1
|
Rishi S, Kaur I, Naseem M, Gaur VK, Mishra S, Srivastava S, Saini HS, Srivastava PK. Development of immobilized novel fungal consortium for the efficient remediation of cyanide-contaminated wastewaters. BIORESOURCE TECHNOLOGY 2023; 373:128750. [PMID: 36796731 DOI: 10.1016/j.biortech.2023.128750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Free cyanide is a hazardous pollutant released from steel industries. Environmentally-safe remediation of cyanide-contaminated wastewater is required. In this work, Pseudomonas stutzeri (ASNBRI_B12), Trichoderma longibrachiatum (ASNBRI_F9), Trichoderma saturnisporum (ASNBRI_F10) and Trichoderma citrinoviride (ASNBRI_F14) were isolated from blast-furnace wastewater and activated-sludge by enrichment culture. Elevated microbial growth, rhodanese activity (82 %) and GSSG (128 %) were observed with 20 mg-CN L-1. Cyanide degradation > 99 % on 3rd d as evaluated through ion chromatography, followed by first-order kinetics (r2 = 0.94-0.99). Cyanide degradation in wastewater (20 mg-CN L-1, pH 6.5) was studied in ASNBRI_F10 and ASNBRI_F14 which displayed increased biomass to 49.7 % and 21.6 % respectively. Maximum cyanide degradation of 99.9 % in 48 h was shown by an immobilized consortium of ASNBRI_F10 and ASNBRI_F14. FTIR analysis revealed that cyanide treatment alters functional groups on microbial cell walls. The novel consortium of T. saturnisporum-T. citrinoviride in the form of immobilized culture can be employed to treat cyanide-contaminated wastewater.
Collapse
Affiliation(s)
- Saloni Rishi
- Division of Environmental Technologies, CSIR-National Botanical Research Institute, India; Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - Ispreet Kaur
- Division of Environmental Technologies, CSIR-National Botanical Research Institute, India
| | - Mariya Naseem
- Division of Environmental Technologies, CSIR-National Botanical Research Institute, India
| | - Vivek Kumar Gaur
- School of Energy and Chemical Engineering, Ulsan National Institute for Science and Technology, Republic of Korea
| | - Sandhya Mishra
- Division of Environmental Technologies, CSIR-National Botanical Research Institute, India
| | - Suchi Srivastava
- Division of Environmental Technologies, CSIR-National Botanical Research Institute, India
| | | | | |
Collapse
|
2
|
Tang T, Sun H, Li Y, Chen P, Liu F. MdRDH1, a HSP67B2-like rhodanese homologue plays a positive role in maintaining redox balance in Musca domestica. Mol Immunol 2019; 107:115-122. [DOI: 10.1016/j.molimm.2019.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/28/2023]
|
3
|
Tang T, Li X, Liu X, Wang Y, Ji C, Wang Y, Wang X, Xie S, Liu F, Wang J. A single-domain rhodanese homologue MnRDH1 helps to maintain redox balance in Macrobrachium nipponense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:160-168. [PMID: 28987482 DOI: 10.1016/j.dci.2017.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
Rhodaneses are known to catalyze in vitro the transfer of a sulfane sulfur atom from thiosulfate to cyanide with concomitant formation of thiocyanate, however, their biological functions remain speculative despite the main role is considered as detoxifying cyanide especially in animal livers. In this study, we characterized a single-domain rhodanese homologue, MnRDH1, from Macrobrachium nipponense. We found MnRDH1 with the highest expression in hemocytes. Upon Aeromonas hydrophila challenge, expression of MnRDH1 was up-regulated in various tissues, including hepatopancreas, gill, intestine and hemocytes. RNAi knockdown of MnRDH1 led to rapid increases of malondialdehyde content, which reveals that MnRDH1 deficiency causes oxidative stress. The expression of MnRDH1 in hepatopancreas was significantly increased in response to the doxorubicin-induced oxidative stress, indicating the gene is oxidative stress inducible. We transformed E. coli with MnRDH1 and the mutant MnRDH1C75A, and found significant rhodanese activity of the recombinant protein of MnRDH1 in vitro, but detected no enzyme activity of the mutant MnRDH1C75A. When under the oxidative insult by H2O2, the MnRDH1 transformed E. coli had significantly enhanced survival rates compared to those bacteria transformed with MnRDH1C75A. In conclusion, our study demonstrates that rhodanese in M. nipponense confers oxidative stress tolerance, and thus renders an evidence for the notion that rhodanese family genes act a critical role in antioxidant defenses.
Collapse
Affiliation(s)
- Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xiang Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xin Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yili Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Congcong Ji
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yu Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xiaochun Wang
- Department of Surgical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Song Xie
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Jianhui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, USA.
| |
Collapse
|
4
|
Tang T, Ji C, Yang Z, Liu F, Xie S. Involvement of the Macrobrachium nipponense rhodanese homologue 2, MnRDH2 in innate immunity and antioxidant defense. FISH & SHELLFISH IMMUNOLOGY 2017; 70:327-334. [PMID: 28882803 DOI: 10.1016/j.fsi.2017.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/27/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
In Macrobrachium nipponense, the rhodanese homologue 2 (MnRDH2) gene codes for a single rhodanese domain protein. Considering the lack of information on the biological role of the ubiquitous rhodaneses in invertebrate, we examined the functions of MnRDH2 using both in silico and in vitro approaches. Quantitative PCR analysis of different tissues indicated that expression of MnRDH2 was enriched in hepatopancreas, in which bacterial challenge by Aeromonas hydrophila induced MnRDH2 expression. Knocking down MnRDH2 by RNA interference caused significant accumulations of reactive oxygen species and malondialdehyde (MDA). Using Escherichia coli (DE3), we expressed MnRDH2 and the mutant MnRDH2C78A, in which the predicted catalytic cysteine was mutated to alanine, and found significant rodanese activity of the recombinant MnRDH2 in vitro, but not for the mutant rMnRDH2C78A. We observed that rMnRDH2 was able to significantly increase tolerance of the host bacteria to oxidative stressor phenazine methosulfate. These results suggest that MnRDH2 might have the potential to buffer general levels of oxidants via regulation of redox reactions. In conclusion, our study begins to hint a possible biological functionality of MnRDH2 as a redox switch to activate defensive activities against oxidative damage, which helps host in maintaining the cellular redox balance. These characteristics will facilitate future investigations into the physiological functions for invertebrate rhodanese family genes.
Collapse
Affiliation(s)
- Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Congcong Ji
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zilan Yang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Song Xie
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
5
|
Luna-Sánchez M, Hidalgo-Gutiérrez A, Hildebrandt TM, Chaves-Serrano J, Barriocanal-Casado E, Santos-Fandila Á, Romero M, Sayed RK, Duarte J, Prokisch H, Schuelke M, Distelmaier F, Escames G, Acuña-Castroviejo D, López LC. CoQ deficiency causes disruption of mitochondrial sulfide oxidation, a new pathomechanism associated with this syndrome. EMBO Mol Med 2017; 9:78-95. [PMID: 27856619 PMCID: PMC5210161 DOI: 10.15252/emmm.201606345] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain, but it also has several other functions in the cellular metabolism. One of them is to function as an electron carrier in the reaction catalyzed by sulfide:quinone oxidoreductase (SQR), which catalyzes the first reaction in the hydrogen sulfide oxidation pathway. Therefore, SQR may be affected by CoQ deficiency. Using human skin fibroblasts and two mouse models with primary CoQ deficiency, we demonstrate that severe CoQ deficiency causes a reduction in SQR levels and activity, which leads to an alteration of mitochondrial sulfide metabolism. In cerebrum of Coq9R239X mice, the deficit in SQR induces an increase in thiosulfate sulfurtransferase and sulfite oxidase, as well as modifications in the levels of thiols. As a result, biosynthetic pathways of glutamate, serotonin, and catecholamines were altered in the cerebrum, and the blood pressure was reduced. Therefore, this study reveals the reduction in SQR activity as one of the pathomechanisms associated with CoQ deficiency syndrome.
Collapse
Affiliation(s)
- Marta Luna-Sánchez
- Departmento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain .,Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Agustín Hidalgo-Gutiérrez
- Departmento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain.,Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | | | - Julio Chaves-Serrano
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Eliana Barriocanal-Casado
- Departmento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain.,Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | | | - Miguel Romero
- Departmento de Farmacología, Facultad de Farmacia, Instituto de Investigación Biosanitaria de Granada, Universidad de Granada, Granada, Spain
| | - Ramy Ka Sayed
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain.,Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Juan Duarte
- Departmento de Farmacología, Facultad de Farmacia, Instituto de Investigación Biosanitaria de Granada, Universidad de Granada, Granada, Spain
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, München, Germany
| | - Markus Schuelke
- Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Germaine Escames
- Departmento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain.,Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Darío Acuña-Castroviejo
- Departmento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain.,Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Luis C López
- Departmento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain .,Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| |
Collapse
|
6
|
Ivanova EL, Mau-Them FT, Riazuddin S, Kahrizi K, Laugel V, Schaefer E, de Saint Martin A, Runge K, Iqbal Z, Spitz MA, Laura M, Drouot N, Gérard B, Deleuze JF, de Brouwer APM, Razzaq A, Dollfus H, Assir MZ, Nitchké P, Hinckelmann MV, Ropers H, Riazuddin S, Najmabadi H, van Bokhoven H, Chelly J. Homozygous Truncating Variants in TBC1D23 Cause Pontocerebellar Hypoplasia and Alter Cortical Development. Am J Hum Genet 2017; 101:428-440. [PMID: 28823707 DOI: 10.1016/j.ajhg.2017.07.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/19/2017] [Indexed: 01/03/2023] Open
Abstract
Pontocerebellar hypoplasia (PCH) is a heterogeneous group of rare recessive disorders with prenatal onset, characterized by hypoplasia of pons and cerebellum. Mutations in a small number of genes have been reported to cause PCH, and the vast majority of PCH cases are explained by mutations in TSEN54, which encodes a subunit of the tRNA splicing endonuclease complex. Here we report three families with homozygous truncating mutations in TBC1D23 who display moderate to severe intellectual disability and microcephaly. MRI data from available affected subjects revealed PCH, small normally proportioned cerebellum, and corpus callosum anomalies. Furthermore, through in utero electroporation, we show that downregulation of TBC1D23 affects cortical neuron positioning. TBC1D23 is a member of the Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-specific GTPase-activating proteins (TBC/RABGAPs). Members of this protein family negatively regulate RAB proteins and modulate the signaling between RABs and other small GTPases, some of which have a crucial role in the trafficking of intracellular vesicles and are involved in neurological disorders. Here, we demonstrate that dense core vesicles and lysosomal trafficking dynamics are affected in fibroblasts harboring TBC1D23 mutation. We propose that mutations in TBC1D23 are responsible for a form of PCH with small, normally proportioned cerebellum and should be screened in individuals with syndromic pontocereballar hypoplasia.
Collapse
Affiliation(s)
- Ekaterina L Ivanova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Frédéric Tran Mau-Them
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Saima Riazuddin
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, 1985713834 Tehran, Iran
| | - Vincent Laugel
- Department of Pediatrics, Strasbourg University Hospital, 67000 Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Anne de Saint Martin
- Department of Pediatrics, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Karen Runge
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Zafar Iqbal
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Neurology, Oslo University Hospital, 0450 Oslo, Norway
| | - Marie-Aude Spitz
- Department of Pediatrics, Strasbourg University Hospital, 67000 Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France
| | - Mary Laura
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Nathalie Drouot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Bénédicte Gérard
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | | | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Attia Razzaq
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan
| | - Hélène Dollfus
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Muhammad Zaman Assir
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan; Allama Iqbal Medical College, University of Health Sciences, 54000 Lahore, Pakistan
| | - Patrick Nitchké
- Institut Imagine, Bioinformatics Platform, Université Paris Descartes, 75015 Paris, France
| | - Maria-Victoria Hinckelmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France
| | - Hilger Ropers
- Max-Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sheikh Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Pakistan Institute of Medical Sciences, Islamabad 44000, Pakistan; Allama Iqbal Medical College, University of Health Sciences, 54000 Lahore, Pakistan
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, 1985713834 Tehran, Iran
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Jamel Chelly
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France; Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67400 Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67400 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67400 Illkirch, France; Université de Strasbourg, 67400 Illkirch, France; Fédération de Médecine Translationnelle de Strasbourg, Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
7
|
The Oxidative Stress Network of Mycobacterium tuberculosis Reveals Coordination between Radical Detoxification Systems. Cell Host Microbe 2016; 17:829-37. [PMID: 26067605 DOI: 10.1016/j.chom.2015.05.008] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/03/2015] [Accepted: 05/13/2015] [Indexed: 02/02/2023]
Abstract
M. tuberculosis (Mtb) survives a hostile environment within the host that is shaped in part by oxidative stress. The mechanisms used by Mtb to resist these stresses remain ill-defined because the complex combination of oxidants generated by host immunity is difficult to accurately recapitulate in vitro. We performed a genome-wide genetic interaction screen to comprehensively delineate oxidative stress resistance pathways necessary for Mtb to resist oxidation during infection. Our analysis predicted functional relationships between the superoxide-detoxifying enzyme (SodA), an integral membrane protein (DoxX), and a predicted thiol-oxidoreductase (SseA). Consistent with that, SodA, DoxX, and SseA form a membrane-associated oxidoreductase complex (MRC) that physically links radical detoxification with cytosolic thiol homeostasis. Loss of any MRC component correlated with defective recycling of mycothiol and accumulation of cellular oxidative damage. This previously uncharacterized coordination between oxygen radical detoxification and thiol homeostasis is required to overcome the oxidative environment Mtb encounters in the host.
Collapse
|
8
|
Henne M, König N, Triulzi T, Baroni S, Forlani F, Scheibe R, Papenbrock J. Sulfurtransferase and thioredoxin specifically interact as demonstrated by bimolecular fluorescence complementation analysis and biochemical tests. FEBS Open Bio 2015; 5:832-43. [PMID: 26605137 PMCID: PMC4618214 DOI: 10.1016/j.fob.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 01/18/2023] Open
Abstract
Sulfurtransferases (Strs) and thioredoxins (Trxs) are members of large protein families. Trxs are disulfide reductases and play an important role in redox-related cellular processes. They interact with a broad range of proteins. Strs catalyze the transfer of a sulfur atom from a suitable sulfur donor to nucleophilic sulfur acceptors in vitro, but the physiological roles of these enzymes are not well defined. Several studies in different organisms demonstrate protein-protein interactions of Strs with members of the Trx family. We are interested in investigating the specificity of the interaction between Str and Trx isoforms. In order to use the bimolecular fluorescence complementation (BiFC), several Str and Trx sequences from Arabidopsis thaliana were cloned into the pUC-SPYNE and pUC-SPYCE split-YFP vectors, respectively. Each couple of plasmids containing the sequences for the putative interaction partners were transformed into Arabidopsis protoplasts and screened using a confocal laser scanning microscope. Compartment- and partner-specific interactions could be observed in transformed protoplasts. Replacement of cysteine residues in the redox-active site of Trxs abolished the interaction signal. Therefore, the redox site is not only involved in the redox reaction but also responsible for the interaction with partner proteins. Biochemical assays support a specific interaction among Strs and certain Trxs. Based on the results obtained, the interaction of Strs and Trxs indicates a role of Strs in the maintenance of the cellular redox homeostasis.
Collapse
Affiliation(s)
- Melina Henne
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| | - Nicolas König
- University Osnabrück, Department for Plant Physiology, Barbarastraße 11, D-49076 Osnabrück, Germany
| | - Tiziana Triulzi
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| | - Sara Baroni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Fabio Forlani
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy
| | - Renate Scheibe
- University Osnabrück, Department for Plant Physiology, Barbarastraße 11, D-49076 Osnabrück, Germany
| | - Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuserstr. 2, D-30419 Hannover, Germany
| |
Collapse
|
9
|
Proteomic responses to a methyl viologen-induced oxidative stress in the wild type and FerB mutant strains of Paracoccus denitrificans. J Proteomics 2015; 125:68-75. [DOI: 10.1016/j.jprot.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023]
|
10
|
Nakajima T. Roles of Sulfur Metabolism and Rhodanese in Detoxification and Anti-Oxidative Stress Functions in the Liver: Responses to Radiation Exposure. Med Sci Monit 2015; 21:1721-5. [PMID: 26071878 PMCID: PMC4471854 DOI: 10.12659/msm.893234] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Organisms must confront various environmental stresses. The liver is central to protecting against such stresses in mammals, and it has many detoxification and anti-oxidative stress functions. Radiation is a source of oxidative stress and is known to affect the liver and induce anti-oxidative responses. The detoxification enzyme rhodanese, which is also called thiosulfate sulfurtransferase (TST), has been demonstrated to be induced in the liver in response to radiation. Cyanide detoxification is a function of the liver, and rhodanese is a key enzyme involved in sulfur metabolism in that detoxification. Though the anti-oxidative stress system in which sulfur molecules such as thiol compounds are involved has attracted attention as a defense against radiation, detoxification enzymes may have other roles in this defense. Understanding how these functions are affected by alterations of sulfur metabolism (including thiol compounds) after irradiation would help uncover their roles in defense against cancer and other deleterious health effects, as well as environmental stress responses. This article reviews the roles of sulfur-related metabolism in oxidative stress regulation and detoxification for recovery from liver damage after radiation exposure, with particular attention to recent findings of sulfur-related enzymes such as rhodanese, which is unique in sulfur metabolism.
Collapse
Affiliation(s)
- Tetsuo Nakajima
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba-shi, Japan
| |
Collapse
|
11
|
Higgins KA, Peng H, Luebke JL, Chang FMJ, Giedroc DP. Conformational Analysis and Chemical Reactivity of the Multidomain Sulfurtransferase, Staphylococcus aureus CstA. Biochemistry 2015; 54:2385-98. [DOI: 10.1021/acs.biochem.5b00056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Khadine A. Higgins
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Hui Peng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
- Graduate Program in Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Justin L. Luebke
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Feng-Ming James Chang
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
12
|
Werner J, Ferrer M, Michel G, Mann AJ, Huang S, Juarez S, Ciordia S, Albar JP, Alcaide M, La Cono V, Yakimov MM, Antunes A, Taborda M, da Costa MS, Hai T, Glöckner FO, Golyshina OV, Golyshin PN, Teeling H. Halorhabdus tiamatea: proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader. Environ Microbiol 2014; 16:2525-37. [PMID: 24428220 PMCID: PMC4257568 DOI: 10.1111/1462-2920.12393] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 01/05/2014] [Indexed: 11/28/2022]
Abstract
Euryarchaea from the genus Halorhabdus have been found in hypersaline habitats worldwide, yet are represented by only two isolates: Halorhabdus utahensis AX-2(T) from the shallow Great Salt Lake of Utah, and Halorhabdus tiamatea SARL4B(T) from the Shaban deep-sea hypersaline anoxic lake (DHAL) in the Red Sea. We sequenced the H. tiamatea genome to elucidate its niche adaptations. Among sequenced archaea, H. tiamatea features the highest number of glycoside hydrolases, the majority of which were expressed in proteome experiments. Annotations and glycosidase activity measurements suggested an adaptation towards recalcitrant algal and plant-derived hemicelluloses. Glycosidase activities were higher at 2% than at 0% or 5% oxygen, supporting a preference for low-oxygen conditions. Likewise, proteomics indicated quinone-mediated electron transport at 2% oxygen, but a notable stress response at 5% oxygen. Halorhabdus tiamatea furthermore encodes proteins characteristic for thermophiles and light-dependent enzymes (e.g. bacteriorhodopsin), suggesting that H. tiamatea evolution was mostly not governed by a cold, dark, anoxic deep-sea habitat. Using enrichment and metagenomics, we could demonstrate presence of similar glycoside hydrolase-rich Halorhabdus members in the Mediterranean DHAL Medee, which supports that Halorhabdus species can occupy a distinct niche as polysaccharide degraders in hypersaline environments.
Collapse
Affiliation(s)
- Johannes Werner
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Jacobs University Bremen gGmbH, Bremen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|