1
|
Znaidi S. Full Circle: When HSFs bring the heat-mapping the transcriptional circuitries of HSF-type regulators in Candida albicans. mSphere 2024:e0064423. [PMID: 39704513 DOI: 10.1128/msphere.00644-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Heat shock factor (HSF)-type regulators are stress-responsive transcription factors widely distributed among eukaryotes, including fungi. They carry a four-stranded winged helix-turn-helix DNA-binding domain considered as the signature domain for HSFs. The genome of the opportunistic yeast Candida albicans encodes four HSF members, namely, Sfl1, Sfl2, Skn7, and the essential regulator, Hsf1. C. albicans HSFs do not only respond to heat shock and/or temperature variation but also to CO2 levels, oxidative stress, and quorum sensing, acting this way as central decision makers. In this minireview, I follow on the heels of my mSphere of Influence commentary (2020) to provide an overview of the repertoire of HSF regulators in Saccharomyces cerevisiae and C. albicans and describe how their genetic perturbation in C. albicans, coupled with genome-wide expression and location analyses, allow to map their transcriptional circuitry. I highlight how they can regulate, in common, a crucial developmental program: filamentous growth.
Collapse
Affiliation(s)
- Sadri Znaidi
- Institut Pasteur de Tunis, University of Tunis El Manar, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis, Tunisia
- Institut Pasteur, INRA, Département Mycologie, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
2
|
Bekirian C, Valsecchi I, Bachellier-Bassi S, Scandola C, Guijarro JI, Chauvel M, Mourer T, Gow NAR, Aimanianda VK, d'Enfert C, Fontaine T. β-1,6-Glucan plays a central role in the structure and remodeling of the bilaminate fungal cell wall. eLife 2024; 13:RP100569. [PMID: 39636210 PMCID: PMC11620752 DOI: 10.7554/elife.100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast Candida albicans is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth. For the first time, we show that β-1,6-glucan production compensates the defect in mannan elongation in the outer layer of the cell wall. In addition, β-1,6-glucan dynamics are also coordinated by host environmental stimuli and stresses with wall remodeling, where the regulation of β-1,6-glucan structure and chain length is a crucial process. As we point out that β-1,6-glucan is exposed at the yeast surface and modulate immune response, β-1,6-glucan must be considered a key factor in host-pathogen interactions.
Collapse
Affiliation(s)
- Clara Bekirian
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Isabel Valsecchi
- EA DYNAMYC 7380, Faculté de Santé, Université Paris-Est Créteil (UPEC), École Nationale Vétérinaire d'Alfort (EnvA), USC AnsesCréteilFrance
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Cyril Scandola
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging UnitParisFrance
| | - J Inaki Guijarro
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological PlatformParisFrance
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Mourer
- Institut Pasteur, Advanced Molecular Virology GroupParisFrance
| | - Neil AR Gow
- Medical Research Council Centre for Medical Mycology, University of ExeterExeterUnited Kingdom
| | | | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| | - Thierry Fontaine
- Institut Pasteur, Université Paris Cité, INRAE, USC2019, Unité Biologie et Pathogénicité FongiquesParisFrance
| |
Collapse
|
3
|
Utkalaja BG, Patel SK, Sahu SR, Dutta A, Acharya N. Critical roles of Dpb3-Dpb4 sub-complex of DNA polymerase epsilon in DNA replication, genome stability, and pathogenesis of Candida albicans. mBio 2024; 15:e0122724. [PMID: 39207097 PMCID: PMC11481497 DOI: 10.1128/mbio.01227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
DNA polymerase ε (Polε) is an essential replicative polymerase consisting of Pol2, Dpb2, Dpb3, and Dpb4 subunits and has not been explored in the pathogenic yeast Candida albicans. C. albicans is accountable for >40% of deaths due to systemic candidiasis per year worldwide. Genome plasticity is one of the adaptive mechanisms associated with virulence, and as it is associated with DNA polymerase function, this study explored the role of Polε in genome stability and pathogenesis of C. albicans. POL2 and DPB2 are haploinsufficient, but DPB3 and DPB4 are dispensable for cell survival in diploid C. albicans. However, unlike in Saccharomyces cerevisiae, loss of any or both of the nonessential subunits or defective interaction between the two resulted in slow growth and temperature-sensitive phenotypes. Knockout strains of C. albicans (dpb3ΔΔ and dpb4ΔΔ and dpb3ΔΔdpb4ΔΔ) also exhibited sensitivity to genotoxic agents and delayed cell cycle progression. Reduced processive DNA synthesis and increased rate of mutagenesis were observed in dpb3 and dpb4 null strains. Whole-genome sequencing further confirmed the accumulation of indels and SNPs majorly in the intergenic repeat regions of the chromosomes of dpb3ΔΔdpb4ΔΔ. Polε-defective strains were constitutively filamentous and non-pathogenic in mice models of systemic candidiasis. Altogether, this study showed that the function of the Dpb3-Dpb4 subcomplex is critical for fungal morphogenesis and virulence besides its role as a structural component of Polε in DNA replication and genome stability; thus, their interacting interface may be targeted to develop antifungal drugs. IMPORTANCE This study explored the role of DNA polymerase epsilon, especially its non-essential structural subunits in Candida albicans biology. Apart from their role in DNA replication and genome stability, the Dpb3-Dpb4 subcomplex regulates morphological switching and virulence. Since the defective strain is locked in filamentous form and is avirulent, the complex may be targeted for anti-fungal drug development.
Collapse
Affiliation(s)
- Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional Center of Biotechnology, Faridabad, India
| | - Abinash Dutta
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
4
|
Farheen A, Case NT, MacAlpine J, Fu C, Robbins N, Cowen LE. The putative prenyltransferase Nus1 is required for filamentation in the human fungal pathogen Candida albicans. G3 (BETHESDA, MD.) 2024; 14:jkae124. [PMID: 38874344 PMCID: PMC11304969 DOI: 10.1093/g3journal/jkae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Candida albicans is a major fungal pathogen of humans that can cause serious systemic infections in vulnerable immunocompromised populations. One of its virulence attributes is its capacity to transition between yeast and filamentous morphologies, but our understanding of this process remains incomplete. Here, we analyzed data from a functional genomic screen performed with the C. albicans Gene Replacement And Conditional Expression collection to identify genes crucial for morphogenesis in host-relevant conditions. Through manual scoring of microscopy images coupled with analysis of each image using a deep learning-based method termed Candescence, we identified 307 genes important for filamentation in tissue culture medium at 37°C with 5% CO2. One such factor was orf19.5963, which is predicted to encode the prenyltransferase Nus1 based on sequence homology to Saccharomyces cerevisiae. We further showed that Nus1 and its predicted interacting partner Rer2 are important for filamentation in multiple liquid filament-inducing conditions as well as for wrinkly colony formation on solid agar. Finally, we highlight that Nus1 and Rer2 likely govern C. albicans morphogenesis due to their importance in intracellular trafficking, as well as maintaining lipid homeostasis. Overall, this work identifies Nus1 and Rer2 as important regulators of C. albicans filamentation and highlights the power of functional genomic screens in advancing our understanding of gene function in human fungal pathogens.
Collapse
Affiliation(s)
- Aiman Farheen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicola T Case
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Ci Fu
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
5
|
Rai LS, Chauvel M, Sanchez H, van Wijlick L, Maufrais C, Cokelaer T, Sertour N, Legrand M, Sanyal K, Andes DR, Bachellier-Bassi S, d’Enfert C. Metabolic reprogramming during Candida albicans planktonic-biofilm transition is modulated by the transcription factors Zcf15 and Zcf26. PLoS Biol 2024; 22:e3002693. [PMID: 38905306 PMCID: PMC11221756 DOI: 10.1371/journal.pbio.3002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/03/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024] Open
Abstract
Candida albicans is a commensal of the human microbiota that can form biofilms on implanted medical devices. These biofilms are tolerant to antifungals and to the host immune system. To identify novel genes modulating C. albicans biofilm formation, we performed a large-scale screen with 2,454 C. albicans doxycycline-dependent overexpression strains and identified 16 genes whose overexpression significantly hampered biofilm formation. Among those, overexpression of the ZCF15 and ZCF26 paralogs that encode transcription factors and have orthologs only in biofilm-forming species of the Candida clade, caused impaired biofilm formation both in vitro and in vivo. Interestingly, overexpression of ZCF15 impeded biofilm formation without any defect in hyphal growth. Transcript profiling, transcription factor binding, and phenotypic microarray analyses conducted upon overexpression of ZCF15 and ZCF26 demonstrated their role in reprogramming cellular metabolism by regulating central metabolism including glyoxylate and tricarboxylic acid cycle genes. Taken together, this study has identified a new set of biofilm regulators, including ZCF15 and ZCF26, that appear to control biofilm development through their specific role in metabolic remodeling.
Collapse
Affiliation(s)
- Laxmi Shanker Rai
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Department of Life Sciences, GITAM University, Bengaluru, Karnataka 561203, India
| | - Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Hiram Sanchez
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Lasse van Wijlick
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Université Paris Cité, Hub de Bioinformatique et Biostatistique, Paris, France
| | - Natacha Sertour
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Mélanie Legrand
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN-80, Sector-V, Salt Lake City, Kolkata, India
| | - David R. Andes
- Department of Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
6
|
MacAlpine J, Liu Z, Hossain S, Whitesell L, Robbins N, Cowen LE. DYRK-family kinases regulate Candida albicans morphogenesis and virulence through the Ras1/PKA pathway. mBio 2023; 14:e0218323. [PMID: 38015416 PMCID: PMC10746247 DOI: 10.1128/mbio.02183-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Candida albicans is an opportunistic human fungal pathogen that frequently causes life-threatening infections in immunocompromised individuals. To cause disease, the fungus employs several virulence traits, including its ability to transition between yeast and filamentous states. Previous work identified a role for the kinase Yak1 in regulating C. albicans filamentation. Here, we demonstrate that Yak1 regulates morphogenesis through the canonical cAMP/PKA pathway and that this regulation is environmentally contingent, as host-relevant concentrations of CO2 bypass the requirement of Yak1 for C. albicans morphogenesis. We show a related kinase, Pom1, is important for filamentation in the absence of Yak1 under these host-relevant conditions, as deletion of both genes blocked filamentous growth under all conditions tested. Finally, we demonstrate that Yak1 is required for filamentation in a mouse model of C. albicans dermatitis using genetic and pharmacological approaches. Overall, our results expand our understanding of how Yak1 regulates an important virulence trait in C. albicans.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Vande Zande P, Zhou X, Selmecki A. The Dynamic Fungal Genome: Polyploidy, Aneuploidy and Copy Number Variation in Response to Stress. Annu Rev Microbiol 2023; 77:341-361. [PMID: 37307856 PMCID: PMC10599402 DOI: 10.1146/annurev-micro-041320-112443] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal species have dynamic genomes and often exhibit genomic plasticity in response to stress. This genome plasticity often comes with phenotypic consequences that affect fitness and resistance to stress. Fungal pathogens exhibit genome plasticity in both clinical and agricultural settings and often during adaptation to antifungal drugs, posing significant challenges to human health. Therefore, it is important to understand the rates, mechanisms, and impact of large genomic changes. This review addresses the prevalence of polyploidy, aneuploidy, and copy number variation across diverse fungal species, with special attention to prominent fungal pathogens and model species. We also explore the relationship between environmental stress and rates of genomic changes and highlight the mechanisms underlying genotypic and phenotypic changes. A comprehensive understanding of these dynamic fungal genomes is needed to identify novel solutions for the increase in antifungal drug resistance.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| |
Collapse
|
8
|
Wangsanut T, Arnold SJY, Jilani SZ, Marzec S, Monsour RC, Rolfes RJ. Grf10 regulates the response to copper, iron, and phosphate in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkad070. [PMID: 36966423 PMCID: PMC10234403 DOI: 10.1093/g3journal/jkad070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 03/27/2023]
Abstract
The pathogenic yeast, Candida albicans, and other microbes must be able to handle drastic changes in nutrient availability within the human host. Copper, iron, and phosphate are essential micronutrients for microbes that are sequestered by the human host as nutritional immunity; yet high copper levels are employed by macrophages to induce toxic oxidative stress. Grf10 is a transcription factor important for regulating genes involved in morphogenesis (filamentation, chlamydospore formation) and metabolism (adenylate biosynthesis, 1-carbon metabolism). The grf10Δ mutant exhibited resistance to excess copper in a gene dosage-dependent manner but grew the same as the wild type in response to other metals (calcium, cobalt, iron, manganese, and zinc). Point mutations in the conserved residues D302 and E305, within a protein interaction region, conferred resistance to high copper and induced hyphal formation similar to strains with the null allele. The grf10Δ mutant misregulated genes involved with copper, iron, and phosphate uptake in YPD medium and mounted a normal transcriptional response to high copper. The mutant accumulated lower levels of magnesium and phosphorus, suggesting that copper resistance is linked to phosphate metabolism. Our results highlight new roles for Grf10 in copper and phosphate homeostasis in C. albicans and underscore the fundamental role of Grf10 in connecting these with cell survival.
Collapse
Affiliation(s)
- Tanaporn Wangsanut
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sylvia J Y Arnold
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Safia Z Jilani
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
- Center for Sustainable Nanotechnology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sarah Marzec
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | - Robert C Monsour
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
9
|
Chauvel M, Bachellier-Bassi S, Guérout AM, Lee KK, Maufrais C, Permal E, Da Fonseca JP, Znaidi S, Mazel D, Munro CA, d'Enfert C, Legrand M. High-throughput functional profiling of the human fungal pathogen Candida albicans genome. Res Microbiol 2023; 174:104025. [PMID: 36587858 DOI: 10.1016/j.resmic.2022.104025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
Candida albicans is a major fungal pathogen of humans. Although its genome has been sequenced more than two decades ago, there are still over 4300 uncharacterized C. albicans genes. We previously generated an ORFeome as well as a collection of destination vectors to facilitate overexpression of C. albicans ORFs. Here, we report the construction of ∼2500 overexpression mutants and their evaluation by in vitro spotting on rich medium and in a liquid pool experiment in rich medium, allowing the identification of genes whose overexpression has a fitness cost. The candidates were further validated at the individual strain level. This new resource allows large-scale screens in different growth conditions to be performed routinely. Altogether, based on the concept of identifying functionally related genes by cluster analysis, the availability of this overexpression mutant collection will facilitate the characterization of gene functions in C. albicans.
Collapse
Affiliation(s)
- Murielle Chauvel
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France.
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France.
| | - Anne-Marie Guérout
- Institut Pasteur, Université Paris Cité, UMR3525 CNRS, Unité Plasticité du Génome Bactérien, F-75015 Paris, France.
| | - Keunsook K Lee
- Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK; NGeneBio, 307 Daerung Post-tower 1, 288 Digital-ro, Guro-gu, Seoul 08390, Republic of Korea.
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France; Institut Pasteur, Université Paris Cité, Hub de Bioinformatique, F-75015 Paris, France.
| | - Emmanuelle Permal
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France; Institut Pasteur, Université Paris Cité, UMR3525 CNRS, Unité Plasticité du Génome Bactérien, F-75015 Paris, France; Institut Pasteur, Université Paris Cité, Hub de Bioinformatique, F-75015 Paris, France.
| | - Juliana Pipoli Da Fonseca
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), F-75015 Paris, France.
| | - Sadri Znaidi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France; Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis-Belvédère, Tunisia.
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, UMR3525 CNRS, Unité Plasticité du Génome Bactérien, F-75015 Paris, France.
| | - Carol A Munro
- Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France.
| | - Melanie Legrand
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France.
| |
Collapse
|
10
|
Transcript profiling reveals the role of PDB1, a subunit of the pyruvate dehydrogenase complex, in Candida albicans biofilm formation. Res Microbiol 2023; 174:104014. [PMID: 36535619 DOI: 10.1016/j.resmic.2022.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Candida albicans, the most prevalent fungal pathogen in the human microbiota can form biofilms on implanted medical devices. These biofilms are tolerant to conventional antifungal drugs and the host immune system as compared to the free-floating planktonic cells. Several in vitro models of biofilm formation have been used to determine the C. albicans biofilm-forming process, regulatory networks, and their properties. Here, we performed a genome-wide transcript profiling with C. albicans cells grown in YPD medium both in planktonic and biofilm condition. Transcript profiling of YPD-grown biofilms was further compared with published Spider medium-grown biofilm transcriptome data. This comparative analysis highlighted the differentially expressed genes and the pathways altered during biofilm formation. In addition, we demonstrated that overexpression of the PDB1 gene encoding a subunit of the pyruvate dehydrogenase resulted in defective biofilm formation. Altogether, this comparative analysis of transcript profiles from two different studies provides a robust reading on biofilm-altered genes and pathways during C. albicans biofilm development.
Collapse
|
11
|
Ent2 Governs Morphogenesis and Virulence in Part through Regulation of the Cdc42 Signaling Cascade in the Fungal Pathogen Candida albicans. mBio 2023; 14:e0343422. [PMID: 36809010 PMCID: PMC10128014 DOI: 10.1128/mbio.03434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
The ability to transition between yeast and filamentous growth states is critical for virulence of the leading human fungal pathogen Candida albicans. Large-scale genetic screens have identified hundreds of genes required for this morphological switch, but the mechanisms by which many of these genes orchestrate this developmental transition remain largely elusive. In this study, we characterized the role of Ent2 in governing morphogenesis in C. albicans. We showed that Ent2 is required for filamentous growth under a wide range of inducing conditions and is also required for virulence in a mouse model of systemic candidiasis. We found that the epsin N-terminal homology (ENTH) domain of Ent2 enables morphogenesis and virulence and does so via a physical interaction with the Cdc42 GTPase-activating protein (GAP) Rga2 and regulation of its localization. Further analyses revealed that overexpression of the Cdc42 effector protein Cla4 can overcome the requirement for the ENTH-Rga2 physical interaction, indicating that Ent2 functions, at least in part, to enable proper activation of the Cdc42-Cla4 signaling pathway in the presence of a filament-inducing cue. Overall, this work characterizes the mechanism by which Ent2 regulates hyphal morphogenesis in C. albicans, unveils the importance of this factor in enabling virulence in an in vivo model of systemic candidiasis and adds to the growing understanding of the genetic control of a key virulence trait. IMPORTANCE Candida albicans is a leading human fungal pathogen that can cause life-threatening infections in immunocompromised individuals, with mortality rates of ~40%. The ability of this organism to grow in both yeast and filamentous forms is critical for the establishment of systemic infection. Genomic screens have identified many genes required for this morphological transition, yet our understanding of the mechanisms that regulate this key virulence trait remains incomplete. In this study, we characterized Ent2 as a core regulator of C. albicans morphogenesis. We show that Ent2 regulates hyphal morphogenesis through an interaction between its ENTH domain and the Cdc42 GAP, Rga2, which signals through the Cdc42-Cla4 signaling pathway. Finally, we show that the Ent2 protein, and specifically its ENTH domain, is required for virulence in a mouse model of systemic candidiasis. Overall, this work identifies Ent2 as a key regulator of filamentation and virulence in C. albicans.
Collapse
|
12
|
Gervais NC, La Bella AA, Wensing LF, Sharma J, Acquaviva V, Best M, Cadena López RO, Fogal M, Uthayakumar D, Chavez A, Santiago-Tirado F, Flores-Mireles AL, Shapiro RS. Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkac301. [PMID: 36450451 PMCID: PMC9911074 DOI: 10.1093/g3journal/jkac301] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2021] [Accepted: 11/04/2022] [Indexed: 12/02/2022]
Abstract
For the fungal pathogen Candida albicans, genetic overexpression readily occurs via a diversity of genomic alterations, such as aneuploidy and gain-of-function mutations, with important consequences for host adaptation, virulence, and evolution of antifungal drug resistance. Given the important role of overexpression on C. albicans biology, it is critical to develop and harness tools that enable the analysis of genes expressed at high levels in the fungal cell. Here, we describe the development, optimization, and application of a novel, single-plasmid-based CRISPR activation (CRISPRa) platform for targeted genetic overexpression in C. albicans, which employs a guide RNA to target an activator complex to the promoter region of a gene of interest, thus driving transcriptional expression of that gene. Using this system, we demonstrate the ability of CRISPRa to drive high levels of gene expression in C. albicans, and we assess optimal guide RNA targeting for robust and constitutive overexpression. We further demonstrate the specificity of the system via RNA sequencing. We highlight the application of CRISPR activation to overexpress genes involved in pathogenesis and drug susceptibility, and contribute toward the identification of novel phenotypes. Consequently, this tool will facilitate a broad range of applications for the study of C. albicans genetic overexpression.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Alyssa A La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lauren F Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Victoria Acquaviva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Madison Best
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | | | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
- Present address: Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| |
Collapse
|
13
|
Jaitly P, Legrand M, Das A, Patel T, Chauvel M, Maufrais C, d’Enfert C, Sanyal K. A phylogenetically-restricted essential cell cycle progression factor in the human pathogen Candida albicans. Nat Commun 2022; 13:4256. [PMID: 35869076 PMCID: PMC9307598 DOI: 10.1038/s41467-022-31980-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, we identify potential mechanisms underlying such instability by conducting an overexpression screen monitoring chromosomal stability in the human fungal pathogen Candida albicans. Analysis of ~1000 genes uncovers six chromosomal stability (CSA) genes, five of which are related to cell division genes of other organisms. The sixth gene, CSA6, appears to be present only in species belonging to the CUG-Ser clade, which includes C. albicans and other human fungal pathogens. The protein encoded by CSA6 localizes to the spindle pole bodies, is required for exit from mitosis, and induces a checkpoint-dependent metaphase arrest upon overexpression. Thus, Csa6 is an essential cell cycle progression factor that is restricted to the CUG-Ser fungal clade, and could therefore be explored as a potential antifungal target. Chromosomal instability caused by cell division errors is associated with antifungal drug resistance in fungal pathogens. Here, Jaitly et al. identify several genes involved in chromosomal stability in Candida albicans, including a phylogenetically restricted gene encoding an essential cell-cycle progression factor.
Collapse
|
14
|
Application of the Mutant Libraries for Candida albicans Functional Genomics. Int J Mol Sci 2022; 23:ijms232012307. [PMID: 36293157 PMCID: PMC9603287 DOI: 10.3390/ijms232012307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is a typical opportunistic pathogen in humans that causes serious health risks in clinical fungal infections. The construction of mutant libraries has made remarkable developments in the study of C. albicans molecular and cellular biology with the ongoing advancements of gene editing, which include the application of CRISPR-Cas9 and novel high-efficient transposon. Large-scale genetic screens and genome-wide functional analysis accelerated the investigation of new genetic regulatory mechanisms associated with the pathogenicity and resistance to environmental stress in C. albicans. More importantly, sensitivity screening based on C. albicans mutant libraries is critical for the target identification of novel antifungal compounds, which leads to the discovery of Sec7p, Tfp1p, Gwt1p, Gln4p, and Erg11p. This review summarizes the main types of C. albicans mutant libraries and interprets their applications in morphogenesis, biofilm formation, fungus-host interactions, antifungal drug resistance, and target identification.
Collapse
|
15
|
Robbins N, Cowen LE. Genomic Approaches to Antifungal Drug Target Identification and Validation. Annu Rev Microbiol 2022; 76:369-388. [PMID: 35650665 PMCID: PMC10727914 DOI: 10.1146/annurev-micro-041020-094524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
16
|
Schrevens S, Sanglard D. A novel Candida glabrata doxycycline-inducible system for in vitro/in vivo use. FEMS Yeast Res 2022; 22:6680246. [PMID: 36047937 PMCID: PMC9508828 DOI: 10.1093/femsyr/foac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Candida glabrata is an important pathogen causing superficial to invasive disease in human. Conditional expression systems are helpful in addressing the function of genes and especially when they can be applied to in vivo studies. Tetracycline-dependent regulation systems have been used in diverse fungi to turn-on (Tet-on) or turn-off (Tet-off) gene expression either in vitro but also in vivo in animal models. Up to now, only a Tet-off expression has been constructed for gene expression in C. glabrata. Here, we report a Tet-on gene expression system which can be used in vitro and in vivo in any C. glabrata genetic background. This system was used in a mice model of systemic infection to demonstrate that the general amino acid permease Gap1 is important for C. glabrata virulence.
Collapse
Affiliation(s)
- S Schrevens
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - D Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| |
Collapse
|
17
|
van Wijlick L, Znaidi S, Hernández-Cervantes A, Basso V, Bachellier-Bassi S, d’Enfert C. Functional Portrait of Irf1 (Orf19.217), a Regulator of Morphogenesis and Iron Homeostasis in Candida albicans. Front Cell Infect Microbiol 2022; 12:960884. [PMID: 36004328 PMCID: PMC9393397 DOI: 10.3389/fcimb.2022.960884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
The alternate growth of Candida albicans between a unicellular yeast form and a multicellular hyphal form is crucial for its ability to cause disease. Interestingly, both morphological forms support distinct functions during proliferation in the human host. We previously identified ORF19.217 (C2_08890W_A), encoding a zinc-finger transcription factor of the C2H2 family, in a systematic screen of genes whose overexpression contributes to C. albicans' morphological changes. Conditional overexpression of ORF19.217 with the strong tetracycline-inducible promoter (P TET ) resulted in a hyperfilamentous phenotype. We examined growth of the orf19.217 knockout-mutant in different hypha-inducing conditions and found that the mutant still formed hyphae under standard hypha-inducing conditions. To further investigate the function of Orf19.217 in C. albicans, we combined genome-wide expression (RNA-Seq) and location (ChIP-Seq) analyses. We found that Orf19.217 is involved in regulatory processes comprising hyphal morphogenesis and iron acquisition. Comparative analysis with existing C. albicans hyphal transcriptomes indicates that Orf19.217-mediated filamentation is distinct from a true hyphal program. Further, the orf19.217 knockout-mutant did not show increased sensitivity to iron deprivation, but ORF19.217 overexpression was able to rescue the growth of a hap5-mutant, defective in a subunit of the CCAAT-complex, which is essential for iron acquisition. This suggested that Orf19.217 is involved in regulation of iron acquisition genes during iron deprivation and acts in a parallel pathway to the established CCAAT-complex. Interestingly, the orf19.217-mutant turned out to be defective in its ability to form filaments under iron-deficiency. Taken together our findings propose that the transcription factor Orf19.217 stimulates expression of the hyphal regulators EFG1 and BRG1 to promote filamentous growth under iron deprivation conditions, allowing the fungus to escape these iron-depleted conditions. The transcription factor therefore appears to be particularly important for adaptation of C. albicans to diverse environmental conditions in the human host. In regard to the newly identified functions, we have given the regulator the name Irf1, Iron-dependent Regulator of Filamentation.
Collapse
Affiliation(s)
- Lasse van Wijlick
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sadri Znaidi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Institut Pasteur de Tunis, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Tunis-Belvédère, Tunisia
| | - Arturo Hernández-Cervantes
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Virginia Basso
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Sophie Bachellier-Bassi
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
18
|
Sucupira PHF, Moura TR, Gurgel ILS, Pereira TTP, Padovan ACB, Teixeira MM, Bahia D, Soriani FM. In vitro and in vivo Characterization of Host–Pathogen Interactions of the L3881 Candida albicans Clinical Isolate. Front Microbiol 2022; 13:901442. [PMID: 35898912 PMCID: PMC9309619 DOI: 10.3389/fmicb.2022.901442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Candida albicans is a human commensal fungus and the etiologic agent of nosocomial infections in immunocompromised individuals. Candida spp. is the most studied human fungal pathogen, and the mechanisms by which this fungus can evade the immune system affecting immunosuppressed individuals have been extensively studied. Most of these studies focus on different species of Candida, and there is much to be understood in virulence variability among lineages, specifically different C. albicans clinical isolates. To better understand the main mechanisms of its virulence variability modulated in C. albicans clinical isolates, we characterized L3881 lineage, which has been previously classified as hypovirulent, and SC5314 lineage, a virulent wild-type control, by using both in vitro and in vivo assays. Our findings demonstrated that L3881 presented higher capacity to avoid macrophage phagocytosis and higher resistance to oxidative stress than the wild type. These characteristics prevented higher mortality rates for L3881 in the animal model of candidiasis. Conversely, L3881 has been able to induce an upregulation of pro-inflammatory mediators both in vitro and in vivo. These results indicated that in vitro and in vivo functional characterizations are necessary for determination of virulence in different clinical isolates due to its modulation in the host–pathogen interactions.
Collapse
Affiliation(s)
- Pedro H. F. Sucupira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tauany R. Moura
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella L. S. Gurgel
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tassia T. P. Pereira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana C. B. Padovan
- Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Mauro M. Teixeira
- Centro de Pesquisa e Desenvolvimento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diana Bahia
- Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico M. Soriani
- Centro de Pesquisa e Desenvolvimento de Fármacos, Laboratório de Genética Funcional, Departamento de Genética Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Frederico M. Soriani,
| |
Collapse
|
19
|
Lemberg C, Martinez de San Vicente K, Fróis-Martins R, Altmeier S, Tran VDT, Mertens S, Amorim-Vaz S, Rai LS, d’Enfert C, Pagni M, Sanglard D, LeibundGut-Landmann S. Candida albicans commensalism in the oral mucosa is favoured by limited virulence and metabolic adaptation. PLoS Pathog 2022; 18:e1010012. [PMID: 35404986 PMCID: PMC9041809 DOI: 10.1371/journal.ppat.1010012] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
As part of the human microbiota, the fungus Candida albicans colonizes the oral cavity and other mucosal surfaces of the human body. Commensalism is tightly controlled by complex interactions of the fungus and the host to preclude fungal elimination but also fungal overgrowth and invasion, which can result in disease. As such, defects in antifungal T cell immunity render individuals susceptible to oral thrush due to interrupted immunosurveillance of the oral mucosa. The factors that promote commensalism and ensure persistence of C. albicans in a fully immunocompetent host remain less clear. Using an experimental model of C. albicans oral colonization in mice we explored fungal determinants of commensalism in the oral cavity. Transcript profiling of the oral isolate 101 in the murine tongue tissue revealed a characteristic metabolic profile tailored to the nutrient poor conditions in the stratum corneum of the epithelium where the fungus resides. Metabolic adaptation of isolate 101 was also reflected in enhanced nutrient acquisition when grown on oral mucosa substrates. Persistent colonization of the oral mucosa by C. albicans also correlated inversely with the capacity of the fungus to induce epithelial cell damage and to elicit an inflammatory response. Here we show that these immune evasive properties of isolate 101 are explained by a strong attenuation of a number of virulence genes, including those linked to filamentation. De-repression of the hyphal program by deletion or conditional repression of NRG1 abolished the commensal behaviour of isolate 101, thereby establishing a central role of this factor in the commensal lifestyle of C. albicans in the oral niche of the host. The oral microbiota represents an important part of the human microbiota and includes several hundreds to several thousands of bacterial and fungal species. One of the most prominent fungus colonizing the oral cavity is the yeast Candida albicans. While the presence of C. albicans usually remains unnoticed, the fungus can under certain circumstances cause lesions on the lining of the mouth referred to as oral thrush or contribute to other common oral diseases such as caries. Maintaining C. albicans commensalism in the oral mucosa is therefore of utmost importance for oral health and overall wellbeing. While overt fungal growth and disease is limited by immunosurveillance mechanisms during homeostasis, C. albicans strives to survive and evades elimination from the host. Here, we show that while commensalism in the oral cavity is characterized by a restricted fungal virulence and hyphal program, enforcing filamentation in a commensal isolate is sufficient for driving pathogenicity and fungus-induced inflammation in the oral mucosa thwarting persistent colonization. Our results further support a critical role for specialized nutrient acquisition allowing the fungus to thrive in the nutrient poor environment of the squamous epithelium. Together, this work revealed key determinants of C. albicans commensalism in the oral niche.
Collapse
Affiliation(s)
- Christina Lemberg
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Kontxi Martinez de San Vicente
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Ricardo Fróis-Martins
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Simon Altmeier
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Van Du T. Tran
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sarah Mertens
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Sara Amorim-Vaz
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Laxmi Shanker Rai
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Université de Paris, INRAE, USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
- * E-mail:
| |
Collapse
|
20
|
Rashid S, Correia-Mesquita TO, Godoy P, Omran RP, Whiteway M. SAGA Complex Subunits in Candida albicans Differentially Regulate Filamentation, Invasiveness, and Biofilm Formation. Front Cell Infect Microbiol 2022; 12:764711. [PMID: 35350439 PMCID: PMC8957876 DOI: 10.3389/fcimb.2022.764711] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/11/2022] [Indexed: 11/24/2022] Open
Abstract
SAGA (Spt-Ada-Gcn5-acetyltransferase) is a highly conserved, multiprotein co-activator complex that consists of five distinct modules. It has two enzymatic functions, a histone acetyltransferase (HAT) and a deubiquitinase (DUB) and plays a central role in processes such as transcription initiation, elongation, protein stability, and telomere maintenance. We analyzed conditional and null mutants of the SAGA complex module components in the fungal pathogen Candida albicans; Ngg1, (the HAT module); Ubp8, (the DUB module); Tra1, (the recruitment module), Spt7, (the architecture module) and Spt8, (the TBP interaction unit), and assessed their roles in a variety of cellular processes. We observed that spt7Δ/Δ and spt8Δ/Δ strains have a filamentous phenotype, and both are highly invasive in yeast growing conditions as compared to the wild type, while ngg1Δ/Δ and ubp8Δ/Δ are in yeast-locked state and non-invasive in both YPD media and filamentous induced conditions compared to wild type. RNA-sequencing-based transcriptional profiling of SAGA mutants reveals upregulation of hyphal specific genes in spt7Δ/Δ and spt8Δ/Δ strains and downregulation of ergosterol metabolism pathway. As well, spt7Δ/Δ and spt8Δ/Δ confer susceptibility to antifungal drugs, to acidic and alkaline pH, to high temperature, and to osmotic, oxidative, cell wall, and DNA damage stresses, indicating that these proteins are important for genotoxic and cellular stress responses. Despite having similar morphological phenotypes (constitutively filamentous and invasive) spt7 and spt8 mutants displayed variation in nuclear distribution where spt7Δ/Δ cells were frequently binucleate and spt8Δ/Δ cells were consistently mononucleate. We also observed that spt7Δ/Δ and spt8Δ/Δ mutants were quickly engulfed by macrophages compared to ngg1Δ/Δ and ubp8Δ/Δ strains. All these findings suggest that the SAGA complex modules can have contrasting functions where loss of Spt7 or Spt8 enhances filamentation and invasiveness while loss of Ngg1 or Ubp8 blocks these processes.
Collapse
Affiliation(s)
| | | | | | | | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
21
|
van Wijlick L, Goyal A, Bachellier-Bassi S, d'Enfert C. ChIP-SICAP: A New Tool to Explore Gene-Regulatory Networks in Candida albicans and Other Yeasts. Methods Mol Biol 2022; 2477:149-175. [PMID: 35524117 DOI: 10.1007/978-1-0716-2257-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chromatin immunoprecipitation followed by mass spectrometry (ChIP-MS) is a powerful method to identify protein interactions, and has long been used to gain insights into regulatory networks in relevant fungal species as well as many other organisms. In this chapter, we discuss a similar technique called ChIP-SICAP (chromatin immunoprecipitation with selective isolation of chromatin-associated proteins) that overcomes many of the traditional limitations of ChIP-MS, and describe a protocol that allows ChIP-SICAP to be applied to Candida albicans and other yeasts. Notably, the technique design permits stringent washing to remove contaminating proteins and antibodies before subsequent mass spectrometry processing, allows for genome-wide mapping of the bait protein by ChIP-seq after ChIP-SICAP from the same sample through a DNA recovery process, and specifically purifies and identifies proteins associating with chromatin. In the future, ChIP-SICAP will provide the yeast genomics research community an additional method to explore the complex dynamics of the gene-regulatory networks modulating morphology, metabolism and response to stress.
Collapse
Affiliation(s)
- Lasse van Wijlick
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRAE, Paris, France.
| | - Ansh Goyal
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRAE, Paris, France
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sophie Bachellier-Bassi
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRAE, Paris, France
| | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRAE, Paris, France
| |
Collapse
|
22
|
Application of proper orthogonal decomposition for evaluation of coherent structures and energy contents in microbial biofilms. METHODS IN MICROBIOLOGY 2022; 194:106420. [DOI: 10.1016/j.mimet.2022.106420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
|
23
|
Gervais NC, Halder V, Shapiro RS. A data library of Candida albicans functional genomic screens. FEMS Yeast Res 2021; 21:6433625. [PMID: 34864983 DOI: 10.1093/femsyr/foab060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Functional genomic screening of genetic mutant libraries enables the characterization of gene function in diverse organisms. For the fungal pathogen Candida albicans, several genetic mutant libraries have been generated and screened for diverse phenotypes, including tolerance to environmental stressors and antifungal drugs, and pathogenic traits such as cellular morphogenesis, biofilm formation and host-pathogen interactions. Here, we compile and organize C. albicans functional genomic screening data from ∼400 screens, to generate a data library of genetic mutant strains analyzed under diverse conditions. For quantitative screening data, we normalized these results to enable quantitative and comparative analysis of different genes across different phenotypes. Together, this provides a unique C. albicans genetic database, summarizing abundant phenotypic data from functional genomic screens in this critical fungal pathogen.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Viola Halder
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
24
|
Liao B, Ye X, Chen X, Zhou Y, Cheng L, Zhou X, Ren B. The two-component signal transduction system and its regulation in Candida albicans. Virulence 2021; 12:1884-1899. [PMID: 34233595 PMCID: PMC8274445 DOI: 10.1080/21505594.2021.1949883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 02/08/2023] Open
Abstract
Candida albicans, which can cause superficial and life-threatening systemic infections, is the most common opportunistic fungal pathogen in the human microbiome. The two-component system is one of the most important C. albicans signal transduction pathways, regulating the response to oxidative and osmotic stresses, adhesion, morphogenesis, cell wall synthesis, virulence, drug resistance, and the host-pathogen interactions. Notably, some components of this signaling pathway have not been found in the human genome, indicating that the two-component system of C. albicans can be a potential target for new antifungal agents. Here, we summarize the composition, signal transduction, and regulation of the two-component system of C. albicans to emphasize its essential roles in the pathogenesis of C. albicans and the new therapeutic target for antifungal drugs.
Collapse
Affiliation(s)
- Biaoyou Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xi Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujie Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases& West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn's disease. Nat Microbiol 2021; 6:1493-1504. [PMID: 34811531 PMCID: PMC8622360 DOI: 10.1038/s41564-021-00983-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
Secretory immunoglobulin A (sIgA) plays an important role in gut barrier protection by shaping the resident microbiota community, restricting the growth of bacterial pathogens and enhancing host protective immunity via immunological exclusion. Here, we found that a portion of the microbiota-driven sIgA response is induced by and directed towards intestinal fungi. Analysis of the human gut mycobiota bound by sIgA revealed a preference for hyphae, a fungal morphotype associated with virulence. Candida albicans was a potent inducer of IgA class-switch recombination among plasma cells, via an interaction dependent on intestinal phagocytes and hyphal programming. Characterization of sIgA affinity and polyreactivity showed that hyphae-associated virulence factors were bound by these antibodies and that sIgA influenced C. albicans morphotypes in the murine gut. Furthermore, an increase in granular hyphal morphologies in patients with Crohn's disease compared with healthy controls correlated with a decrease in antifungal sIgA antibody titre with affinity to two hyphae-associated virulence factors. Thus, in addition to its importance in gut bacterial regulation, sIgA targets the uniquely fungal phenomenon of hyphal formation. Our findings indicate that antifungal sIgA produced in the gut can play a role in regulating intestinal fungal commensalism by coating fungal morphotypes linked to virulence, thereby providing a protective mechanism that might be dysregulated in patients with Crohn's disease.
Collapse
|
26
|
Rai LS, van Wijlick L, Chauvel M, d'Enfert C, Legrand M, Bachellier-Bassi S. Overexpression approaches to advance understanding of Candida albicans. Mol Microbiol 2021; 117:589-599. [PMID: 34569668 PMCID: PMC9298300 DOI: 10.1111/mmi.14818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen that is responsible for infections linked to high mortality. Loss‐of‐function approaches, taking advantage of gene knockouts or inducible down‐regulation, have been successfully used in this species in order to understand gene function. However, overexpression of a gene provides an alternative, powerful tool to elucidate gene function and identify novel phenotypes. Notably, overexpression can identify pathway components that might remain undetected using loss‐of‐function approaches. Several repressible or inducible promoters have been developed which allow to shut off or turn on the expression of a gene in C. albicans upon growth in the presence of a repressor or inducer. In this review, we summarize recent overexpression approaches used to study different aspects of C. albicans biology, including morphogenesis, biofilm formation, drug tolerance, and commensalism.
Collapse
Affiliation(s)
- Laxmi Shanker Rai
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Lasse van Wijlick
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Murielle Chauvel
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| | - Sophie Bachellier-Bassi
- Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Université de Paris, INRAE, USC2019, Paris, France
| |
Collapse
|
27
|
Luo Y, McAuley DF, Fulton CR, Sá Pessoa J, McMullan R, Lundy FT. Targeting Candida albicans in dual-species biofilms with antifungal treatment reduces Staphylococcus aureus and MRSA in vitro. PLoS One 2021; 16:e0249547. [PMID: 33831044 PMCID: PMC8031443 DOI: 10.1371/journal.pone.0249547] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/20/2021] [Indexed: 11/18/2022] Open
Abstract
Polymicrobial biofilms consisting of fungi and bacteria are frequently formed on endotracheal tubes and may contribute to development of ventilator associated pneumonia (VAP) in critically ill patients. This study aimed to determine the role of early Candida albicans biofilms in supporting dual-species (dual-kingdom) biofilm formation with respiratory pathogens in vitro, and investigated the effect of targeted antifungal treatment on bacterial cells within the biofilms. Dual-species biofilm formation between C. albicans and three respiratory pathogens commonly associated with VAP (Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus) was studied using quantitative PCR. It was shown that early C. albicans biofilms enhanced the numbers of E. coli and S. aureus (including methicillin resistant S. aureus; MRSA) but not P. aeruginosa within dual-species biofilms. Transwell assays demonstrated that contact with C. albicans was required for the increased bacterial cell numbers observed. Total Internal Reflection Fluorescence microscopy showed that both wild type and hyphal-deficient C. albicans provided a scaffold for initial bacterial adhesion in dual species biofilms. qPCR results suggested that further maturation of the dual-species biofilm significantly increased bacterial cell numbers, except in the case of E.coli with hyphal-deficient C. albicans (Ca_gcn5Δ/Δ). A targeted preventative approach with liposomal amphotericin (AmBisome®) resulted in significantly decreased numbers of S. aureus in dual-species biofilms, as determined by propidium monoazide-modified qPCR. Similar results were observed when dual-species biofilms consisting of clinical isolates of C. albicans and MRSA were treated with liposomal amphotericin. However, reductions in E. coli numbers were not observed following liposomal amphotericin treatment. We conclude that early C. albicans biofilms have a key supporting role in dual-species biofilms by enhancing bacterial cell numbers during biofilm maturation. In the setting of increasing antibiotic resistance, an important and unexpected consequence of antifungal treatment of dual-species biofilms, is the additional benefit of decreased growth of multi-drug resistant bacteria such as MRSA, which could represent a novel future preventive strategy.
Collapse
Affiliation(s)
- Yu Luo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Belfast Health & Social Care Trust, Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, United Kingdom
| | - Catherine R. Fulton
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Joana Sá Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ronan McMullan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
28
|
Adenosine Triphosphate Released by Candida albicans Is Associated with Reduced Skin Infectivity. J Invest Dermatol 2021; 141:2306-2310. [PMID: 33785348 DOI: 10.1016/j.jid.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/05/2023]
|
29
|
Pál SE, Tóth R, Nosanchuk JD, Vágvölgyi C, Németh T, Gácser A. A Candida parapsilosis Overexpression Collection Reveals Genes Required for Pathogenesis. J Fungi (Basel) 2021; 7:jof7020097. [PMID: 33572958 PMCID: PMC7911391 DOI: 10.3390/jof7020097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Relative to the vast data regarding the virulence mechanisms of Candida albicans, there is limited knowledge on the emerging opportunistic human pathogen Candida parapsilosis. The aim of this study was to generate and characterize an overexpression mutant collection to identify and explore virulence factors in C. parapsilosis. With the obtained mutants, we investigated stress tolerance, morphology switch, biofilm formation, phagocytosis, and in vivo virulence in Galleria mellonella larvae and mouse models. In order to evaluate the results, we compared the data from the C. parapsilosis overexpression collection analysis to the results derived from previous deletion mutant library characterizations. Of the 37 overexpression C. parapsilosis mutants, we identified eight with altered phenotypes compared to the controls. This work is the first report to identify CPAR2_107240, CPAR2_108840, CPAR2_302400, CPAR2_406400, and CPAR2_602820 as contributors to C. parapsilosis virulence by regulating functions associated with host-pathogen interactions and biofilm formation. Our findings also confirmed the role of CPAR2_109520, CPAR2_200040, and CPAR2_500180 in pathogenesis. This study was the first attempt to use an overexpression strategy to systematically assess gene function in C. parapsilosis, and our results demonstrate that this approach is effective for such investigations.
Collapse
Affiliation(s)
- Sára E. Pál
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Joshua D. Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Tibor Németh
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Közép Fasor, 6726 Szeged, Hungary; (S.E.P.); (R.T.); (C.V.); (T.N.)
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, 6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
30
|
Loss of Arp1, a putative actin-related protein, triggers filamentous and invasive growth and impairs pathogenicity in Candida albicans. Comput Struct Biotechnol J 2020; 18:4002-4015. [PMID: 33363697 PMCID: PMC7744652 DOI: 10.1016/j.csbj.2020.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/27/2022] Open
Abstract
The polymorphous cellular shape of Candida albicans, in particular the transition from a yeast to a filamentous form, is crucial for either commensalism or life-threatening infections of the host. Various external or internal stimuli, including serum and nutrition starvation, have been shown to regulate filamentous growth primarily through two classical signaling pathways, the cAMP-PKA and the MAPK pathways. Genotoxic stress also induces filamentous growth, but through independent pathways, and little is known about negative regulation during this reversible morphological transition. In this study, we established that ARP1 in C. albicans, similar to its homolog in S. cerevisiae, has a role in nuclei separation and spindle orientation. Deletion of ARP1 generated filamentous and invasive growth as well as increased biofilm formation, accompanied by up-regulation of hyphae specific genes, such as HWP1, UME6 and ALS3. The filamentous and invasive growth of the ARP1 deletion strain was independent of transcription factors Efg1, Cph1 and Ume6, but was suppressed by deleting checkpoint BUB2 or overexpressing NRG1. Deletion of ARP1 impaired the colonization of Candida cells in mice and also attenuated virulence in a mouse model. All the data suggest that loss of ARP1 activates filamentous and invasive growth in vitro, and that it positively regulates virulence in vivo, which provides insight into actin-related morphology and pathogenicity in C. albicans.
Collapse
|
31
|
Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels. ISME JOURNAL 2020; 15:1257-1270. [PMID: 33323978 PMCID: PMC8115155 DOI: 10.1038/s41396-020-00848-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Candida albicans is a leading cause of life-threatening hospital-acquired infections and can lead to Candidemia with sepsis-like symptoms and high mortality rates. We reconstructed a genome-scale C. albicans metabolic model to investigate bacterial-fungal metabolic interactions in the gut as determinants of fungal abundance. We optimized the predictive capacity of our model using wild type and mutant C. albicans growth data and used it for in silico metabolic interaction predictions. Our analysis of more than 900 paired fungal–bacterial metabolic models predicted key gut bacterial species modulating C. albicans colonization levels. Among the studied microbes, Alistipes putredinis was predicted to negatively affect C. albicans levels. We confirmed these findings by metagenomic sequencing of stool samples from 24 human subjects and by fungal growth experiments in bacterial spent media. Furthermore, our pairwise simulations guided us to specific metabolites with promoting or inhibitory effect to the fungus when exposed in defined media under carbon and nitrogen limitation. Our study demonstrates that in silico metabolic prediction can lead to the identification of gut microbiome features that can significantly affect potentially harmful levels of C. albicans. Genome-scale model reconstruction of C. albicans with 89% growth accuracy. Mutualism and parasitism are the most common predicted C. albicans-gut bacteria interactions. Metagenomic sequencing and in vitro assays reveal modulators of fungal growth. Alistipes putredinis potentially prevents elevated C. albicans levels.
Collapse
|
32
|
A conserved regulator controls asexual sporulation in the fungal pathogen Candida albicans. Nat Commun 2020; 11:6224. [PMID: 33277479 PMCID: PMC7718266 DOI: 10.1038/s41467-020-20010-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Transcription factor Rme1 is conserved among ascomycetes and regulates meiosis and pseudohyphal growth in Saccharomyces cerevisiae. The genome of the meiosis-defective pathogen Candida albicans encodes an Rme1 homolog that is part of a transcriptional circuitry controlling hyphal growth. Here, we use chromatin immunoprecipitation and genome-wide expression analyses to study a possible role of Rme1 in C. albicans morphogenesis. We find that Rme1 binds upstream and activates the expression of genes that are upregulated during chlamydosporulation, an asexual process leading to formation of large, spherical, thick-walled cells during nutrient starvation. RME1 deletion abolishes chlamydosporulation in three Candida species, whereas its overexpression bypasses the requirement for chlamydosporulation cues and regulators. RME1 expression levels correlate with chlamydosporulation efficiency across clinical isolates. Interestingly, RME1 displays a biphasic pattern of expression, with a first phase independent of Rme1 function and dependent on chlamydospore-inducing cues, and a second phase dependent on Rme1 function and independent of chlamydospore-inducing cues. Our results indicate that Rme1 plays a central role in chlamydospore development in Candida species.
Collapse
|
33
|
Delarze E, Brandt L, Trachsel E, Patxot M, Pralong C, Maranzano F, Chauvel M, Legrand M, Znaidi S, Bougnoux ME, d’Enfert C, Sanglard D. Identification and Characterization of Mediators of Fluconazole Tolerance in Candida albicans. Front Microbiol 2020; 11:591140. [PMID: 33262748 PMCID: PMC7686038 DOI: 10.3389/fmicb.2020.591140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Candida albicans is an important human pathogen and a major concern in intensive care units around the world. C. albicans infections are associated with a high mortality despite the use of antifungal treatments. One of the causes of therapeutic failures is the acquisition of antifungal resistance by mutations in the C. albicans genome. Fluconazole (FLC) is one of the most widely used antifungal and mechanisms of FLC resistance occurring by mutations have been extensively investigated. However, some clinical isolates are known to be able to survive at high FLC concentrations without acquiring resistance mutations, a phenotype known as tolerance. Mechanisms behind FLC tolerance are not well studied, mainly due to the lack of a proper way to identify and quantify tolerance in clinical isolates. We proposed here culture conditions to investigate FLC tolerance as well as an easy and efficient method to identity and quantify tolerance to FLC. The screening of C. albicans strain collections revealed that FLC tolerance is pH- and strain-dependent, suggesting the involvement of multiple mechanisms. Here, we addressed the identification of FLC tolerance mediators in C. albicans by an overexpression strategy focusing on 572 C. albicans genes. This strategy led to the identification of two transcription factors, CRZ1 and GZF3. CRZ1 is a C2H2-type transcription factor that is part of the calcineurin-dependent pathway in C. albicans, while GZF3 is a GATA-type transcription factor of unknown function in C. albicans. Overexpression of each gene resulted in an increase of FLC tolerance, however, only the deletion of CRZ1 in clinical FLC-tolerant strains consistently decreased their FLC tolerance. Transcription profiling of clinical isolates with variable levels of FLC tolerance confirmed a calcineurin-dependent signature in these isolates when exposed to FLC.
Collapse
Affiliation(s)
- Eric Delarze
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Ludivine Brandt
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilie Trachsel
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Claire Pralong
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Fabio Maranzano
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Murielle Chauvel
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Sadri Znaidi
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie Clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
- Université de Paris, Paris, France
| | - Christophe d’Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, Paris, France
| | - Dominique Sanglard
- Department of Laboratory, Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
34
|
Xue A, Robbins N, Cowen LE. Advances in fungal chemical genomics for the discovery of new antifungal agents. Ann N Y Acad Sci 2020; 1496:5-22. [PMID: 32860238 DOI: 10.1111/nyas.14484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections have escalated from a rare curiosity to a major cause of human mortality around the globe. This is in part due to a scarcity in the number of antifungal drugs available to combat mycotic disease, making the discovery of novel bioactive compounds and determining their mode of action of utmost importance. The development and application of chemical genomic assays using the model yeast Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of diverse molecules in a living cell. Furthermore, complementary assays are continually being developed in fungal pathogens, most notably Candida albicans and Cryptococcus neoformans, to elucidate compound mechanism of action directly in the pathogen of interest. Collectively, the suite of chemical genetic assays that have been developed in multiple fungal species enables the identification of candidate drug target genes, as well as genes involved in buffering drug target pathways, and genes involved in general cellular responses to small molecules. In this review, we examine current yeast chemical genomic assays and highlight how such resources provide powerful tools that can be utilized to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Nemeth T, Papp C, Vagvolgyi C, Chakraborty T, Gacser A. Identification and Characterization of a Neutral Locus for Knock-in Purposes in C. parapsilosis. Front Microbiol 2020; 11:1194. [PMID: 32582114 PMCID: PMC7289963 DOI: 10.3389/fmicb.2020.01194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections caused by Candida species affect approximately 700,000 people worldwide resulting in 300,000 deaths annually. Besides Candida albicans, other members of the genus have gained relevance in the last two decades, including C. parapsilosis whose incidence is particularly high amongst low birth weight neonates. To investigate the virulence properties of this pathogen several techniques have been developed for generating knock-out mutants, however, no target locus for knock-in approaches have been published so far. Here we report CpNEUT5L (N5L), an intergenic locus in C. parapsilosis, and introduce an integrative GatewayTM and a classical ligation based replacement plasmid to target it with. As a proof of principle, we fluorescently tagged laboratory and prototroph strains and established that this locus is also suitable for reintegration purposes. We concluded that GFP-expressing constructs integrated into this region provide strong, homogenous fluorescent signals while alteration of this locus affects neither the growth of the mutants in liquid or on solid media, even in the presence of different stressors, nor their basic virulence properties. Hence, our findings demonstrate that N5L is a highly effective neutral locus for knock-in approaches in C. parapsilosis.
Collapse
Affiliation(s)
- Tibor Nemeth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Csaba Vagvolgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | | | - Attila Gacser
- Department of Microbiology, University of Szeged, Szeged, Hungary.,MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
36
|
Caplan T, Lorente-Macías Á, Stogios PJ, Evdokimova E, Hyde S, Wellington MA, Liston S, Iyer KR, Puumala E, Shekhar-Guturja T, Robbins N, Savchenko A, Krysan DJ, Whitesell L, Zuercher WJ, Cowen LE. Overcoming Fungal Echinocandin Resistance through Inhibition of the Non-essential Stress Kinase Yck2. Cell Chem Biol 2020; 27:269-282.e5. [PMID: 31924499 DOI: 10.1016/j.chembiol.2019.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023]
Abstract
New strategies are urgently needed to counter the threat to human health posed by drug-resistant fungi. To explore an as-yet unexploited target space for antifungals, we screened a library of protein kinase inhibitors for the ability to reverse resistance of the most common human fungal pathogen, Candida albicans, to caspofungin, a widely used antifungal. This screen identified multiple 2,3-aryl-pyrazolopyridine scaffold compounds capable of restoring caspofungin sensitivity. Using chemical genomic, biochemical, and structural approaches, we established the target for our most potent compound as Yck2, a casein kinase 1 family member. Combination of this compound with caspofungin eradicated drug-resistant C. albicans infection while sparing co-cultured human cells. In mice, genetic depletion of YCK2 caused an ∼3-log10 decline in fungal burden in a model of systemic caspofungin-resistant C. albicans infection. Structural insights and our tool compound's profile in culture support targeting the Yck2 kinase function as a broadly active antifungal strategy.
Collapse
Affiliation(s)
- Tavia Caplan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Álvaro Lorente-Macías
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Peter J Stogios
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada
| | - Elena Evdokimova
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada
| | - Sabrina Hyde
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Melanie A Wellington
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sean Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Damian J Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - William J Zuercher
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
37
|
Abstract
Antifungal resistance is an inevitable phenomenon when fungal pathogens are exposed to antifungal drugs. These drugs can be grouped in four distinct classes (azoles, candins, polyenes, and pyrimidine analogs) and are used in different clinical settings. Failures in therapy implicate the sequential or combined use of these different drug classes, which can result in some cases in the development of multidrug resistance (MDR). MDR is particularly challenging in the clinic since it drastically reduces possible treatment alternatives. In this study, we report the rapid development of MDR in Candida lusitaniae in a patient, which became resistant to all known antifungal agents used until now in medicine. To understand how MDR developed in C. lusitaniae, whole-genome sequencing followed by comparative genome analysis was undertaken in sequential MDR isolates. This helped to detect all specific mutations linked to drug resistance and explained the different MDR patterns exhibited by the clinical isolates. Multidrug resistance (MDR) has emerged in hospitals due to the use of several agents administered in combination or sequentially to the same individual. We reported earlier MDR in Candida lusitaniae during therapy with amphotericin B (AmB), azoles, and candins. Here, we used comparative genomic approaches between the initial susceptible isolate and 4 other isolates with different MDR profiles. From a total of 18 nonsynonymous single nucleotide polymorphisms (NSS) in genome comparisons with the initial isolate, six could be associated with MDR. One of the single nucleotide polymorphisms (SNPs) occurred in a putative transcriptional activator (MRR1) resulting in a V668G substitution in isolates resistant to azoles and 5-fluorocytosine (5-FC). We demonstrated by genome editing that MRR1 acted by upregulation of MFS7 (a multidrug transporter) in the presence of the V668G substitution. MFS7 itself mediated not only azole resistance but also 5-FC resistance, which represents a novel resistance mechanism for this drug class. Three other distinct NSS occurred in FKS1 (a glucan synthase gene that is targeted by candins) in three candin-resistant isolates. Last, two other NSS in ERG3 and ERG4 (ergosterol biosynthesis) resulting in nonsense mutations were revealed in AmB-resistant isolates, one of which accumulated the two ERG NSS. AmB-resistant isolates lacked ergosterol and exhibited sterol profiles, consistent with ERG3 and ERG4 defects. In conclusion, this genome analysis combined with genetics and metabolomics helped decipher the resistance profiles identified in this clinical case. MDR isolates accumulated six different mutations conferring resistance to all antifungal agents used in medicine. This case study illustrates the capacity of C. lusitaniae to rapidly adapt under drug pressure within the host.
Collapse
|
38
|
Chaudhari Y, Cairns TC, Sidhu Y, Attah V, Thomas G, Csukai M, Talbot NJ, Studholme DJ, Haynes K. The Zymoseptoria tritici ORFeome: A Functional Genomics Community Resource. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1564-1570. [PMID: 31272284 DOI: 10.1094/mpmi-05-19-0123-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Libraries of protein-encoding sequences can be generated by identification of open reading frames (ORFs) from a genome of choice that are then assembled into collections of plasmids termed ORFeome libraries. These represent powerful resources to facilitate functional genomic characterization of genes and their encoded products. Here, we report the generation of an ORFeome for Zymoseptoria tritici, which causes the most serious disease of wheat in temperate regions of the world. We screened the genome of strain IP0323 for high confidence gene models, identifying 4,075 candidates from 10,933 predicted genes. These were amplified from genomic DNA, were cloned into the Gateway entry vector pDONR207, and were sequenced, providing a total of 3,022 quality-controlled plasmids. The ORFeome includes genes predicted to encode effectors (n = 410) and secondary metabolite biosynthetic proteins (n = 171) in addition to genes residing at dispensable chromosomes (n = 122) or those that are preferentially expressed during plant infection (n = 527). The ORFeome plasmid library is compatible with our previously developed suite of Gateway destination vectors, which have various combinations of promoters, selection markers, and epitope tags. The Z. tritici ORFeome constitutes a powerful resource for functional genomics and offers unparalleled opportunities to understand the biology of Z. tritici.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | | | | | | | - Graham Thomas
- Biosciences, University of Exeter, Exeter EX4 4QD, U.K
| | - Michael Csukai
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, U.K
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR47UH, U.K
| | | | - Ken Haynes
- Biosciences, University of Exeter, Exeter EX4 4QD, U.K
| |
Collapse
|
39
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Microbes Infect 2019; 21:237-245. [PMID: 31255676 DOI: 10.1016/j.micinf.2019.06.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi - yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progresses should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
40
|
Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes Immun 2019; 20:403-414. [PMID: 31019254 DOI: 10.1038/s41435-019-0071-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022]
Abstract
Seminal work by Louis Pasteur revealed the contribution of fungi-yeasts and microsporidia to agroindustry and disease in animals, respectively. More than 150 years later, the impact of fungi on human health and beyond is an ever-increasing issue, although often underestimated. Recent studies estimate that fungal infections, especially those caused by Candida, Cryptococcus and Aspergillus species, kill more than one million people annually. Indeed, these neglected infections are in general very difficult to cure and the associated mortality remains very high even when antifungal treatments exist. The development of new antifungals and diagnostic tools that are both necessary to fight fungal diseases efficiently, requires greater insights in the biology of the fungal pathogens of humans in the context of the infection, on their epidemiology, and on their role in the human mycobiota. We also need a better understanding of the host immune responses to fungal pathogens as well as the genetic basis for the increased sensitivity of some individuals to fungal infections. Here, we highlight some recent progress made in these different areas of research, in particular based on work conducted in our own laboratories. These progress should lay the ground for better management of fungal infections, as they provide opportunities for better diagnostic, vaccination, the development of classical antifungals but also strategies for targeting virulence factors or the host.
Collapse
|
41
|
Mancera E, Frazer C, Porman AM, Ruiz-Castro S, Johnson AD, Bennett RJ. Genetic Modification of Closely Related Candida Species. Front Microbiol 2019; 10:357. [PMID: 30941104 PMCID: PMC6433835 DOI: 10.3389/fmicb.2019.00357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/11/2019] [Indexed: 11/25/2022] Open
Abstract
Species from the genus Candida are among the most important human fungal pathogens. Several of them are frequent commensals of the human microbiota but are also able to cause a variety of opportunistic infections, especially when the human host becomes immunocompromised. By far, most of the research to understand the molecular underpinnings of the pathogenesis of these species has focused on Candida albicans, the most virulent member of the genus. However, epidemiological data indicates that related Candida species are also clinically important. Here, we describe the generation of a set of strains and plasmids to genetically modify C. dubliniensis and C. tropicalis, the two pathogenic species most closely related to C. albicans. C. dubliniensis is an ideal model to understand C. albicans pathogenesis since it is the closest species to C. albicans but considerably less virulent. On the other hand, C. tropicalis is ranked among the four most common causes of infections by Candida species. Given that C. dubliniensis and C. tropicalis are obligate diploids with no known conventional sexual cycle, we generated strains that are auxotrophic for at least two amino acids which allows the tandem deletion of both alleles of a gene by complementing the two auxotrophies. The strains were generated in two different genetic backgrounds for each species — one for which the genomic sequence is available and a second clinically important one. In addition, we have adapted plasmids developed to delete genes and epitope/fluorophore tag proteins in C. albicans so that they can be employed in C. tropicalis. The tools generated here allow for efficient genetic modification of C. dubliniensis and C. tropicalis, and thus facilitate the study of the molecular basis of pathogenesis in these medically relevant fungi.
Collapse
Affiliation(s)
- Eugenio Mancera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Mexico.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Corey Frazer
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Allison M Porman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| | - Susana Ruiz-Castro
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Irapuato, Mexico
| | - Alexander D Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Richard J Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
42
|
Abstract
CRISPR technology is a new and efficient way to edit genomes, but it is also an appealing way to regulate gene expression. We have implemented CRISPR as a gene expression platform in Candida albicans using fusions between a Cas9 inactive enzyme and specific repressors or activators and demonstrated its functionality. This will allow future manipulation of complex virulence pathways in this important fungal pathogen. Clustered regularly interspaced short palindromic repeat (CRISPR) methodology is not only an efficient tool in gene editing but also an attractive platform to facilitate DNA, RNA, and protein interactions. We describe here the implementation of a CRISPR-based system to regulate expression in the clinically important yeast Candida albicans. By fusing an allele of Streptococcus pyogenes Cas9 devoid of nuclease activity to a transcriptional repressor (Nrg1) or activator (Gal4), we were able to show specific repression or activation of the tester gene CAT1, encoding the cytosolic catalase. We generated strains where a 1.6-kbp upstream regulatory region of CAT1 controls the expression of the green fluorescent protein (GFP) and demonstrated the functionality of the constructs by quantitative PCR (qPCR), flow cytometry, and analysis of sensitivity/resistance to hydrogen peroxide. Activation and repression were strongly dependent on the position of the complex in this regulatory region. We also improved transcriptional activation using an RNA scaffolding strategy to allow interaction of inactive variants of Cas9 (dCas9) with the RNA binding protein MCP (monocyte chemoattractant protein) fused to the VP64 activator. The strategy shown here may facilitate the analysis of complex regulatory traits in this fungal pathogen. IMPORTANCE CRISPR technology is a new and efficient way to edit genomes, but it is also an appealing way to regulate gene expression. We have implemented CRISPR as a gene expression platform in Candida albicans using fusions between a Cas9 inactive enzyme and specific repressors or activators and demonstrated its functionality. This will allow future manipulation of complex virulence pathways in this important fungal pathogen.
Collapse
|
43
|
Identification of Recessive Lethal Alleles in the Diploid Genome of a Candida albicans Laboratory Strain Unveils a Potential Role of Repetitive Sequences in Buffering Their Deleterious Impact. mSphere 2019; 4:4/1/e00709-18. [PMID: 30760617 PMCID: PMC6374597 DOI: 10.1128/msphere.00709-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterozygous diploid genome of Candida albicans is highly plastic, with frequent loss of heterozygosity (LOH) events. In the SC5314 laboratory strain, while LOH events are ubiquitous, a chromosome homozygosis bias is observed for certain chromosomes, whereby only one of the two homologs can occur in the homozygous state. This suggests the occurrence of recessive lethal allele(s) (RLA) preventing large-scale LOH events on these chromosomes from being stably maintained. To verify the presence of an RLA on chromosome 7 (Chr7), we utilized a system that allows (i) DNA double-strand break (DSB) induction on Chr7 by the I-SceI endonuclease and (ii) detection of the resulting long-range homozygosis. I-SceI successfully induced a DNA DSB on both Chr7 homologs, generally repaired by gene conversion. Notably, cells homozygous for the right arm of Chr7B were not recovered, confirming the presence of RLA(s) in this region. Genome data mining for RLA candidates identified a premature nonsense-generating single nucleotide polymorphism (SNP) within the HapB allele of C7_03400c whose Saccharomyces cerevisiae ortholog encodes the essential Mtr4 RNA helicase. Complementation with a wild-type copy of MTR4 rescued cells homozygous for the right arm of Chr7B, demonstrating that the mtr4K880* RLA is responsible for the Chr7 homozygosis bias in strain SC5314. Furthermore, we observed that the major repeat sequences (MRS) on Chr7 acted as hot spots for interhomolog recombination. Such recombination events provide C. albicans with increased opportunities to survive DNA DSBs whose repair can lead to homozygosis of recessive lethal or deleterious alleles. This might explain the maintenance of MRS in this species.IMPORTANCE Candida albicans is a major fungal pathogen, whose mode of reproduction is mainly clonal. Its genome is highly tolerant to rearrangements, in particular loss of heterozygosity events, known to unmask recessive lethal and deleterious alleles in heterozygous diploid organisms such as C. albicans By combining a site-specific DSB-inducing system and mining genome sequencing data of 182 C. albicans isolates, we were able to ascribe the chromosome 7 homozygosis bias of the C. albicans laboratory strain SC5314 to an heterozygous SNP introducing a premature STOP codon in the MTR4 gene. We have also proposed genome-wide candidates for new recessive lethal alleles. We additionally observed that the major repeat sequences (MRS) on chromosome 7 acted as hot spots for interhomolog recombination. Maintaining MRS in C. albicans could favor haplotype exchange, of vital importance to LOH events, leading to homozygosis of recessive lethal or deleterious alleles that inevitably accumulate upon clonality.
Collapse
|
44
|
Martin-Yken H, Bedekovic T, Brand AC, Richard ML, Znaidi S, d'Enfert C, Dague E. A conserved fungal hub protein involved in adhesion and drug resistance in the human pathogen Candida albicans. Cell Surf 2018; 4:10-19. [PMID: 32743132 PMCID: PMC7389261 DOI: 10.1016/j.tcsw.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022] Open
Abstract
Drug resistance and cellular adhesion are two key elements of both dissemination and prevalence of the human fungal pathogen Candida albicans. Smi1 belongs to a family of hub proteins conserved among the fungal kingdom whose functions in cellular signaling affect morphogenesis, cell wall synthesis and stress resistance. The data presented here indicate that C. albicans SMI1 is a functional homolog of Saccharomyces cerevisiae KNR4 and is involved in the regulation of cell wall synthesis. Expression of SMI1 in S. cerevisiae knr4Δ null mutants rescued their sensitivity to caspofungin and to heat stress. Deletion of SMI1 in C. albicans resulted in sensitivity to the cell-wall-perturbing compounds Calcofluor White and Caspofungin. Analysis of wild-type and mutant cells by Atomic Force Microscopy showed that the Young's Modulus (stiffness) of the cell wall was reduced by 85% upon deletion of SMI1, while cell surface adhesion measured by Force Spectroscopy showed that the surface expression of adhesive molecules was also reduced in the mutant. Over-expression of SMI1, on the contrary, increased cell surface adhesion by 6-fold vs the control strain. Finally, Smi1-GFP localized as cytoplasmic patches and concentrated spots at the sites of new cell wall synthesis including the tips of growing hyphae, consistent with a role in cell wall regulation. Thus, Smi1 function appears to be conserved across fungi, including the yeast S. cerevisiae, the yeast and hyphal forms of C. albicans and the filamentous fungus Neurospora crassa.
Collapse
Affiliation(s)
- Hélène Martin-Yken
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- LAAS CNRS UPR 8001, Université de Toulouse, Toulouse, France
| | - Tina Bedekovic
- MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexandra C. Brand
- MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Sadri Znaidi
- Institut Pasteur de Tunis, Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, 13 Place Pasteur, Tunis-Belvédère, Tunisia
- Institut Pasteur, INRA USC2019, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, INRA USC2019, Unité Biologie et Pathogénicité Fongiques, 25 rue du Docteur Roux, Paris, France
| | - Etienne Dague
- LAAS CNRS UPR 8001, Université de Toulouse, Toulouse, France
| |
Collapse
|
45
|
Znaidi S, van Wijlick L, Hernández‐Cervantes A, Sertour N, Desseyn J, Vincent F, Atanassova R, Gouyer V, Munro CA, Bachellier‐Bassi S, Dalle F, Jouault T, Bougnoux M, d'Enfert C. Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut. Cell Microbiol 2018; 20:e12890. [PMID: 29998470 PMCID: PMC6220992 DOI: 10.1111/cmi.12890] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022]
Abstract
Candida albicans is part of the human gastrointestinal (GI) microbiota. To better understand how C. albicans efficiently establishes GI colonisation, we competitively challenged growth of 572 signature-tagged strains (~10% genome coverage), each conditionally overexpressing a single gene, in the murine gut. We identified CRZ2, a transcription factor whose overexpression and deletion respectively increased and decreased early GI colonisation. Using clues from genome-wide expression and gene-set enrichment analyses, we found that the optimal activity of Crz2p occurs under hypoxia at 37°C, as evidenced by both phenotypic and transcriptomic analyses following CRZ2 genetic perturbation. Consistent with early colonisation of the GI tract, we show that CRZ2 overexpression confers resistance to acidic pH and bile salts, suggesting an adaptation to the upper sections of the gut. Genome-wide location analyses revealed that Crz2p directly modulates the expression of many mannosyltransferase- and cell-wall protein-encoding genes, suggesting a link with cell-wall function. We show that CRZ2 overexpression alters cell-wall phosphomannan abundance and increases sensitivity to tunicamycin, suggesting a role in protein glycosylation. Our study reflects the powerful use of gene overexpression as a complementary approach to gene deletion to identify relevant biological pathways involved in C. albicans interaction with the host environment.
Collapse
Affiliation(s)
- Sadri Znaidi
- Institut Pasteur, INRAUnité Biologie et Pathogénicité FongiquesParisFrance
- Institut Pasteur de Tunis, University of Tunis El ManarLaboratoire de Microbiologie Moléculaire, Vaccinologie et Développement BiotechnologiqueTunisTunisia
| | - Lasse van Wijlick
- Institut Pasteur, INRAUnité Biologie et Pathogénicité FongiquesParisFrance
| | | | - Natacha Sertour
- Institut Pasteur, INRAUnité Biologie et Pathogénicité FongiquesParisFrance
| | - Jean‐Luc Desseyn
- Lille Inflammation Research International Center, UMR 995 InsermUniversité Lille 2, Faculté de MédecineLilleFrance
| | | | | | - Valérie Gouyer
- Lille Inflammation Research International Center, UMR 995 InsermUniversité Lille 2, Faculté de MédecineLilleFrance
| | - Carol A. Munro
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | | | - Frédéric Dalle
- UMR 1347Université de BourgogneDijonFrance
- Centre Hospitalier UniversitaireService de Parasitologie MycologieDijonFrance
| | - Thierry Jouault
- Lille Inflammation Research International Center, UMR 995 InsermUniversité Lille 2, Faculté de MédecineLilleFrance
| | - Marie‐Elisabeth Bougnoux
- Institut Pasteur, INRAUnité Biologie et Pathogénicité FongiquesParisFrance
- Laboratoire de Parasitologie‐Mycologie, Service de Microbiologie, Hôpital Necker‐Enfants MaladesUniversité Paris Descartes, Faculté de MédecineParisFrance
| | | |
Collapse
|
46
|
Wangsanut T, Tobin JM, Rolfes RJ. Functional Mapping of Transcription Factor Grf10 That Regulates Adenine-Responsive and Filamentation Genes in Candida albicans. mSphere 2018; 3:e00467-18. [PMID: 30355670 PMCID: PMC6200990 DOI: 10.1128/msphere.00467-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Grf10, a homeodomain-containing transcription factor, regulates adenylate and one-carbon metabolism and morphogenesis in the human fungal pathogen Candida albicans Here, we identified functional domains and key residues involved in transcription factor activity using one-hybrid and mutational analyses. We localized activation domains to the C-terminal half of the Grf10 protein by one-hybrid analysis and identified motifs using bioinformatic analyses; one of the characterized activation domains (AD1) responded to temperature. The LexA-Grf10 fusion protein activated the lexAop-HIS1 reporter in an adenine-dependent fashion, and this activation was independent of Bas1, showing that the adenine limitation signal is transmitted directly to Grf10. Overexpression of LexA-Grf10 led to filamentation, and this required a functioning homeodomain, consistent with Grf10 controlling the expression of key filamentation genes; filamentation induced by LexA-Grf10 overexpression was independent of adenine levels and Bas1. Alanine substitutions were made within the conserved interaction regions (IR) of LexA-Grf10 and Grf10 to investigate roles in transcription. In LexA-Grf10, the D302A mutation activated transcription constitutively, and the E305A mutation was regulated by adenine. When these mutations were introduced into the native gene locus, the D302A mutation was unable to complement the ADE phenotype and did not promote filamentation under hypha-inducing conditions; the E305A mutant behaved as the native gene with respect to the ADE phenotype and was partially defective in inducing hyphae. These results demonstrate allele-specific responses with respect to the different phenotypes, consistent with perturbations in the ability of Grf10 to interact with multiple partner proteins.IMPORTANCE Metabolic adaptation and morphogenesis are essential for Candida albicans, a major human fungal pathogen, to survive and infect diverse body sites in the mammalian host. C. albicans utilizes transcription factors to tightly control the transcription of metabolic genes and morphogenesis genes. Grf10, a critical homeodomain transcription factor, controls purine and one-carbon metabolism in response to adenine limitation, and Grf10 is necessary for the yeast-to-hypha morphological switching, a known virulence factor. Here, we carried out one-hybrid and mutational analyses to identify functional domains of Grf10. Our results show that Grf10 separately regulates metabolic and morphogenesis genes, and it contains a conserved protein domain for protein partner interaction, allowing Grf10 to control the transcription of multiple distinct pathways. Our findings contribute significantly to understanding the role and mechanism of transcription factors that control multiple pathogenic traits in C. albicans.
Collapse
Affiliation(s)
| | - Joshua M Tobin
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Ronda J Rolfes
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
47
|
High-Throughput Screening Identifies Genes Required for Candida albicans Induction of Macrophage Pyroptosis. mBio 2018; 9:mBio.01581-18. [PMID: 30131363 PMCID: PMC6106084 DOI: 10.1128/mbio.01581-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The innate immune system is the first line of defense against invasive fungal infections. As a consequence, many successful fungal pathogens have evolved elegant strategies to interact with host immune cells. For example, Candida albicans undergoes a morphogenetic switch coupled to cell wall remodeling upon phagocytosis by macrophages and then induces macrophage pyroptosis, an inflammatory cell death program. To elucidate the genetic circuitry through which C. albicans orchestrates this host response, we performed the first large-scale analysis of C. albicans interactions with mammalian immune cells. We identified 98 C. albicans genes that enable macrophage pyroptosis without influencing fungal cell morphology in the macrophage, including specific determinants of cell wall biogenesis and the Hog1 signaling cascade. Using these mutated genes, we discovered that defects in the activation of pyroptosis affect immune cell recruitment during infection. Examining host circuitry required for pyroptosis in response to C. albicans infection, we discovered that inflammasome priming and activation can be decoupled. Finally, we observed that apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization can occur prior to phagolysosomal rupture by C. albicans hyphae, demonstrating that phagolysosomal rupture is not the inflammasome activating signal. Taking the data together, this work defines genes that enable fungal cell wall remodeling and activation of macrophage pyroptosis independently of effects on morphogenesis and identifies macrophage signaling components that are required for pyroptosis in response to C. albicans infection. Candida albicans is a natural member of the human mucosal microbiota that can also cause superficial infections and life-threatening systemic infections, both of which are characterized by inflammation. Host defense relies mainly on the ingestion and destruction of C. albicans by innate immune cells, such as macrophages and neutrophils. Although some C. albicans cells are killed by macrophages, most undergo a morphological change and escape by inducing macrophage pyroptosis. Here, we investigated the C. albicans genes and host factors that promote macrophage pyroptosis in response to intracellular fungi. This work provides a foundation for understanding how host immune cells interact with C. albicans and may lead to effective strategies to modulate inflammation induced by fungal infections.
Collapse
|
48
|
Legrand M, Bachellier-Bassi S, Lee KK, Chaudhari Y, Tournu H, Arbogast L, Boyer H, Chauvel M, Cabral V, Maufrais C, Nesseir A, Maslanka I, Permal E, Rossignol T, Walker LA, Zeidler U, Znaidi S, Schoeters F, Majgier C, Julien RA, Ma L, Tichit M, Bouchier C, Van Dijck P, Munro CA, d’Enfert C. Generating genomic platforms to study Candida albicans pathogenesis. Nucleic Acids Res 2018; 46:6935-6949. [PMID: 29982705 PMCID: PMC6101633 DOI: 10.1093/nar/gky594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The advent of the genomic era has made elucidating gene function on a large scale a pressing challenge. ORFeome collections, whereby almost all ORFs of a given species are cloned and can be subsequently leveraged in multiple functional genomic approaches, represent valuable resources toward this endeavor. Here we provide novel, genome-scale tools for the study of Candida albicans, a commensal yeast that is also responsible for frequent superficial and disseminated infections in humans. We have generated an ORFeome collection composed of 5099 ORFs cloned in a Gateway™ donor vector, representing 83% of the currently annotated coding sequences of C. albicans. Sequencing data of the cloned ORFs are available in the CandidaOrfDB database at http://candidaorfeome.eu. We also engineered 49 expression vectors with a choice of promoters, tags and selection markers and demonstrated their applicability to the study of target ORFs transferred from the C. albicans ORFeome. In addition, the use of the ORFeome in the detection of protein-protein interaction was demonstrated. Mating-compatible strains as well as Gateway™-compatible two-hybrid vectors were engineered, validated and used in a proof of concept experiment. These unique and valuable resources should greatly facilitate future functional studies in C. albicans and the elucidation of mechanisms that underlie its pathogenicity.
Collapse
Affiliation(s)
- Mélanie Legrand
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
| | - Sophie Bachellier-Bassi
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
| | - Keunsook K Lee
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Yogesh Chaudhari
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Hélène Tournu
- VIB-KU Leuven Center for Microbiology, Leuven 3001, Belgium
- Laboratory of Molecular Cell Biology, KU Leuven, Leuven 3001, Belgium
| | - Laurence Arbogast
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
| | - Hélène Boyer
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
| | - Murielle Chauvel
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
| | - Vitor Cabral
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris 75015, France
| | - Corinne Maufrais
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
- Institut Pasteur-Bioinformatics and Biostatistics Hub-C3BI, USR 3756 IP CNRS-Paris 75015, France
| | - Audrey Nesseir
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris 75015, France
| | - Irena Maslanka
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Emmanuelle Permal
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
| | - Tristan Rossignol
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
| | - Louise A Walker
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ute Zeidler
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
| | - Sadri Znaidi
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
| | - Floris Schoeters
- VIB-KU Leuven Center for Microbiology, Leuven 3001, Belgium
- Laboratory of Molecular Cell Biology, KU Leuven, Leuven 3001, Belgium
| | - Charlotte Majgier
- Modul-Bio, Parc Scientifique Luminy Biotech II, Marseille 13009, France
| | - Renaud A Julien
- Modul-Bio, Parc Scientifique Luminy Biotech II, Marseille 13009, France
| | - Laurence Ma
- Institut Pasteur-Biomics Pole-CITECH-Paris 75015, France
| | - Magali Tichit
- Institut Pasteur-Biomics Pole-CITECH-Paris 75015, France
| | | | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, Leuven 3001, Belgium
- Laboratory of Molecular Cell Biology, KU Leuven, Leuven 3001, Belgium
| | - Carol A Munro
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Christophe d’Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris 75015, France
| |
Collapse
|
49
|
Dunn MJ, Kinney GM, Washington PM, Berman J, Anderson MZ. Functional diversification accompanies gene family expansion of MED2 homologs in Candida albicans. PLoS Genet 2018; 14:e1007326. [PMID: 29630599 PMCID: PMC5908203 DOI: 10.1371/journal.pgen.1007326] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/19/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Gene duplication facilitates functional diversification and provides greater phenotypic flexibility to an organism. Expanded gene families arise through repeated gene duplication but the extent of functional divergence that accompanies each paralogous gene is generally unexplored because of the difficulty in isolating the effects of single family members. The telomere-associated (TLO) gene family is a remarkable example of gene family expansion, with 14 members in the more pathogenic Candida albicans relative to two TLO genes in the closely-related species C. dubliniensis. TLO genes encode interchangeable Med2 subunits of the major transcriptional regulatory complex Mediator. To identify biological functions associated with each C. albicans TLO, expression of individual family members was regulated using a Tet-ON system and the strains were assessed across a range of phenotypes involved in growth and virulence traits. All TLOs affected multiple phenotypes and a single phenotype was often affected by multiple TLOs, including simple phenotypes such as cell aggregation and complex phenotypes such as virulence in a Galleria mellonella model of infection. No phenotype was regulated by all TLOs, suggesting neofunctionalization or subfunctionalization of ancestral properties among different family members. Importantly, regulation of three phenotypes could be mapped to individual polymorphic sites among the TLO genes, including an indel correlated with two phenotypes, growth in sucrose and macrophage killing. Different selective pressures have operated on the TLO sequence, with the 5’ conserved Med2 domain experiencing purifying selection and the gene/clade-specific 3’ end undergoing extensive positive selection that may contribute to the impact of individual TLOs on phenotypic variability. Therefore, expansion of the TLO gene family has conferred unique regulatory properties to each paralog such that it influences a range of phenotypes. We posit that the genetic diversity associated with this expansion contributed to C. albicans success as a commensal and opportunistic pathogen. Gene duplication is a rapid mechanism to generate additional sequences for natural selection to act upon and confer greater organismal fitness. If additional copies of the gene are beneficial, this process may be repeated to produce an expanded gene family containing many copies of related sequences. Following duplication, individual gene family members may retain functions of the ancestral gene or acquire new functions through mutation. How functional diversification accompanies expansion into large gene families remains largely unexplored due to the difficulty in assessing individual genes in the presence of the remaining family members. Here, we addressed this question using an inducible promoter to regulate expression of individual genes of the TLO gene family in the commensal yeast and opportunistic pathogen Candida albicans, which encode components of a major transcriptional regulator. Induced expression of individual TLOs affected a wide range of phenotypes such that significant functional overlap occurred among TLO genes and most phenotypes were affected by more than one TLO. Induced expression of individual TLOs did not produce massive phenotypic effects in most cases, suggesting that functional overlap among TLO genes may buffer new mutations that arise. Specific sequence variants among the TLO genes correlated with certain phenotypes and these sequence variants did not necessarily correlate with sequence similarity across the entire gene. Therefore, individual TLO family members evolved specific functional roles following duplication that likely reflect a combination of inherited function and new mutation.
Collapse
Affiliation(s)
- Matthew J. Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Griffin M. Kinney
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Pamela M. Washington
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
50
|
Overexpression screen reveals transcription factors involved in lipid accumulation in Yarrowia lipolytica. FEMS Yeast Res 2018; 18:4956524. [DOI: 10.1093/femsyr/foy037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022] Open
|