1
|
Ospina-Bautista F, Srivastava DS, Realpe E, Fernández AM. Environmental heterogeneity at two spatial scales affects litter diversity-decomposition relationships. Ecology 2024; 105:e4280. [PMID: 38566463 DOI: 10.1002/ecy.4280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
The effects of biodiversity on ecological processes have been experimentally evaluated mainly at the local scale under homogeneous conditions. To scale up experimentally based biodiversity-functioning relationships, there is an urgent need to understand how such relationships are affected by the environmental heterogeneity that characterizes larger spatial scales. Here, we tested the effects of an 800-m elevation gradient (a large-scale environmental factor) and forest habitat (a fine-scale factor) on litter diversity-decomposition relationships. To better understand local and landscape scale mechanisms, we partitioned net biodiversity effects into complementarity, selection, and insurance effects as applicable at each scale. We assembled different litter mixtures in aquatic microcosms that simulated natural tree holes, replicating mixtures across blocks nested within forest habitats (edge, interior) and elevations (low, mid, high). We found that net biodiversity and complementarity effects increased over the elevation gradient, with their strength modified by forest habitat and the identity of litter in mixtures. Complementarity effects at local and landscape scales were greatest for combinations of nutrient-rich and nutrient-poor litters, consistent with nutrient transfer mechanisms. By contrast, selection effects were consistently weak and negative at both scales. Selection effects at the landscape level were due mainly to nonrandom overyielding rather than spatial insurance effects. Our findings demonstrate that the mechanisms by which litter diversity affects decomposition are sensitive to environmental heterogeneity at multiple scales. This has implications for the scaling of biodiversity-ecosystem function relationships and suggests that future shifts in environmental conditions due to climate change or land use may impact the functioning of aquatic ecosystems.
Collapse
Affiliation(s)
- Fabiola Ospina-Bautista
- Department of Biological Sciences, University of the Andes, Bogotá, Colombia
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | - Diane S Srivastava
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilio Realpe
- Department of Biological Sciences, University of the Andes, Bogotá, Colombia
| | - Ana María Fernández
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| |
Collapse
|
2
|
Hale R, Godbold JA, Sciberras M, Dwight J, Wood C, Hiddink JG, Solan M. Mediation of macronutrients and carbon by post-disturbance shelf sea sediment communities. BIOGEOCHEMISTRY 2017; 135:121-133. [PMID: 32009694 PMCID: PMC6961522 DOI: 10.1007/s10533-017-0350-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/07/2017] [Indexed: 05/13/2023]
Abstract
Benthic communities play a major role in organic matter remineralisation and the mediation of many aspects of shelf sea biogeochemistry. Few studies have considered how changes in community structure associated with different levels of physical disturbance affect sediment macronutrients and carbon following the cessation of disturbance. Here, we investigate how faunal activity (sediment particle reworking and bioirrigation) in communities that have survived contrasting levels of bottom fishing affect sediment organic carbon content and macronutrient concentrations ([NH4-N], [NO2-N], [NO3-N], [PO4-P], [SiO4-Si]). We find that organic carbon content and [NO3-N] decline in cohesive sediment communities that have experienced an increased frequency of fishing, whilst [NH4-N], [NO2-N], [PO4-P] and [SiO4-Si] are not affected. [NH4-N] increases in non-cohesive sediments that have experienced a higher frequency of fishing. Further analyses reveal that the way communities are restructured by physical disturbance differs between sediment type and with fishing frequency, but that changes in community structure do little to affect bioturbation and associated levels of organic carbon and nutrient concentrations. Our results suggest that in the presence of physical disturbance, irrespective of sediment type, the mediation of macronutrient and carbon cycling increasingly reflects the decoupling of organism-sediment relations. Indeed, it is the traits of the species that reside at the sediment-water interface, or that occupy deeper parts of the sediment profile, that are disproportionately expressed post-disturbance, that are most important for sustaining biogeochemical functioning.
Collapse
Affiliation(s)
- Rachel Hale
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH UK
| | - Jasmin A. Godbold
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH UK
- Biological Sciences,Faculty of Natural and Environmental Sciences, University of Southampton, Highfield Campus, Life Sciences Building 85, Southampton, SO17 1BJ UK
| | - Marija Sciberras
- School of Ocean Sciences, Bangor University, Menai Bridge, Bangor, LL59 5AB UK
| | - Jessica Dwight
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH UK
| | - Christina Wood
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH UK
| | - Jan G. Hiddink
- School of Ocean Sciences, Bangor University, Menai Bridge, Bangor, LL59 5AB UK
| | - Martin Solan
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH UK
| |
Collapse
|
3
|
Specific arrangements of species dominance can be more influential than evenness in maintaining ecosystem process and function. Sci Rep 2016; 6:39325. [PMID: 27996034 PMCID: PMC5171799 DOI: 10.1038/srep39325] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/22/2016] [Indexed: 11/10/2022] Open
Abstract
The ecological consequences of species loss are widely studied, but represent an end point of environmental forcing that is not always realised. Changes in species evenness and the rank order of dominant species are more widespread responses to directional forcing. However, despite the repercussions for ecosystem functioning such changes have received little attention. Here, we experimentally assess how the rearrangement of species dominance structure within specific levels of evenness, rather than changes in species richness and composition, affect invertebrate particle reworking and burrow ventilation behaviour - important moderators of microbial-mediated remineralisation processes in benthic environments - and associated levels of sediment nutrient release. We find that the most dominant species exert a disproportionate influence on functioning at low levels of evenness, but that changes in biomass distribution and a change in emphasis in species-environmental interactions become more important in governing system functionality as evenness increases. Our study highlights the need to consider the functional significance of alterations to community attributes, rather than to solely focus on the attainment of particular levels of diversity when safeguarding biodiversity and ecosystems that provide essential services to society.
Collapse
|