1
|
Maduabuchi WO, Tansi FL, Heller R, Hilger I. Hyperthermia Influences the Secretion Signature of Tumor Cells and Affects Endothelial Cell Sprouting. Biomedicines 2023; 11:2256. [PMID: 37626752 PMCID: PMC10452125 DOI: 10.3390/biomedicines11082256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Tumors are a highly heterogeneous mass of tissue showing distinct therapy responses. In particular, the therapeutic outcome of tumor hyperthermia treatments has been inconsistent, presumably due to tumor versus endothelial cell cross-talks related to the treatment temperature and the tumor tissue environment. Here, we investigated the impact of the average or strong hyperthermic treatment (43 °C or 47 °C for 1 h) of the human pancreatic adenocarcinoma cell line (PANC-1 and BxPC-3) on endothelial cells (HUVECs) under post-treatment normoxic or hypoxic conditions. Immediately after the hyperthermia treatment, the distinct repression of secreted pro-angiogenic factors (e.g., VEGF, PDGF-AA, PDGF-BB, M-CSF), intracellular HIF-1α and the enhanced phosphorylation of ERK1/2 in tumor cells were detectable (particularly for strong hyperthermia, 2D cell monolayers). Notably, there was a significant increase in endothelial sprouting when 3D self-organized pancreatic cancer cells were treated with strong hyperthermia and the post-treatment conditions were hypoxic. Interestingly, for the used treatment temperatures, the intracellular HIF-1α accumulation in tumor cells seems to play a role in MAPK/ERK activation and mediator secretion (e.g., VEGF, PDGF-AA, Angiopoietin-2), as shown by inhibition experiments. Taken together, the hyperthermia of pancreatic adenocarcinoma cells in vitro impacts endothelial cells under defined environmental conditions (cell-to-cell contact, oxygen status, treatment temperature), whereby HIF-1α and VEGF secretion play a role in a complex context. Our observations could be exploited for the hyperthermic treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
- Wisdom O. Maduabuchi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (W.O.M.); (F.L.T.)
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (W.O.M.); (F.L.T.)
| | - Regine Heller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Hans-Knöll-Str. 2, D-07745 Jena, Germany;
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, D-07747 Jena, Germany; (W.O.M.); (F.L.T.)
| |
Collapse
|
2
|
Fearon U, Hanlon MM, Floudas A, Veale DJ. Cellular metabolic adaptations in rheumatoid arthritis and their therapeutic implications. Nat Rev Rheumatol 2022; 18:398-414. [PMID: 35440762 DOI: 10.1038/s41584-022-00771-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Activation of endothelium and immune cells is fundamental to the initiation of autoimmune diseases such as rheumatoid arthritis (RA), and it results in trans-endothelial cell migration and synovial fibroblast proliferation, leading to joint destruction. In RA, the synovial microvasculature is highly dysregulated, resulting in inefficient oxygen perfusion to the synovium, which, along with the high metabolic demands of activated immune and stromal cells, leads to a profoundly hypoxic microenvironment. In inflamed joints, infiltrating immune cells and synovial resident cells have great requirements for energy and nutrients, and they adapt their metabolic profiles to generate sufficient energy to support their highly activated inflammatory states. This shift in metabolic capacity of synovial cells enables them to produce the essential building blocks to support their proliferation, activation and invasiveness. Furthermore, it results in the accumulation of metabolic intermediates and alteration of redox-sensitive pathways, affecting signalling pathways that further potentiate the inflammatory response. Importantly, the inflamed synovium is a multicellular tissue, with cells differing in their metabolic requirements depending on complex cell-cell interactions, nutrient supply, metabolic intermediates and transcriptional regulation. Therefore, understanding the complex interplay between metabolic and inflammatory pathways in synovial cells in RA will provide insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland. .,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland.
| | - Megan M Hanlon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, TCD, Dublin, Ireland.,EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| | - Douglas J Veale
- EULAR Centre of Excellence, Centre for Arthritis and Rheumatic Diseases, St Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
3
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
4
|
Noguchi T, Ebina K, Hirao M, Morimoto T, Koizumi K, Kitaguchi K, Matsuoka H, Iwahashi T, Yoshikawa H. Oxygen ultra-fine bubbles water administration prevents bone loss of glucocorticoid-induced osteoporosis in mice by suppressing osteoclast differentiation. Osteoporos Int 2017; 28:1063-1075. [PMID: 27896363 DOI: 10.1007/s00198-016-3830-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022]
Abstract
UNLABELLED Oxygen ultra-fine bubbles (OUB) saline injection prevents bone loss of glucocorti\coid-induced osteoporosis in mice, and OUB inhibit osteoclastogenesis via RANK-TRAF6-c-Fos-NFATc1 signaling and RANK-p38 MAPK signaling in vitro. INTRODUCTION Ultra-fine bubbles (<200 nm in diameter) have several unique properties, and they are tested in various medical fields. The purpose of this study was to investigate the effects of oxygen ultra-fine bubbles (OUB) on glucocorticoid-induced osteoporosis (GIO) model mice. METHODS Prednisolone (PSL, 5 mg) was subcutaneously inserted in 6-month-old male C57BL/6J mice, and 200 μl of saline, OUB-diluted saline, or nitrogen ultra-fine bubbles (NUB)-diluted saline was intraperitoneally injected three times per week for 8 weeks the day after operations. Mice were divided into four groups; (1) control, sham-operation + saline; (2) GIO, PSL + saline; (3) GIO + OUB, PSL + OUB saline; (4) GIO + NUB, PSL + NUB saline. The effects of OUB on osteoblasts and osteoclasts were examined by serially diluted OUB medium in vitro. RESULTS Bone mass was significantly decreased in GIO [bone volume/total volume (%): control vs. GIO 12.6 vs. 7.9; p < 0.01] while significantly preserved in GIO + OUB (GIO vs. GIO + OUB 7.9 vs. 12.9; p < 0.05). In addition, tartrate-resistant acid phosphatase (TRAP)-positive cells in the distal femur [mean osteoclasts number/bone surface (mm-1)] was significantly increased in GIO (control vs. GIO 6.8 vs. 11.6; p < 0.01) while suppressed in GIO + OUB (GIO vs. GIO + OUB 11.6 vs. 7.5; p < 0.01). NUB did not affect these parameters. In vitro experiments revealed that OUB significantly inhibited osteoclastogenesis by inhibiting RANK-TRAF6-c-Fos-NFATc1 signaling, RANK-p38 MAPK signaling, and TRAP/Cathepsin K/DC-STAMP mRNA expression in a concentration-dependent manner. OUB did not affect osteoblastogenesis in vitro. CONCLUSIONS OUB prevent bone loss in GIO mice by inhibiting osteoclastogenesis.
Collapse
Affiliation(s)
- T Noguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - K Ebina
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - M Hirao
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - T Morimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - K Koizumi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - K Kitaguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - H Matsuoka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - T Iwahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - H Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 2016; 16:53-70. [PMID: 28031576 DOI: 10.1038/nrd.2016.231] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol 2016; 12:385-97. [PMID: 27225300 DOI: 10.1038/nrrheum.2016.69] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Der Sarkissian S, Cailhier JF, Borie M, Stevens LM, Gaboury L, Mansour S, Hamet P, Noiseux N. Celastrol protects ischaemic myocardium through a heat shock response with up-regulation of haeme oxygenase-1. Br J Pharmacol 2015; 171:5265-79. [PMID: 25041185 DOI: 10.1111/bph.12838] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/12/2014] [Accepted: 07/01/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Celastrol, a triterpene from plants, has been used in traditional oriental medicine to treat various diseases. Here, we investigated the cardioprotective effects of celastrol against ischaemia. EXPERIMENTAL APPROACH Protective pathways induced by celastrol were investigated in hypoxic cultures of H9c2 rat cardiomyoblasts and in a rat model of myocardial infarction, assessed with echocardiographic and histological analysis. KEY RESULTS In H9c2 cells, celastrol triggered reactive oxygen species (ROS) formation within minutes, induced nuclear translocation of the transcription factor heat shock factor 1 (HSF1) resulting in a heat shock response (HSR) leading to increased expression of heat shock proteins (HSPs). ROS scavenger N-acetylcysteine reduced expression of HSP70 and HSP32 (haeme oxygenase-1, HO-1). Celastrol improved H9c2 survival under hypoxic stress, and functional analysis revealed HSF1 and HO-1 as key effectors of the HSR, induced by celastrol, in promoting cytoprotection. In the rat ischaemic myocardium, celastrol treatment improved cardiac function and reduced adverse left ventricular remodelling at 14 days. Celastrol triggered expression of cardioprotective HO-1 and inhibited fibrosis and infarct size. In the peri-infarct area, celastrol reduced myofibroblast and macrophage infiltration, while attenuating up-regulation of TGF-β and collagen genes. CONCLUSIONS AND IMPLICATIONS Celastrol treatment induced an HSR through activation of HSF1 with up-regulation of HO-1 as the key effector, promoting cardiomyocyte survival, reduction of injury and adverse remodelling with preservation of cardiac function. Celastrol may represent a novel potent pharmacological cardioprotective agent mimicking ischaemic conditioning that could have a valuable impact in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- S Der Sarkissian
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Surgery, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Cheng SC, Joosten LA, Netea MG. The interplay between central metabolism and innate immune responses. Cytokine Growth Factor Rev 2014; 25:707-13. [DOI: 10.1016/j.cytogfr.2014.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
9
|
Cheng SC, Quintin J, Cramer RA, Shepardson KM, Saeed S, Kumar V, Giamarellos-Bourboulis EJ, Martens JHA, Rao NA, Aghajanirefah A, Manjeri GR, Li Y, Ifrim DC, Arts RJW, van der Veer BMJW, van der Meer BMJW, Deen PMT, Logie C, O'Neill LA, Willems P, van de Veerdonk FL, van der Meer JWM, Ng A, Joosten LAB, Wijmenga C, Stunnenberg HG, Xavier RJ, Netea MG. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 2014; 345:1250684. [PMID: 25258083 DOI: 10.1126/science.1250684] [Citation(s) in RCA: 1463] [Impact Index Per Article: 133.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epigenetic reprogramming of myeloid cells, also known as trained immunity, confers nonspecific protection from secondary infections. Using histone modification profiles of human monocytes trained with the Candida albicans cell wall constituent β-glucan, together with a genome-wide transcriptome, we identified the induced expression of genes involved in glucose metabolism. Trained monocytes display high glucose consumption, high lactate production, and a high ratio of nicotinamide adenine dinucleotide (NAD(+)) to its reduced form (NADH), reflecting a shift in metabolism with an increase in glycolysis dependent on the activation of mammalian target of rapamycin (mTOR) through a dectin-1-Akt-HIF-1α (hypoxia-inducible factor-1α) pathway. Inhibition of Akt, mTOR, or HIF-1α blocked monocyte induction of trained immunity, whereas the adenosine monophosphate-activated protein kinase activator metformin inhibited the innate immune response to fungal infection. Mice with a myeloid cell-specific defect in HIF-1α were unable to mount trained immunity against bacterial sepsis. Our results indicate that induction of aerobic glycolysis through an Akt-mTOR-HIF-1α pathway represents the metabolic basis of trained immunity.
Collapse
Affiliation(s)
- Shih-Chin Cheng
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Jessica Quintin
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Kelly M Shepardson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Sadia Saeed
- Department of Molecular Biology, Faculties of Science and Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - Joost H A Martens
- Department of Molecular Biology, Faculties of Science and Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Nagesha Appukudige Rao
- Department of Molecular Biology, Faculties of Science and Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Ali Aghajanirefah
- Department of Molecular Biology, Faculties of Science and Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Ganesh R Manjeri
- Department of Biochemistry, Faculties of Science and Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Yang Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniela C Ifrim
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Rob J W Arts
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Brian M J W van der Veer
- Department of Molecular Biology, Faculties of Science and Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Brian M J W van der Meer
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter M T Deen
- Department of Physiology, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Colin Logie
- Department of Molecular Biology, Faculties of Science and Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Peter Willems
- Department of Biochemistry, Faculties of Science and Medicine, Nijmegen Centre for Molecular Life Sciences, Radboud University, 6500 HB Nijmegen, Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Aylwin Ng
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA 02114, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hendrik G Stunnenberg
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ramnik J Xavier
- Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard School of Medicine, Boston, MA 02114, USA. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.
| |
Collapse
|
10
|
The metabolic cooperation between cells in solid cancer tumors. Biochim Biophys Acta Rev Cancer 2014; 1846:216-25. [PMID: 24983675 DOI: 10.1016/j.bbcan.2014.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/12/2014] [Accepted: 06/24/2014] [Indexed: 12/11/2022]
Abstract
Cancer cells cooperate with stromal cells and use their environment to promote tumor growth. Energy production depends on nutrient availability and O₂ concentration. Well-oxygenated cells are highly proliferative and reorient the glucose metabolism towards biosynthesis, whereas glutamine oxidation replenishes the TCA cycle coupled with OXPHOS-ATP production. Glucose, glutamine and alanine transformations sustain nucleotide and fatty acid synthesis. In contrast, hypoxic cells slow down their proliferation, enhance glycolysis to produce ATP and reject lactate which is recycled as fuel by normoxic cells. Thus, glucose is spared for biosynthesis and/or for hypoxic cell function. Environmental cells, such as fibroblasts and adipocytes, serve as food donors for cancer cells, which reject waste products (CO₂ , H⁺, ammoniac, polyamines…) promoting EMT, invasion, angiogenesis and proliferation. This metabolic-coupling can be considered as a form of commensalism whereby non-malignant cells support the growth of cancer cells. Understanding these cellular cooperations within tumors may be a source of inspiration to develop new anti-cancer agents.
Collapse
|
11
|
Dominguez-Gutierrez PR, Ceribelli A, Satoh M, Sobel ES, Reeves WH, Chan EKL. Positive correlation of STAT1 and miR-146a with anemia in patients with systemic lupus erythematosus. J Clin Immunol 2013; 34:171-80. [PMID: 24292724 DOI: 10.1007/s10875-013-9973-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 11/20/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE Anemia is one of the most common hematological manifestations in SLE patients, occurring in about 50% of active cases. STAT1 is a critical signaling molecule required for the production of type-1 interferon (I-IFN), CCL2, and CXCL10, all of which are upregulated in SLE. Overexpression of STAT1 has been described to be involved in anemia in animal models. The aim of this study is to analyze how these components are involved in SLE-associated anemia. METHODS Blood samples were collected from 39 healthy donors and 101 SLE patients fulfilling ACR criteria. Samples were collected from a total of 180 visits (58 patients had 2 or more visits) of which 52 visits included a diagnosis of anemia. Healthy donors had only single visit. Total RNA, isolated from leukocytes, was analyzed by Taqman qPCR. Relative expression levels of I-IFN signature genes, chemokines, and miR-146a were determined by the ΔΔCT method. Results were correlated with clinical data and analyzed by the Wilcoxon/Kruskal-Wallis test and Fisher's exact test. RESULTS Significant increases in IFN score (p < 0.0001), STAT1 (p < 0.0001), miR-146a (p < 0.0005), CCL2 (p = 0.0047), and CXCL10 (p = 0.017), as well as a significant decrease in pri-miR-146a (p = 0.0002), were detected in the anemic SLE patient visits (n = 52) compared to non-anemic SLE visits (n = 128). Regardless of disease activity, lupus nephritis, or race, anemic SLE patients displayed significantly elevated levels of STAT1 and miR-146a compared to non-anemic SLE patients. CONCLUSIONS STAT1 and miR-146a may be upregulated during inflammation and via proinflammatory cytokines and chemokines in SLE. Prolonged upregulation of STAT1 and miR-146a appears to play an important role in anemia in SLE patients.
Collapse
|
12
|
Laoui D, Van Overmeire E, Di Conza G, Aldeni C, Keirsse J, Morias Y, Movahedi K, Houbracken I, Schouppe E, Elkrim Y, Karroum O, Jordan B, Carmeliet P, Gysemans C, De Baetselier P, Mazzone M, Van Ginderachter JA. Tumor hypoxia does not drive differentiation of tumor-associated macrophages but rather fine-tunes the M2-like macrophage population. Cancer Res 2013; 74:24-30. [PMID: 24220244 DOI: 10.1158/0008-5472.can-13-1196] [Citation(s) in RCA: 311] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor-associated macrophages (TAM) are exposed to multiple microenvironmental cues in tumors, which collaborate to endow these cells with protumoral activities. Hypoxia, caused by an imbalance in oxygen supply and demand because of a poorly organized vasculature, is often a prominent feature in solid tumors. However, to what extent tumor hypoxia regulates the TAM phenotype in vivo is unknown. Here, we show that the myeloid infiltrate in mouse lung carcinoma tumors encompasses two morphologically distinct CD11b(hi)F4/80(hi)Ly6C(lo) TAM subsets, designated as MHC-II(lo) and MHC-II(hi) TAM, both of which were derived from tumor-infiltrating Ly6C(hi) monocytes. MHC-II(lo) TAM express higher levels of prototypical M2 markers and reside in more hypoxic regions. Consequently, MHC-II(lo) TAM contain higher mRNA levels for hypoxia-regulated genes than their MHC-II(hi) counterparts. To assess the in vivo role of hypoxia on these TAM features, cancer cells were inoculated in prolyl hydroxylase domain 2 (PHD2)-haplodeficient mice, resulting in better-oxygenated tumors. Interestingly, reduced tumor hypoxia did not alter the relative abundance of TAM subsets nor their M2 marker expression, but specifically lowered hypoxia-sensitive gene expression and angiogenic activity in the MHC-II(lo) TAM subset. The same observation in PHD2(+/+) → PHD2(+/-) bone marrow chimeras also suggests organization of a better-oxygenized microenvironment. Together, our results show that hypoxia is not a major driver of TAM subset differentiation, but rather specifically fine-tunes the phenotype of M2-like MHC-II(lo) TAM.
Collapse
Affiliation(s)
- Damya Laoui
- Authors' Affiliations: Laboratory of Myeloid Cell Immunology, VIB; Laboratory of Cellular and Molecular Immunology; Cell Differentiation Unit, Diabetes Research Centre, Vrije Universiteit Brussel; Biomedical Magnetic Resonance Unit, U.C. Louvain, Brussels; Laboratory of Molecular Oncology and Angiogenesis; Laboratory of Angiogenesis and Neurovascular Link, Vesalius Research Center, VIB; and Experimental Medicine and Endocrinology, Department of Experimental Medicine, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|