighbor-Joining on a set of bacterial genomes and to sets of images and texts. Non-biological data may be better explored visually when their relationship in terms of content similarity is represented by means of a phylogeny. CONCLUSION Our experiments have shown interesting alternative phylogenetic hypothesis for RNA virus genomes, bacterial genomes and alternative relationships among images and texts, illustrating a wide range of scenarios where Live Neighbor-Joining may be used.
Collapse
Affiliation(s)
- Guilherme P Telles
- Instituto de Computação, Universidade Estadual de Campinas, Cidade Universitária, Campinas, 13083-852, Brazil
| | - Graziela S Araújo
- Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Av. Costa e Silva, s/n, Campo Grande, 79070-900, Brazil
| | - Maria E M T Walter
- Departamento de Ciência da Computação, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, 70910-900, Brazil
| | - Marcelo M Brigido
- Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, 70910-900, Brazil
| | - Nalvo F Almeida
- Faculdade de Computação, Universidade Federal de Mato Grosso do Sul, Av. Costa e Silva, s/n, Campo Grande, 79070-900, Brazil.
| |
Collapse
|
11
|
Colijn C, Plazzotta G. A Metric on Phylogenetic Tree Shapes. Syst Biol 2018; 67:113-126. [PMID: 28472435 PMCID: PMC5790134 DOI: 10.1093/sysbio/syx046] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/11/2017] [Indexed: 11/15/2022] Open
Abstract
The shapes of evolutionary trees are influenced by the nature of the evolutionary process but comparisons of trees from different processes are hindered by the challenge of completely describing tree shape. We present a full characterization of the shapes of rooted branching trees in a form that lends itself to natural tree comparisons. We use this characterization to define a metric, in the sense of a true distance function, on tree shapes. The metric distinguishes trees from random models known to produce different tree shapes. It separates trees derived from tropical versus USA influenza A sequences, which reflect the differing epidemiology of tropical and seasonal flu. We describe several metrics based on the same core characterization, and illustrate how to extend the metric to incorporate trees’ branch lengths or other features such as overall imbalance. Our approach allows us to construct addition and multiplication on trees, and to create a convex metric on tree shapes which formally allows computation of average tree shapes.
Collapse
Affiliation(s)
- C Colijn
- Department of Mathematics, Imperial College, 180 Queen's Gate, London SW7 2AZ, UK
| | - G Plazzotta
- Department of Mathematics, Imperial College, 180 Queen's Gate, London SW7 2AZ, UK
| |
Collapse
|
12
|
Zeng LY, Yang J, Liu S. Investigational hemagglutinin-targeted influenza virus inhibitors. Expert Opin Investig Drugs 2016; 26:63-73. [PMID: 27918208 DOI: 10.1080/13543784.2017.1269170] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Seasonal influenza and pandemic outbreaks typically result in high mortality and morbidity associated with severe economic burdens. Vaccines and anti-influenza drugs have made great contributions to control the infection. However, antigenic drifts and shifts allow influenza viruses to easily escape immune neutralization and antiviral drug activity. Hemagglutinin (HA)is an important envelope protein for the entry of influenza viruses into host cells, thus, HA-targeted agents may be potential anti-influenza drugs. Areas covered: In this review, we describe arbidol, a unique licensed drug targeting HA; discuss and summarize HA-targeted anti-influenza agents been tested before or being tested currently in clinical trials, including monoclonal antibodies, small molecule inhibitors, proteins and peptides. Other small molecule inhibitors are also briefly introduced. Expert opinion: Exploring new clinical applications for existing drugs can provide additional anti-influenza candidates with promising safety and bioavailability, and largely shortened time and costs. To enhance therapeutic efficacy and avoid drug-resistance, combination therapy involving in HA-targeted anti-influenza agent is reasonable and attractive. For drug discovery, it is helpful to keep an eye on the development of methodology in organic synthesis and probe into the co-crystal structure of HA in complex with small molecule.
Collapse
Affiliation(s)
- Li-Yan Zeng
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Jie Yang
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Shuwen Liu
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China.,b State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology , Southern Medical University , Guangzhou , China
| |
Collapse
|
13
|
Dearlove BL, Frost SDW. Measuring Asymmetry in Time-Stamped Phylogenies. PLoS Comput Biol 2015; 11:e1004312. [PMID: 26147205 PMCID: PMC4492995 DOI: 10.1371/journal.pcbi.1004312] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/04/2015] [Indexed: 01/26/2023] Open
Abstract
Previous work has shown that asymmetry in viral phylogenies may be indicative of heterogeneity in transmission, for example due to acute HIV infection or the presence of ‘core groups’ with higher contact rates. Hence, evidence of asymmetry may provide clues to underlying population structure, even when direct information on, for example, stage of infection or contact rates, are missing. However, current tests of phylogenetic asymmetry (a) suffer from false positives when the tips of the phylogeny are sampled at different times and (b) only test for global asymmetry, and hence suffer from false negatives when asymmetry is localised to part of a phylogeny. We present a simple permutation-based approach for testing for asymmetry in a phylogeny, where we compare the observed phylogeny with random phylogenies with the same sampling and coalescence times, to reduce the false positive rate. We also demonstrate how profiles of measures of asymmetry calculated over a range of evolutionary times in the phylogeny can be used to identify local asymmetry. In combination with different metrics of asymmetry, this combined approach offers detailed insights of how phylogenies reconstructed from real viral datasets may deviate from the simplistic assumptions of commonly used coalescent and birth-death process models. Phylogenetic trees of viruses sampled from different individuals provide clues to the dynamics of transmission. The extent to which the tree is asymmetric may be influenced by biological factors such as differences in infectiousness or contact rates between individuals, but also by nuisance factors such as the pattern of sampling. We have devised a simple statistical test for asymmetry, which controls for sampling patterns and potentially complex temporal dynamics by conditioning on the sampling and coalescence times in a phylogeny, and can also detect whether specific clades in the phylogeny drive patterns of asymmetry. We apply our approach to data on HIV, influenza A virus H5N1, and ebola virus.
Collapse
Affiliation(s)
- Bethany L. Dearlove
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Simon D. W. Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Abstract
The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host, and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information, estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic sequences from the epidemic. A key challenge to phylodynamic inference is quantifying the similarity between two trees in an efficient and comprehensive way. In this study, I demonstrate that a new distance measure, based on a subset tree kernel function from computational linguistics, confers a significant improvement over previous measures of tree shape for classifying trees generated under different epidemiological scenarios. Next, I incorporate this kernel-based distance measure into an approximate Bayesian computation (ABC) framework for phylodynamic inference. ABC bypasses the need for an analytical solution of model likelihood, as it only requires the ability to simulate data from the model. I validate this “kernel-ABC” method for phylodynamic inference by estimating parameters from data simulated under a simple epidemiological model. Results indicate that kernel-ABC attained greater accuracy for parameters associated with virus transmission than leading software on the same data sets. Finally, I apply the kernel-ABC framework to study a recent outbreak of a recombinant HIV subtype in China. Kernel-ABC provides a versatile framework for phylodynamic inference because it can fit a broader range of models than methods that rely on the computation of exact likelihoods.
Collapse
Affiliation(s)
- Art F Y Poon
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada Department of Medicine, University of British Columbia, Vancouver, BC, Canada Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
15
|
Keller-Schmidt S, Tuğrul M, Eguíluz VM, Hernández-García E, Klemm K. Anomalous scaling in an age-dependent branching model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022803. [PMID: 25768548 DOI: 10.1103/physreve.91.022803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 06/04/2023]
Abstract
We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ(-α). Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)(2). This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point.
Collapse
Affiliation(s)
- Stephanie Keller-Schmidt
- Bioinformatics, Institute of Computer Science, University Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Murat Tuğrul
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Víctor M Eguíluz
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain
| | - Emilio Hernández-García
- IFISC (CSIC-UIB), Instituto de Física Interdisciplinar y Sistemas Complejos, E-07122 Palma de Mallorca, Spain
| | - Konstantin Klemm
- Bioinformatics, Institute of Computer Science, University Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
- Bioinformatics and Computational Biology, University of Vienna, Währingerstraße 29, 1090 Vienna, Austria
- Theoretical Chemistry, University of Vienna, Währingerstraße 17, 1090 Vienna, Austria
- School of Science and Technology, Nazarbayev University, Kabanbay Batyr Ave. 53, 010000 Astana, Kazakhstan
| |
Collapse
|
16
|
Duchêne D, Duchêne S, Ho SYW. Tree imbalance causes a bias in phylogenetic estimation of evolutionary timescales using heterochronous sequences. Mol Ecol Resour 2014; 15:785-94. [PMID: 25431227 DOI: 10.1111/1755-0998.12352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 01/04/2023]
Abstract
Phylogenetic estimation of evolutionary timescales has become routine in biology, forming the basis of a wide range of evolutionary and ecological studies. However, there are various sources of bias that can affect these estimates. We investigated whether tree imbalance, a property that is commonly observed in phylogenetic trees, can lead to reduced accuracy or precision of phylogenetic timescale estimates. We analysed simulated data sets with calibrations at internal nodes and at the tips, taking into consideration different calibration schemes and levels of tree imbalance. We also investigated the effect of tree imbalance on two empirical data sets: mitogenomes from primates and serial samples of the African swine fever virus. In analyses calibrated using dated, heterochronous tips, we found that tree imbalance had a detrimental impact on precision and produced a bias in which the overall timescale was underestimated. A pronounced effect was observed in analyses with shallow calibrations. The greatest decreases in accuracy usually occurred in the age estimates for medium and deep nodes of the tree. In contrast, analyses calibrated at internal nodes did not display a reduction in estimation accuracy or precision due to tree imbalance. Our results suggest that molecular-clock analyses can be improved by increasing taxon sampling, with the specific aims of including deeper calibrations, breaking up long branches and reducing tree imbalance.
Collapse
Affiliation(s)
- David Duchêne
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Sebastian Duchêne
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
17
|
Dynamically correlated mutations drive human Influenza A evolution. Sci Rep 2014; 3:2705. [PMID: 24048220 PMCID: PMC3776956 DOI: 10.1038/srep02705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/22/2013] [Indexed: 12/02/2022] Open
Abstract
Human Influenza A virus undergoes recurrent changes in the hemagglutinin (HA) surface protein, primarily involved in the human antibody recognition. Relevant antigenic changes, enabling the virus to evade host immune response, have been recognized to occur in parallel to multiple mutations at antigenic sites in HA. Yet, the role of correlated mutations (epistasis) in driving the molecular evolution of the virus still represents a challenging puzzle. Further, though circulation at a global geographic level is key for the survival of Influenza A, its role in shaping the viral phylodynamics remains largely unexplored. Here we show, through a sequence based epidemiological model, that epistatic effects between amino acids substitutions, coupled with a reservoir that mimics worldwide circulating viruses, are key determinants that drive human Influenza A evolution. Our approach explains all the up-to-date observations characterizing the evolution of H3N2 subtype, including phylogenetic properties, nucleotide fixation patterns, and composition of antigenic clusters.
Collapse
|
18
|
Poon AFY, Walker LW, Murray H, McCloskey RM, Harrigan PR, Liang RH. Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses. PLoS One 2013; 8:e78122. [PMID: 24223766 PMCID: PMC3815201 DOI: 10.1371/journal.pone.0078122] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022] Open
Abstract
A phylogeny is a tree-based model of common ancestry that is an indispensable tool for studying biological variation. Phylogenies play a special role in the study of rapidly evolving populations such as viruses, where the proliferation of lineages is constantly being shaped by the mode of virus transmission, by adaptation to immune systems, and by patterns of human migration and contact. These processes may leave an imprint on the shapes of virus phylogenies that can be extracted for comparative study; however, tree shapes are intrinsically difficult to quantify. Here we present a comprehensive study of phylogenies reconstructed from 38 different RNA viruses from 12 taxonomic families that are associated with human pathologies. To accomplish this, we have developed a new procedure for studying phylogenetic tree shapes based on the ‘kernel trick’, a technique that maps complex objects into a statistically convenient space. We show that our kernel method outperforms nine different tree balance statistics at correctly classifying phylogenies that were simulated under different evolutionary scenarios. Using the kernel method, we observe patterns in the distribution of RNA virus phylogenies in this space that reflect modes of transmission and pathogenesis. For example, viruses that can establish persistent chronic infections (such as HIV and hepatitis C virus) form a distinct cluster. Although the visibly ‘star-like’ shape characteristic of trees from these viruses has been well-documented, we show that established methods for quantifying tree shape fail to distinguish these trees from those of other viruses. The kernel approach presented here potentially represents an important new tool for characterizing the evolution and epidemiology of RNA viruses.
Collapse
Affiliation(s)
- Art F. Y. Poon
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Lorne W. Walker
- School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Heather Murray
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Rosemary M. McCloskey
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - P. Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard H. Liang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Gerhardt GJL, Takeda AAS, Andrighetti T, Sartor ITS, Echeverrigaray SL, de Avila E Silva S, Dos Santos L, Rybarczyk-Filho JL. Triplet entropy analysis of hemagglutinin and neuraminidase sequences measures influenza virus phylodynamics. Gene 2013; 528:277-81. [PMID: 23850726 DOI: 10.1016/j.gene.2013.06.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/30/2013] [Accepted: 06/17/2013] [Indexed: 11/16/2022]
Abstract
The influenza virus has been a challenge to science due to its ability to withstand new environmental conditions. Taking into account the development of virus sequence databases, computational approaches can be helpful to understand virus behavior over time. Furthermore, they can suggest new directions to deal with influenza. This work presents triplet entropy analysis as a potential phylodynamic tool to quantify nucleotide organization of viral sequences. The application of this measure to segments of hemagglutinin (HA) and neuraminidase (NA) of H1N1 and H3N2 virus subtypes has shown some variability effects along timeline, inferring about virus evolution. Sequences were divided by year and compared for virus subtype (H1N1 and H3N2). The nonparametric Mann-Whitney test was used for comparison between groups. Results show that differentiation in entropy precedes differentiation in GC content for both groups. Considering the HA fragment, both triplet entropy as well as GC concentration show intersection in 2009, year of the recent pandemic. Some conclusions about possible flu evolutionary lines were drawn.
Collapse
Affiliation(s)
- Günther J L Gerhardt
- Departamento de Física e Química da Universidade de Caxias do Sul, Rua Francisco Getulio Vargas 1130, 95001-970 Caxias do Sul, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|