1
|
Chen H, Haddadi N, Zhu X, Hatoum D, Chen S, Nassif NT, Lin Y, McGowan EM. Expression Profile of Sphingosine Kinase 1 Isoforms in Human Cancer Tissues and Cells: Importance and Clinical Relevance of the Neglected 1b-Isoform. JOURNAL OF ONCOLOGY 2022; 2022:2250407. [PMID: 36532885 PMCID: PMC9750787 DOI: 10.1155/2022/2250407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 09/28/2023]
Abstract
Background Overexpression of sphingosine kinase 1 (SphK1) is casually associated with many types of cancer, and inhibitors of SphK1 sensitize tumors to chemotherapy. SphK1 is expressed as two major isoforms, SphK1a and SphK1b. To date, no information has been reported on the SphK1 isoform expression profile and its clinical relevance. Objective The objective is to examine the expression profile of the SphK1a and SPhK1b isoforms in human cancer and noncancer tissues and cell lines and explore their clinical relevance. Methods We used PCR to qualitatively examine the expression profile of these two isoforms in breast, liver, and prostate cancer tissues plus paired adjacent tissues and in 11 cancer and normal cell lines (breast, cervical, bone, prostate, colon, brain, mesothelioma tumor and benign, and human kidney cells). Results We found that SphK1a was ubiquitously expressed in all cancer cells and tissues tested; in contrast, SphK1b was only expressed in selective cell types in breast, prostate, and lung cancer. Conclusions Our data suggest that SphK1a is important for generic SphK1/S1P functions, and SphK1b mediates specialized and/or unique pathways in a specific type of tissue and could be a biomarker for cancer. This discovery is important for future SphK1-related cancer research and may have clinical implications in drug development associated with SphK1-directed cancer treatment.
Collapse
Affiliation(s)
- Hongjie Chen
- Department of Traditional Chinese Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nahal Haddadi
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Xiaofeng Zhu
- Department of Transplant Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Diana Hatoum
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
- Public Health and College of Arts and Sciences, Phoenicia University, Daoudiye, Lebanon
| | - Size Chen
- Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Najah T. Nassif
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
| | - Yiguang Lin
- Department of Traditional Chinese Medicine, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
- Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Eileen M. McGowan
- School of Life Sciences, University of Technology Sydney, Broadway, NSW, Australia
- Central Laboratory, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precision Therapy, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Anobile DP, Montenovo G, Pecoraro C, Franczak M, Ait Iddouch W, Peters GJ, Riganti C, Giovannetti E. Splicing deregulation, microRNA and Notch aberrations: fighting the three-headed dog to overcome drug resistance in malignant mesothelioma. Expert Rev Clin Pharmacol 2022; 15:305-322. [PMID: 35533249 DOI: 10.1080/17512433.2022.2074835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Malignant mesothelioma (MMe) is an aggressive rare cancer of the mesothelium, associated with asbestos exposure. MMe is currently an incurable disease at all stages mainly due to resistance to treatments. It is therefore necessary to elucidate key mechanisms underlying chemoresistance, in an effort to exploit them as novel therapeutic targets. AREAS COVERED Chemoresistance is frequently elicited by microRNA (miRNA) alterations and splicing deregulations. Indeed, several miRNAs, such as miR-29c, have been shown to exert oncogenic or oncosuppressive activity. Alterations in the splicing machinery might also be involved in chemoresistance. Moreover, the Notch signaling pathway, often deregulated in MMe, plays a key role in cancer stem cells formation and self-renewal, leading to drug resistance and relapses. EXPERT OPINION The prognosis of MMe in patients varies among different tumors and patient characteristics, and novel biomarkers and therapies are warranted. This work aims at giving an overview of MMe, with a special focus on state-of-the-art treatments and new therapeutic strategies against vulnerabilities emerging from studies on epigenetics factors. Besides, this review is also the first to discuss the interplay between miRNAs and alternative splicing as well as the role of Notch as new promising frontiers to overcome drug resistance in MMe.
Collapse
Affiliation(s)
- Dario P Anobile
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Oncology, University of Torino, 10043 Orbassano, Italy
| | - Giulia Montenovo
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Camilla Pecoraro
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Dipartimento Di Scienze E Tecnologie Biologiche Chimiche E Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Marika Franczak
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Widad Ait Iddouch
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Chiara Riganti
- Department of Oncology, University of Torino, 10043 Orbassano, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, 1081HV Amsterdam, Netherlands.,Fondazione Pisana per la Scienza Pisa, 56100 Pisa, Italy
| |
Collapse
|
3
|
Tian T, Yao D, Zheng L, Zhou Z, Duan Y, Liu B, Wang P, Li Y. Sphingosine kinase 1 regulates HMGB1 translocation by directly interacting with calcium/calmodulin protein kinase II-δ in sepsis-associated liver injury. Cell Death Dis 2020; 11:1037. [PMID: 33281190 PMCID: PMC7719708 DOI: 10.1038/s41419-020-03255-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023]
Abstract
Previously, we confirmed that sphingosine kinase 1 (SphK1) inhibition improves sepsis-associated liver injury. High-mobility group box 1 (HMGB1) translocation participates in the development of acute liver failure. However, little information is available on the association between SphK1 and HMGB1 translocation during sepsis-associated liver injury. In the present study, we aimed to explore the effect of SphK1 inhibition on HMGB1 translocation and the underlying mechanism during sepsis-associated liver injury. Primary Kupffer cells and hepatocytes were isolated from SD rats. The rat model of sepsis-associated liver damage was induced by intraperitoneal injection with lipopolysaccharide (LPS). We confirmed that Kupffer cells were the cells primarily secreting HMGB1 in the liver after LPS stimulation. LPS-mediated HMGB1 expression, intracellular translocation, and acetylation were dramatically decreased by SphK1 inhibition. Nuclear histone deacetyltransferase 4 (HDAC4) translocation and E1A-associated protein p300 (p300) expression regulating the acetylation of HMGB1 were also suppressed by SphK1 inhibition. HDAC4 intracellular translocation has been reported to be controlled by the phosphorylation of HDAC4. The phosphorylation of HDAC4 is modulated by CaMKII-δ. However, these changes were completely blocked by SphK1 inhibition. Additionally, by performing coimmunoprecipitation and pull-down assays, we revealed that SphK1 can directly interact with CaMKII-δ. The colocalization of SphK1 and CaMKII-δ was verified in human liver tissues with sepsis-associated liver injury. In conclusion, SphK1 inhibition diminishes HMGB1 intracellular translocation in sepsis-associated liver injury. The mechanism is associated with the direct interaction of SphK1 and CaMKII-δ.
Collapse
Affiliation(s)
- Tao Tian
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Danhua Yao
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Zhiyuan Zhou
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Yantao Duan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Bin Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Pengfei Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
4
|
Diallo I, Seve M, Cunin V, Minassian F, Poisson JF, Michelland S, Bourgoin-Voillard S. Current trends in protein acetylation analysis. Expert Rev Proteomics 2018; 16:139-159. [PMID: 30580641 DOI: 10.1080/14789450.2019.1559061] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Acetylation is a widely occurring post-translational modification (PTM) of proteins that plays a crucial role in many cellular physiological and pathological processes. Over the last decade, acetylation analyses required the development of multiple methods to target individual acetylated proteins, as well as to cover a broader description of acetylated proteins that comprise the acetylome. Areas covered: This review discusses the different types of acetylation (N-ter/K-/O-acetylation) and then describes some major strategies that have been reported in the literature to detect, enrich, identify and quantify protein acetylation. The review highlights the advantages and limitations of these strategies, to guide researchers in designing their experimental investigations and analysis of protein acetylation. Finally, this review highlights the main applications of acetylomics (proteomics based on mass spectrometry) for understanding physiological and pathological conditions. Expert opinion: Recent advances in acetylomics have enhanced knowledge of the biological and pathological roles of protein acetylation and the acetylome. Besides, radiolabeling and western blotting remain also techniques-of-choice for targeted protein acetylation. Future challenges in acetylomics to analyze the N-ter and K-acetylome will most likely require enrichment/fractionation, MS instrumentation and bioinformatics. Challenges also remain to identify the potential biological roles of O-acetylation and cross-talk with other PTMs.
Collapse
Affiliation(s)
- Issa Diallo
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | - Michel Seve
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | - Valérie Cunin
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | | | | | - Sylvie Michelland
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| | - Sandrine Bourgoin-Voillard
- a Universite Grenoble Alpes - LBFA and BEeSy, PROMETHEE, Proteomic Platform , Saint-Martin-d'Heres , France.,b Inserm, U1055, PROMETHEE Proteomic Platform , Saint-Martin-d'Heres , France.,c CHU de Grenoble, Institut de Biologie et de Pathologie, PROMETHEE Proteomic Platform , La Tronche , France
| |
Collapse
|
5
|
Szymiczek A, Pastorino S, Larson D, Tanji M, Pellegrini L, Xue J, Li S, Giorgi C, Pinton P, Takinishi Y, Pass HI, Furuya H, Gaudino G, Napolitano A, Carbone M, Yang H. FTY720 inhibits mesothelioma growth in vitro and in a syngeneic mouse model. J Transl Med 2017; 15:58. [PMID: 28298211 PMCID: PMC5353897 DOI: 10.1186/s12967-017-1158-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Malignant mesothelioma (MM) is a very aggressive type of cancer, with a dismal prognosis and inherent resistance to chemotherapeutics. Development and evaluation of new therapeutic approaches is highly needed. Immunosuppressant FTY720, approved for multiple sclerosis treatment, has recently raised attention for its anti-tumor activity in a variety of cancers. However, its therapeutic potential in MM has not been evaluated yet. METHODS Cell viability and anchorage-independent growth were evaluated in a panel of MM cell lines and human mesothelial cells (HM) upon FTY720 treatment to assess in vitro anti-tumor efficacy. The mechanism of action of FTY720 in MM was assessed by measuring the activity of phosphatase protein 2A (PP2A)-a major target of FTY720. The binding of the endogenous inhibitor SET to PP2A in presence of FTY720 was evaluated by immunoblotting and immunoprecipitation. Signaling and activation of programmed cell death were evaluated by immunoblotting and flow cytometry. A syngeneic mouse model was used to evaluate anti-tumor efficacy and toxicity profile of FTY720 in vivo. RESULTS We show that FTY720 significantly suppressed MM cell viability and anchorage-independent growth without affecting normal HM cells. FTY720 inhibited the phosphatase activity of PP2A by displacement of SET protein, which appeared overexpressed in MM, as compared to HM cells. FTY720 promoted AKT dephosphorylation and Bcl-2 degradation, leading to induction of programmed cell death, as demonstrated by caspase-3 and PARP activation, as well as by cytochrome c and AIF intracellular translocation. Moreover, FTY720 administration in vivo effectively reduced tumor burden in mice without apparent toxicity. CONCLUSIONS Our preclinical data indicate that FTY720 is a potentially promising therapeutic agent for MM treatment.
Collapse
Affiliation(s)
- Agata Szymiczek
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Sandra Pastorino
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - David Larson
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Mika Tanji
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Laura Pellegrini
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Jiaming Xue
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Shuangjing Li
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Carlotta Giorgi
- Department of Morphology-Surgery-Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology-Surgery-Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Yasutaka Takinishi
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University Langone Medical Center, New York, NY, 10065, USA
| | - Hideki Furuya
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Giovanni Gaudino
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Andrea Napolitano
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA
| | - Michele Carbone
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| | - Haining Yang
- Thoracic Oncology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA.
| |
Collapse
|
6
|
Mohammed S, Harikumar KB. Sphingosine 1-Phosphate: A Novel Target for Lung Disorders. Front Immunol 2017; 8:296. [PMID: 28352271 PMCID: PMC5348531 DOI: 10.3389/fimmu.2017.00296] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/01/2017] [Indexed: 01/11/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is involved in a wide range of cellular processes, which include proliferation, apoptosis, lymphocyte egress, endothelial barrier function, angiogenesis, and inflammation. S1P is produced by two isoenzymes, namely, sphingosine kinase 1 and 2 (SphK1 and 2) and once produced, S1P can act both in an autocrine and paracrine manner. S1P can be dephosphorylated back to sphingosine by two phosphatases (SGPP 1 and 2) or can be irreversibly cleaved by S1P lyase. S1P has a diverse range of functions, which is mediated in a receptor dependent, through G-protein coupled receptors (S1PR1-5) or receptor independent manner, through intracellular targets such as HDACs and TRAF2. The involvement of S1P signaling has been confirmed in various disease conditions including lung diseases. The SphK inhibitors and S1PR modulators are currently under clinical trials for different pathophysiological conditions. There is a significant effort in targeting various components of S1P signaling for several diseases. This review focuses on the ways in which S1P signaling can be therapeutically targeted in lung disorders.
Collapse
Affiliation(s)
- Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| | - K B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , India
| |
Collapse
|
7
|
Abstract
Sphingosine-1-phosphate (S1P), a simple, bioactive sphingolipid metabolite, plays a key role, both intracellularly and extracellularly, in various cellular processes such as proliferation, survival, migration, inflammation, angiogenesis, and endothelial barrier integrity. The cellular S1P level is low and is tightly regulated by its synthesis and degradation. Sphingosine Kinases (SphKs) 1 and 2, catalyze the ATP-dependent phosphorylation of sphingosine to S1P, while the degradation is mediated by the reversible dephosphorylation catalyzed by the S1P phosphatases and lipid phosphate phosphatases and the irreversible degradation to hexadecenal and ethanolamine phosphate by sphingosine-1-phosphate lyase (S1PL). As a ligand for specific G-protein-coupled receptors, S1P1-5, which are differentially expressed in different cell types, S1P generates downstream signals that play crucial role in developmental and disease related pathologies. In addition to acting extracellularly on receptors located on the plasma membrane, S1P can also act intracellularly, independently of S1P1-5, affecting calcium homeostasis and cell proliferation. The SphKs /S1P /S1PL metabolic pathway is implicated in numerous human pathologies including respiratory disorders, thereby raising the possibility that manipulating intracellular S1P levels could offer therapeutic potential in ameliorating lung diseases. This review focuses on the prospects of targeting S1P signaling and S1P metabolizing enzymes using small molecule inhibitors, receptor agonists, and antagonists in the treatment of lung diseases.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, IL, USA
| | - Viswanathan Natarajan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
8
|
The levels of HDAC1 and thioredoxin1 are related to the death of mesothelioma cells by suberoylanilide hydroxamic acid. Int J Oncol 2016; 48:2197-204. [DOI: 10.3892/ijo.2016.3402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/11/2016] [Indexed: 11/05/2022] Open
|
9
|
Lu ZP, Xiao ZL, Yang Z, Li J, Feng GX, Chen FQ, Li YH, Feng JY, Gao YE, Ye LH, Zhang XD. Hepatitis B virus X protein promotes human hepatoma cell growth via upregulation of transcription factor AP2α and sphingosine kinase 1. Acta Pharmacol Sin 2015; 36:1228-36. [PMID: 26073327 DOI: 10.1038/aps.2015.38] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
AIM Sphingosine kinase 1 (SPHK1) is involved in various cellular functions, including cell growth, migration, apoptosis, cytoskeleton architecture and calcium homoeostasis, etc. As an oncogenic kinase, SPHK1 is associated with the development and progression of cancers. The aim of this study was to investigate whether SPHK1 was involved in hepatocarcinogenesis induced by the hepatitis B virus X protein (HBx). METHODS The expression of SPHK1 in hepatocellular carcinoma (HCC) tissue and hepatoma cells were measured using qRT-PCR and Western blot analysis. HBx expression levels in hepatoma cells were modulated by transiently transfected with HBx or psi-HBx plasmids. The SPHK1 promoter activity was measured using luciferase reporter gene assay, and the interaction of the transcription factor AP2α with the SPHK1 promoter was studied with chromatin immunoprecipitation assay. The growth of hepatoma cells was evaluated in vitro using MTT and colony formation assays, and in a tumor xenograft model. RESULTS A positive correlation was found between the mRNA levels of SPHK1 and HBx in 38 clinical HCC samples (r=+0.727, P<0.01). Moreover, the expression of SPHK1 was markedly increased in the liver cancer tissue of HBx-transgenic mice. Overexpressing HBx in normal liver cells LO2 and hepatoma cells HepG2 dose-dependently increased the expression of SPHK1, whereas silencing HBx in HBx-expressing hepatoma cells HepG2-X and HepG2.2.15 suppressed SPHK1 expression. Furthermore, overexpressing HBx in HepG2 cells dose-dependently increased the SPHK1 promoter activity, whereas silencing HBx in HepG2-X cells suppressed this activity. In HepG2-X cells, AP2α was found to directly interact with the SPHK1 promoter, and silencing AP2α suppressed the SPHK1 promoter activity and SPHK1 expression. Silencing HBx in HepG2-X cells abolished the HBx-enhanced proliferation and colony formation in vitro, and tumor growth in vivo. CONCLUSION HBx upregulates SPHK1 through the transcription factor AP2α, which promotes the growth of human hepatoma cells.
Collapse
|
10
|
Yang L, Hu H, Deng Y, Bai Y. [Role of SPHK1 regulates multi-drug resistance of small cell lung cancer
and its clinical significance]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 17:769-77. [PMID: 25404266 PMCID: PMC6000353 DOI: 10.3779/j.issn.1009-3419.2014.11.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
背景与目的 小细胞肺癌约占全部肺癌的15%,化疗是其主要的治疗方法之一,虽然早期对一线化疗方案敏感,但极易出现多药耐药而导致治疗失败。前期基因芯片发现SPHK1与小细胞肺癌的耐药性相关,本研究进一步探讨SPHK1在小细胞肺癌多药耐药中的作用。 方法 首先通过QRT-PCR和Western blot从基因和蛋白水平检测化疗敏感细胞株H69及多药耐药细胞株H69AR中SPHK1的差异表达;转染siRNA下调H69AR细胞中的SPHK1的表达,通过CCK8检测细胞对各种化疗药物(ADM, DDP, VP-16)的敏感性变化,流式细胞仪检测细胞周期及凋亡的变化。同时收集小细胞肺癌化疗前组织和血液标本,将其分为化疗敏感组和耐药组,QRT-PCR检测小细胞肺癌患者血液标本中SPHK1的表达,免疫组化法检测小细胞肺癌患者组织标本中SPHK1的表达,分析SPHK1与小细胞肺癌患者预后相关性。 结果 SPHK1在耐药细胞H69AR中的表达明显高于H69,下调H69AR中SPHK1的表达能够增加细胞对化疗药物的敏感性,促进细胞的凋亡,细胞周期发生G0/G1期阻滞,SPHK1在小细胞肺癌耐药患者中的表达较敏感患者明显增加,SPHK1的表达与患者的性别、年龄无关,与疾病的分期、对化疗的敏感性及生存时间密切相关,差异具有统计学意义(P<0.05)。 结论 SPHK1参与调节小细胞肺癌多药耐药,SPHK1可作为评估小细胞肺癌化疗敏感性及临床预后的潜在靶基因。
Collapse
Affiliation(s)
- Lan Yang
- Department of Oncology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610000, China
| | - Honglin Hu
- Department of Oncology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610000, China
| | - Ying Deng
- Department of Oncology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610000, China
| | - Yifeng Bai
- Department of Oncology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610000, China
| |
Collapse
|
11
|
Raza A, Huang WC, Takabe K. Advances in the management of peritoneal mesothelioma. World J Gastroenterol 2014; 20:11700-11712. [PMID: 25206274 PMCID: PMC4155360 DOI: 10.3748/wjg.v20.i33.11700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/21/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023] Open
Abstract
Malignant peritoneal mesothelioma (PM) is an infrequent disease which has historically been associated with a poor prognosis. Given its long latency period and non-specific symptomatology, a diagnosis of PM can be suggested by occupational exposure history, but ultimately relies heavily on imaging and diagnostic biopsy. Early treatment options including palliative operative debulking, intraperitoneal chemotherapy, and systemic chemotherapy have marginally improved the natural course of the disease with median survival being approximately one year. The advent of cytoreduction (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) has dramatically improved survival outcomes with wide median survival estimates between 2.5 to 9 years; these studies however remain largely heterogeneous, with differing study populations, tumor biology, and specific treatment regimens. More recent investigations have explored extent of cytoreduction, repeated operative intervention, and choice of chemotherapy but have been unable to offer definitive conclusions. CRS and HIPEC remain morbid procedures with complication rates ranging between 30% to 46% in larger series. Accordingly, an increasing interest in identifying molecular targets and developing targeted therapies is emerging. Among such novel targets is sphingosine kinase 1 (SphK1) which regulates the production of sphingosine-1-phosphate, a biologically active lipid implicated in various cancers including malignant mesothelioma. The known action of specific SphK inhibitors may warrant further exploration in peritoneal disease.
Collapse
|
12
|
Sphingosine kinase 1 and cancer: a systematic review and meta-analysis. PLoS One 2014; 9:e90362. [PMID: 24587339 PMCID: PMC3937388 DOI: 10.1371/journal.pone.0090362] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/29/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Sphingosine kinase 1 (SK1) is a key regulator of the dynamic ceramide/sphingosine 1-phosphate rheostat balance and important in the pathological cancer genesis, progression, and metastasis processes. Many studies have demonstrated SK1 overexpressed in various cancers, but no meta-analysis has evaluated the relationship between SK1 and various cancers. METHODS We retrieved relevant articles from the PubMed, EBSCO, ISI, and OVID databases. A pooled odds ratio (OR) was used to assess the associations between SK1 expression and cancer; hazard ratios (HR) were used for 5-year and overall survival. Review Manager 5.0 was used for the meta-analysis, and publication bias was evaluated with STATA 12.0 (Egger's test). RESULTS Thirty-four eligible studies (n=4,673 patients) were identified. SK1 positivity and high expression were significantly different between cancer, non-cancer, and benign tissues. SK1 mRNA and protein expression levels were elevated in the cancer tissues, compared with the normal tissues. SK1 positivity rates differed between various cancer types (lowest [27.3%] in estrogen receptor-positive breast cancer and highest [82.2%] in tongue squamous cell carcinoma). SK1 positivity and high expression were associated with 5-year survival; the HR was 1.86 (95% confidence interval [CI], 1.18-2.94) for breast cancer, 1.58 (1.08-2.31) for gastric cancer, and 2.68 (2.10-3.44) for other cancers; the total cancer HR was 2.21 (95% CI, 1.83-2.67; P < 0.00001). The overall survival HRs were 2.09 (95% CI, 1.35-3.22), 1.56 (1.08-2.25), and 2.62 (2.05-3.35) in breast, gastric, and other cancers, respectively. The total effect HR was 2.21 (95% CI, 1.83-2.66; P < 0.00001). CONCLUSIONS SK1 positivity and high expression were significantly associated with cancer and a shorter 5-year and overall survival. SK1 positivity rates vary tremendously among the cancer types. It is necessary to further explore whether SK1 might be a predictive biomarker of outcomes in cancer patients.
Collapse
|
13
|
Meng XD, Zhou ZS, Qiu JH, Shen WH, Wu Q, Xiao J. Increased SPHK1 expression is associated with poor prognosis in bladder cancer. Tumour Biol 2013; 35:2075-80. [PMID: 24092575 DOI: 10.1007/s13277-013-1275-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 09/25/2013] [Indexed: 12/25/2022] Open
Abstract
Upregulation of sphingosine kinase 1 (SPHK1) protein has been reported to be associated with a poor prognosis in a variety of malignant tumors. However, the role of SPHK1 in bladder cancer (BC) has not been thoroughly elucidated. The purpose of this study was to assess SPHK1 expression and to explore its contribution to BC. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was conducted to detect SPHK1 mRNA expression in 37 pairs of fresh-frozen BC tissues and corresponding noncancerous tissues. Results showed that SPHK1 mRNA expression level in BC tissues was significantly higher than that in corresponding noncancerous tissues. To investigate the association between SPHK1 protein expression and clinicopathological characteristics of BC, immunohistochemistry (IHC) was performed in 153 archived paraffin-embedded BC samples. Interestingly, high SPHK1 expression was significantly associated with histologic grade (P = 0.045) and tumor stage (P < 0.001) of patients with BC. The Kaplan-Meier survival curve showed that patients with high SPHK1 expression had significantly reduced overall 5-year survival rates (P < 0.001). Multivariate Cox regression analysis further suggested that the increased expression of SPHK1 was an independent poor prognostic factor for this disease. In conclusion, our data offer the convincing evidence for the first time that the increased expression of SPHK1 may be involved in the pathogenesis and progression of BC. SPHK1 might be a potential marker to predict the prognosis in BC.
Collapse
Affiliation(s)
- Xiao-Dong Meng
- Department of Urology, Southwest Hospital, The Third Military Medical University, No. 30, Gaotanyanzheng Street, Shapingba District, Chongqing, 40038, China,
| | | | | | | | | | | |
Collapse
|
14
|
Harijith A, Pendyala S, Reddy NM, Bai T, Usatyuk PV, Berdyshev E, Gorshkova I, Huang LS, Mohan V, Garzon S, Kanteti P, Reddy SP, Raj JU, Natarajan V. Sphingosine kinase 1 deficiency confers protection against hyperoxia-induced bronchopulmonary dysplasia in a murine model: role of S1P signaling and Nox proteins. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1169-1182. [PMID: 23933064 DOI: 10.1016/j.ajpath.2013.06.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/05/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022]
Abstract
Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1(-/-) (Sphk1(-/-)), sphingosine kinase 2(-/-) (Sphk2(-/-)), and S1P lyase(+/-) (Sgpl1(+/-)) mice were exposed to hyperoxia (75%) from postnatal day 1 to 7. Sphk1(-/-), but not Sphk2(-/-) or Sgpl1(+/-), mice offered protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important role for SphK1-mediated S1P signaling-regulated ROS in the development of hyperoxia-induced lung injury in a murine neonatal model of bronchopulmonary dysplasia.
Collapse
Affiliation(s)
- Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois.
| | - Srikanth Pendyala
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Narsa M Reddy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Tao Bai
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Peter V Usatyuk
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Evgeny Berdyshev
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Irina Gorshkova
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Long Shuang Huang
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Vijay Mohan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Steve Garzon
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Prasad Kanteti
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - J Usha Raj
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Viswanathan Natarajan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|