1
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
2
|
Sitnikov DS, Ilina IV, Revkova VA, Rodionov SA, Gurova SA, Shatalova RO, Kovalev AV, Ovchinnikov AV, Chefonov OV, Konoplyannikov MA, Kalsin VA, Baklaushev VP. Effects of high intensity non-ionizing terahertz radiation on human skin fibroblasts. BIOMEDICAL OPTICS EXPRESS 2021; 12:7122-7138. [PMID: 34858704 PMCID: PMC8606137 DOI: 10.1364/boe.440460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 05/08/2023]
Abstract
For the first time, the data have been obtained on the effects of high-intensity terahertz (THz) radiation (with the intensity of 30 GW/cm2, electric field strength of 3.5 MV/cm) on human skin fibroblasts. A quantitative estimation of the number of histone Н2АХ foci of phosphorylation was performed. The number of foci per cell was studied depending on the irradiation time, as well as on the THz pulse energy. The performed studies have shown that the appearance of the foci is not related to either the oxidative stress (the cells preserve their morphology, cytoskeleton structure, and the reactive oxygen species content does not exceed the control values), or the thermal effect of THz radiation. The prolonged irradiation of fibroblasts also did not result in a decrease of their proliferative index.
Collapse
Affiliation(s)
- Dmitry S. Sitnikov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Inna V. Ilina
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Veronika A. Revkova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Sergey A. Rodionov
- N. N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Svetlana A. Gurova
- National Research nuclear University MEPhI Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia
| | - Rimma O. Shatalova
- National Research nuclear University MEPhI Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia
| | - Alexey V. Kovalev
- N. N. Priorov National Medical Research Center of Traumatology and Orthopedics, Moscow, Russia
| | - Andrey V. Ovchinnikov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Chefonov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail A. Konoplyannikov
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir A. Kalsin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, Moscow, Russia
| |
Collapse
|
3
|
Zaharieva E, Sasatani M, Matsumoto R, Kamiya K. Formation of DNA Damage Foci in Human and Mouse Primary Fibroblasts Chronically Exposed to Gamma Radiation at 0.1 mGy/min. Radiat Res 2021; 196:40-54. [PMID: 33857310 DOI: 10.1667/rade-20-00059.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
Low-dose-rate radiation exposures and their associated cancer risk are an important concern for radiation protection today. Nevertheless, there is almost no data concerning DNA damage at dose rates below 0.1 mGy/min. In this study, we investigated the formation of DNA damage repair foci under chronic low-dose-rate irradiation relative to acute high-dose-rate irradiation and assessed the magnitude of the dose-rate effect. Four human and four mouse normal fibroblast cell models from different organs were subjected to gamma irradiation at 0.096 mGy/min or 0.81 Gy/min, and dose-response curves were established for the dose range from 0.1 to 0.8 Gy. The results indicate that prolonged low-dose-rate exposures cause modestly increased levels of DNA repair foci, with a strongly supralinear dose-response relationship, where 40-70% of the radiation effect at 1 Gy was already present at the total dose of 0.1 Gy. Thus, compared to acute irradiation, low-dose-rate exposure was 6-9 times less efficient at a total dose of 0.1 Gy, and 10-20 times less efficient at 1 Gy. Comparison between cell models revealed a certain correlation between the presence of persistent, above-background foci at 48 h after irradiation and the sensitivity to low-dose-rate radiation, suggesting that repair capacity plays an important role in the cellular response to chronic irradiation. Given the findings reported here, we propose that establishing detailed dose-response curves and accounting for the repair rates of different cell models are essential steps in elucidating dose-rate effects.
Collapse
Affiliation(s)
- Elena Zaharieva
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Ryoga Matsumoto
- Graduate School of Medicine, Hiroshima University, Hiroshima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
4
|
Osipov AN, Grekhova A, Pustovalova M, Ozerov IV, Eremin P, Vorobyeva N, Lazareva N, Pulin A, Zhavoronkov A, Roumiantsev S, Klokov D, Eremin I. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation. Oncotarget 2016; 6:26876-85. [PMID: 26337087 PMCID: PMC4694959 DOI: 10.18632/oncotarget.4946] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
Molecular and cellular responses to protracted ionizing radiation exposures are poorly understood. Using immunofluorescence microscopy, we studied the kinetics of DNA repair foci formation in normal human fibroblasts exposed to X-rays at a dose rate of 4.5 mGy/min for up to 6 h. We showed that both the number of γH2AX foci and their integral fluorescence intensity grew linearly with time of irradiation up to 2 h. A plateau was observed between 2 and 6 h of exposure, indicating a state of balance between formation and repair of DNA double-strand breaks. In contrast, the number and intensity of foci formed by homologous recombination protein RAD51 demonstrated a continuous increase during 6 h of irradiation. We further showed that the enhancement of the homologous recombination repair was not due to redistribution of cell cycle phases. Our results indicate that continuous irradiation of normal human cells triggers DNA repair responses that are different from those elicited after acute irradiation. The observed activation of the error-free homologous recombination DNA double-strand break repair pathway suggests compensatory adaptive mechanisms that may help alleviate long-term biological consequences and could potentially be utilized both in radiation protection and medical practices.
Collapse
Affiliation(s)
- Andreyan N Osipov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.,Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Anna Grekhova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Margarita Pustovalova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ivan V Ozerov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Petr Eremin
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Natalia Vorobyeva
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia
| | - Natalia Lazareva
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Andrey Pulin
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Alex Zhavoronkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.,Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD 21218, USA.,The Biogerontology Research Foundation, BGRF, London W1J 5NE, UK
| | - Sergey Roumiantsev
- Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Chalk River, ON K0J1P0, Canada
| | - Ilya Eremin
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| |
Collapse
|
5
|
Chatterjee M, Ben-Josef E, Thomas DG, Morgan MA, Zalupski MM, Khan G, Andrew Robinson C, Griffith KA, Chen CS, Ludwig T, Bekaii-Saab T, Chakravarti A, Williams TM. Caveolin-1 is Associated with Tumor Progression and Confers a Multi-Modality Resistance Phenotype in Pancreatic Cancer. Sci Rep 2015; 5:10867. [PMID: 26065715 PMCID: PMC4464260 DOI: 10.1038/srep10867] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/30/2015] [Indexed: 12/20/2022] Open
Abstract
Caveolin-1 (Cav-1) is a 21 kDa protein enriched in caveolae, and has been implicated in oncogenic cell transformation, tumorigenesis, and metastasis. We explored roles for Cav-1 in pancreatic cancer (PC) prognostication, tumor progression, resistance to therapy, and whether targeted downregulation could lead to therapeutic sensitization. Cav-1 expression was assessed in cell lines, mouse models, and patient samples, and knocked down in order to compare changes in proliferation, invasion, migration, response to chemotherapy and radiation, and tumor growth. We found Cav-1 is overexpressed in human PC cell lines, mouse models, and human pancreatic tumors, and is associated with worse tumor grade and clinical outcomes. In PC cell lines, disruption/depletion of caveolae/Cav-1 reduces proliferation, colony formation, and invasion. Radiation and chemotherapy up-regulate Cav-1 expression, while Cav-1 depletion induces both chemosensitization and radiosensitization through altered apoptotic and DNA repair signaling. In vivo, Cav-1 depletion significantly attenuates tumor initiation and growth. Finally, Cav-1 depletion leads to altered JAK/STAT, JNK, and Src signaling in PC cells. Together, higher Cav-1 expression is correlated with worse outcomes, is essential for tumor growth and invasion (both in vitro and in vivo), is responsible for promoting resistance to therapies, and may serve as a prognostic/predictive biomarker and target in PC.
Collapse
Affiliation(s)
- Moumita Chatterjee
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Edgar Ben-Josef
- Hospital of the University of Pennsylvania, Philadelphia, PA, 19104
| | | | | | | | - Gazala Khan
- Henry Ford Hospital System, West Bloomfield, MI, 48322
| | - Charles Andrew Robinson
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | | | - Ching-Shih Chen
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Thomas Ludwig
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Tanios Bekaii-Saab
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Arnab Chakravarti
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210
| |
Collapse
|
6
|
Changes in the number of double-strand DNA breaks in Chinese hamster V79 cells exposed to γ-radiation with different dose rates. Int J Mol Sci 2013; 14:13719-26. [PMID: 23880845 PMCID: PMC3742213 DOI: 10.3390/ijms140713719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 06/15/2013] [Accepted: 06/19/2013] [Indexed: 12/12/2022] Open
Abstract
A comparative investigation of the induction of double-strand DNA breaks (DSBs) in the Chinese hamster V79 cells by γ-radiation at dose rates of 1, 10 and 400 mGy/min (doses ranged from 0.36 to 4.32 Gy) was performed. The acute radiation exposure at a dose rate of 400 mGy/min resulted in the linear dose-dependent increase of the γ-H2AX foci formation. The dose-response curve for the acute exposure was well described by a linear function y = 1.22 + 19.7x, where "y" is an average number of γ-H2AX foci per a cell and "x" is the absorbed dose (Gy). The dose rate reduction down to 10 mGy/min lead to a decreased number of γ-H2AX foci, as well as to a change of the dose-response relationship. Thus, the foci number up to 1.44 Gy increased and reached the "plateau" area between 1.44 and 4.32 Gy. There was only a slight increase of the γ-H2AX foci number (up to 7) in cells after the protracted exposure (up to 72 h) to ionizing radiation at a dose rate of 1 mGy/min. Similar effects of the varying dose rates were obtained when DNA damage was assessed using the comet assay. In general, our results show that the reduction of the radiation dose rate resulted in a significant decrease of DSBs per cell per an absorbed dose.
Collapse
|