1
|
Wan M, Zhao D, Lin S, Wang P, Liang B, Jin Q, Jiao Y, Song Y, Ge X, King GJ, Yang G, Wang J, Hong D. Allelic Variation of BnaFTA2 and BnaFTC6 Is Associated With Flowering Time and Seasonal Crop Type in Rapeseed (Brassica napus L.). PLANT, CELL & ENVIRONMENT 2024. [PMID: 39360620 DOI: 10.1111/pce.15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024]
Abstract
Different ecological types of rapeseed (Brassica napus L.), including winter, spring, and semi-winter cultivars, exhibit varying flowering times and cannot be planted in the same cultivation areas. FLOWERING LOCUS T (FT) plays a key role in regulating flowering. In allotetraploid B. napus six copies of FT (BnaFT) have been reported. However, there is uncertainty about how the translated products of each paralog, as well as cis-allelic variations at each locus, contribute functionally to flowering time and define specific crop types. In this study, we confirm that BnaFT exhibit distinct expression patterns in different crop types of rapeseed. Using the CRISPR/Cas9 gene editing system, we provide functional evidence that the mutants between Bnaft paralogues affects the regulation of flowering time. Furthermore, we identify a new haplotype of BnaFT.A2 that is associated with early flowering time, although this appears necessary but not sufficient to confer a spring type phenotype. Three haplotypes of BnaFT.C6 were further identified and associated with both flowering time and crop types. We speculate that variations in both BnaFT.A2 and BnaFT.C6 may have undergone diversifying selection during the divergence of seasonal crop types in rapeseed.
Collapse
Affiliation(s)
- Ming Wan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dawei Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengzhe Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baoling Liang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qingdong Jin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yushun Jiao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yixian Song
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
2
|
Jones DM, Hepworth J, Wells R, Pullen N, Trick M, Morris RJ. A transcriptomic time-series reveals differing trajectories during pre-floral development in the apex and leaf in winter and spring varieties of Brassica napus. Sci Rep 2024; 14:3538. [PMID: 38347020 PMCID: PMC10861513 DOI: 10.1038/s41598-024-53526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
Oilseed rape (Brassica napus) is an important global oil crop, with spring and winter varieties grown commercially. To understand the transcriptomic differences between these varieties, we collected transcriptomes from apex and leaf tissue from a spring variety, Westar, and a winter variety, Tapidor, before, during, and after vernalisation treatment, until the plants flowered. Large transcriptomic differences were noted in both varieties during the vernalisation treatment because of temperature and day length changes. Transcriptomic alignment revealed that the apex transcriptome reflects developmental state, whereas the leaf transcriptome is more closely aligned to the age of the plant. Similar numbers of copies of genes were expressed in both varieties during the time series, although key flowering time genes exhibited expression pattern differences. BnaFLC copies on A2 and A10 are the best candidates for the increased vernalisation requirement of Tapidor. Other BnaFLC copies show tissue-dependent reactivation of expression post-cold, with these dynamics suggesting some copies have retained or acquired a perennial nature. BnaSOC1 genes, also related to the vernalisation pathway, have expression profiles which suggest tissue subfunctionalisation. This understanding may help to breed varieties with more consistent or robust vernalisation responses, of special importance due to the milder winters resulting from climate change.
Collapse
Affiliation(s)
- D Marc Jones
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- Synthace, The WestWorks, 195 Wood Lane, 4th Floor, London, W12 7FQ, UK.
| | - Jo Hepworth
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Rachel Wells
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nick Pullen
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Trick
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Richard J Morris
- Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
3
|
Ahn JY, Subburaj S, Yan F, Yao J, Chandrasekaran A, Ahn KG, Lee GJ. Molecular Evaluation of the Effects of FLC Homologs and Coordinating Regulators on the Flowering Responses to Vernalization in Cabbage ( Brassica oleracea var. capitata) Genotypes. Genes (Basel) 2024; 15:154. [PMID: 38397144 PMCID: PMC10887945 DOI: 10.3390/genes15020154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The flowering loci of cabbage must be understood to boost their productivity. In this study, to clarify the flowering mechanisms of cabbage, we examined the three flowering repressors BoFLC1, 2 and 3, and the flowering regulators BoGI, BoCOOLAIR, and BoVIN3 of early (CAB1), middle (CAB3), and late (CAB5) flowering cabbage genotypes. Analysis of allele-specifically amplified genomic DNA and various sequence alignments demonstrated that maximal insertions and deletions influenced cabbage flowering behavior, notably in CAB3 and CAB5. Phylogenetic studies showed that BoFLC1, 2, and 3 in the CAB1, 3, and 5 genotypes had the highest homologies to other Brassica species, with CAB3 and 5 the most similar. Although CAB3 and CAB5 have comparable genetic patterns, flowering repressors and flowering regulators were investigated individually with and without vernalization to determine their minor flowering differences. The expression investigation revealed that vernalized CAB5 downregulated all BoFLC genes compared to CAB3 and, in contrast, CAB3 exhibited upregulated BoCOOLAIR. We hypothesized that the CAB3 BoFLC locus' additional insertions may have led to BoCOOLAIR overexpression and BoFLC downregulation. This study sheds light on cabbage genotypes-particularly those of CAB1 and CAB5-and suggests that structural variations in BoFLC2 and 3 bind flowering regulators, such as COOLAIR, which may affect cabbage flowering time.
Collapse
Affiliation(s)
- Ju-Young Ahn
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
| | - Saminathan Subburaj
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
| | - Fanzhuang Yan
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Jian Yao
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Ajithan Chandrasekaran
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| | - Kyoung-Gu Ahn
- Joen Seed Co., Ltd., Goesan 28051, Republic of Korea;
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Republic of Korea; (J.-Y.A.); (S.S.); (A.C.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Republic of Korea; (F.Y.); (J.Y.)
| |
Collapse
|
4
|
Ding T, Cai L, He Y, Li Y, Tian E, Zhou Q, Zhou X, Wang X, Yu K, Shen X. BnPLP1 Positively Regulates Flowering Time, Plant Height, and Main Inflorescence Length in Brassica napus. Genes (Basel) 2023; 14:2206. [PMID: 38137028 PMCID: PMC10743044 DOI: 10.3390/genes14122206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Protein prenylation mediated by the Arabidopsis thaliana PLURIPETALA (AtPLP) gene plays a crucial role in plant growth, development, and environmental response by adding a 15-carbon farnesyl group or one to two 20-carbon geranylgeranyl groups onto one to two cysteine residues at the C-terminus of the target protein. However, the homologous genes and their functions of AtPLP in rapeseed are unclear. In this study, bioinformatics analysis and gene cloning demonstrated the existence of two homologous genes of AtPLP in the Brassica napus L. genome, namely, BnPLP1 and BnPLP2. Evolutionary analysis revealed that BnPLP1 originated from the B. rapa L. genome, while BnPLP2 originated from the B. oleracea L. genome. Genetic transformation analysis revealed that the overexpression of BnPLP1 in Arabidopsis plants exhibited earlier flowering initiation, a prolonged flowering period, increased plant height, and longer main inflorescence length compared to the wild type. Contrarily, the downregulation of BnPLP1 expression in B. napus plants led to delayed flowering initiation, shortened flowering period, decreased plant height, and reduced main inflorescence length compared to the wild type. These findings indicate that the BnPLP1 gene positively regulates flowering time, plant height, and main inflorescence length. This provides a new gene for the genetic improvement of flowering time and plant architecture in rapeseed.
Collapse
Affiliation(s)
- Ting Ding
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Lei Cai
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
- Center for Research and Development of Fine Chemical of Guizhou University, Guiyang 550025, China
| | - Yuqi He
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Yuanhong Li
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Entang Tian
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Qianhui Zhou
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Xufan Zhou
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| | - Xiaodong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China;
| | - Kunjiang Yu
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
- Center for Research and Development of Fine Chemical of Guizhou University, Guiyang 550025, China
| | - Xinjie Shen
- College of Agriculture, Guizhou University, Guiyang 550025, China; (T.D.); (L.C.); (Y.H.); (Y.L.); (E.T.); (Q.Z.); (X.Z.)
| |
Collapse
|
5
|
Chaudhary R, Higgins EE, Eynck C, Sharpe AG, Parkin IAP. Mapping QTL for vernalization requirement identified adaptive divergence of the candidate gene Flowering Locus C in polyploid Camelina sativa. THE PLANT GENOME 2023; 16:e20397. [PMID: 37885362 DOI: 10.1002/tpg2.20397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
Vernalization requirement is an integral component of flowering in winter-type plants. The availability of winter ecotypes among Camelina species facilitated the mapping of quantitative trait loci (QTL) for vernalization requirement in Camelina sativa. An inter and intraspecific crossing scheme between related Camelina species, where one spring and two different sources of winter-type habit were used, resulted in the development of two segregating populations. Linkage maps generated with sequence-based markers identified three QTLs associated with vernalization requirement in C. sativa; two from the interspecific (chromosomes 13 and 20) and one from the intraspecific cross (chromosome 8). Notably, the three loci were mapped to different homologous regions of the hexaploid C. sativa genome. All three QTLs were found in proximity to Flowering Locus C (FLC), variants of which have been reported to affect the vernalization requirement in plants. Temporal transcriptome analysis for winter-type Camelina alyssum demonstrated reduction in expression of FLC on chromosomes 13 and 20 during cold treatment, which would trigger flowering, since FLC would be expected to suppress floral initiation. FLC on chromosome 8 also showed reduced expression in the C. sativa ssp. pilosa winter parent upon cold treatment, but was expressed at very high levels across all time points in the spring-type C. sativa. The chromosome 8 copy carried a deletion in the spring-type line, which could impact its functionality. Contrary to previous reports, all three FLC loci can contribute to controlling the vernalization response in C. sativa and provide opportunities for manipulating this requirement in the crop.
Collapse
Affiliation(s)
- Raju Chaudhary
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
- Global Institute for Food Security, Saskatoon, Saskatchewan, Canada
| | - Erin E Higgins
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Christina Eynck
- Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Andrew G Sharpe
- Global Institute for Food Security, Saskatoon, Saskatchewan, Canada
| | | |
Collapse
|
6
|
Gramzow L, Sharma R, Theißen G. Evolutionary Dynamics of FLC-like MADS-Box Genes in Brassicaceae. PLANTS (BASEL, SWITZERLAND) 2023; 12:3281. [PMID: 37765445 PMCID: PMC10536770 DOI: 10.3390/plants12183281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
MADS-box genes encode transcription factors that play important roles in the development and evolution of plants. There are more than a dozen clades of MADS-box genes in angiosperms, of which those with functions in the specification of floral organ identity are especially well-known. From what has been elucidated in the model plant Arabidopsis thaliana, the clade of FLC-like MADS-box genes, comprising FLC-like genes sensu strictu and MAF-like genes, are somewhat special among the MADS-box genes of plants since FLC-like genes, especially MAF-like genes, show unusual evolutionary dynamics, in that they generate clusters of tandemly duplicated genes. Here, we make use of the latest genomic data of Brassicaceae to study this remarkable feature of the FLC-like genes in a phylogenetic context. We have identified all FLC-like genes in the genomes of 29 species of Brassicaceae and reconstructed the phylogeny of these genes employing a Maximum Likelihood method. In addition, we conducted selection analyses using PAML. Our results reveal that there are three major clades of FLC-like genes in Brassicaceae that all evolve under purifying selection but with remarkably different strengths. We confirm that the tandem arrangement of MAF-like genes in the genomes of Brassicaceae resulted in a high rate of duplications and losses. Interestingly, MAF-like genes also seem to be prone to transposition. Considering the role of FLC-like genes sensu lato (s.l.) in the timing of floral transition, we hypothesize that this rapid evolution of the MAF-like genes was a main contributor to the successful adaptation of Brassicaceae to different environments.
Collapse
Affiliation(s)
- Lydia Gramzow
- Matthias Schleiden Institute/Genetics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | |
Collapse
|
7
|
Wu W, Yang H, Shen J, Xing P, Han X, Dong Y, Wu G, Zheng S, Gao K, Yang N, Zhang L, Wu Y. Identification of Brassica rapa BrEBF1 homologs and their characterization in cold signaling. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154076. [PMID: 37657305 DOI: 10.1016/j.jplph.2023.154076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
EIN3-binding F-box 1 (EBF1) is involved in cold tolerance in Arabidopsis; however, its exact roles in cold signaling in Brassica rapa remain uncertain. Herein, we demonstrated that EBF1 homologs are highly conserved in Brassica species, but their copy numbers are diverse, with some motifs being species specific. Cold treatment activated the expression of EBF1 homologs BrEBF1 and BrEBF2 in B. rapa; however, their expression schemas were diverse in different cold-resistant varieties of the plant. Subcellular localization analysis revealed that BrEBF1 is a nuclear-localized F-box protein, and cold treatment did not alter its localization but induced its degradation. BrEBF1 overexpression enhanced cold tolerance, reduced cold-induced ROS accumulation, and enhanced MPK3 and MPK6 kinase activity in Arabidopsis. Our study revealed that BrEBF1 positively regulates cold tolerance in B. rapa and that BrEBF1-regulated cold tolerance is associated with ROS scavenging and MPK3 and MPK6 kinase activity through the C-repeat binding factor pathway.
Collapse
Affiliation(s)
- Wangze Wu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Haobo Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China; School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Juan Shen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Peng Xing
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xueyan Han
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Yun Dong
- Crop Research Institute, Gansu Academy of Agriculture Sciences, Lanzhou, 730070, China
| | - Guofan Wu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Kun Gao
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Ning Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Lina Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Yujun Wu
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Tang J, Liu H, Quan Y, Yao Y, Li K, Tang G, Du D. Fine mapping and causal gene identification of a novel QTL for early flowering by QTL-seq, Target-seq and RNA-seq in spring oilseed rape. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:80. [PMID: 36952057 DOI: 10.1007/s00122-023-04310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
A novel quantitative trait locus for early flowering in spring oilseed rape, BnaC08cqDTF, was mapped to an 86-kb region on chromosome C08, and its causal gene, CRY2, was uncovered. Days to flowering is a very important agronomic and adaptive trait of Brassica napus oilseed rape (AACC, 2n = 38). We previously identified BnaC08cqDTF as a novel candidate quantitative trait locus (QTL) for early flowering in spring oilseed rape. Here, we present fine mapping of the locus and a study of its causal gene. Initial mapping was performed by QTL sequencing of DNA pools of BC3F2 plants with extreme flowering times derived from crosses between the spring-type cv. No. 4512 (early flowering) and cv. No. 5246 (late flowering), along with fine mapping by target sequencing of the BC3F2 and BC4F2 populations. Fine mapping narrowed down BnaC08cqDTF to an 86-kb region on chromosome C08. The region harbored fifteen genes. After comparative analyses of the DNA sequences for mutation between A and C syntenic regions and detected by RNA-seq and qRT-PCR between the two parents, we found that BnaC08G0010400ZS harbors an A/G nonsynonymous mutation in exon 3. This single nucleotide polymorphism (SNP) haplotype was also correlated with early flowering in a 256 accession panel. BnaC08G0010400ZS is a homolog of the AT1G04400 gene (CRY2) in Arabidopsis. The analyses of transgenic Arabidopsis verified that BnaC08G0010400ZS is responsible for early flowering. Our results contribute to a better understanding of the genetic control mechanism of early flowering in spring Brassica napus and will promote the breeding for early mature varieties.
Collapse
Affiliation(s)
- Jie Tang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
- Crop Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, Jiangxi, China
| | - Haidong Liu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Youjuan Quan
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Yanmei Yao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Kaixiang Li
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Guoyong Tang
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| | - Dezhi Du
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| |
Collapse
|
9
|
Han X, Tang Q, Xu L, Guan Z, Tu J, Yi B, Liu K, Yao X, Lu S, Guo L. Genome-wide detection of genotype environment interactions for flowering time in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1065766. [PMID: 36479520 PMCID: PMC9721451 DOI: 10.3389/fpls.2022.1065766] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
Flowering time is strongly related to the environment, while the genotype-by-environment interaction study for flowering time is lacking in Brassica napus. Here, a total of 11,700,689 single nucleotide polymorphisms in 490 B. napus accessions were used to associate with the flowering time and related climatic index in eight environments using a compressed variance-component mixed model, 3VmrMLM. As a result, 19 stable main-effect quantitative trait nucleotides (QTNs) and 32 QTN-by-environment interactions (QEIs) for flowering time were detected. Four windows of daily average temperature and precipitation were found to be climatic factors highly correlated with flowering time. Ten main-effect QTNs were found to be associated with these flowering-time-related climatic indexes. Using differentially expressed gene (DEG) analysis in semi-winter and spring oilseed rapes, 5,850 and 5,511 DEGs were found to be significantly expressed before and after vernalization. Twelve and 14 DEGs, including 7 and 9 known homologs in Arabidopsis, were found to be candidate genes for stable QTNs and QEIs for flowering time, respectively. Five DEGs were found to be candidate genes for main-effect QTNs for flowering-time-related climatic index. These candidate genes, such as BnaFLCs, BnaFTs, BnaA02.VIN3, and BnaC09.PRR7, were further validated by the haplotype, selective sweep, and co-expression networks analysis. The candidate genes identified in this study will be helpful to breed B. napus varieties adapted to particular environments with optimized flowering time.
Collapse
Affiliation(s)
- Xu Han
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Qingqing Tang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
10
|
Chen L, Lei W, He W, Wang Y, Tian J, Gong J, Hao B, Cheng X, Shu Y, Fan Z. Mapping of Two Major QTLs Controlling Flowering Time in Brassica napus Using a High-Density Genetic Map. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192635. [PMID: 36235500 PMCID: PMC9571212 DOI: 10.3390/plants11192635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 05/31/2023]
Abstract
Research on the flowering habit of rapeseed is important for the selection of varieties adapted to specific ecological environments. Here, quantitative trait loci (QTL) for the days-to-flowering trait were identified using a doubled haploid population of 178 lines derived from a cross between the winter type SGDH284 and the semi-winter type 158A. A linkage map encompassing 3268.01 cM was constructed using 2777 bin markers obtained from next-generation sequencing. The preliminary mapping results revealed 56 QTLs for the days to flowering in the six replicates in the three environments. Twelve consensus QTLs were identified by a QTL meta-analysis, two of which (cqDTF-C02 and cqDTF-C06) were designated as major QTLs. Based on the micro-collinearity of the target regions between B. napus and Arabidopsis, four genes possibly related to flowering time were identified in the cqDTF-C02 interval, and only one gene possibly related to flowering time was identified in the cqDTF-C06 interval. A tightly linked insertion-deletion marker for the cqFT-C02 locus was developed. These findings will aid the breeding of early maturing B. napus varieties.
Collapse
Affiliation(s)
- Lei Chen
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Weixia Lei
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wangfei He
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Yifan Wang
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Jie Tian
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Jihui Gong
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Bing Hao
- Bengbu Ludu Crop Residue Biotechnology Co., Ltd., Bengbu 233000, China
| | - Xinxin Cheng
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Yingjie Shu
- College of Agriculture, Anhui Science and Technology University, Fengyang 233100, China
| | - Zhixiong Fan
- Crop Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
11
|
Jin Q, Gao G, Guo C, Yang T, Li G, Song J, Zheng N, Yin S, Yi L, Li Z, Ge X, King GJ, Wang J, Zhou G. Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3469-3483. [PMID: 35997786 DOI: 10.1007/s00122-022-04193-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
We identified two new transposon insertions within the promoter of BnaFT.A2 in addition to an existing 288 bp MITE within the second intron. Each insertion event corresponds to a distinct BnaFT.A2 haplotype and is closely associated with established crop seasonal ecotypes. Florigen, encoded by FLOWERING LOCUS T (FT), plays key roles not only as a flowering hormone, but also a universal growth factor affecting several aspects of plant architecture. In rapeseed, BnaFT.A2 has been revealed as one of the major loci associated with flowering time and different ecotypes. However, it is unclear how allelic variations of BnaFT.A2 affect its function in flowering time regulation and beyond. In this study, we confirmed an existing 288 bp miniature inverted-repeat transposable element (MITE) insertion within the second intron and identified two new insertions within the promoter of BnaFT.A2-a 3971 bp CACTA and a 1079 bp Helitron. Each insertion event corresponds to a distinct BnaFT.A2 haplotype and is closely associated with established crop seasonal ecotypes. These alleles have similar tissue-specific expression patterns but discrete transcriptional patterns tightly associated with rapeseed flowering time and ecotype. RNAi lines and mutants of BnaFT.A2 flowered significantly later than controls. Differentially expressed genes (DEGs), identified in transcriptomic profiling of seedling leaves from two loss-of-function mutants (Bnaft.a2-L1 and Bnaft.a2-L2) compared with controls, indicated significant enrichment for hormone metabolic genes and roles related to plant cell wall synthesis and photosynthesis. Plants with loss-of-function BnaFT.A2 had smaller leaves and lower net photosynthetic rate compared to controls. These findings not only further clarify the genetic basis of flowering time variation and ecotype formation in B. napus, but also provide an additional toolbox for genetic improvement of seasonal adaptation and production.
Collapse
Affiliation(s)
- Qingdong Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gengdong Gao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaocheng Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taihua Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ge Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jurong Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Na Zheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Licong Yi
- Cash Crops Institute, Hubei Academy of Agricultural Science, Wuhan, 430064, China
| | - Zhen Li
- School of Agriculture, Jinhua Polytechnic, Jinhua, 321007, China
| | - Xianhong Ge
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Jing Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
BnGF14-2c Positively Regulates Flowering via the Vernalization Pathway in Semi-Winter Rapeseed. PLANTS 2022; 11:plants11172312. [PMID: 36079694 PMCID: PMC9460199 DOI: 10.3390/plants11172312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
14-3-3s are general regulatory factors (GF14s or GRFs) involved in a variety of physiological regulations in plants, including the control of flowering time. However, there are poorly relevant reports in rapeseed so far. In this study, we identified a homologous 14-3-3 gene BnGF14-2c (AtGRF2_Like in Brassica napus) in rapeseed based on bioinformatic analysis by using the sequences of the flowering-related 14-3-3s in other plant species. Then, we found that overexpression of BnGF14-2c in the semi-winter rapeseed “93275” promoted flowering without vernalization. Moreover, both yeast two-hybrid and bimolecular fluorescence complementation analysis indicated that BnGF14-2c may interact with two vernalization-related flowering regulators BnFT.A02 and BnFLC.A10., respectively. qPCR analysis showed that the expression of BnFT (AtFT_Like) was increased and the expression of two selected vernalization-related genes were reduced in the overexpression transgenic plants. Further investigation on subcellular localization demonstrated that BnGF14-2c localized in the nucleus and cytoplasm. The results of RNA-seq analysis and GUS staining indicated that BnGF14-2c is ubiquitously expressed except for mature seed coat. In general, the interaction of 14-3-3 and FLC was firstly documented in this study, indicating BnGF14-2c may act as a positive regulator of flowering in rapeseed, which is worthy for more in-depth exploration.
Collapse
|
13
|
Fang C, Wang Z, Wang P, Song Y, Ahmad A, Dong F, Hong D, Yang G. Heterosis Derived From Nonadditive Effects of the BnFLC Homologs Coordinates Early Flowering and High Yield in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 12:798371. [PMID: 35251061 PMCID: PMC8893081 DOI: 10.3389/fpls.2021.798371] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/22/2021] [Indexed: 05/31/2023]
Abstract
Early flowering facilitates crops to adapt multiple cropping systems or growing regions with a short frost-free season; however, it usually brings an obvious yield loss. In this study, we identified that the three genes, namely, BnFLC.A2, BnFLC.C2, and BnFLC.A3b, are the major determinants for the flowering time (FT) variation of two elite rapeseed (Brassica napus L.) accessions, i.e., 616A and R11. The early-flowering alleles (i.e., Bnflc.a2 and Bnflc.c2) and late-flowering allele (i.e., BnFLC.A3b) from R11 were introgressed into the recipient parent 616A through a breeding strategy of marker-assisted backcross, giving rise to eight homozygous near-isogenic lines (NILs) associated with these three loci and 19 NIL hybrids produced by the mutual crossing of these NILs. Phenotypic investigations showed that NILs displayed significant variations in both FT and plant yield (PY). Notably, genetic analysis indicated that BnFLC.A2, BnFLC.C2, and BnFLC.A3b have additive effects of 1.446, 1.365, and 1.361 g on PY, respectively, while their dominant effects reached 3.504, 2.991, and 3.284 g, respectively, indicating that the yield loss caused by early flowering can be successfully compensated by exploring the heterosis of FT genes in the hybrid NILs. Moreover, we further validated that the heterosis of FT genes in PY was also effective in non-NIL hybrids. The results demonstrate that the exploration of the potential heterosis underlying the FT genes can coordinate early flowering (maturation) and high yield in rapeseed (B. napus L.), providing an effective strategy for early flowering breeding in crops.
Collapse
Affiliation(s)
- Caochuang Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhaoyang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Pengfei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yixian Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ali Ahmad
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
14
|
Chen H, Wang Y, Liu J, Zhao T, Yang C, Ding Q, Zhang Y, Mu J, Wang D. Identification of WRKY transcription factors responding to abiotic stresses in Brassica napus L. PLANTA 2021; 255:3. [PMID: 34837557 DOI: 10.1007/s00425-021-03733-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
A total of 278 BnWRKYs were identified and analyzed. Ectopic expression of BnWRKY149 and BnWRKY217 suggests that they function in the ABA signaling pathway. WRKY transcription factors play an important role in plant development, however, their function in Brassica napus L. abiotic stress response is still unclear. In this study, a total of 278 BnWRKY transcription factors were identified from the B. napus genome data, and they were subsequently distributed in three main groups. The protein motifs and classification of BnWRKY transcription factors were analyzed, and the locations of their corresponding encoding genes were mapped on the chromosomes of B. napus. Transcriptome analysis of rapeseed seedlings exposed to drought, salt, heat, cold and abscisic acid treatment revealed that 99 BnWRKYs responded to at least one of these stresses. The expression profiles of 12 BnWRKYs were examined with qPCR and the result coincided with RNA-seq analysis. Two genes of interest, BnWRKY149 and BnWRKY217 (homologs of AtWRKY40), were overexpressed in Arabidopsis, and the corresponding proteins were located to the nucleus. Transgene plants of BnWRKY149 and BnWRKY217 were less sensitive to ABA than Arabidopsis Col-0 plants, suggesting they might play important roles in the responses of rapeseed to abiotic stress.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Yongfeng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Jiong Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Tian Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Cuiling Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Qunying Ding
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, 710065, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, 712100, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, 712100, Shaanxi, China
| | - DaoJie Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
15
|
Jin Q, Yin S, Li G, Guo T, Wan M, Li H, Li J, Ge X, King GJ, Li Z, Wang J, Zhou G. Functional homoeologous alleles of CONSTANS contribute to seasonal crop type in rapeseed. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3287-3303. [PMID: 34410456 DOI: 10.1007/s00122-021-03896-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Two CO paralogs in Brassica napus were confirmed and shown distinct expression pattern and function in promoting flowering and allelic variation s within BnaCO.A10 were found closely associated with ecotype divergence. CONSTANS (CO) is a key gene that responds to photoperiod and in Arabidopsis can promote flowering under long-day (LD) conditions. Brassica napus L. is a major oil crop and close relative of Arabidopsis, and arose via allopolyploidization from the diploids B. rapa (A genome) and B. oleracea (C genome). In this study, we confirmed that B. napus has two CO genes located on the A10 (BnaCO.A10) and C9 (BnaCO.C9) chromosomes. Significant differences in level and temporal pattern of transcription, as well as in protein function, of these homoeologous may have resulted from sequence variation in the promoter as well as in the coding region. Apart from two insertions of 527 bp and 2002 bp in the promoter of BnaCO.C9 that function as transcriptional enhancers, this gene is otherwise highly conserved in both promoter and coding region. However, BnaCO.A10 was classified into two haplotypes and transgene analysis in Arabidopsis and backcross analysis in rapeseed indicated that the winter-type haplotype had a greater effect in promoting flowering than the spring type. We discuss the contribution of CO alleles to species evolution, and for eco-geographic radiation following crop domestication, alongside scope for managing this locus in future breeding.
Collapse
Affiliation(s)
- Qingdong Jin
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Yin
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ge Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Guo
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Wan
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haitao Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Juanjuan Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
| | - Zaiyun Li
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
16
|
Tudor EH, Jones DM, He Z, Bancroft I, Trick M, Wells R, Irwin JA, Dean C. QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2466-2481. [PMID: 32452611 PMCID: PMC7680531 DOI: 10.1111/pbi.13421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 05/05/2023]
Abstract
Winter, spring and biennial varieties of Brassica napus that vary in vernalization requirement are grown for vegetable and oil production. Here, we show that the obligate or facultative nature of the vernalization requirement in European winter oilseed rape is determined by allelic variation at a 10 Mbp region on chromosome A02. This region includes orthologues of the key floral regulators FLOWERING LOCUS C (BnaFLC.A02) and FLOWERING LOCUS T (BnaFT.A02). Polymorphism at BnaFLC.A02 and BnaFT.A02, mostly in cis-regulatory regions, results in distinct gene expression dynamics in response to vernalization treatment. Our data suggest allelic variation at BnaFT.A02 is associated with flowering time in the absence of vernalization, while variation at BnaFLC.A02 is associated with flowering time under vernalizing conditions. We hypothesize selection for BnaFLC.A02 and BnaFT.A02 gene expression variation has facilitated the generation of European winter oilseed rape varieties that are adapted to different winter climates. This knowledge will allow for the selection of alleles of flowering time regulators that alter the vernalization requirement of oilseed rape, informing the generation of new varieties with adapted flowering times and improved yields.
Collapse
Affiliation(s)
| | | | - Zhesi He
- Department of BiologyUniversity of YorkYorkUK
| | | | | | | | | | | |
Collapse
|
17
|
Yin S, Wan M, Guo C, Wang B, Li H, Li G, Tian Y, Ge X, King GJ, Liu K, Li Z, Wang J. Transposon insertions within alleles of BnaFLC.A10 and BnaFLC.A2 are associated with seasonal crop type in rapeseed. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4729-4741. [PMID: 32417916 DOI: 10.1093/jxb/eraa237] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/10/2020] [Indexed: 05/08/2023]
Abstract
In Brassicaceae, the requirement for vernalization is conferred by high expression of FLOWERING LOCUS C (FLC). The expression of FLC is known to be repressed by prolonged exposure to cold. Rapeseed (Brassica napus L.) cultivars can be classified into spring, winter, and semi-winter crop types, depending on their respective vernalization requirements. In addition to two known distinct transposon insertion events, here we identified a 4.422 kb hAT and a 5.625 kb long interspersed nuclear element transposon insertion within BnaFLC.A10, and a 810 bp miniature inverted-repeat transposable element (MITE) in BnaFLC.A2. Quantitative PCR demonstrated that these insertions lead to distinct gene expression patterns and contribute differentially to the vernalization response. Transgenic and haplotype analysis indicated that the known 621 bp MITE in the promoter region of BnaFLC.A10 is a transcriptional enhancer that appears to be the main determinant of rapeseed vernalization, and has contributed to the adaptation of rapeseed in winter cultivation environments. In the absence of this transposon insertion, the functional allele of BnaFLC.A2 is a major determinant of vernalization demand. Thus, the combination of BnaFLC.A10 carrying the 621 bp MITE insertion and a functional BnaFLC.A2 appears necessary to establish the winter rapeseed crop phenotype.
Collapse
Affiliation(s)
- Shuai Yin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ming Wan
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaocheng Guo
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haitao Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ge Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanyong Tian
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Rahman M, Baten A, Mauleon R, King GJ, Liu L, Barkla BJ. Identification, characterization and epitope mapping of proteins encoded by putative allergenic napin genes from Brassica rapa. Clin Exp Allergy 2020; 50:848-868. [PMID: 32306538 DOI: 10.1111/cea.13612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/25/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Brassica rapeseed crops contain high concentrations of oil in the seed. The remaining meal, following oil extraction, has a high protein content, but is of low value due to the presence of high amounts of napin seed storage proteins. These 2S albumin-like proteins are difficult to digest and have been identified as major allergens in humans. OBJECTIVE To comprehensively characterize the napin gene (NG) family in Brassica rapa and to gain an understanding of the structural basis of allergenicity of the expressed proteins. METHODS To identify candidate napin genes in B rapa, 2S albumin-like napin genes of Arabidopsis thaliana were used as query sequences to search for similarity against the B rapa var. pekinensis Chiifu-401 v2 and the var. trilocularis R-o-18 v1.5 genomes. Multiple sequence alignment (MSA) and epitope modelling was carried out to determine structural and evolutionary relationships of NGs and their potential allergenicity. RESULTS Four candidate napin genes in R-o-18 and ten in Chiifu-401 were identified with high sequence similarity to A thaliana napin genes. Multiple sequence alignment revealed strong conservation among the candidate genes. An epitope survey indicated high conservation of allergenic epitope motifs with known 2S albumin-like allergens. CONCLUSION Napin is thought to be responsible for a high prevalence of food allergies. Characterization of the napin gene family in B rapa will give important insight into the protein structure, and epitope modelling will help to advance studies into allergenicity including the development of precise diagnostic screenings and therapies for this potential food allergy as well as the possible manipulation of napin levels in the seed by gene editing technology.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Abdul Baten
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia.,Grasslands Research Centre, AgResearch Ltd, Palmerston North, New Zealand
| | - Ramil Mauleon
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Lei Liu
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| | - Bronwyn J Barkla
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
19
|
Schiessl S. Regulation and Subfunctionalization of Flowering Time Genes in the Allotetraploid Oil Crop Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:605155. [PMID: 33329678 PMCID: PMC7718018 DOI: 10.3389/fpls.2020.605155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 05/03/2023]
Abstract
Flowering is a vulnerable, but crucial phase in building crop yield. Proper timing of this period is therefore decisive in obtaining optimal yields. However, genetic regulation of flowering integrates many different environmental signals and is therefore extremely complex. This complexity increases in polyploid crops which carry two or more chromosome sets, like wheat, potato or rapeseed. Here, I summarize the current state of knowledge about flowering time gene copies in rapeseed (Brassica napus), an important oil crop with a complex polyploid history and a close relationship to Arabidopsis thaliana. The current data show a high demand for more targeted studies on flowering time genes in crops rather than in models, allowing better breeding designs and a deeper understanding of evolutionary principles. Over evolutionary time, some copies of rapeseed flowering time genes changed or lost their original role, resulting in subfunctionalization of the respective homologs. For useful applications in breeding, such patterns of subfunctionalization need to be identified and better understood.
Collapse
Affiliation(s)
- Sarah Schiessl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Giessen, Giessen, Germany
- Department of Botany and Molecular Evolution, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
- *Correspondence: Sarah Schiessl,
| |
Collapse
|
20
|
Li Y, Hou X, Li X, Zhao X, Wu Z, Xiao Y, Guo Y. Will the climate of plant origins influence the chemical profiles of cuticular waxes on leaves of Leymus chinensis in a common garden experiment? Ecol Evol 2020; 10:543-556. [PMID: 31988740 PMCID: PMC6972809 DOI: 10.1002/ece3.5930] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 11/19/2019] [Indexed: 11/11/2022] Open
Abstract
Cuticular wax covering the leaf surface plays important roles in protecting plants from biotic and abiotic stresses. Understanding the way in which plant leaf cuticles reflect their growing environment could give an insight into plant resilience to future climate change. Here, we analyzed the variations of cuticular waxes among 59 populations of Leymus chinensis in a common garden experiment, aiming to verify how environmental conditions influence the chemical profiles of cuticular waxes. In total, eight cuticular wax classes were identified, including fatty acids, aldehydes, primary alcohols, alkanes, secondary alcohols, ketones, β-diketones, and alkylresorcinols, with β-diketones the predominant compounds in all populations (averaged 67.36% across all populations). Great intraspecific trait variations (ITV) were observed for total wax coverage, wax compositions, and the relative abundance of homologues within each wax class. Cluster analysis based on wax characteristics could separate 59 populations into different clades. However, the populations could not be separated according to their original longitudes, latitudes, annual temperature, or annual precipitation. Redundancy analysis showed that latitude, arid index, and the precipitation from June to August were the most important parameters contributing to the variations of the amount of total wax coverage and wax composition and the relative abundance of wax classes. Pearson's correlation analysis further indicated that the relative abundance of wax classes, homologues in each wax class, and even isomers of certain compound differed in their responses to environmental factors. These results suggested that wax deposition patterns of L. chinensis populations formed during adaptations to their long-term growing environments could inherit in their progenies and exhibit such inheritance even these progenies were exported to new environments.
Collapse
Affiliation(s)
- Yang Li
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Xiangyang Hou
- Chinese Academy of Agricultural ScienceInstitute of Grassland ResearchHohhotChina
| | - Xiaoting Li
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Xiao Zhao
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Zinian Wu
- Chinese Academy of Agricultural ScienceInstitute of Grassland ResearchHohhotChina
| | - Yu Xiao
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| | - Yanjun Guo
- College of Agronomy and BiotechnologySouthwest UniversityChongqingChina
| |
Collapse
|
21
|
O'Neill CM, Lu X, Calderwood A, Tudor EH, Robinson P, Wells R, Morris R, Penfield S. Vernalization and Floral Transition in Autumn Drive Winter Annual Life History in Oilseed Rape. Curr Biol 2019; 29:4300-4306.e2. [PMID: 31813609 PMCID: PMC6926474 DOI: 10.1016/j.cub.2019.10.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 10/27/2022]
Abstract
Plants with winter annual life history germinate in summer or autumn and require a period of prolonged winter cold to initiate flowering, known as vernalization. In the Brassicaceae, the requirement for vernalization is conferred by high expression of orthologs of the FLOWERING LOCUS C (FLC) gene, the expression of which is known to be silenced by prolonged exposure to winter-like temperatures [1]. Based on a wealth of vernalization experiments, typically carried out in the range of 5°C-10°C, we would expect field environments during winter to induce flowering in crops with winter annual life history. Here, we show that, in the case of winter oilseed rape, expression of multiple FLC orthologs declines not during winter but predominantly during October when the average air temperature is 10°C-15°C. We further demonstrate that plants proceed through the floral transition in early November and overwinter as inflorescence meristems, which complete floral development in spring. To validate the importance of pre-winter temperatures in flowering time control, we artificially simulated climate warming in field trial plots in October. We found that increasing the temperature by 5°C in October results in raised FLC expression and delays the floral transition by 3 weeks but only has a mild effect on flowering date the following spring. Our work shows that winter annuals overwinter as a floral bud in a manner that resembles perennials and highlights the importance of studying signaling events in the field for understanding how plants transition to flowering under real environmental conditions.
Collapse
Affiliation(s)
- Carmel M O'Neill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiang Lu
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alexander Calderwood
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Eleri H Tudor
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Philip Robinson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Rachel Wells
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Richard Morris
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Steven Penfield
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
22
|
The vernalisation regulator FLOWERING LOCUS C is differentially expressed in biennial and annual Brassica napus. Sci Rep 2019; 9:14911. [PMID: 31624282 PMCID: PMC6797750 DOI: 10.1038/s41598-019-51212-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/26/2019] [Indexed: 11/11/2022] Open
Abstract
Plants in temperate areas evolved vernalisation requirement to avoid pre-winter flowering. In Brassicaceae, a period of extended cold reduces the expression of the flowering inhibitor FLOWERING LOCUS C (FLC) and paves the way for the expression of downstream flowering regulators. As with all polyploid species of the Brassicaceae, the model allotetraploid Brassica napus (rapeseed, canola) is highly duplicated and carries 9 annotated copies of Bna.FLC. To investigate whether these multiple homeologs and paralogs have retained their original function in vernalisation or undergone subfunctionalisation, we compared the expression patterns of all 9 copies between vernalisation-dependent (biennial, winter type) and vernalisation-independent (annual, spring type) accessions, using RT-qPCR with copy-specific primers and RNAseq data from a diversity set. Our results show that only 3 copies – Bna.FLC.A03b, Bna.FLC.A10 and to some extent Bna.FLC.C02 – are differentially expressed between the two growth types, showing that expression of the other 6 copies does not correlate with growth type. One of those 6 copies, Bna.FLC.C03b, was not expressed at all, indicating a pseudogene, while three further copies, Bna.FLC.C03a and Bna.FLC.C09ab, did not respond to cold treatment. Sequence variation at the COOLAIR binding site of Bna.FLC.A10 was found to explain most of the variation in gene expression. However, we also found that Bna.FLC.A10 expression is not fully predictive of growth type.
Collapse
|
23
|
Schiessl S, Williams N, Specht P, Staiger D, Johansson M. Different copies of SENSITIVITY TO RED LIGHT REDUCED 1 show strong subfunctionalization in Brassica napus. BMC PLANT BIOLOGY 2019; 19:372. [PMID: 31438864 PMCID: PMC6704554 DOI: 10.1186/s12870-019-1973-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Correct timing of flowering is critical for plants to produce enough viable offspring. In Arabidopsis thaliana (Arabidopsis), flowering time is regulated by an intricate network of molecular signaling pathways. Arabidopsis srr1-1 mutants lacking SENSITIVITY TO RED LIGHT REDUCED 1 (SRR1) expression flower early, particularly under short day (SD) conditions (1). SRR1 ensures that plants do not flower prematurely in such non-inductive conditions by controlling repression of the key florigen FT. Here, we have examined the role of SRR1 in the closely related crop species Brassica napus. RESULTS Arabidopsis SRR1 has five homologs in Brassica napus. They can be divided into two groups, where the A02 and C02 copies show high similarity to AtSRR1 on the protein level. The other group, including the A03, A10 and C09 copies all carry a larger deletion in the amino acid sequence. Three of the homologs are expressed at detectable levels: A02, C02 and C09. Notably, the gene copies show a differential expression pattern between spring and winter type accessions of B. napus. When the three expressed gene copies were introduced into the srr1-1 background, only A02 and C02 were able to complement the srr1-1 early flowering phenotype, while C09 could not. Transcriptional analysis of known SRR1 targets in Bna.SRR1-transformed lines showed that CYCLING DOF FACTOR 1 (CDF1) expression is key for flowering time control via SRR1. CONCLUSIONS We observed subfunctionalization of the B. napus SRR1 gene copies, with differential expression between early and late flowering accessions of some Bna.SRR1 copies. This suggests involvement of Bna.SRR1 in regulation of seasonal flowering in B. napus. The C09 gene copy was unable to complement srr1-1 plants, but is highly expressed in B. napus, suggesting specialization of a particular function. Furthermore, the C09 protein carries a deletion which may pinpoint a key region of the SRR1 protein potentially important for its molecular function. This is important evidence of functional domain annotation in the highly conserved but unique SRR1 amino acid sequence.
Collapse
Affiliation(s)
- Sarah Schiessl
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Giessen, Germany
| | - Natalie Williams
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Pascal Specht
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, 35392 Giessen, Giessen, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Mikael Johansson
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
24
|
Raman H, Raman R, Qiu Y, Yadav AS, Sureshkumar S, Borg L, Rohan M, Wheeler D, Owen O, Menz I, Balasubramanian S. GWAS hints at pleiotropic roles for FLOWERING LOCUS T in flowering time and yield-related traits in canola. BMC Genomics 2019; 20:636. [PMID: 31387521 PMCID: PMC6685183 DOI: 10.1186/s12864-019-5964-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background Transition to flowering at the right time is critical for local adaptation and to maximize grain yield in crops. Canola is an important oilseed crop with extensive variation in flowering time among varieties. However, our understanding of underlying genes and their role in canola productivity is limited. Results We report our analyses of a diverse GWAS panel (300–368 accessions) of canola and identify SNPs that are significantly associated with variation in flowering time and response to photoperiod across multiple locations. We show that several of these associations map in the vicinity of FLOWERING LOCUS T (FT) paralogs and its known transcriptional regulators. Complementary QTL and eQTL mapping studies, conducted in an Australian doubled haploid population, also detected consistent genomic regions close to the FT paralogs associated with flowering time and yield-related traits. FT sequences vary between accessions. Expression levels of FT in plants grown in field (or under controlled environment cabinets) correlated with flowering time. We show that markers linked to the FT paralogs display association with variation in multiple traits including flowering time, plant emergence, shoot biomass and grain yield. Conclusions Our findings suggest that FT paralogs not only control flowering time but also modulate yield-related productivity traits in canola. Electronic supplementary material The online version of this article (10.1186/s12864-019-5964-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia.
| | - Rosy Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - Yu Qiu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - Avilash Singh Yadav
- School of Biological Sciences, Monash University, Clayton, VIC3800, Australia
| | - Sridevi Sureshkumar
- School of Biological Sciences, Monash University, Clayton, VIC3800, Australia
| | - Lauren Borg
- Centre for Bioinformatics and Biometrics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Maheswaran Rohan
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - David Wheeler
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW, 2800, Australia
| | - Oliver Owen
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - Ian Menz
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | | |
Collapse
|
25
|
Qi HD, Lin Y, Ren QP, Wang YY, Xiong F, Wang XL. RNA Splicing of FLC Modulates the Transition to Flowering. FRONTIERS IN PLANT SCIENCE 2019; 10:1625. [PMID: 31921267 PMCID: PMC6928127 DOI: 10.3389/fpls.2019.01625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/19/2019] [Indexed: 05/10/2023]
Abstract
Flowering is a critical stage of plant development and is closely correlated with seed production and crop yield. Flowering transition is regulated by complex genetic networks in response to endogenous and environmental signals. FLOWERING LOCUS C (FLC) is a central repressor in the flowering transition of Arabidopsis thaliana. The regulation of FLC expression is well studied at transcriptional and post-transcriptional levels. A subset of antisense transcripts from FLC locus, collectively termed cold-induced long antisense intragenic RNAs (COOLAIR), repress FLC expression under cold exposure. Recent studies have provided important insights into the alternative splicing of COOLAIR and FLC sense transcripts in response to developmental and environmental cues. Herein, at the 20th anniversary of FLC functional identification, we summarise new research advances in the alternative splicing of FLC sense and antisense transcripts that regulates flowering.
Collapse
Affiliation(s)
- Hao-Dong Qi
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Yi Lin
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Qiu-Ping Ren
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Yu-Yi Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Feng Xiong
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
| | - Xiu-Ling Wang
- National Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, China
- *Correspondence: Xiu-Ling Wang,
| |
Collapse
|
26
|
Leijten W, Koes R, Roobeek I, Frugis G. Translating Flowering Time From Arabidopsis thaliana to Brassicaceae and Asteraceae Crop Species. PLANTS 2018; 7:plants7040111. [PMID: 30558374 PMCID: PMC6313873 DOI: 10.3390/plants7040111] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/31/2022]
Abstract
Flowering and seed set are essential for plant species to survive, hence plants need to adapt to highly variable environments to flower in the most favorable conditions. Endogenous cues such as plant age and hormones coordinate with the environmental cues like temperature and day length to determine optimal time for the transition from vegetative to reproductive growth. In a breeding context, controlling flowering time would help to speed up the production of new hybrids and produce high yield throughout the year. The flowering time genetic network is extensively studied in the plant model species Arabidopsis thaliana, however this knowledge is still limited in most crops. This article reviews evidence of conservation and divergence of flowering time regulation in A. thaliana with its related crop species in the Brassicaceae and with more distant vegetable crops within the Asteraceae family. Despite the overall conservation of most flowering time pathways in these families, many genes controlling this trait remain elusive, and the function of most Arabidopsis homologs in these crops are yet to be determined. However, the knowledge gathered so far in both model and crop species can be already exploited in vegetable crop breeding for flowering time control.
Collapse
Affiliation(s)
- Willeke Leijten
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Ronald Koes
- Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Ilja Roobeek
- ENZA Zaden Research & Development B.V., Haling 1E, 1602 DB Enkhuizen, The Netherlands.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Operative Unit of Rome, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300 ⁻ 00015, Monterotondo Scalo, Roma, Italy.
| |
Collapse
|
27
|
Shah S, Weinholdt C, Jedrusik N, Molina C, Zou J, Große I, Schiessl S, Jung C, Emrani N. Whole-transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.). PLANT, CELL & ENVIRONMENT 2018; 41:1935-1947. [PMID: 29813173 DOI: 10.1111/pce.13353] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/20/2018] [Accepted: 05/19/2018] [Indexed: 05/18/2023]
Abstract
Rapeseed (Brassica napus L.), one of the most important sources of vegetable oil and protein-rich meals worldwide, is adapted to different geographical regions by modification of flowering time. Rapeseed cultivars have different day length and vernalization requirements, which categorize them into winter, spring, and semiwinter ecotypes. To gain a deeper insight into genetic factors controlling floral transition in B. napus, we performed RNA sequencing (RNA-seq) in the semiwinter doubled haploid line, Ningyou7, at different developmental stages and temperature regimes. The expression profiles of more than 54,000 gene models were compared between different treatments and developmental stages, and the differentially expressed genes were considered as targets for association analysis and genetic mapping to confirm their role in floral transition. Consequently, 36 genes with association to flowering time, seed yield, or both were identified. We found novel indications for neofunctionalization in homologs of known flowering time regulators like VIN3 and FUL. Our study proved the potential of RNA-seq along with association analysis and genetic mapping to identify candidate genes for floral transition in rapeseed. The candidate genes identified in this study could be subjected to genetic modification or targeted mutagenesis and genotype building to breed rapeseed adapted to certain environments.
Collapse
Affiliation(s)
- Smit Shah
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Claus Weinholdt
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nicole Jedrusik
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Carlos Molina
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ivo Große
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sarah Schiessl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nazgol Emrani
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
28
|
Luo T, Zhang J, Khan MN, Liu J, Xu Z, Hu L. Temperature variation caused by sowing dates significantly affects floral initiation and floral bud differentiation processes in rapeseed (Brassica napus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:40-51. [PMID: 29650156 DOI: 10.1016/j.plantsci.2018.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 05/19/2023]
Abstract
To understand the influence of temperature on floral initiation and to reveal the relationship between floral bud development and yield potential of rapeseed (Brassica napus L.), early- ("1358"), intermediate- ("Zhongshuang No.11") and late- ("Zheshuang No.8") maturity genotypes were sown on different sowing dates under field conditions during four crop seasons. A multiplicative model was introduced to distinguish and quantify the effects of photoperiod and temperature on pre-floral initiation phase. Parameters in this model showed that early-maturity genotype was more sensitive to photoperiod; while late-maturity genotype was more sensitive to vernalization. The relationships between cumulative temperature and mean temperature of pre-floral initiation phase could be well descried by exponential equation. The developmental rate of pre-floral initiation phase against mean daily temperature displayed an asymmetrical distribution, and it decreased rapidly when the mean temperature exceeded the optimum. Leaf primordia differentiated from the shoot apical meristem showed significant linear relationship with the thermal time at pre-floral initiation phase; dynamic change of floral bud differentiated from the shoot apical meristem robustly fitted to a sigmoidal logistic curve. According to the fitted logistic equation, the maximum differentiation rate varied from 1.7 to 4.1 per 10 °Cd due to different sowing dates and genotypes. Averaged across growing seasons, sowing dates and genotypes, bud degeneration rate was 33% on the main raceme, and varied from 58% to 99% on the seven primary branches. The yield showed a significant correlation with floral bud number although the latter showed serious degeneration. In conclusion, the floral bud quantity largely determines rapeseed yield, and thus the genotypes with strong vernalization requirement should be planted early to extend the vegetative stage to achieve more fertile floral buds while the genotypes with weak vernalization requirement should be planted late to avoid flowering in chilling environment.
Collapse
Affiliation(s)
- Tao Luo
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jing Zhang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Mohammad Nauman Khan
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jiahuan Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenghua Xu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Liyong Hu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
29
|
Wang Y, Zhang T, Song X, Zhang J, Dang Z, Pei X, Long Y. Identification and functional analysis of two alternatively spliced transcripts of ABSCISIC ACID INSENSITIVE3 (ABI3) in linseed flax (Linum usitatissimum L.). PLoS One 2018; 13:e0191910. [PMID: 29381737 PMCID: PMC5790255 DOI: 10.1371/journal.pone.0191910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/12/2018] [Indexed: 11/19/2022] Open
Abstract
Alternative splicing is a popular phenomenon in different types of plants. It can produce alternative spliced transcripts that encode proteins with altered functions. Previous studies have shown that one transcription factor, ABSCISIC ACID INSENSITIVE3 (ABI3), which encodes an important component in abscisic acid (ABA) signaling, is subjected to alternative splicing in both mono- and dicotyledons. In the current study, we identified two homologs of ABI3 in the genome of linseed flax. We screened two alternatively spliced flax LuABI3 transcripts, LuABI3-2 and LuABI3-3, and one normal flax LuABI3 transcript, LuABI3-1. Sequence analysis revealed that one of the alternatively spliced transcripts, LuABI3-3, retained a 6 bp intron. RNA accumulation analysis showed that all three transcripts were expressed during seed development, while subcellular localization and transgene experiments showed that LuABI3-3 had no biological function. The two normal transcripts, LuABI3-1 and LuABI3-2, are the important functional isoforms in flax and play significant roles in the ABA regulatory pathway during seed development, germination, and maturation.
Collapse
Affiliation(s)
- Yanyan Wang
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tianbao Zhang
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaxia Song
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianping Zhang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zhanhai Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xinwu Pei
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Long
- MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
30
|
Huang F, Liu T, Hou X. Isolation and Functional Characterization of a Floral Repressor, BcMAF1, From Pak-choi ( Brassica rapa ssp. Chinensis). FRONTIERS IN PLANT SCIENCE 2018; 9:290. [PMID: 29559991 PMCID: PMC5845726 DOI: 10.3389/fpls.2018.00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/19/2018] [Indexed: 05/08/2023]
Abstract
MADS-box genes form a large gene family in plants and are involved in multiple biological processes, such as flowering. However, the regulation mechanism of MADS-box genes in flowering remains unresolved, especially under short-term cold conditions. In the present study, we isolated BcMAF1, a Pak-choi (Brassica rapa ssp. Chinensis) MADS AFFECTING FLOWERING (MAF), as a floral repressor and functionally characterized BcMAF1 in Arabidopsis and Pak-choi. Subcellular localization and sequence analysis indicated that BcMAF1 was a nuclear protein and contained a conserved MADS-box domain. Expression analysis revealed that BcMAF1 had higher expression levels in leaves, stems, and petals, and could be induced by short-term cold conditions in Pak-choi. Overexpressing BcMAF1 in Arabidopsis showed that BcMAF1 had a negative function in regulating flowering, which was further confirmed by silencing endogenous BcMAF1 in Pak-choi. In addition, qPCR results showed that AtAP3 expression was reduced and AtMAF2 expression was induced in BcMAF1-overexpressing Arabidopsis. Meanwhile, BcAP3 transcript was up-regulated and BcMAF2 transcript was down-regulated in BcMAF1-silencing Pak-choi. Yeast one-hybrid and dual luciferase transient assays showed that BcMAF1 could bind to the promoters of BcAP3 and BcMAF2. These results indicated that BcAP3 and BcMAF2 might be the targets of BcMAF1. Taken together, our results suggested that BcMAF1 could negatively regulate flowering by directly activating BcMAF2 and repressing BcAP3.
Collapse
|
31
|
Itabashi E, Osabe K, Fujimoto R, Kakizaki T. Epigenetic regulation of agronomical traits in Brassicaceae. PLANT CELL REPORTS 2018; 37:87-101. [PMID: 29058037 DOI: 10.1007/s00299-017-2223-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/05/2017] [Indexed: 05/08/2023]
Abstract
Epigenetic regulation, covalent modification of DNA and changes in histone proteins are closely linked to plant development and stress response through flexibly altering the chromatin structure to regulate gene expression. In this review, we will illustrate the importance of epigenetic influences by discussing three agriculturally important traits of Brassicaceae. (1) Vernalization, an acceleration of flowering by prolonged cold exposure regulated through epigenetic silencing of a central floral repressor, FLOWERING LOCUS C. This is associated with cold-dependent repressive histone mark accumulation, which confers competency of consequence vegetative-to-reproductive phase transition. (2) Hybrid vigor, in which an F1 hybrid shows superior performance to the parental lines. Combination of distinct epigenomes with different DNA methylation states between parental lines is important for increase in growth rate in a hybrid progeny. This is independent of siRNA-directed DNA methylation but dependent on the chromatin remodeler DDM1. (3) Self-incompatibility, a reproductive mating system to prevent self-fertilization. This is controlled by the S-locus consisting of SP11 and SRK which are responsible for self/non-self recognition. Because self-incompatibility in Brassicaceae is sporophytically controlled, there are dominance relationships between S haplotypes in the stigma and pollen. The dominance relationships in the pollen rely on de novo DNA methylation at the promoter region of a recessive allele, which is triggered by siRNA production from a flanking region of a dominant allele.
Collapse
Affiliation(s)
- Etsuko Itabashi
- Institute of Vegetable and Floriculture Science, NARO, Kusawa, Ano, Tsu, Mie, 514-2392, Japan.
| | - Kenji Osabe
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami, Okinawa, 904-0495, Japan
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe, 657-8501, Japan
| | - Tomohiro Kakizaki
- Institute of Vegetable and Floriculture Science, NARO, Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| |
Collapse
|
32
|
Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C, Li J, Du D, Qi C, Jiang L, Liu W, Huang S, Chen W, Yu J, Mei D, Meng J, Zeng P, Shi J, Liu K, Wang X, Wang X, Long Y, Liang X, Hu Z, Huang G, Dong C, Zhang H, Li J, Zhang Y, Li L, Shi C, Wang J, Lee SMY, Guan C, Xu X, Liu S, Liu X, Chalhoub B, Hua W, Wang H. The high-quality genome of Brassica napus cultivar 'ZS11' reveals the introgression history in semi-winter morphotype. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:452-468. [PMID: 28849613 DOI: 10.1111/tpj.13669] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 08/05/2017] [Accepted: 08/11/2017] [Indexed: 05/04/2023]
Abstract
Allotetraploid oilseed rape (Brassica napus L.) is an agriculturally important crop. Cultivation and breeding of B. napus by humans has resulted in numerous genetically diverse morphotypes with optimized agronomic traits and ecophysiological adaptation. To further understand the genetic basis of diversification and adaptation, we report a draft genome of an Asian semi-winter oilseed rape cultivar 'ZS11' and its comprehensive genomic comparison with the genomes of the winter-type cultivar 'Darmor-bzh' as well as two progenitors. The integrated BAC-to-BAC and whole-genome shotgun sequencing strategies were effective in the assembly of repetitive regions (especially young long terminal repeats) and resulted in a high-quality genome assembly of B. napus 'ZS11'. Within a short evolutionary period (~6700 years ago), semi-winter-type 'ZS11' and the winter-type 'Darmor-bzh' maintained highly genomic collinearity. Even so, certain genetic differences were also detected in two morphotypes. Relative to 'Darmor-bzh', both two subgenomes of 'ZS11' are closely related to its progenitors, and the 'ZS11' genome harbored several specific segmental homoeologous exchanges (HEs). Furthermore, the semi-winter-type 'ZS11' underwent potential genomic introgressions with B. rapa (Ar ). Some of these genetic differences were associated with key agronomic traits. A key gene of A03.FLC3 regulating vernalization-responsive flowering time in 'ZS11' was first experienced HE, and then underwent genomic introgression event with Ar , which potentially has led to genetic differences in controlling vernalization in the semi-winter types. Our observations improved our understanding of the genetic diversity of different B. napus morphotypes and the cultivation history of semi-winter oilseed rape in Asia.
Collapse
Affiliation(s)
- Fengming Sun
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Guangyi Fan
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Qiong Hu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Guan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, BeiBei District, Chongqing, 400715, China
| | - Dezhi Du
- Qinghai Academy of Agricultural and Forestry, National Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Xining, 810016, China
| | - Cunkou Qi
- Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Liangcai Jiang
- Shichun Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Weiqing Liu
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Shunmou Huang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wenbin Chen
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Jingyin Yu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Desheng Mei
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Zeng
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Jiaqin Shi
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xi Wang
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Xinfa Wang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinming Liang
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Zhiyong Hu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Guodong Huang
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Caihua Dong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - He Zhang
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Jun Li
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yaolei Zhang
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Liangwei Li
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Chengcheng Shi
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Jiahao Wang
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Chunyun Guan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Xun Xu
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xin Liu
- Beijing Genome Institute-Shenzhen, Shenzhen, 518083, China
- BGI-Qingdao, Qingdao, 266555, China
| | - Boulos Chalhoub
- Institut National de Recherche Agronomique (INRA), Unité de Recherche en Génomique Végétale (URGV), UMR1165, Organization and Evolution of Plant Genomes (OEPG), 2 rue Gaston Crémieux, 91057, Evry, France
| | - Wei Hua
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Hanzhong Wang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the PRC, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
33
|
Liu C, Wang S, Xu W, Liu X. Genome-wide transcriptome profiling of radish (Raphanus sativus L.) in response to vernalization. PLoS One 2017; 12:e0177594. [PMID: 28498850 PMCID: PMC5428929 DOI: 10.1371/journal.pone.0177594] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/28/2017] [Indexed: 11/21/2022] Open
Abstract
Vernalization is a key process for premature bolting. Although many studies on vernalization have been reported, the molecular mechanism of vernalization is still largely unknown in radish. In this study, we sequenced the transcriptomes of radish seedlings at three different time points during vernalization. More than 36 million clean reads were generated for each sample and the portions mapped to the reference genome were all above 67.0%. Our results show that the differentially expressed genes (DEGs) between room temperature and the early stage of vernalization (4,845) are the most in all treatments pairs. A series of vernalization related genes, including two FLOWERING LOCUS C (FLC) genes, were screened according to the annotations. A total of 775 genes were also filtered as the vernalization related candidates based on their expression profiles. Cold stress responsive genes were also analyzed to further confirm the sequencing result. Several key genes in vernalization or cold stress response were validated by quantitative RT-PCR (RT-qPCR). This study identified a number of genes that may be involved in vernalization, which are useful for other functional genomics research in radish.
Collapse
Affiliation(s)
- Chen Liu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
| | - Shufen Wang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
- * E-mail:
| | - Wenling Xu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
| | - Xianxian Liu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong, People's Republic of China
| |
Collapse
|
34
|
Ou CG, Mao JH, Liu LJ, Li CJ, Ren HF, Zhao ZW, Zhuang FY. Characterising genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:286-297. [PMID: 27775866 DOI: 10.1111/plb.12519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/19/2016] [Indexed: 05/24/2023]
Abstract
Carrot is generally regarded as a biennial plant with an obligatory vernalization requirement. Early spring cultivation makes plants vulnerable to premature bolting, which results in a loss of commercial value. However, our knowledge of flowering time genes and flowering mechanisms in carrot remain limited. Bolting behavior of D. carota ssp. carota 'Songzi', a wild species sensitive to flower induction by vernalization and photoperiod, and orange cultivar 'Amsterdam forcing', and their offspring were investigated in different growing conditions. We performed RNA-seq to identify the flowering time genes, and digital gene expression (DGE) analysis to examine their expression levels. The circadian patterns of related genes were identified by qPCR. The results showed bolting behavior of carrot was influenced by low temperature, illumination intensity and photoperiod. A total of 45 flowering time-related unigenes were identified, which were classified into five categories including photoperiod, vernalization, autonomous and gibberellin pathway, and floral integrators. Homologs of LATE ELONGATED HYPOCOTYL (LHY) and CONSTANS-LIKE 2 (COL2) were more highly expressed under short day condition than under long day condition. Homologs of COL2, CONSTANS-LIKE 5 (COL5), SUPPRESSION OF OVEREXPRESSION OF CONSTANS 1 (SOC1), FLOWERING LOCUS C (FLC) and GIBBERELLIC ACID INSENSITIVE (GAI) were differentially expressed between 'Songzi' and 'Amsterdam forcing'. The homolog of COL2 (Dct43207) was repressed by light, but that of COL5 (Dct20940) was induced. A preliminary model of genetic network controlling flowering time was constructed by associating the results of DGE analysis with correlation coefficients between genes. This study provides useful information for further investigating the genetic mechanism of flowering in carrot.
Collapse
Affiliation(s)
- C-G Ou
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - J-H Mao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - L-J Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - C-J Li
- Suzhou Academy of Agricultural Science, Suzhou, Anhui, China
| | - H-F Ren
- Suzhou Academy of Agricultural Science, Suzhou, Anhui, China
| | - Z-W Zhao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| | - F-Y Zhuang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
35
|
Raman H, Raman R, Coombes N, Song J, Prangnell R, Bandaranayake C, Tahira R, Sundaramoorthi V, Killian A, Meng J, Dennis ES, Balasubramanian S. Genome-wide association analyses reveal complex genetic architecture underlying natural variation for flowering time in canola. PLANT, CELL & ENVIRONMENT 2016; 39:1228-39. [PMID: 26428711 DOI: 10.1111/pce.12644] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/17/2015] [Accepted: 09/20/2015] [Indexed: 05/17/2023]
Abstract
Optimum flowering time is the key to maximize canola production in order to meet global demand of vegetable oil, biodiesel and canola-meal. We reveal extensive variation in flowering time across diverse genotypes of canola under field, glasshouse and controlled environmental conditions. We conduct a genome-wide association study and identify 69 single nucleotide polymorphism (SNP) markers associated with flowering time, which are repeatedly detected across experiments. Several associated SNPs occur in clusters across the canola genome; seven of them were detected within 20 Kb regions of a priori candidate genes; FLOWERING LOCUS T, FRUITFUL, FLOWERING LOCUS C, CONSTANS, FRIGIDA, PHYTOCHROME B and an additional five SNPs were localized within 14 Kb of a previously identified quantitative trait loci for flowering time. Expression analyses showed that among FLC paralogs, BnFLC.A2 accounts for ~23% of natural variation in diverse accessions. Genome-wide association analysis for FLC expression levels mapped not only BnFLC.C2 but also other loci that contribute to variation in FLC expression. In addition to revealing the complex genetic architecture of flowering time variation, we demonstrate that the identified SNPs can be modelled to predict flowering time in diverse canola germplasm accurately and hence are suitable for genomic selection of adaptative traits in canola improvement programmes.
Collapse
Affiliation(s)
- H Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - R Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - N Coombes
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - J Song
- Diversity Arrays Technology P/L, University of Canberra, Canberra, ACT, 2601, Australia
| | - R Prangnell
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - C Bandaranayake
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - R Tahira
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - V Sundaramoorthi
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - A Killian
- Diversity Arrays Technology P/L, University of Canberra, Canberra, ACT, 2601, Australia
| | - J Meng
- National Key Laboratory of Crop Improvement, Huazhong Agricultural University, Wuhan, China
| | - E S Dennis
- CSIRO Division of Plant Industry, Canberra, ACT, 2601, Australia
| | - S Balasubramanian
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
36
|
Fletcher RS, Herrmann D, Mullen JL, Li Q, Schrider DR, Price N, Lin J, Grogan K, Kern A, McKay JK. Identification of Polymorphisms Associated with Drought Adaptation QTL in Brassica napus by Resequencing. G3 (BETHESDA, MD.) 2016; 6:793-803. [PMID: 26801646 PMCID: PMC4825650 DOI: 10.1534/g3.115.021279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/17/2016] [Indexed: 11/24/2022]
Abstract
Brassica napus is a globally important oilseed for which little is known about the genetics of drought adaptation. We previously mapped twelve quantitative trait loci (QTL) underlying drought-related traits in a biparental mapping population created from a cross between winter and spring B. napus cultivars. Here we resequence the genomes of the mapping population parents to identify genetic diversity across the genome and within QTL regions. We sequenced each parental cultivar on the Illumina HiSeq platform to a minimum depth of 23 × and performed a reference based assembly in order to describe the molecular variation differentiating them at the scale of the genome, QTL and gene. Genome-wide patterns of variation were characterized by an overall higher single nucleotide polymorphism (SNP) density in the A genome and a higher ratio of nonsynonymous to synonymous substitutions in the C genome. Nonsynonymous substitutions were used to categorize gene ontology terms differentiating the parent genomes along with a list of putative functional variants contained within each QTL. Marker assays were developed for several of the discovered polymorphisms within a pleiotropic QTL on chromosome A10. QTL analysis with the new, denser map showed the most associated marker to be that developed from an insertion/deletion polymorphism located in the candidate gene Bna.FLC.A10, and it was the only candidate within the QTL interval with observed polymorphism. Together, these results provide a glimpse of genome-wide variation differentiating annual and biennial B. napus ecotypes as well as a better understanding of the genetic basis of root and drought phenotypes.
Collapse
Affiliation(s)
| | - David Herrmann
- Cargill Specialty Seeds & Oils, Fort Collins, Colorado 80525
| | - Jack L Mullen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Qinfei Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | - Daniel R Schrider
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Nicholas Price
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Junjiang Lin
- Department of Computer Science, University of Toronto, Ontario M5S 2J7, Canada
| | - Kelsi Grogan
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| | - Andrew Kern
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - John K McKay
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
37
|
Wang N, Chen B, Xu K, Gao G, Li F, Qiao J, Yan G, Li J, Li H, Wu X. Association Mapping of Flowering Time QTLs and Insight into Their Contributions to Rapeseed Growth Habits. FRONTIERS IN PLANT SCIENCE 2016; 7:338. [PMID: 27047517 PMCID: PMC4805649 DOI: 10.3389/fpls.2016.00338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/04/2016] [Indexed: 05/02/2023]
Abstract
Plants have developed sophisticated systems to adapt to local conditions during evolution, domestication and natural or artificial selection. The selective pressures of these different growing conditions have caused significant genomic divergence within species. The flowering time trait is the most crucial factor because it helps plants to maintain sustainable development. Controlling flowering at appropriate times can also prevent plants from suffering from adverse growth conditions, such as drought, winter hardness, and disease. Hence, discovering the genome-wide genetic mechanisms that influence flowering time variations and understanding their contributions to adaptation should be a central goal of plant genetics and genomics. A global core collection panel with 448 inbred rapeseed lines was first planted in four independent environments, and their flowering time traits were evaluated. We then performed a genome-wide association mapping of flowering times with a 60 K SNP array for this core collection. With quality control and filtration, 20,342 SNP markers were ultimately used for further analyses. In total, 312 SNPs showed marker-trait associations in all four environments, and they were based on a threshold p-value of 4.06 × 10(-4); the 40 QTLs showed significant association with flowering time variations. To explore flowering time QTLs and genes related to growth habits in rapeseed, selection signals related to divergent habits were screened at the genome-wide level and 117 genomic regions were found. Comparing locations of flowering time QTLs and genes with these selection regions revealed that 20 flowering time QTLs and 224 flowering time genes overlapped with 24 and 81 selected regions, respectively. Based on this study, a number of marker-trait associations and candidate genes for flowering time variations in rapeseed were revealed. Moreover, we also showed that both flowering time QTLs and genes play important roles in rapeseed growth habits. These results will be applied to rapeseed breeding programs, and they will aid in our understanding of the relation between flowering time variations and growth habits in plants.
Collapse
Affiliation(s)
- Nian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Guizhen Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Feng Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Jiangwei Qiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Guixin Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Jun Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Hao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China
- *Correspondence: Xiaoming Wu
| |
Collapse
|
38
|
Wang N, Chen B, Xu K, Gao G, Li F, Qiao J, Yan G, Li J, Li H, Wu X. Association Mapping of Flowering Time QTLs and Insight into Their Contributions to Rapeseed Growth Habits. FRONTIERS IN PLANT SCIENCE 2016; 7:338. [PMID: 27047517 DOI: 10.3359/fpls.2016.00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/04/2016] [Indexed: 05/18/2023]
Abstract
Plants have developed sophisticated systems to adapt to local conditions during evolution, domestication and natural or artificial selection. The selective pressures of these different growing conditions have caused significant genomic divergence within species. The flowering time trait is the most crucial factor because it helps plants to maintain sustainable development. Controlling flowering at appropriate times can also prevent plants from suffering from adverse growth conditions, such as drought, winter hardness, and disease. Hence, discovering the genome-wide genetic mechanisms that influence flowering time variations and understanding their contributions to adaptation should be a central goal of plant genetics and genomics. A global core collection panel with 448 inbred rapeseed lines was first planted in four independent environments, and their flowering time traits were evaluated. We then performed a genome-wide association mapping of flowering times with a 60 K SNP array for this core collection. With quality control and filtration, 20,342 SNP markers were ultimately used for further analyses. In total, 312 SNPs showed marker-trait associations in all four environments, and they were based on a threshold p-value of 4.06 × 10(-4); the 40 QTLs showed significant association with flowering time variations. To explore flowering time QTLs and genes related to growth habits in rapeseed, selection signals related to divergent habits were screened at the genome-wide level and 117 genomic regions were found. Comparing locations of flowering time QTLs and genes with these selection regions revealed that 20 flowering time QTLs and 224 flowering time genes overlapped with 24 and 81 selected regions, respectively. Based on this study, a number of marker-trait associations and candidate genes for flowering time variations in rapeseed were revealed. Moreover, we also showed that both flowering time QTLs and genes play important roles in rapeseed growth habits. These results will be applied to rapeseed breeding programs, and they will aid in our understanding of the relation between flowering time variations and growth habits in plants.
Collapse
Affiliation(s)
- Nian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural SciencesWuhan, China; College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Biyun Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural Sciences Wuhan, China
| | - Kun Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural Sciences Wuhan, China
| | - Guizhen Gao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural Sciences Wuhan, China
| | - Feng Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural Sciences Wuhan, China
| | - Jiangwei Qiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural Sciences Wuhan, China
| | - Guixin Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural Sciences Wuhan, China
| | - Jun Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural Sciences Wuhan, China
| | - Hao Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural Sciences Wuhan, China
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crop Research Institute of the Chinese Academy of Agricultural Sciences Wuhan, China
| |
Collapse
|
39
|
Fopa Fomeju B, Falentin C, Lassalle G, Manzanares-Dauleux MJ, Delourme R. Comparative genomic analysis of duplicated homoeologous regions involved in the resistance of Brassica napus to stem canker. FRONTIERS IN PLANT SCIENCE 2015; 6:772. [PMID: 26442081 PMCID: PMC4585320 DOI: 10.3389/fpls.2015.00772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/08/2015] [Indexed: 05/18/2023]
Abstract
All crop species are current or ancient polyploids. Following whole genome duplication, structural and functional modifications result in differential gene content or regulation in the duplicated regions, which can play a fundamental role in the diversification of genes underlying complex traits. We have investigated this issue in Brassica napus, a species with a highly duplicated genome, with the aim of studying the structural and functional organization of duplicated regions involved in quantitative resistance to stem canker, a disease caused by the fungal pathogen Leptosphaeria maculans. Genome-wide association analysis on two oilseed rape panels confirmed that duplicated regions of ancestral blocks E, J, R, U, and W were involved in resistance to stem canker. The structural analysis of the duplicated genomic regions showed a higher gene density on the A genome than on the C genome and a better collinearity between homoeologous regions than paralogous regions, as overall in the whole B. napus genome. The three ancestral sub-genomes were involved in the resistance to stem canker and the fractionation profile of the duplicated regions corresponded to what was expected from results on the B. napus progenitors. About 60% of the genes identified in these duplicated regions were single-copy genes while less than 5% were retained in all the duplicated copies of a given ancestral block. Genes retained in several copies were mainly involved in response to stress, signaling, or transcription regulation. Genes with resistance-associated markers were mainly retained in more than two copies. These results suggested that some genes underlying quantitative resistance to stem canker might be duplicated genes. Genes with a hydrolase activity that were retained in one copy or R-like genes might also account for resistance in some regions. Further analyses need to be conducted to indicate to what extent duplicated genes contribute to the expression of the resistance phenotype.
Collapse
Affiliation(s)
| | - Cyril Falentin
- Institut National de la Recherche Agronomique, UMR1349 IGEPPLe Rheu, France
| | - Gilles Lassalle
- Institut National de la Recherche Agronomique, UMR1349 IGEPPLe Rheu, France
| | | | - Régine Delourme
- Institut National de la Recherche Agronomique, UMR1349 IGEPPLe Rheu, France
| |
Collapse
|
40
|
Raman H, Dalton-Morgan J, Diffey S, Raman R, Alamery S, Edwards D, Batley J. SNP markers-based map construction and genome-wide linkage analysis in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:851-60. [PMID: 24698362 DOI: 10.1111/pbi.12186] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/29/2014] [Accepted: 02/21/2014] [Indexed: 05/19/2023]
Abstract
An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag-Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non-SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous-Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag-Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high-resolution mapping of loci in B. napus.
Collapse
Affiliation(s)
- Harsh Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CHD, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 2014; 345:950-3. [PMID: 25146293 DOI: 10.1126/science.1253435] [Citation(s) in RCA: 1461] [Impact Index Per Article: 132.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.
Collapse
Affiliation(s)
- Boulos Chalhoub
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France.
| | - France Denoeud
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France. Université d'Evry Val d'Essone, UMR 8030, CP5706, Evry, France. Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.
| | - Haibao Tang
- J. Craig Venter Institute, Rockville, MD 20850, USA. Center for Genomics and Biotechnology, Fujian Agriculture and Forestry, University, Fuzhou 350002, Fujian Province, China
| | - Xiyin Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA. Center of Genomics and Computational Biology, School of Life Sciences, Hebei United University, Tangshan, Hebei 063000, China
| | - Julien Chiquet
- Laboratoire de Mathématiques et Modélisation d'Evry-UMR 8071 CNRS/Université d'Evry val d'Essonne-USC INRA, Evry, France
| | - Harry Belcram
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Birgit Samans
- Department of Plant Breeding, Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Margot Corréa
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Jérémy Just
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Cyril Falentin
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Chu Shin Koh
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada
| | - Isabelle Le Clainche
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Maria Bernard
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Pascal Bento
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Benjamin Noel
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Adriana Alberti
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Mathieu Charles
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Dominique Arnaud
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Christian Daviaud
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91000 Evry, France
| | - Salman Alamery
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kamel Jabbari
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France. Cologne Center for Genomics, University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Meixia Zhao
- Department of Agronomy, Purdue University, WSLR Building B018, West Lafayette, IN 47907, USA
| | - Patrick P Edger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Houda Chelaifa
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - David Tack
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Gilles Lassalle
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Imen Mestiri
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Nicolas Schnel
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Marie-Christine Le Paslier
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Guangyi Fan
- Beijing Genome Institute-Shenzhen, Shenzhen 518083, China
| | - Victor Renault
- Fondation Jean Dausset-Centre d'Étude du Polymorphisme Humain, 27 rue Juliette Dodu, 75010 Paris, France
| | - Philippe E Bayer
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Agnieszka A Golicz
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sahana Manoli
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tae-Ho Lee
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Vinh Ha Dinh Thi
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Smahane Chalabi
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Qiong Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Reece Tollenaere
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yunhai Lu
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Christophe Battail
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Aurélie Canaguier
- Institut National de Recherche Agronomique (INRA)/Université d'Evry Val d'Essone, Unité de Recherche en Génomique Végétale, UMR1165, Organization and Evolution of Plant Genomes, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Aurélie Chauveau
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Aurélie Bérard
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Gwenaëlle Deniot
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Mei Guan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Fengming Sun
- Beijing Genome Institute-Shenzhen, Shenzhen 518083, China
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon-305764, South Korea
| | - Eric Lyons
- School of Plant Sciences, iPlant Collaborative, University of Arizona, Tucson, AZ, USA
| | | | - Ian Bancroft
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, WSLR Building B018, West Lafayette, IN 47907, USA
| | - J Chris Pires
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Graham J King
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Dominique Brunel
- INRA, Etude du Polymorphisme des Génomes Végétaux, US1279, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Régine Delourme
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Michel Renard
- INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP) UMR1349, BP35327, 35653 Le Rheu Cedex, France
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France
| | - Keith L Adams
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Jacqueline Batley
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia. School of Plant Biology, University of Western Australia, WA 6009, Australia
| | - Rod J Snowdon
- Department of Plant Breeding, Research Center for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Génotypage, CEA-IG, 2 rue Gaston Crémieux, 91000 Evry, France
| | - David Edwards
- Australian Centre for Plant Functional Genomics, School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia. School of Plant Biology, University of Western Australia, WA 6009, Australia.
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Hua
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of People's Republic of China, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK S7N 0W9, Canada.
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA.
| | - Chunyun Guan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, BP5706, 91057 Evry, France. Université d'Evry Val d'Essone, UMR 8030, CP5706, Evry, France. Centre National de Recherche Scientifique (CNRS), UMR 8030, CP5706, Evry, France.
| |
Collapse
|
42
|
Raman H, Raman R, Kilian A, Detering F, Carling J, Coombes N, Diffey S, Kadkol G, Edwards D, McCully M, Ruperao P, Parkin IAP, Batley J, Luckett DJ, Wratten N. Genome-wide delineation of natural variation for pod shatter resistance in Brassica napus. PLoS One 2014; 9:e101673. [PMID: 25006804 PMCID: PMC4090071 DOI: 10.1371/journal.pone.0101673] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 06/02/2014] [Indexed: 12/18/2022] Open
Abstract
Resistance to pod shattering (shatter resistance) is a target trait for global rapeseed (canola, Brassica napus L.), improvement programs to minimise grain loss in the mature standing crop, and during windrowing and mechanical harvest. We describe the genetic basis of natural variation for shatter resistance in B. napus and show that several quantitative trait loci (QTL) control this trait. To identify loci underlying shatter resistance, we used a novel genotyping-by-sequencing approach DArT-Seq. QTL analysis detected a total of 12 significant QTL on chromosomes A03, A07, A09, C03, C04, C06, and C08; which jointly account for approximately 57% of the genotypic variation in shatter resistance. Through Genome-Wide Association Studies, we show that a large number of loci, including those that are involved in shattering in Arabidopsis, account for variation in shatter resistance in diverse B. napus germplasm. Our results indicate that genetic diversity for shatter resistance genes in B. napus is limited; many of the genes that might control this trait were not included during the natural creation of this species, or were not retained during the domestication and selection process. We speculate that valuable diversity for this trait was lost during the natural creation of B. napus. To improve shatter resistance, breeders will need to target the introduction of useful alleles especially from genotypes of other related species of Brassica, such as those that we have identified.
Collapse
Affiliation(s)
- Harsh Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Rosy Raman
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, University of Canberra, Bruce, ACT, Australia
| | - Frank Detering
- Diversity Arrays Technology Pty Ltd, University of Canberra, Bruce, ACT, Australia
| | - Jason Carling
- Diversity Arrays Technology Pty Ltd, University of Canberra, Bruce, ACT, Australia
| | - Neil Coombes
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Simon Diffey
- University of Wollongong, Wollongong, NSW, Australia
| | - Gururaj Kadkol
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Tamworth, NSW, Australia
| | - David Edwards
- Australian Centre for Plant Functional Genomic, School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD, Australia; School of Plant Biology, University of Western Australia, Perth, WA, Australia
| | | | - Pradeep Ruperao
- Australian Centre for Plant Functional Genomic, School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD, Australia; International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Andhra Pradesh, India
| | | | - Jacqueline Batley
- School of Plant Biology, University of Western Australia, Perth, WA, Australia; School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD, Australia
| | - David J Luckett
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Neil Wratten
- Graham Centre for Agricultural Innovation (an alliance between NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| |
Collapse
|
43
|
Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:957-68. [PMID: 24504552 DOI: 10.1007/s00122-014-2271-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/16/2014] [Indexed: 05/20/2023]
Abstract
This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations. Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.
Collapse
Affiliation(s)
- Congcong Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Schiessl S, Samans B, Hüttel B, Reinhard R, Snowdon RJ. Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus. FRONTIERS IN PLANT SCIENCE 2014; 5:404. [PMID: 25202314 PMCID: PMC4142343 DOI: 10.3389/fpls.2014.00404] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/29/2014] [Indexed: 05/18/2023]
Abstract
Flowering, the transition from the vegetative to the generative phase, is a decisive time point in the lifecycle of a plant. Flowering is controlled by a complex network of transcription factors, photoreceptors, enzymes and miRNAs. In recent years, several studies gave rise to the hypothesis that this network is also strongly involved in the regulation of other important lifecycle processes ranging from germination and seed development through to fundamental developmental and yield-related traits. In the allopolyploid crop species Brassica napus, (genome AACC), homoeologous copies of flowering time regulatory genes are implicated in major phenological variation within the species, however the extent and control of intraspecific and intergenomic variation among flowering-time regulators is still unclear. To investigate differences among B. napus morphotypes in relation to flowering-time gene variation, we performed targeted deep sequencing of 29 regulatory flowering-time genes in four genetically and phenologically diverse B. napus accessions. The genotype panel included a winter-type oilseed rape, a winter fodder rape, a spring-type oilseed rape (all B. napus ssp. napus) and a swede (B. napus ssp. napobrassica), which show extreme differences in winter-hardiness, vernalization requirement and flowering behavior. A broad range of genetic variation was detected in the targeted genes for the different morphotypes, including non-synonymous SNPs, copy number variation and presence-absence variation. The results suggest that this broad variation in vernalization, clock and signaling genes could be a key driver of morphological differentiation for flowering-related traits in this recent allopolyploid crop species.
Collapse
Affiliation(s)
- Sarah Schiessl
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, GiessenGiessen, Germany
- *Correspondence: Sarah Schiessl, Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, Giessen 35392, Germany e-mail:
| | - Birgit Samans
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, GiessenGiessen, Germany
| | - Bruno Hüttel
- Max Planck Genome Centre Cologne, Max Planck Institute for Breeding ResearchCologne, Germany
| | - Richard Reinhard
- Max Planck Genome Centre Cologne, Max Planck Institute for Breeding ResearchCologne, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, GiessenGiessen, Germany
| |
Collapse
|
45
|
Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DP, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, Bonnema G. The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4503-16. [PMID: 24078668 PMCID: PMC3808329 DOI: 10.1093/jxb/ert264] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The role of many genes and interactions among genes involved in flowering time have been studied extensively in Arabidopsis, and the purpose of this study was to investigate how effectively results obtained with the model species Arabidopsis can be applied to the Brassicacea with often larger and more complex genomes. Brassica rapa represents a very close relative, with its triplicated genome, with subgenomes having evolved by genome fractionation. The question of whether this genome fractionation is a random process, or whether specific genes are preferentially retained, such as flowering time (Ft) genes that play a role in the extreme morphological variation within the B. rapa species (displayed by the diverse morphotypes), is addressed. Data are presented showing that indeed Ft genes are preferentially retained, so the next intriguing question is whether these different orthologues of Arabidopsis Ft genes play similar roles compared with Arabidopsis, and what is the role of these different orthologues in B. rapa. Using a genetical-genomics approach, co-location of flowering quantitative trait loci (QTLs) and expression QTLs (eQTLs) resulted in identification of candidate genes for flowering QTLs and visualization of co-expression networks of Ft genes and flowering time. A major flowering QTL on A02 at the BrFLC2 locus co-localized with cis eQTLs for BrFLC2, BrSSR1, and BrTCP11, and trans eQTLs for the photoperiod gene BrCO and two paralogues of the floral integrator genes BrSOC1 and BrFT. It is concluded that the BrFLC2 Ft gene is a major regulator of flowering time in the studied doubled haploid population.
Collapse
Affiliation(s)
- Dong Xiao
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Horticultural College, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
- *These authors contributed equally to this work
| | - Jian J. Zhao
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
- Horticultural College, Hebei Agricultural University, 071001 Baoding, China
- *These authors contributed equally to this work
| | - Xi L. Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Horticultural College, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, China
| | - Ram K. Basnet
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
- Center for Biosystems Genomics, Wageningen University, AJ 6700 Wageningen, The Netherlands
| | - Dunia P.D. Carpio
- Institute of Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Ning W. Zhang
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
| | - Johan Bucher
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
| | - Ke Lin
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
| | - Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Xiao W. Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Guusje Bonnema
- Wageningen UR Plant Breeding, PO Box 386, AJ 6700 Wageningen, The Netherlands
- Center for Biosystems Genomics, Wageningen University, AJ 6700 Wageningen, The Netherlands
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
46
|
Raman H, Raman R, Kilian A, Detering F, Long Y, Edwards D, Parkin IAP, Sharpe AG, Nelson MN, Larkan N, Zou J, Meng J, Aslam MN, Batley J, Cowling WA, Lydiate D. A consensus map of rapeseed (Brassica napus L.) based on diversity array technology markers: applications in genetic dissection of qualitative and quantitative traits. BMC Genomics 2013; 14:277. [PMID: 23617817 PMCID: PMC3641989 DOI: 10.1186/1471-2164-14-277] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 04/06/2013] [Indexed: 12/03/2022] Open
Abstract
Background Dense consensus genetic maps based on high-throughput genotyping platforms are valuable for making genetic gains in Brassica napus through quantitative trait locus identification, efficient predictive molecular breeding, and map-based gene cloning. This report describes the construction of the first B. napus consensus map consisting of a 1,359 anchored array based genotyping platform; Diversity Arrays Technology (DArT), and non-DArT markers from six populations originating from Australia, Canada, China and Europe. We aligned the B. napus DArT sequences with genomic scaffolds from Brassica rapa and Brassica oleracea, and identified DArT loci that showed linkage with qualitative and quantitative loci associated with agronomic traits. Results The integrated consensus map covered a total of 1,987.2 cM and represented all 19 chromosomes of the A and C genomes, with an average map density of one marker per 1.46 cM, corresponding to approximately 0.88 Mbp of the haploid genome. Through in silico physical mapping 2,457 out of 3,072 (80%) DArT clones were assigned to the genomic scaffolds of B. rapa (A genome) and B. oleracea (C genome). These were used to orientate the genetic consensus map with the chromosomal sequences. The DArT markers showed linkage with previously identified non-DArT markers associated with qualitative and quantitative trait loci for plant architecture, phenological components, seed and oil quality attributes, boron efficiency, sucrose transport, male sterility, and race-specific resistance to blackleg disease. Conclusions The DArT markers provide increased marker density across the B. napus genome. Most of the DArT markers represented on the current array were sequenced and aligned with the B. rapa and B. oleracea genomes, providing insight into the Brassica A and C genomes. This information can be utilised for comparative genomics and genomic evolution studies. In summary, this consensus map can be used to (i) integrate new generation markers such as SNP arrays and next generation sequencing data; (ii) anchor physical maps to facilitate assembly of B. napus genome sequences; and (iii) identify candidate genes underlying natural genetic variation for traits of interest.
Collapse
Affiliation(s)
- Harsh Raman
- EH Graham Centre for Agricultural Innovation (an alliance between NSWDPI and Charles Sturt University), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hou J, Long Y, Raman H, Zou X, Wang J, Dai S, Xiao Q, Li C, Fan L, Liu B, Meng J. A Tourist-like MITE insertion in the upstream region of the BnFLC.A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.). BMC PLANT BIOLOGY 2012; 12:238. [PMID: 23241244 PMCID: PMC3562271 DOI: 10.1186/1471-2229-12-238] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/30/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) has spring and winter genotypes adapted to different growing seasons. Winter genotypes do not flower before the onset of winter, thus leading to a longer vegetative growth period that promotes the accumulation and allocation of more resources to seed production. The development of winter genotypes enabled the rapeseed to spread rapidly from southern to northern Europe and other temperate regions of the world. The molecular basis underlying the evolutionary transition from spring- to winter- type rapeseed is not known, however, and needs to be elucidated. RESULTS We fine-mapped the spring environment specific quantitative trait locus (QTL) for flowering time, qFT10-4,in a doubled haploid (DH) mapping population of rapeseed derived from a cross between Tapidor (winter-type) and Ningyou7 (semi-winter) and delimited the qFT10-4 to an 80-kb region on chromosome A10 of B. napus. The BnFLC.A10 gene, an ortholog of FLOWERING LOCUS C (FLC) in Arabidopsis, was cloned from the QTL. We identified 12 polymorphic sites between BnFLC.A10 parental alleles of the TN-DH population in the upstream region and in intron 1. Expression of both BnFLC.A10 alleles decreased during vernalization, but decreased more slowly in the winter parent Tapidor. Haplotyping and association analysis showed that one of the polymorphic sites upstream of BnFLC.A10 is strongly associated with the vernalization requirement of rapeseed (r2 = 0.93, χ2 = 0.50). This polymorphic site is derived from a Tourist-like miniature inverted-repeat transposable element (MITE) insertion/deletion in the upstream region of BnFLC.A10. The MITE sequence was not present in the BnFLC.A10 gene in spring-type rapeseed, nor in ancestral 'A' genome species B. rapa genotypes. Our results suggest that the insertion may have occurred in winter rapeseed after B. napus speciation. CONCLUSIONS Our findings strongly suggest that (i) BnFLC.A10 is the gene underlying qFT10-4, the QTL for phenotypic diversity of flowering time in the TN-DH population, (ii) the allelic diversity caused by MITE insertion/deletion upstream of BnFLC.A10 is one of the major causes of differentiation of winter and spring genotypes in rapeseed and (iii) winter rapeseed has evolved from spring genotypes through selection pressure at the BnFLC.A10 locus, enabling expanded cultivation of rapeseed along the route of Brassica domestication.
Collapse
Affiliation(s)
- Jinna Hou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Harsh Raman
- EH Graham Centre for Agricultural Innovation (an alliance between the Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - Xiaoxiao Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shutao Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinqin Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longjiang Fan
- Department of Agronomy & James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Center of Systematic Genomics, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|