1
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
2
|
Bernier-Latmani J, González-Loyola A, Petrova TV. Mechanisms and functions of intestinal vascular specialization. J Exp Med 2024; 221:e20222008. [PMID: 38051275 PMCID: PMC10697212 DOI: 10.1084/jem.20222008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The intestinal vasculature has been studied for the last 100 years, and its essential role in absorbing and distributing ingested nutrients is well known. Recently, fascinating new insights into the organization, molecular mechanisms, and functions of intestinal vessels have emerged. These include maintenance of intestinal epithelial cell function, coping with microbiota-induced inflammatory pressure, recruiting gut-specific immune cells, and crosstalk with other organs. Intestinal function is also regulated at the systemic and cellular levels, such that the postprandial hyperemic response can direct up to 30% of systemic blood to gut vessels, while micron-sized endothelial cell fenestrations are necessary for nutrient uptake. In this review, we will highlight past discoveries made about intestinal vasculature in the context of new findings of molecular mechanisms underpinning gut function. Such comprehensive understanding of the system will pave the way to breakthroughs in nutrient uptake optimization, drug delivery efficiency, and treatment of human diseases.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | | | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Bálint L, Nelson-Maney N, Tian Y, Serafin DS, Caron KM. Clinical Potential of Adrenomedullin Signaling in the Cardiovascular System. Circ Res 2023; 132:1185-1202. [PMID: 37104556 PMCID: PMC10155262 DOI: 10.1161/circresaha.123.321673] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023]
Abstract
Numerous clinical studies have revealed the utility of circulating AM (adrenomedullin) or MR-proAM (mid-regional proAM 45-92) as an effective prognostic and diagnostic biomarker for a variety of cardiovascular-related pathophysiologies. Thus, there is strong supporting evidence encouraging the exploration of the AM-CLR (calcitonin receptor-like receptor) signaling pathway as a therapeutic target. This is further bolstered because several drugs targeting the shared CGRP (calcitonin gene-related peptide)-CLR pathway are already Food and Drug Administration-approved and on the market for the treatment of migraine. In this review, we summarize the AM-CLR signaling pathway and its modulatory mechanisms and provide an overview of the current understanding of the physiological and pathological roles of AM-CLR signaling and the yet untapped potentials of AM as a biomarker or therapeutic target in cardiac and vascular diseases and provide an outlook on the recently emerged strategies that may provide further boost to the possible clinical applications of AM signaling.
Collapse
Affiliation(s)
- László Bálint
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Nathan Nelson-Maney
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Yanna Tian
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - D. Stephen Serafin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill; 111 Mason Farm Road, Chapel Hill, North Carolina, USA 27599
| |
Collapse
|
4
|
Puri S, Kenyon BM, Hamrah P. Immunomodulatory Role of Neuropeptides in the Cornea. Biomedicines 2022; 10:1985. [PMID: 36009532 PMCID: PMC9406019 DOI: 10.3390/biomedicines10081985] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/21/2022] Open
Abstract
The transparency of the cornea along with its dense sensory innervation and resident leukocyte populations make it an ideal tissue to study interactions between the nervous and immune systems. The cornea is the most densely innervated tissue of the body and possesses both immune and vascular privilege, in part due to its unique repertoire of resident immune cells. Corneal nerves produce various neuropeptides that have a wide range of functions on immune cells. As research in this area expands, further insights are made into the role of neuropeptides and their immunomodulatory functions in the healthy and diseased cornea. Much remains to be known regarding the details of neuropeptide signaling and how it contributes to pathophysiology, which is likely due to complex interactions among neuropeptides, receptor isoform-specific signaling events, and the inflammatory microenvironment in disease. However, progress in this area has led to an increase in studies that have begun modulating neuropeptide activity for the treatment of corneal diseases with promising results, necessitating the need for a comprehensive review of the literature. This review focuses on the role of neuropeptides in maintaining the homeostasis of the ocular surface, alterations in disease settings, and the possible therapeutic potential of targeting these systems.
Collapse
Affiliation(s)
- Sudan Puri
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Brendan M. Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Departments of Immunology and Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
- Cornea Service, Tufts New England Eye Center, Boston, MA 02111, USA
| |
Collapse
|
5
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Song Z, Chen B, Tsai CH, Wu D, Liu E, Hawkins IS, Phan A, Auman JT, Tao Y, Mei H. Differentiation Trajectory of Limbal Stem and Progenitor Cells under Normal Homeostasis and upon Corneal Wounding. Cells 2022; 11:cells11131983. [PMID: 35805068 PMCID: PMC9266118 DOI: 10.3390/cells11131983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/06/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Limbal stem cells (LSCs) reside discretely at limbus surrounded by niche cells and progenitor cells. The aim of this study is to identify the heterogeneous cell populations at limbus under normal homeostasis and upon wounding using single-cell RNA sequencing in a mouse model. Two putative LSC types were identified which showed a differentiation trajectory into limbal progenitor cell (LPC) types under normal homeostasis and during wound healing. They were designated as “putative active LSCs” and “putative quiescent LSCs”, respectively, because the former type actively divided upon wounding while the later type stayed at a quiescent status upon wounding. The “putative quiescent LSCs” might contribute to a barrier function due to their characteristic markers regulating vascular and epithelial barrier and growth. Different types of LPCs at different proliferative statuses were identified in unwounded and wounded corneas with distinctive markers. Four maturation markers (Aldh3, Slurp1, Tkt, and Krt12) were screened out for corneal epithelium, which showed an increased expression along the differentiation trajectory during corneal epithelial maturation. In conclusion, our study identified two different types of putative LSCs and several types of putative LPCs under normal homeostasis and upon wounding, which will facilitate the understanding of corneal epithelial regeneration and wound healing.
Collapse
Affiliation(s)
- Zhenwei Song
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Z.S.); (C.-H.T.); (E.L.); (I.S.H.)
- School of Medicine, Hunan Normal University, 371 Tongzipo Road, Changsha 410081, China
| | - Brian Chen
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.C.); (D.W.)
| | - Chi-Hao Tsai
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Z.S.); (C.-H.T.); (E.L.); (I.S.H.)
| | - Di Wu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (B.C.); (D.W.)
- Division of Oral and Craniofacial Health Research, Adams School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emily Liu
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Z.S.); (C.-H.T.); (E.L.); (I.S.H.)
| | - Isha Sharday Hawkins
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Z.S.); (C.-H.T.); (E.L.); (I.S.H.)
| | - Andrew Phan
- Department of Psychology and Neuroscience, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - James Todd Auman
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.T.A.); (Y.T.)
| | - Yazhong Tao
- Department of Pathology and Laboratory Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.T.A.); (Y.T.)
| | - Hua Mei
- Department of Ophthalmology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Z.S.); (C.-H.T.); (E.L.); (I.S.H.)
- Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence:
| |
Collapse
|
7
|
Talkington AM, Davis RB, Datto NC, Goodwin ER, Miller LA, Caron KM. Dermal Lymphatic Capillaries Do Not Obey Murray's Law. Front Cardiovasc Med 2022; 9:840305. [PMID: 35498025 PMCID: PMC9039365 DOI: 10.3389/fcvm.2022.840305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Lymphatic vessels serve as a major conduit for the transport of interstitial fluid, immune cells, lipids and drugs. Therefore, increased knowledge about their development and function is relevant to clinical issues ranging from chronic inflammation and edema, to cancer metastasis to targeted drug delivery. Murray's Law is a widely-applied branching rule upheld in diverse circulatory systems including leaf venation, sponge canals, and various human organs for optimal fluid transport. Considering the unique and diverse functions of lymphatic fluid transport, we specifically address the branching of developing lymphatic capillaries, and the flow of lymph through these vessels. Using an empirically-generated dataset from wild type and genetic lymphatic insufficiency mouse models we confirmed that branching blood capillaries consistently follow Murray's Law. However surprisingly, we found that the optimization law for lymphatic vessels follows a different pattern, namely a Murray's Law exponent of ~1.45. In this case, the daughter vessels are smaller relative to the parent than would be predicted by the hypothesized radius-cubed law for impermeable vessels. By implementing a computational fluid dynamics model, we further examined the extent to which the assumptions of Murray's Law were violated. We found that the flow profiles were predominantly parabolic and reasonably followed the assumptions of Murray's Law. These data suggest an alternate hypothesis for optimization of the branching structure of the lymphatic system, which may have bearing on the unique physiological functions of lymphatics compared to the blood vascular system. Thus, it may be the case that the lymphatic branching structure is optimized to enhance lymph mixing, particle exchange, or immune cell transport, which are particularly germane to the use of lymphatics as drug delivery routes.
Collapse
Affiliation(s)
- Anne M. Talkington
- Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,*Correspondence: Anne M. Talkington
| | - Reema B. Davis
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nicholas C. Datto
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Emma R. Goodwin
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura A. Miller
- Department of Mathematics, University of Arizona, Tucson, AZ, United States
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Kathleen M. Caron
| |
Collapse
|
8
|
Xia Q, Dong H, Guo Y, Fang K, Hu M, Xu L, Lu F, Gong J. The role of lacteal integrity and junction transformation in obesity: A promising therapeutic target? Front Endocrinol (Lausanne) 2022; 13:1007856. [PMID: 36506056 PMCID: PMC9729342 DOI: 10.3389/fendo.2022.1007856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Lacteals are the central lymphatic vessels in the villi of the small intestine and perform nutrient absorption, especially dietary lipids, and the transportation of antigen and antigen-presenting cells. Remodeling, proliferation, and cell-cell junctions of lymphatic endothelial cells (LECs) in lacteals are the basis of the maintenance of lacteal integrity and dietary lipid absorption. Normal lipid absorption in the diet depends on sound lacteal development and proliferation, especially integrity maintenance, namely, maintaining the appropriate proportion of button-like and zipper-like junctions. Maintaining the integrity and transforming button-to-zipper junctions in lacteals are strongly connected with obesity, which could be regulated by intestinal flora and molecular signalings, such as vascular endothelial growth factor C-vascular endothelial growth receptor 3 (VEGFC-VEGFR3) signaling, Hippo signaling, Notch signaling, angiopoietin-TIE signaling, VEGF-A/VEGFR2 signaling, and PROX1. This manuscript reviews the molecular mechanism of development, integrity maintenance, and junction transformation in lacteal related to obesity.
Collapse
Affiliation(s)
- Qingsong Xia
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Xu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Jing Gong, ; Fuer Lu,
| | - Jing Gong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Jing Gong, ; Fuer Lu,
| |
Collapse
|
9
|
Tobisawa Y, Fujita N, Yamamoto H, Ohyama C, Irie F, Yamaguchi Y. The cell surface hyaluronidase TMEM2 is essential for systemic hyaluronan catabolism and turnover. J Biol Chem 2021; 297:101281. [PMID: 34624311 PMCID: PMC8561002 DOI: 10.1016/j.jbc.2021.101281] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022] Open
Abstract
As a major component of the extracellular matrix, hyaluronan (HA) plays an important role in defining the biochemical and biophysical properties of tissues. In light of the extremely rapid turnover of HA and the impact of this turnover on HA biology, elucidating the molecular mechanisms underlying HA catabolism is key to understanding the in vivo functions of this unique polysaccharide. Here, we show that TMEM2, a recently identified cell surface hyaluronidase, plays an essential role in systemic HA turnover. Employing induced global Tmem2 knockout mice (Tmem2iKO), we determined the effects of Tmem2 ablation not only on the accumulation of HA in bodily fluids and organs, but also on the process of HA degradation in vivo. Within 3 weeks of tamoxifen-induced Tmem2 ablation, Tmem2iKO mice exhibit pronounced accumulation of HA in circulating blood and various organs, reaching levels as high as 40-fold above levels observed in control mice. Experiments using lymphatic and vascular injection of fluorescent HA tracers demonstrate that ongoing HA degradation in the lymphatic system and the liver is significantly impaired in Tmem2iKO mice. We also show that Tmem2 is strongly expressed in endothelial cells in the subcapsular sinus of lymph nodes and in the liver sinusoid, two primary sites implicated in systemic HA turnover. Our results establish TMEM2 as a physiologically relevant hyaluronidase with an essential role in systemic HA catabolism in vivo, acting primarily on the surface of endothelial cells in the lymph nodes and liver.
Collapse
Affiliation(s)
- Yuki Tobisawa
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Naoki Fujita
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Hayato Yamamoto
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA; Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumitoshi Irie
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Yu Yamaguchi
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|
10
|
Abstract
The lymphatic vasculature plays important role in regulating fluid homeostasis, intestinal lipid absorption, and immune surveillance in humans. Malfunction of lymphatic vasculature leads to several human diseases. Understanding the fundamental mechanism in lymphatic vascular development not only expand our knowledge, but also provide a new therapeutic insight. Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism of organ size and tissue homeostasis, has emerged as a critical player that regulate lymphatic specification, sprouting, and maturation. In this review, we discuss the mechanistic regulation and pathophysiological significant of Hippo pathway in lymphatic vascular development.
Collapse
Affiliation(s)
- Boksik Cha
- Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Sungjin Moon
- Department of Biological Science, Kangwon National University, Chuncheon 24341, Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
11
|
Sigmund EC, Baur L, Schineis P, Arasa J, Collado-Diaz V, Vranova M, Stahl RAK, Thelen M, Halin C. Lymphatic endothelial-cell expressed ACKR3 is dispensable for postnatal lymphangiogenesis and lymphatic drainage function in mice. PLoS One 2021; 16:e0249068. [PMID: 33857173 PMCID: PMC8049313 DOI: 10.1371/journal.pone.0249068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Atypical chemokine receptor ACKR3 (formerly CXCR7) is a scavenging receptor that has recently been implicated in murine lymphatic development. Specifically, ACKR3-deficiency was shown to result in lymphatic hyperplasia and lymphedema, in addition to cardiac hyperplasia and cardiac valve defects leading to embryonic lethality. The lymphatic phenotype was attributed to a lymphatic endothelial cell (LEC)-intrinsic scavenging function of ACKR3 for the vascular peptide hormone adrenomedullin (AM), which is also important during postnatal lymphangiogenesis. In this study, we investigated the expression of ACKR3 in the lymphatic vasculature of adult mice and its function in postnatal lymphatic development and function. We show that ACKR3 is widely expressed in mature lymphatics and that it exerts chemokine-scavenging activity in cultured murine skin-derived LECs. To investigate the role of LEC-expressed ACKR3 in postnatal lymphangiogenesis and function during adulthood, we generated and validated a lymphatic-specific, inducible ACKR3 knockout mouse. Surprisingly, in contrast to the reported involvement of ACKR3 in lymphatic development, our analyses revealed no contribution of LEC-expressed ACKR3 to postnatal lymphangiogenesis, lymphatic morphology and drainage function.
Collapse
Affiliation(s)
- Elena C. Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Lilian Baur
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Martina Vranova
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Marcus Thelen
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine (IRB), Università della Svizzera italiana, Bellinzona, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Plasmodium chabaudi Infection Alters Intestinal Morphology and Mucosal Innate Immunity in Moderately Malnourished Mice. Nutrients 2021; 13:nu13030913. [PMID: 33799736 PMCID: PMC7998862 DOI: 10.3390/nu13030913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Plasmodium falciparum is a protozoan parasite which causes malarial disease in humans. Infections commonly occur in sub-Saharan Africa, a region with high rates of inadequate nutrient consumption resulting in malnutrition. The complex relationship between malaria and malnutrition and their effects on gut immunity and physiology are poorly understood. Here, we investigated the effect of malaria infection in the guts of moderately malnourished mice. We utilized a well-established low protein diet that is deficient in zinc and iron to induce moderate malnutrition and investigated mucosal tissue phenotype, permeability, and innate immune response in the gut. We observed that the infected moderately malnourished mice had lower parasite burden at the peak of infection, but damaged mucosal epithelial cells and high levels of FITC-Dextran concentration in the blood serum, indicating increased intestinal permeability. The small intestine in the moderately malnourished mice were also shorter after infection with malaria. This was accompanied with lower numbers of CD11b+ macrophages, CD11b+CD11c+ myeloid cells, and CD11c+ dendritic cells in large intestine. Despite the lower number of innate immune cells, macrophages in the moderately malnourished mice were highly activated as determined by MHCII expression and increased IFNγ production in the small intestine. Thus, our data suggest that malaria infection may exacerbate some of the abnormalities in the gut induced by moderate malnutrition.
Collapse
|
13
|
Abstract
The lymphatic system has received increasing scientific and clinical attention because a wide variety of diseases are linked to lymphatic pathologies and because the lymphatic system serves as an ideal conduit for drug delivery. Lymphatic vessels exert heterogeneous roles in different organs and vascular beds, and consequently, their dysfunction leads to distinct organ-specific outcomes. Although studies in animal model systems have led to the identification of crucial lymphatic genes with potential therapeutic benefit, effective lymphatic-targeted therapeutics are currently lacking for human lymphatic pathological conditions. Here, we focus on the therapeutic roles of lymphatic vessels in diseases and summarize the promising therapeutic targets for modulating lymphangiogenesis or lymphatic function in preclinical or clinical settings. We also discuss considerations for drug delivery or targeting of lymphatic vessels for treatment of lymphatic-related diseases. The lymphatic vasculature is rapidly emerging as a critical system for targeted modulation of its function and as a vehicle for innovative drug delivery.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Natalie R Harris
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
14
|
Norden PR, Kume T. Molecular Mechanisms Controlling Lymphatic Endothelial Junction Integrity. Front Cell Dev Biol 2021; 8:627647. [PMID: 33521001 PMCID: PMC7841202 DOI: 10.3389/fcell.2020.627647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The lymphatic system is essential for lipid absorption/transport from the digestive system, maintenance of tissue fluid and protein homeostasis, and immune surveillance. Despite recent progress toward understanding the cellular and molecular mechanisms underlying the formation of the lymphatic vascular system, the nature of lymphatic vessel abnormalities and disease in humans is complex and poorly understood. The mature lymphatic vasculature forms a hierarchical network in which lymphatic endothelial cells (LECs) are joined by functionally specialized cell-cell junctions to maintain the integrity of lymphatic vessels. Blind-ended and highly permeable lymphatic capillaries drain interstitial fluid via discontinuous, button-like LEC junctions, whereas collecting lymphatic vessels, surrounded by intact basement membranes and lymphatic smooth muscle cells, have continuous, zipper-like LEC junctions to transport lymph to the blood circulatory system without leakage. In this review, we discuss the recent advances in our understanding of the mechanisms by which lymphatic button- and zipper-like junctions play critical roles in lymphatic permeability and function in a tissue- and organ-specific manner, including lacteals of the small intestine. We also provide current knowledge related to key pathways and factors such as VEGF and RhoA/ROCK signaling that control lymphatic endothelial cell junctional integrity.
Collapse
Affiliation(s)
- Pieter R Norden
- Department of Medicine, Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, United States
| | - Tsutomu Kume
- Department of Medicine, Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
15
|
Xiao C, Stahel P, Nahmias A, Lewis GF. Emerging Role of Lymphatics in the Regulation of Intestinal Lipid Mobilization. Front Physiol 2020; 10:1604. [PMID: 32063861 PMCID: PMC7000543 DOI: 10.3389/fphys.2019.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Intestinal handling of dietary triglycerides has important implications for health and disease. Following digestion in the intestinal lumen, absorption, and re-esterification of fatty acids and monoacylglycerols in intestinal enterocytes, triglycerides are packaged into lipoprotein particles (chylomicrons) for secretion or into cytoplasmic lipid droplets for transient or more prolonged storage. Despite the recognition of prolonged retention of triglycerides in the post-absorptive phase and subsequent release from the intestine in chylomicron particles, the underlying regulatory mechanisms remain poorly understood. Chylomicron secretion involves multiple steps, including intracellular assembly and post-assembly transport through cellular organelles, the lamina propria, and the mesenteric lymphatics before being released into the circulation. Contrary to the long-held view that the intestinal lymphatic vasculature acts mainly as a passive conduit, it is increasingly recognized to play an active and regulatory role in the rate of chylomicron release into the circulation. Here, we review the latest advances in understanding the role of lymphatics in intestinal lipid handling and chylomicron secretion. We highlight emerging evidence that oral glucose and the gut hormone glucagon-like peptide-2 mobilize retained enteral lipid by differing mechanisms to promote the secretion of chylomicrons via glucose possibly by mobilizing cytoplasmic lipid droplets and via glucagon-like peptide-2 possibly by targeting post-enterocyte secretory mechanisms. We discuss other potential regulatory factors that are the focus of ongoing and future research. Regulation of lymphatic pumping and function is emerging as an area of great interest in our understanding of the integrated absorption of dietary fat and chylomicron secretion and potential implications for whole-body metabolic health.
Collapse
Affiliation(s)
- Changting Xiao
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Priska Stahel
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Avital Nahmias
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Gary F Lewis
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Endogenous Calcitonin Gene–Related Peptide Deficiency Exacerbates Postoperative Lymphedema by Suppressing Lymphatic Capillary Formation and M2 Macrophage Accumulation. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2487-2502. [DOI: 10.1016/j.ajpath.2019.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
|
17
|
Xu W, Wittchen ES, Hoopes SL, Stefanini L, Burridge K, Caron KM. Small GTPase Rap1A/B Is Required for Lymphatic Development and Adrenomedullin-Induced Stabilization of Lymphatic Endothelial Junctions. Arterioscler Thromb Vasc Biol 2019; 38:2410-2422. [PMID: 30354217 DOI: 10.1161/atvbaha.118.311645] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Objective- Maintenance of lymphatic permeability is essential for normal lymphatic function during adulthood, but the precise signaling pathways that control lymphatic junctions during development are not fully elucidated. The Gs-coupled AM (adrenomedullin) signaling pathway is required for embryonic lymphangiogenesis and the maintenance of lymphatic junctions during adulthood. Thus, we sought to elucidate the downstream effectors mediating junctional stabilization in lymphatic endothelial cells. Approach and Results- We knocked-down both Rap1A and Rap1B isoforms in human neonatal dermal lymphatic cells (human lymphatic endothelial cells) and genetically deleted the mRap1 gene in lymphatic endothelial cells by producing 2 independent, conditional Rap1a/b knockout mouse lines. Rap1A/B knockdown caused disrupted junctional formation with hyperpermeability and impaired AM-induced lymphatic junctional tightening, as well as rescue of histamine-induced junctional disruption. Less than 60% of lymphatic- Rap1a/b knockout embryos survived to E13.5 exhibiting interstitial edema, blood-filled lymphatics, disrupted lymphovenous valves, and defective lymphangiogenesis. Consistently, inducible lymphatic- Rap1a/b deletion in adult animals prevented AM-rescue of histamine-induced lymphatic leakage and dilation. Conclusions- Rap1 (Ras-related protein) serves as the dominant effector downstream of AM to stabilize lymphatic junctions. Rap1 is required for maintaining lymphatic permeability and driving normal lymphatic development.
Collapse
Affiliation(s)
- Wenjing Xu
- From the Department of Cell Biology and Physiology (W.X., E.S.W., S.L.H., K.B., K.M.C.), The University of North Carolina, Chapel Hill
| | - Erika S Wittchen
- From the Department of Cell Biology and Physiology (W.X., E.S.W., S.L.H., K.B., K.M.C.), The University of North Carolina, Chapel Hill
| | - Samantha L Hoopes
- From the Department of Cell Biology and Physiology (W.X., E.S.W., S.L.H., K.B., K.M.C.), The University of North Carolina, Chapel Hill
| | - Lucia Stefanini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Italy (L.S.)
| | - Keith Burridge
- From the Department of Cell Biology and Physiology (W.X., E.S.W., S.L.H., K.B., K.M.C.), The University of North Carolina, Chapel Hill.,McAllister Heart Institute (K.B.), The University of North Carolina, Chapel Hill.,Lineberger Comprehensive Cancer Center, Chapel Hill, NC (K.B.)
| | - Kathleen M Caron
- From the Department of Cell Biology and Physiology (W.X., E.S.W., S.L.H., K.B., K.M.C.), The University of North Carolina, Chapel Hill.,Department of Genetics (K.M.C.), The University of North Carolina, Chapel Hill
| |
Collapse
|
18
|
Davis RB, Ding S, Nielsen NR, Pawlak JB, Blakeney ES, Caron KM. Calcitonin-Receptor-Like Receptor Signaling Governs Intestinal Lymphatic Innervation and Lipid Uptake. ACS Pharmacol Transl Sci 2019; 2:114-121. [PMID: 32219216 DOI: 10.1021/acsptsci.8b00061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 02/06/2023]
Abstract
The absorption of dietary fat requires complex neuroendocrine-mediated regulation of chylomicron trafficking through enterocytes and intestinal lymphatic vessels. Calcitonin-receptor-like receptor (Calcrl) is a G protein-coupled receptor that can bind either a lymphangiogenic ligand adrenomedullin, with coreceptor RAMP2, or the neuropeptide CGRP, with coreceptor RAMP1. The extent to which this common GPCR controls lipid absorption via lymphatics or enteric innervation remains unclear. We used conditional and inducible genetic deletion of Calcrl in lymphatics to elucidate the pathophysiological consequences of this receptor pathway under conditions of high-fat diet. Inefficient absorption of dietary fat coupled with altered lymphatic endothelial junctions in Calcrl fl/fl /Prox1-CreER T2 mice results in excessive, transcellular lipid accumulation and abnormal enterocyte chylomicron processing and failure to gain weight. Interestingly, Calcrl fl/fl /Prox1-CreER T2 animals show reduced and disorganized mucosal and submucosal innervation. Consistently, mice with genetic loss of the CGRP coreceptor RAMP1 also displayed mucosal and submucosal innervation deficits, substantiating the CGRP-biased function of Calcrl in the neurolymphocrine axis. Thus, the common Calcrl receptor is a critical regulator of lipid absorption through its cell-specific functions in neurolymphocrine crosstalk.
Collapse
Affiliation(s)
- Reema B Davis
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Shengli Ding
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - John B Pawlak
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Elizabeth S Blakeney
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina Chapel Hill, 111 Mason Farm Road, 6312B Medical Biomolecular Research Building, CB#7545, Chapel Hill, North Carolina 27599-7545, United States
| |
Collapse
|
19
|
Trincot CE, Xu W, Zhang H, Kulikauskas MR, Caranasos TG, Jensen BC, Sabine A, Petrova TV, Caron KM. Adrenomedullin Induces Cardiac Lymphangiogenesis After Myocardial Infarction and Regulates Cardiac Edema Via Connexin 43. Circ Res 2019; 124:101-113. [PMID: 30582443 PMCID: PMC6318063 DOI: 10.1161/circresaha.118.313835] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Cardiac lymphangiogenesis contributes to the reparative process post-myocardial infarction, but the factors and mechanisms regulating it are not well understood. OBJECTIVE To determine if epicardial-secreted factor AM (adrenomedullin; Adm=gene) improves cardiac lymphangiogenesis post-myocardial infarction via lateralization of Cx43 (connexin 43) in cardiac lymphatic vasculature. METHODS AND RESULTS Firstly, we identified sex-dependent differences in cardiac lymphatic numbers in uninjured mice using light-sheet microscopy. Using a mouse model of Adm hi/hi ( Adm overexpression) and permanent left anterior descending ligation to induce myocardial infarction, we investigated cardiac lymphatic structure, growth, and function in injured murine hearts. Overexpression of Adm increased lymphangiogenesis and cardiac function post-myocardial infarction while suppressing cardiac edema and correlated with changes in Cx43 localization. Lymphatic function in response to AM treatment was attenuated in mice with a lymphatic-specific Cx43 deletion. In vitro experiments in cultured human lymphatic endothelial cells identified a novel mechanism to improve gap junction coupling by pharmaceutically targeting Cx43 with verapamil. Finally, we show that connexin protein expression in cardiac lymphatics is conserved between mouse and human. CONCLUSIONS AM is an endogenous, epicardial-derived factor that drives reparative cardiac lymphangiogenesis and function via Cx43, and this represents a new therapeutic pathway for improving myocardial edema after injury.
Collapse
Affiliation(s)
- Claire E. Trincot
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
| | - Wenjing Xu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Hua Zhang
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Molly R. Kulikauskas
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill
| | - Thomas G. Caranasos
- Department of Surgery, Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill
| | - Brian C. Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill
- McAllister Heart Institute, University of North Carolina at Chapel Hill
| | - Amelie Sabine
- Department of Oncology, University of Lausanne and Lausanne University Hospital and Ludwig Institute for Cancer Research Lausanne, Chemin de Boveresses 155, CH-1066, Switzerland
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Lausanne University Hospital and Ludwig Institute for Cancer Research Lausanne, Chemin de Boveresses 155, CH-1066, Switzerland
- Division of Experimental Pathlogy, Lausanne University Hospital
| | - Kathleen M. Caron
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill
- McAllister Heart Institute, University of North Carolina at Chapel Hill
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill , 111 Mason Farm Rd, MBRB 6312B, CB 7545, Chapel Hill, NC 27599
| |
Collapse
|
20
|
Shindo T, Tanaka M, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Yamauchi A, Sakurai T. Regulation of cardiovascular development and homeostasis by the adrenomedullin-RAMP system. Peptides 2019; 111:55-61. [PMID: 29689347 DOI: 10.1016/j.peptides.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 11/18/2022]
Abstract
Adrenomedullin (AM), a member of the calcitonin peptide superfamily, is a peptide involved in both the pathogenesis of cardiovascular diseases and circulatory homeostasis. Its receptor, calcitonin receptor-like receptor (CLR), associates with an accessory protein, receptor activity-modifying protein (RAMP). Depending upon which the three RAMP isoforms (RAMP1-3) it interacts with, CLR functions as a receptor for AM or other calcitonin family peptides. AM knockout mice (-/-) died mid-gestation due to abnormalities in vascular development. We found that phenotypes similar to AM-/- were reproduced only in RAMP2-/- mice. We generated endothelial cell-specific RAMP2 knockout mice (E-RAMP2-/-) and found most E-RAMP2-/- mice died perinatally. In surviving adults, vasculitis and organ fibrosis occurred spontaneously. We next generated drug-inducible cardiac myocyte-specific RAMP2-/- (DI-C-RAMP2-/-) mice, which exhibited dilated cardiomyopathy-like heart failure with cardiac dilatation and myofibril disruption. DI-C-RAMP2-/- hearts also showed changes in mitochondrial structure and downregulation of mitochondria-related genes involved in oxidative phosphorylation and β-oxidation. In contrast to RAMP2-/- mice, RAMP3-/- mice were born with no major abnormalities. In adult RAMP3-/- mice, postnatal angiogenesis was normal, but drainage of subcutaneous lymphatic vessels was delayed. RAMP3-/- mice also showed more severe interstitial edema than in wild-type mice in a tail lymphedema model. These findings show that the AM-RAMP system is a key determinant of cardiovascular integrity and homeostasis from prenatal stages through adulthood. The AM-RAMP2 system mainly regulates vascular development and homeostasis, while the AM-RAMP3 system mainly regulates lymphatic function in adults. The AM-RAMP system may thus have therapeutic potential for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan.
| | - Megumu Tanaka
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| | - Akihiro Yamauchi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan; Japan Bio Products Co., Ltd., Tokyo, Japan
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine, Nagano, Japan
| |
Collapse
|
21
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
22
|
Xiao C, Stahel P, Lewis GF. Regulation of Chylomicron Secretion: Focus on Post-Assembly Mechanisms. Cell Mol Gastroenterol Hepatol 2018; 7:487-501. [PMID: 30819663 PMCID: PMC6396431 DOI: 10.1016/j.jcmgh.2018.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
Rapid and efficient digestion and absorption of dietary triglycerides and other lipids by the intestine, the packaging of those lipids into lipoprotein chylomicron (CM) particles, and their secretion via the lymphatic duct into the blood circulation are essential in maintaining whole-body lipid and energy homeostasis. Biosynthesis and assembly of CMs in enterocytes is a complex multistep process that is subject to regulation by intracellular signaling pathways as well as by hormones, nutrients, and neural factors extrinsic to the enterocyte. Dysregulation of this process has implications for health and disease, contributing to dyslipidemia and a potentially increased risk of atherosclerotic cardiovascular disease. There is increasing recognition that, besides intracellular regulation of CM assembly and secretion, regulation of postassembly pathways also plays important roles in CM secretion. This review examines recent advances in our understanding of the regulation of CM secretion in relation to mobilization of intestinal lipid stores, drawing particular attention to post-assembly regulatory mechanisms, including intracellular trafficking of triglycerides in enterocytes, CM mobilization from the lamina propria, and regulated transport of CM by intestinal lymphatics.
Collapse
Affiliation(s)
- Changting Xiao
- Changting Xiao, PhD, Princess Margaret Cancer Research Tower 10-203, Medical and Related Science Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada. fax: (416) 581-7487.
| | | | - Gary F. Lewis
- Correspondence Address correspondence to: Gary F. Lewis, MD, FRCPC, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada. fax: (416) 340-3314.
| |
Collapse
|
23
|
Duran-Ortiz S, Bell S, Kopchick JJ. Standardizing protocols dealing with growth hormone receptor gene disruption in mice using the Cre-lox system. Growth Horm IGF Res 2018; 42-43:52-57. [PMID: 30195091 PMCID: PMC9704043 DOI: 10.1016/j.ghir.2018.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Mice and humans with reduced growth hormone (GH) action before birth are conferred positive health- and life-span advantages. However, little work has been performed to study the effect of conditional disruption of GH action in adult life. With this as our objective, we sought to elucidate a reproducible protocol that allows generation of adult mice with a global disruption of the GH receptor (Ghr) gene, using the tamoxifen (TAM)-inducible Cre-lox system, driven by the ROSA26 enhancer/promoter. Here we report the optimum conditions for the gene disruption. DESIGN Six month old mice, homozygous for the ROSA26-Cre and the Ghr-floxed gene, were injected, once daily for five days with four distinct TAM doses (from 0.08 to 0.32 mg of TAM/g of body weight). To evaluate the most effective TAM dose that leads to global disruption of the GHR, mRNA expression of the Ghr and insulin growth factor-1 (Igf1) genes were assessed in liver, adipose tissue, kidney, and skeletal and cardiac muscles of experimental and control mice. Additionally, serum GH and IGF-1 levels were evaluated one month after TAM injections in both, TAM-treated and TAM-untreated control mice. RESULTS A dose of 0.25 mg of TAM/g of body weight was sufficient to significantly reduce the Ghr and Igf1 expression levels in the liver, fat, kidney, and skeletal and cardiac muscle of six-month old mice that are homozygous for the Ghr floxed gene and Cre recombinase. The reduction of the Ghr mRNA levels of the TAM-treated mice was variable between tissues, with liver and adipose tissue showing the lowest and skeletal and cardiac muscle the highest levels of Ghr gene expression when compared to control mice. Moreover, liver tissue showed the 'best' Ghr gene disruption, resulting in decreased total circulating IGF-1 levels while GH levels were increased versus control mice. CONCLUSION The results show that in mice at six months of age, a total TAM dose of at least 0.25 mg of TAM/g of body weight is needed for a global downregulation of Ghr gene expression with a regimen of 100 μL intraperitoneal (ip) TAM injections, once daily for five consecutive days. Furthermore, we found that even though this system does not achieve an equivalent disruption of the Ghr between tissues, the circulating IGF-1 is >95% decreased. This work helped to create adult mice with a global GHR knockdown.
Collapse
Affiliation(s)
- Silvana Duran-Ortiz
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Department of Biological Sciences, College of Arts and Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Molecular and Cellular Biology Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| | - Stephen Bell
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| | - John J Kopchick
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Molecular and Cellular Biology Program, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, United States.
| |
Collapse
|
24
|
Wang C, Chen W, Shen J. CXCR7 Targeting and Its Major Disease Relevance. Front Pharmacol 2018; 9:641. [PMID: 29977203 PMCID: PMC6021539 DOI: 10.3389/fphar.2018.00641] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
Chemokine receptors are the target of small peptide chemokines. They play various important roles in physiological and pathological processes. CXCR7, later renamed ACKR3, is a non-classical seven transmembrane-spanning receptor whose function as a signaling or non-signaling scavenger/decoy receptor is currently under debate. Even for cell signaling mechanisms, there has been inconsistency on whether CXCR7 couples to G-proteins or β-arrestins. Several reasons may contribute to this uncertainty or controversy. In one hand, it has been neglected that CXCR7 has more than five natural ligands and unfortunately, most of the prior research only studied SDF-1 (CXCL12) and/or I-TAC (CXCL11); on the other hand, there are mounting evidence supporting ligand and tissue bias for receptor signaling, but limited such information is available for CXCR7. In this review we focus on summarizing the endogenous and exogenous ligands of CXCR7, the main diseases related to CXCR7 and the biased signaling events happening on CXCR7. These three aspects of CXCR7 pharmacologic properties may explain why the contradicting opinions of whether CXCR7 is a signaling or non-signaling receptor exist. Further, potential new direction and perspective for the study of CXCR7 biology and pharmacology are highlighted.
Collapse
Affiliation(s)
- Chuan Wang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Weilin Chen
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| |
Collapse
|
25
|
González-Mariscal L, Raya-Sandino A, González-González L, Hernández-Guzmán C. Relationship between G proteins coupled receptors and tight junctions. Tissue Barriers 2018; 6:e1414015. [PMID: 29420165 DOI: 10.1080/21688370.2017.1414015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tight junctions (TJs) are sites of cell-cell adhesion, constituted by a cytoplasmic plaque of molecules linked to integral proteins that form a network of strands around epithelial and endothelial cells at the uppermost portion of the lateral membrane. TJs maintain plasma membrane polarity and form channels and barriers that regulate the transit of ions and molecules through the paracellular pathway. This structure that regulates traffic between the external milieu and the organism is affected in numerous pathological conditions and constitutes an important target for therapeutic intervention. Here, we describe how a wide array of G protein-coupled receptors that are activated by diverse stimuli including light, ions, hormones, peptides, lipids, nucleotides and proteases, signal through heterotrimeric G proteins, arrestins and kinases to regulate TJs present in the blood-brain barrier, the blood-retinal barrier, renal tubular cells, keratinocytes, lung and colon, and the slit diaphragm of the glomerulus.
Collapse
Affiliation(s)
- Lorenza González-Mariscal
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Arturo Raya-Sandino
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Laura González-González
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| | - Christian Hernández-Guzmán
- a Department of Physiology , Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav) , Mexico City , Mexico
| |
Collapse
|
26
|
Bernier-Latmani J, Petrova TV. Intestinal lymphatic vasculature: structure, mechanisms and functions. Nat Rev Gastroenterol Hepatol 2017; 14:510-526. [PMID: 28655884 DOI: 10.1038/nrgastro.2017.79] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian intestine is richly supplied with lymphatic vasculature, which has functions ranging from maintenance of interstitial fluid balance to transport of antigens, antigen-presenting cells, dietary lipids and fat-soluble vitamins. In this Review, we provide in-depth information concerning the organization and structure of intestinal lymphatics, the current view of their developmental origins, as well as molecular mechanisms of intestinal lymphatic patterning and maintenance. We will also discuss physiological aspects of intestinal lymph flow regulation and the known and emerging roles of intestinal lymphatic vessels in human diseases, such as IBD, infection and cancer.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Fundamental Oncology, Ludwig Institute for Cancer Research and Institute of Pathology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (UNIL), Chemin des Boveresses 155, Epalinges, Switzerland.,Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne, Route Cantonale 1015, Lausanne, Switzerland
| |
Collapse
|
27
|
Baluk P, Yao LC, Flores JC, Choi D, Hong YK, McDonald DM. Rapamycin reversal of VEGF-C-driven lymphatic anomalies in the respiratory tract. JCI Insight 2017; 2:90103. [PMID: 28814666 DOI: 10.1172/jci.insight.90103] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 07/06/2017] [Indexed: 12/17/2022] Open
Abstract
Lymphatic malformations are serious but poorly understood conditions that present therapeutic challenges. The goal of this study was to compare strategies for inducing regression of abnormal lymphatics and explore underlying mechanisms. CCSP-rtTA/tetO-VEGF-C mice, in which doxycycline regulates VEGF-C expression in the airway epithelium, were used as a model of pulmonary lymphangiectasia. After doxycycline was stopped, VEGF-C expression returned to normal, but lymphangiectasia persisted for at least 9 months. Inhibition of VEGFR-2/VEGFR-3 signaling, Notch, β-adrenergic receptors, or autophagy and antiinflammatory steroids had no noticeable effect on the amount or severity of lymphangiectasia. However, rapamycin inhibition of mTOR reduced lymphangiectasia by 76% within 7 days without affecting normal lymphatics. Efficacy of rapamycin was not increased by coadministration with the other agents. In prevention trials, rapamycin suppressed VEGF-C-driven mTOR phosphorylation and lymphatic endothelial cell sprouting and proliferation. However, in reversal trials, no lymphatic endothelial cell proliferation was present to block in established lymphangiectasia, and rapamycin did not increase caspase-dependent apoptosis. However, rapamycin potently suppressed Prox1 and VEGFR-3. These experiments revealed that lymphangiectasia is remarkably resistant to regression but is responsive to rapamycin, which rapidly reduces and normalizes the abnormal lymphatics without affecting normal lymphatics.
Collapse
Affiliation(s)
- Peter Baluk
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Li-Chin Yao
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Julio C Flores
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| | - Dongwon Choi
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Young-Kwon Hong
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Donald M McDonald
- Cardiovascular Research Institute, Department of Anatomy, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
28
|
Andrés-Guerrero V, García-Feijoo J, Konstas AG. Targeting Schlemm's Canal in the Medical Therapy of Glaucoma: Current and Future Considerations. Adv Ther 2017; 34:1049-1069. [PMID: 28349508 PMCID: PMC5427152 DOI: 10.1007/s12325-017-0513-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Indexed: 11/23/2022]
Abstract
Schlemm’s canal (SC) is a unique, complex vascular structure responsible for maintaining fluid homeostasis within the anterior segment of the eye by draining the excess of aqueous humour. In glaucoma, a heterogeneous group of eye disorders afflicting approximately 60 million individuals worldwide, the normal outflow of aqueous humour into SC is progressively hindered, leading to a gradual increase in outflow resistance, which gradually results in elevated intraocular pressure (IOP). By and large available antiglaucoma therapies do not target the site of the pathology (SC), but rather aim to decrease IOP by other mechanisms, either reducing aqueous production or by diverting aqueous flow through the unconventional outflow system. The present review first outlines our current understanding on the functional anatomy of SC. It then summarizes existing research on SC cell properties; first in the context of their role in glaucoma development/progression and then as a target of novel and emerging antiglaucoma therapies. Evidence from ongoing research efforts to develop effective antiglaucoma therapies targeting SC suggests that this could become a promising site of future therapeutic interventions.
Collapse
|
29
|
Davis RB, Kechele DO, Blakeney ES, Pawlak JB, Caron KM. Lymphatic deletion of calcitonin receptor-like receptor exacerbates intestinal inflammation. JCI Insight 2017; 2:e92465. [PMID: 28352669 DOI: 10.1172/jci.insight.92465] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lymphatics play a critical role in maintaining gastrointestinal homeostasis and in the absorption of dietary lipids, yet their roles in intestinal inflammation remain elusive. Given the increasing prevalence of inflammatory bowel disease, we investigated whether lymphatic vessels contribute to, or may be causative of, disease progression. We generated a mouse model with temporal and spatial deletion of the key lymphangiogenic receptor for the adrenomedullin peptide, calcitonin receptor-like receptor (Calcrl), and found that the loss of lymphatic Calcrl was sufficient to induce intestinal lymphangiectasia, characterized by dilated lacteals and protein-losing enteropathy. Upon indomethacin challenge, Calcrlfl/fl/Prox1-CreERT2 mice demonstrated persistent inflammation and failure to recover and thrive. The epithelium and crypts of Calcrlfl/fl/Prox1-CreERT2 mice exhibited exacerbated hallmarks of disease progression, and the lacteals demonstrated an inability to absorb lipids. Furthermore, we identified Calcrl/adrenomedullin signaling as an essential upstream regulator of the Notch pathway, previously shown to be critical for intestinal lacteal maintenance and junctional integrity. In conclusion, lymphatic insufficiency and lymphangiectasia caused by loss of lymphatic Calcrl exacerbates intestinal recovery following mucosal injury and underscores the importance of lymphatic function in promoting recovery from intestinal inflammation.
Collapse
|
30
|
Isa HM, Al-Arayedh GG, Mohamed AM. Intestinal lymphangiectasia in children. A favorable response to dietary modifications. Saudi Med J 2017; 37:199-204. [PMID: 26837404 PMCID: PMC4800920 DOI: 10.15537/smj.2016.2.13232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Intestinal lymphangiectasia (IL) is a rare disease characterized by dilatation of intestinal lymphatics. It can be classified as primary or secondary according to the underlying etiology. The clinical presentations of IL are pitting edema, chylous ascites, pleural effusion, acute appendicitis, diarrhea, lymphocytopenia, malabsorption, and intestinal obstruction. The diagnosis is made by intestinal endoscopy and biopsies. Dietary modification is the mainstay in the management of IL with a variable response. Here we report 2 patients with IL in Bahrain who showed positive response to dietary modification.
Collapse
Affiliation(s)
- Hasan M Isa
- Department of Pediatrics, Salmaniya Medical Complex, Manama, Bahrain. E-mail.
| | | | | |
Collapse
|
31
|
Kechele DO, Dunworth WP, Trincot CE, Wetzel-Strong SE, Li M, Ma H, Liu J, Caron KM. Endothelial Restoration of Receptor Activity-Modifying Protein 2 Is Sufficient to Rescue Lethality, but Survivors Develop Dilated Cardiomyopathy. Hypertension 2016; 68:667-77. [PMID: 27402918 DOI: 10.1161/hypertensionaha.116.07191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
RAMPs (receptor activity-modifying proteins) serve as oligomeric modulators for numerous G-protein-coupled receptors, yet elucidating the physiological relevance of these interactions remains complex. Ramp2 null mice are embryonic lethal, with cardiovascular developmental defects similar to those observed in mice null for canonical adrenomedullin/calcitonin receptor-like receptor signaling. We aimed to genetically rescue the Ramp2(-/-) lethality in order to further delineate the spatiotemporal requirements for RAMP2 function during development and thereby enable the elucidation of an expanded repertoire of RAMP2 functions with family B G-protein-coupled receptors in adult homeostasis. Endothelial-specific expression of Ramp2 under the VE-cadherin promoter resulted in the partial rescue of Ramp2(-/-) mice, demonstrating that endothelial expression of Ramp2 is necessary and sufficient for survival. The surviving Ramp2(-/-) Tg animals lived to adulthood and developed spontaneous hypotension and dilated cardiomyopathy, which was not observed in adult mice lacking calcitonin receptor-like receptor. Yet, the hearts of Ramp2(-/-) Tg animals displayed dysregulation of family B G-protein-coupled receptors, including parathyroid hormone and glucagon receptors, as well as their downstream signaling pathways. These data suggest a functional requirement for RAMP2 in the modulation of additional G-protein-coupled receptor pathways in vivo, which is critical for sustained cardiovascular homeostasis. The cardiovascular importance of RAMP2 extends beyond the endothelium and canonical adrenomedullin/calcitonin receptor-like receptor signaling, in which future studies could elucidate novel and pharmacologically tractable pathways for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Daniel O Kechele
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - William P Dunworth
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Claire E Trincot
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Sarah E Wetzel-Strong
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Manyu Li
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Hong Ma
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Jiandong Liu
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Kathleen M Caron
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill.
| |
Collapse
|
32
|
Klein KR, Caron KM. Adrenomedullin in lymphangiogenesis: from development to disease. Cell Mol Life Sci 2015; 72:3115-26. [PMID: 25953627 PMCID: PMC11113374 DOI: 10.1007/s00018-015-1921-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/01/2015] [Accepted: 04/29/2015] [Indexed: 12/01/2022]
Abstract
Over the past decade, we have begun to appreciate that the lymphatic vascular system does more than simply return plasma back into the circulatory system and, in fact, contributes to a wide variety of normal and disease states. For this reason, much research has been devoted to understanding how lymphatic vessels form and function, with a particular interest in which molecules contribute to lymphatic vessel growth and maintenance. In the following review, we focus on a potent lymphangiogenic factor, adrenomedullin, and its known roles in lymphangiogenesis, lymphatic function, and human lymphatic disease. As one of the first, pharmacologically tractable G protein-coupled receptor pathways characterized in lymphatic endothelial cells, the continued study of adrenomedullin effects on the lymphatic system may open new avenues for the modulation of lymphatic growth and function in a variety of lymphatic-related diseases that currently have few treatments.
Collapse
Affiliation(s)
- Klara R. Klein
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, CB # 7545, 6312B MBRB, 111 Mason Farm Road, Chapel Hill, NC 27599 USA
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, CB # 7545, 6312B MBRB, 111 Mason Farm Road, Chapel Hill, NC 27599 USA
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599 USA
| |
Collapse
|
33
|
Karpinich NO, Caron KM. Gap junction coupling is required for tumor cell migration through lymphatic endothelium. Arterioscler Thromb Vasc Biol 2015; 35:1147-55. [PMID: 25792452 DOI: 10.1161/atvbaha.114.304752] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/06/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The lymphatic vasculature is a well-established conduit for metastasis, but the mechanisms by which tumor cells interact with lymphatic endothelial cells (LECs) to facilitate escape remain poorly understood. Elevated levels of the lymphangiogenic peptide adrenomedullin are found in many tumors, and we previously characterized that its expression is necessary for lymphatic vessel growth within both tumors and sentinel lymph nodes and for distant metastasis. APPROACH AND RESULTS This study used a tumor cell-LEC coculture system to identify a series of adrenomedullin-induced events that facilitated transendothelial migration of the tumor cells through a lymphatic monolayer. High levels of adrenomedullin expression enhanced adhesion of tumor cells to LECs, and further analysis revealed that adrenomedullin promoted gap junction coupling between LECs as evidenced by spread of Lucifer yellow dye. Adrenomedullin also enhanced heterocellular gap junction coupling as demonstrated by Calcein dye transfer from tumor cells into LECs. This connexin-mediated gap junction intercellular communication was necessary for tumor cells to undergo transendothelial migration because pharmacological blockade of this heterocellular communication prevented the ability of tumor cells to transmigrate through the lymphatic monolayer. In addition, treatment of LECs with adrenomedullin caused nuclear translocation of β-catenin, a component of endothelial cell junctions, causing an increase in transcription of the downstream target gene C-MYC. Importantly, blockade of gap junction intercellular communication prevented β-catenin nuclear translocation. CONCLUSIONS Our findings indicate that maintenance of cell-cell communication is necessary to facilitate a cascade of events that lead to tumor cell migration through the lymphatic endothelium.
Collapse
Affiliation(s)
- Natalie O Karpinich
- From the Department of Cell Biology and Physiology (N.O.K., K.M.C.) and Department of Genetics (K.M.C.), University of North Carolina at Chapel Hill
| | - Kathleen M Caron
- From the Department of Cell Biology and Physiology (N.O.K., K.M.C.) and Department of Genetics (K.M.C.), University of North Carolina at Chapel Hill.
| |
Collapse
|
34
|
Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Mägi R, Strawbridge RJ, Pers TH, Fischer K, Justice AE, Workalemahu T, Wu JMW, Buchkovich ML, Heard-Costa NL, Roman TS, Drong AW, Song C, Gustafsson S, Day FR, Esko T, Fall T, Kutalik Z, Luan J, Randall JC, Scherag A, Vedantam S, Wood AR, Chen J, Fehrmann R, Karjalainen J, Kahali B, Liu CT, Schmidt EM, Absher D, Amin N, Anderson D, Beekman M, Bragg-Gresham JL, Buyske S, Demirkan A, Ehret GB, Feitosa MF, Goel A, Jackson AU, Johnson T, Kleber ME, Kristiansson K, Mangino M, Mateo Leach I, Medina-Gomez C, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Stančáková A, Ju Sung Y, Tanaka T, Teumer A, Van Vliet-Ostaptchouk JV, Yengo L, Zhang W, Albrecht E, Ärnlöv J, Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Blüher M, Böhringer S, Bonnet F, Böttcher Y, Bruinenberg M, Carba DB, Caspersen IH, Clarke R, Warwick Daw E, Deelen J, Deelman E, Delgado G, Doney ASF, Eklund N, Erdos MR, Estrada K, Eury E, Friedrich N, Garcia ME, Giedraitis V, Gigante B, Go AS, Golay A, Grallert H, Grammer TB, Gräßler J, Grewal J, Groves CJ, Haller T, Hallmans G, Hartman CA, Hassinen M, Hayward C, Heikkilä K, Herzig KH, Helmer Q, Hillege HL, Holmen O, Hunt SC, Isaacs A, Ittermann T, James AL, Johansson I, Juliusdottir T, Kalafati IP, Kinnunen L, Koenig W, Kooner IK, Kratzer W, Lamina C, Leander K, Lee NR, Lichtner P, Lind L, Lindström J, Lobbens S, Lorentzon M, Mach F, Magnusson PKE, Mahajan A, McArdle WL, Menni C, Merger S, Mihailov E, Milani L, Mills R, Moayyeri A, Monda KL, Mooijaart SP, Mühleisen TW, Mulas A, Müller G, Müller-Nurasyid M, Nagaraja R, Nalls MA, Narisu N, Glorioso N, Nolte IM, Olden M, Rayner NW, Renstrom F, Ried JS, Robertson NR, Rose LM, Sanna S, Scharnagl H, Scholtens S, Sennblad B, Seufferlein T, Sitlani CM, Vernon Smith A, Stirrups K, Stringham HM, Sundström J, Swertz MA, Swift AJ, Syvänen AC, Tayo BO, Thorand B, Thorleifsson G, Tomaschitz A, Troffa C, van Oort FVA, Verweij N, Vonk JM, Waite LL, Wennauer R, Wilsgaard T, Wojczynski MK, Wong A, Zhang Q, Hua Zhao J, Brennan EP, Choi M, Eriksson P, Folkersen L, Franco-Cereceda A, Gharavi AG, Hedman ÅK, Hivert MF, Huang J, Kanoni S, Karpe F, Keildson S, Kiryluk K, Liang L, Lifton RP, Ma B, McKnight AJ, McPherson R, Metspalu A, Min JL, Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Olsson C, Perry JRB, Reinmaa E, Salem RM, Sandholm N, Schadt EE, Scott RA, Stolk L, Vallejo EE, Westra HJ, Zondervan KT, Amouyel P, Arveiler D, Bakker SJL, Beilby J, Bergman RN, Blangero J, Brown MJ, Burnier M, Campbell H, Chakravarti A, Chines PS, Claudi-Boehm S, Collins FS, Crawford DC, Danesh J, de Faire U, de Geus EJC, Dörr M, Erbel R, Eriksson JG, Farrall M, Ferrannini E, Ferrières J, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gieger C, Gudnason V, Haiman CA, Harris TB, Hattersley AT, Heliövaara M, Hicks AA, Hingorani AD, Hoffmann W, Hofman A, Homuth G, Humphries SE, Hyppönen E, Illig T, Jarvelin MR, Johansen B, Jousilahti P, Jula AM, Kaprio J, Kee F, Keinanen-Kiukaanniemi SM, Kooner JS, Kooperberg C, Kovacs P, Kraja AT, Kumari M, Kuulasmaa K, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, Lehtimäki T, Lyssenko V, Männistö S, Marette A, Matise TC, McKenzie CA, McKnight B, Musk AW, Möhlenkamp S, Morris AD, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Palmer LJ, Penninx BW, Peters A, Pramstaller PP, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker PM, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schwarz PEH, Shuldiner AR, Staessen JA, Steinthorsdottir V, Stolk RP, Strauch K, Tönjes A, Tremblay A, Tremoli E, Vohl MC, Völker U, Vollenweider P, Wilson JF, Witteman JC, Adair LS, Bochud M, Boehm BO, Bornstein SR, Bouchard C, Cauchi S, Caulfield MJ, Chambers JC, Chasman DI, Cooper RS, Dedoussis G, Ferrucci L, Froguel P, Grabe HJ, Hamsten A, Hui J, Hveem K, Jöckel KH, Kivimaki M, Kuh D, Laakso M, Liu Y, März W, Munroe PB, Njølstad I, Oostra BA, Palmer CNA, Pedersen NL, Perola M, Pérusse L, Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D, Sinisalo J, Eline Slagboom P, Snieder H, Spector TD, Thorsteinsdottir U, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der Harst P, Veronesi G, Walker M, Wareham NJ, Watkins H, Wichmann HE, Abecasis GR, Assimes TL, Berndt SI, Boehnke M, Borecki IB, Deloukas P, Franke L, Frayling TM, Groop LC, Hunter DJ, Kaplan RC, O’Connell JR, Qi L, Schlessinger D, Strachan DP, Stefansson K, van Duijn CM, Willer CJ, Visscher PM, Yang J, Hirschhorn JN, Carola Zillikens M, McCarthy MI, Speliotes EK, North KE, Fox CS, Barroso I, Franks PW, Ingelsson E, Heid IM, Loos RJF, Cupples LA, Morris AP, Lindgren CM, Mohlke KL. New genetic loci link adipose and insulin biology to body fat distribution. Nature 2015; 518:187-196. [PMID: 25673412 PMCID: PMC4338562 DOI: 10.1038/nature14132] [Citation(s) in RCA: 1100] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/02/2014] [Indexed: 12/17/2022]
Abstract
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Collapse
|
35
|
Gonzalez RJ, Lane MC, Wagner NJ, Weening EH, Miller VL. Dissemination of a highly virulent pathogen: tracking the early events that define infection. PLoS Pathog 2015; 11:e1004587. [PMID: 25611317 PMCID: PMC4303270 DOI: 10.1371/journal.ppat.1004587] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/23/2014] [Indexed: 11/19/2022] Open
Abstract
The series of events that occurs immediately after pathogen entrance into the body is largely speculative. Key aspects of these events are pathogen dissemination and pathogen interactions with the immune response as the invader moves into deeper tissues. We sought to define major events that occur early during infection of a highly virulent pathogen. To this end, we tracked early dissemination of Yersinia pestis, a highly pathogenic bacterium that causes bubonic plague in mammals. Specifically, we addressed two fundamental questions: (1) do the bacteria encounter barriers in disseminating to draining lymph nodes (LN), and (2) what mechanism does this nonmotile bacterium use to reach the LN compartment, as the prevailing model predicts trafficking in association with host cells. Infection was followed through microscopy imaging in addition to assessing bacterial population dynamics during dissemination from the skin. We found and characterized an unexpected bottleneck that severely restricts bacterial dissemination to LNs. The bacteria that do not pass through this bottleneck are confined to the skin, where large numbers of neutrophils arrive and efficiently control bacterial proliferation. Notably, bottleneck formation is route dependent, as it is abrogated after subcutaneous inoculation. Using a combination of approaches, including microscopy imaging, we tested the prevailing model of bacterial dissemination from the skin into LNs and found no evidence of involvement of migrating phagocytes in dissemination. Thus, early stages of infection are defined by a bottleneck that restricts bacterial dissemination and by neutrophil-dependent control of bacterial proliferation in the skin. Furthermore, and as opposed to current models, our data indicate an intracellular stage is not required by Y. pestis to disseminate from the skin to draining LNs. Because our findings address events that occur during early encounters of pathogen with the immune response, this work can inform efforts to prevent or control infection. The earliest stage of any infection takes place when a pathogen enters the body (inoculation) at an initial site of contact. From this point, the pathogen can spread into deeper tissues where the pathogen itself and the immune responses against it cause disease. Very little is known about the events that follow inoculation and how pathogens move from the initial site of contact into deeper tissues. A better understanding of this process can potentially result in strategies to control or prevent disease. We studied the highly infectious bacterium that causes bubonic plague (Yersinia pestis) and how it spreads inside the body, from the skin into lymph nodes. We found that movement from the skin is highly restricted as only a small fraction of the bacteria that are deposited into this tissue are found in lymph nodes. While it is currently thought that Y. pestis spreads from the skin inside trafficking cells of the innate immune response, our work suggests these cells are not required for the bacteria to move into lymph nodes. Our findings can influence vaccine development efforts as these strategies are based on the study of early pathogen interactions with cells of the immune response.
Collapse
Affiliation(s)
- Rodrigo J. Gonzalez
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - M. Chelsea Lane
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nikki J. Wagner
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Eric H. Weening
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Virginia L. Miller
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
36
|
Koyama T, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Shindo T. Adrenomedullin-RAMP2 System in Vascular Endothelial Cells. J Atheroscler Thromb 2015; 22:647-53. [DOI: 10.5551/jat.29967] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Takayuki Sakurai
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Akiko Kamiyoshi
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Yuka Ichikawa-Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Hisaka Kawate
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| | - Takayuki Shindo
- Department of Cardiovascular Research, Shinshu University Graduate School of Medicine
| |
Collapse
|
37
|
Yamauchi A, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Kawate H, Igarashi K, Toriyama Y, Tanaka M, Liu T, Xian X, Imai A, Zhai L, Owa S, Arai T, Shindo T. Functional differentiation of RAMP2 and RAMP3 in their regulation of the vascular system. J Mol Cell Cardiol 2014; 77:73-85. [DOI: 10.1016/j.yjmcc.2014.09.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 01/08/2023]
|
38
|
Klein KR, Karpinich NO, Espenschied ST, Willcockson HH, Dunworth WP, Hoopes SL, Kushner EJ, Bautch VL, Caron KM. Decoy receptor CXCR7 modulates adrenomedullin-mediated cardiac and lymphatic vascular development. Dev Cell 2014; 30:528-40. [PMID: 25203207 DOI: 10.1016/j.devcel.2014.07.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/06/2014] [Accepted: 07/14/2014] [Indexed: 01/08/2023]
Abstract
Atypical 7-transmembrane receptors, often called decoy receptors, act promiscuously as molecular sinks to regulate ligand bioavailability and consequently temper the signaling of canonical G protein-coupled receptor (GPCR) pathways. Loss of mammalian CXCR7, the most recently described decoy receptor, results in postnatal lethality due to aberrant cardiac development and myocyte hyperplasia. Here, we provide the molecular underpinning for this proliferative phenotype by demonstrating that the dosage and signaling of adrenomedullin (Adm, gene; AM, protein)-a mitogenic peptide hormone required for normal cardiovascular development-is tightly controlled by CXCR7. To this end, Cxcr7(-/-) mice exhibit gain-of-function cardiac and lymphatic vascular phenotypes that can be reversed upon genetic depletion of adrenomedullin ligand. In addition to identifying a biological ligand accountable for the phenotypes of Cxcr7(-/-) mice, these results reveal a previously underappreciated role for decoy receptors as molecular rheostats in controlling the timing and extent of GPCR-mediated cardiac and vascular development.
Collapse
Affiliation(s)
- Klara R Klein
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Natalie O Karpinich
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott T Espenschied
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Helen H Willcockson
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - William P Dunworth
- Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Samantha L Hoopes
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Erich J Kushner
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria L Bautch
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
39
|
Karpinich NO, Caron KM. Schlemm's canal: more than meets the eye, lymphatics in disguise. J Clin Invest 2014; 124:3701-3. [PMID: 25061871 PMCID: PMC4151199 DOI: 10.1172/jci77507] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Schlemm's canal (SC) is a unique vascular structure that functions to maintain fluid homeostasis by draining aqueous humor from the eye into the systemic circulation. The endothelium lining the inner wall of SC has both blood and lymphatic vascular characteristics, thus prompting exploration of the development and regulation of this unique channel. In this issue of the JCI, back-to-back papers by Aspelund et al. and Park et al. detail the mechanisms of SC development, which includes a lymphatic reprogramming that is necessary to maintain proper function. Furthermore, both groups exploit the lymph-like qualities of this canal: they identify VEGF-C as a potential therapeutic for glaucoma and suggest that expression of PROX1, a marker of lymphatic fate, could also serve as a biosensor for monitoring SC integrity. These studies provide substantial insight into the molecular and cellular pathways that govern SC development and reveal that ocular pathology is associated with deregulation of the lymph-like characteristics of SC.
Collapse
Affiliation(s)
- Natalie O. Karpinich
- Department of Cell Biology and Physiology and Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kathleen M. Caron
- Department of Cell Biology and Physiology and Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
40
|
Li M, Schwerbrock NMJ, Lenhart PM, Fritz-Six KL, Kadmiel M, Christine KS, Kraus DM, Espenschied ST, Willcockson HH, Mack CP, Caron KM. Fetal-derived adrenomedullin mediates the innate immune milieu of the placenta. J Clin Invest 2013; 123:2408-20. [PMID: 23635772 DOI: 10.1172/jci67039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/22/2013] [Indexed: 12/11/2022] Open
Abstract
The remodeling of maternal uterine spiral arteries (SAs) is an essential process for ensuring low-resistance, high-capacitance blood flow to the growing fetus. Failure of SAs to remodel is causally associated with preeclampsia, a common and life-threatening complication of pregnancy that is harmful to both mother and fetus. Here, using both loss-of-function and gain-of-function genetic mouse models, we show that expression of the pregnancy-related peptide adrenomedullin (AM) by fetal trophoblast cells is necessary and sufficient to promote appropriate recruitment and activation of maternal uterine NK (uNK) cells to the placenta and ultimately facilitate remodeling of maternal SAs. Placentas that lacked either AM or its receptor exhibited reduced fetal vessel branching in the labyrinth, failed SA remodeling and reendothelialization, and markedly reduced numbers of maternal uNK cells. In contrast, overexpression of AM caused a reversal of these phenotypes with a concomitant increase in uNK cell content in vivo. Moreover, AM dose-dependently stimulated the secretion of numerous chemokines, cytokines, and MMPs from uNK cells, which in turn induced VSMC apoptosis. These data identify an essential function for fetal-derived factors in the maternal vascular adaptation to pregnancy and underscore the importance of exploring AM as a biomarker and therapeutic agent for preeclampsia.
Collapse
Affiliation(s)
- Manyu Li
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Blei F. Update December 2012. Lymphat Res Biol 2012. [DOI: 10.1089/lrb.2012.1042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|