1
|
Li B, Liu Y, Yan P, Ouyang X, Ba Z, Wang Y, Yang T, Yu Z, Ren B, Zhong C, Liu H, Zhang Y, Gou S, Ni J. The novel β-hairpin antimicrobial peptide D-G(RF)3 demonstrates exceptional antibacterial efficacy. Eur J Med Chem 2025; 283:117149. [PMID: 39675159 DOI: 10.1016/j.ejmech.2024.117149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
The clinical application of most natural antimicrobial peptides (AMPs) is hindered by their lack of a synergistic combination of high antibacterial efficacy, low toxicity, and stability, necessitating frequent complex modifications that incur significant labor and economic costs. Therefore, it is imperative to optimize the antibacterial properties of AMPs using some simplified approach. In this study, we designed a library of β-hairpin AMPs with identical β-turn sequences (-D-Pro-Gly-) and varying repetition units (IR, FR, and WK). Ultimately, candidate peptide G(RF)3 exhibited high antibacterial activity and low toxicity; however, its stability was compromised. Moreover, we synthesized the new analogue D-G(RF)3 by D-type amino acid substitution of G(RF)3, and D-G(RF)3 demonstrated concurrent high antibacterial activity, low toxicity, and remarkable stability. Interestingly, both G(RF)3 and D-G(RF)3 exerted bactericidal effects by disrupting the bacterial membrane. However, D-G(RF)3 displayed superior antibiofilm activity with a faster bactericidal rate compared to G(RF)3 and also showed enhanced synergy with antibiotics. Furthermore, D-G(RF)3 exhibited potent in vivo bactericidal activity without inducing drug resistance and has the potential to be a novel antibiotic alternative or adjuvant.
Collapse
Affiliation(s)
- Beibei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yao Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Pengyi Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Xu Ouyang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Zufang Ba
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Yu Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Tingting Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhongwei Yu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Bingqian Ren
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China
| | - Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing, 100050, PR China
| | - Hui Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing, 100050, PR China
| | - Yun Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing, 100050, PR China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing, 100050, PR China.
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, 730000, PR China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College. Beijing, 100050, PR China.
| |
Collapse
|
2
|
Rahman M, Singh J, Aodah A, Alrobaian M, Alruwaili NK, Almalki WH, Almujri SS, Rab SO, Madkhali OA, Sahoo A, Lal JA. Chiral nanosystem and chiral supraparticles for drug delivery: an expert opinion. Expert Opin Drug Deliv 2024:1-20. [PMID: 39688614 DOI: 10.1080/17425247.2024.2444347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION Chiral nanocarriers enhance therapeutic efficacy by improving in vivo stability and cellular uptake. Chemical functionalization reduces cytotoxicity, resulting in favorable biocompatibility. Nanoparticles self-assemble into supraparticles, enhancing drug delivery through improved retention and drug loading. AREA COVERED This review covers chiral nanostructures and chiral supraparticles, and their applications in drug delivery and various healthcare applications. EXPERT OPINION The chirality of biomaterials is crucial for advancing nanomedicine. Chiral nanosystem enhance drug delivery by interacting selectively with biological molecules, improving their specificity and efficacy. This reduces off-target effects and improves therapeutic outcomes. Research has focused on cellular uptake and elimination to ensure safety, and chiral nanomaterials also show promise in optical sensing and gene editing. Their biocompatibility and ability to self-assemble into supraparticles may make them ideal for drug delivery systems.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Janhvi Singh
- Department of Biotechnology and Market Research, Thelansis Knowledge Partners, Gurugram, India
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Majed Alrobaian
- Department of Pharmaceutics & Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, Al Qura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
3
|
Meogrossi G, Tollapi E, Rencinai A, Brunetti J, Scali S, Paccagnini E, Gentile M, Lupetti P, Pollini S, Rossolini GM, Bernini A, Pini A, Bracci L, Falciani C. Antibacterial and Anti-Inflammatory Activity of Branched Peptides Derived from Natural Host Defense Sequences. J Med Chem 2024; 67:16145-16156. [PMID: 39260445 PMCID: PMC11440494 DOI: 10.1021/acs.jmedchem.4c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Antibiotic resistance is a major global health threat, necessitating the development of new treatments and diverse molecules to combat severe infections and preserve the efficacy of existing drugs. Antimicrobial peptides (AMPs) offer a versatile arsenal against bacteria, and peptide structure branching can enhance their resistance to proteases and improve their overall efficacy. A small library of peptides derived from natural host defense peptides and synthesized in a tetrabranched form was selected against E. coli. Six selected branched peptides were further studied for antibacterial activity against a panel of strains, biofilm inhibition, protease resistance, and cytotoxicity. Their structure was predicted computationally and their mechanism of action was investigated by electron microscopy and by using fluorescent dyes. The peptide BAMP2 showed promise in a mouse skin infection model, indicating the potential for local infection treatment.
Collapse
Affiliation(s)
- Giada Meogrossi
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| | - Eva Tollapi
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| | - Alessandro Rencinai
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| | - Jlenia Brunetti
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| | - Silvia Scali
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| | | | | | - Pietro Lupetti
- Department
of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Simona Pollini
- Department
of Experimental and Clinical Medicine, University
of Florence, 50134 Florence, Italy
- Microbiology
and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Gian Maria Rossolini
- Department
of Experimental and Clinical Medicine, University
of Florence, 50134 Florence, Italy
- Microbiology
and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Andrea Bernini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alessandro Pini
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
- Laboratory
of Clinical Pathology, Santa Maria alle
Scotte University Hospital, 53100 Siena, Italy
- Setlance
srl, Via Fiorentina 1, 53100 Siena, Italy
| | - Luisa Bracci
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
- Laboratory
of Clinical Pathology, Santa Maria alle
Scotte University Hospital, 53100 Siena, Italy
| | - Chiara Falciani
- Department
of Medical Biotechnology, University of
Siena, 53100 Siena, Italy
| |
Collapse
|
4
|
Fong-Coronado PA, Ramirez V, Quintero-Hernández V, Balleza D. A Critical Review of Short Antimicrobial Peptides from Scorpion Venoms, Their Physicochemical Attributes, and Potential for the Development of New Drugs. J Membr Biol 2024; 257:165-205. [PMID: 38990274 PMCID: PMC11289363 DOI: 10.1007/s00232-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024]
Abstract
Scorpion venoms have proven to be excellent sources of antimicrobial agents. However, although many of them have been functionally characterized, they remain underutilized as pharmacological agents, despite their evident therapeutic potential. In this review, we discuss the physicochemical properties of short scorpion venom antimicrobial peptides (ssAMPs). Being generally short (13-25 aa) and amidated, their proven antimicrobial activity is generally explained by parameters such as their net charge, the hydrophobic moment, or the degree of helicity. However, for a complete understanding of their biological activities, also considering the properties of the target membranes is of great relevance. Here, with an extensive analysis of the physicochemical, structural, and thermodynamic parameters associated with these biomolecules, we propose a theoretical framework for the rational design of new antimicrobial drugs. Through a comparison of these physicochemical properties with the bioactivity of ssAMPs in pathogenic bacteria such as Staphylococcus aureus or Acinetobacter baumannii, it is evident that in addition to the net charge, the hydrophobic moment, electrostatic energy, or intrinsic flexibility are determining parameters to understand their performance. Although the correlation between these parameters is very complex, the consensus of our analysis suggests that there is a delicate balance between them and that modifying one affects the rest. Understanding the contribution of lipid composition to their bioactivities is also underestimated, which suggests that for each peptide, there is a physiological context to consider for the rational design of new drugs.
Collapse
Affiliation(s)
- Pedro Alejandro Fong-Coronado
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | - Verónica Ramirez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (FCQ-BUAP), Ciudad Universitaria, Puebla, México
| | | | - Daniel Balleza
- Laboratorio de Microbiología, Unidad de Investigación y Desarrollo en Alimentos, Instituto Tecnológico de Veracruz, Tecnológico Nacional de México, Veracruz, México.
| |
Collapse
|
5
|
Enninful GN, Kuppusamy R, Tiburu EK, Kumar N, Willcox MDP. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J Pept Sci 2024; 30:e3560. [PMID: 38262069 DOI: 10.1002/psc.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- University of New South Wales, Kensington, New South Wales, Australia
| | | | - Naresh Kumar
- University of New South Wales, Kensington, New South Wales, Australia
| | - Mark D P Willcox
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
6
|
Cresti L, Cappello G, Pini A. Antimicrobial Peptides towards Clinical Application-A Long History to Be Concluded. Int J Mol Sci 2024; 25:4870. [PMID: 38732089 PMCID: PMC11084544 DOI: 10.3390/ijms25094870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Antimicrobial peptides (AMPs) are molecules with an amphipathic structure that enables them to interact with bacterial membranes. This interaction can lead to membrane crossing and disruption with pore formation, culminating in cell death. They are produced naturally in various organisms, including humans, animals, plants and microorganisms. In higher animals, they are part of the innate immune system, where they counteract infection by bacteria, fungi, viruses and parasites. AMPs can also be designed de novo by bioinformatic approaches or selected from combinatorial libraries, and then produced by chemical or recombinant procedures. Since their discovery, AMPs have aroused interest as potential antibiotics, although few have reached the market due to stability limits or toxicity. Here, we describe the development phase and a number of clinical trials of antimicrobial peptides. We also provide an update on AMPs in the pharmaceutical industry and an overall view of their therapeutic market. Modifications to peptide structures to improve stability in vivo and bioavailability are also described.
Collapse
Affiliation(s)
- Laura Cresti
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Giovanni Cappello
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
| | - Alessandro Pini
- Medical Biotechnology Department, University of Siena, Via A Moro 2, 53100 Siena, Italy; (G.C.); (A.P.)
- SetLance srl, Via Fiorentina 1, 53100 Siena, Italy
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
| |
Collapse
|
7
|
Wu W, Song J, Li T, Li W, Wang J, Wang S, Dong N, Shan A. Unlocking Antibacterial Potential: Key-Site-Based Regulation of Antibacterial Spectrum of Peptides. J Med Chem 2024; 67:4131-4149. [PMID: 38420875 DOI: 10.1021/acs.jmedchem.3c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In the pursuit of combating multidrug-resistant bacteria, antimicrobial peptides (AMPs) have emerged as promising agents; however, their application in clinical settings still presents challenges. Specifically, the exploration of crucial structural parameters that influence the antibacterial spectrum of AMPs and the subsequent development of tailored variants with either broad- or narrow-spectrum characteristics to address diverse clinical therapeutic needs has been overlooked. This study focused on investigating the effects of amino acid sites and hydrophobicity on the peptide's antibacterial spectrum through Ala scanning and fixed-point hydrophobic amino acid substitution techniques. The findings revealed that specific amino acid sites played a pivotal role in determining the antibacterial spectrum of AMPs and confirmed that broadening the spectrum could be achieved only by increasing hydrophobicity at certain positions. In conclusion, this research provided a theoretical basis for future precise regulation of an antimicrobial peptide's spectrum by emphasizing the intricate balance between amino acid sites and hydrophobicity.
Collapse
Affiliation(s)
- Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jing Song
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Tong Li
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenyu Li
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Shuo Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Na Dong
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
8
|
Rangel K, Lechuga GC, Provance DW, Morel CM, De Simone SG. An Update on the Therapeutic Potential of Antimicrobial Peptides against Acinetobacter baumannii Infections. Pharmaceuticals (Basel) 2023; 16:1281. [PMID: 37765087 PMCID: PMC10537560 DOI: 10.3390/ph16091281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The rise in antibiotic-resistant strains of clinically important pathogens is a major threat to global health. The World Health Organization (WHO) has recognized the urgent need to develop alternative treatments to address the growing list of priority pathogens. Antimicrobial peptides (AMPs) rank among the suggested options with proven activity and high potential to be developed into effective drugs. Many AMPs are naturally produced by living organisms protecting the host against pathogens as a part of their innate immunity. Mechanisms associated with AMP actions include cell membrane disruption, cell wall weakening, protein synthesis inhibition, and interference in nucleic acid dynamics, inducing apoptosis and necrosis. Acinetobacter baumannii is a critical pathogen, as severe clinical implications have developed from isolates resistant to current antibiotic treatments and conventional control procedures, such as UV light, disinfectants, and drying. Here, we review the natural AMPs representing primary candidates for new anti-A. baumannii drugs in post-antibiotic-era and present computational tools to develop the next generation of AMPs with greater microbicidal activity and reduced toxicity.
Collapse
Affiliation(s)
- Karyne Rangel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Guilherme Curty Lechuga
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - David W. Provance
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carlos M. Morel
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
| | - Salvatore G. De Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation in Neglected Population Diseases (INCT-IDPN), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (K.R.); (G.C.L.); (D.W.P.J.); (C.M.M.)
- Epidemiology and Molecular Systematics Laboratory (LEMS), Oswaldo Cruz Institut, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, RJ, Brazil
- Program of Post-Graduation on Parasitic Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| |
Collapse
|
9
|
Lyu Z, Yang P, Lei J, Zhao J. Biological Function of Antimicrobial Peptides on Suppressing Pathogens and Improving Host Immunity. Antibiotics (Basel) 2023; 12:1037. [PMID: 37370356 DOI: 10.3390/antibiotics12061037] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of drug-resistant genes and concerns about food safety caused by the overuse of antibiotics are becoming increasingly prominent. There is an urgent need for effective alternatives to antibiotics in the fields of livestock production and human medicine. Antimicrobial peptides can effectively replace antibiotics to kill pathogens and enhance the immune functions of the host, and pathogens cannot easily produce genes that are resistant to them. The ability of antimicrobial peptides (AMPs) to kill pathogens is associated with their structure and physicochemical properties, such as their conformation, electrical charges, hydrophilicity, and hydrophobicity. AMPs regulate the activity of immunological cells and stimulate the secretion of inflammatory cytokines via the activation of the NF-κB and MAPK signaling pathways. However, there are still some limitations to the application of AMPs in the fields of livestock production and human medicine, including a restricted source base, high costs of purification and expression, and the instability of the intestines of animals and humans. This review summarizes the information on AMPs as effective antibiotic substitutes to improve the immunological functions of the host through suppressing pathogens and regulating inflammatory responses. Potential challenges for the commercial application of AMPs in animal husbandry and human medicine are discussed.
Collapse
Affiliation(s)
- Zhiqian Lyu
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pan Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Lei
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
- Qingyuan Haibei BIO-TECH Co., Ltd., Qingyuan 511853, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Vasconcelos I, Santos T. Nanotechnology Applications in Sepsis: Essential Knowledge for Clinicians. Pharmaceutics 2023; 15:1682. [PMID: 37376129 DOI: 10.3390/pharmaceutics15061682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Sepsis is a life-threatening condition caused by a dysregulated host response to an invading pathogen such as multidrug-resistant bacteria. Despite recent advancements, sepsis is a leading cause of morbidity and mortality, resulting in a significant global impact and burden. This condition affects all age groups, with clinical outcomes mainly depending on a timely diagnosis and appropriate early therapeutic intervention. Because of the unique features of nanosized systems, there is a growing interest in developing and designing novel solutions. Nanoscale-engineered materials allow a targeted and controlled release of bioactive agents, resulting in improved efficacy with minimal side effects. Additionally, nanoparticle-based sensors provide a quicker and more reliable alternative to conventional diagnostic methods for identifying infection and organ dysfunction. Despite recent advancements, fundamental nanotechnology principles are often presented in technical formats that presuppose advanced chemistry, physics, and engineering knowledge. Consequently, clinicians may not grasp the underlying science, hindering interdisciplinary collaborations and successful translation from bench to bedside. In this review, we abridge some of the most recent and most promising nanotechnology-based solutions for sepsis diagnosis and management using an intelligible format to stimulate a seamless collaboration between engineers, scientists, and clinicians.
Collapse
Affiliation(s)
- Inês Vasconcelos
- School of Medicine, University of Minho, 4710-057 Braga, Portugal
- Department of Surgery and Physiology, Cardiovascular Research and Development Center-UnIC, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Tiago Santos
- School of Medicine, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Copling A, Akantibila M, Kumaresan R, Fleischer G, Cortes D, Tripathi RS, Carabetta VJ, Vega SL. Recent Advances in Antimicrobial Peptide Hydrogels. Int J Mol Sci 2023; 24:7563. [PMID: 37108725 PMCID: PMC10139150 DOI: 10.3390/ijms24087563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Advances in the number and type of available biomaterials have improved medical devices such as catheters, stents, pacemakers, prosthetic joints, and orthopedic devices. The introduction of a foreign material into the body comes with a risk of microbial colonization and subsequent infection. Infections of surgically implanted devices often lead to device failure, which leads to increased patient morbidity and mortality. The overuse and improper use of antimicrobials has led to an alarming rise and spread of drug-resistant infections. To overcome the problem of drug-resistant infections, novel antimicrobial biomaterials are increasingly being researched and developed. Hydrogels are a class of 3D biomaterials consisting of a hydrated polymer network with tunable functionality. As hydrogels are customizable, many different antimicrobial agents, such as inorganic molecules, metals, and antibiotics have been incorporated or tethered to them. Due to the increased prevalence of antibiotic resistance, antimicrobial peptides (AMPs) are being increasingly explored as alternative agents. AMP-tethered hydrogels are being increasingly examined for antimicrobial properties and practical applications, such as wound-healing. Here, we provide a recent update, from the last 5 years of innovations and discoveries made in the development of photopolymerizable, self-assembling, and AMP-releasing hydrogels.
Collapse
Affiliation(s)
- Aryanna Copling
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Maxwell Akantibila
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Raaha Kumaresan
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Gilbert Fleischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Dennise Cortes
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Rahul S. Tripathi
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
- Department of Orthopedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
12
|
Wang X, Yang X, Wang Q, Meng D. Unnatural amino acids: promising implications for the development of new antimicrobial peptides. Crit Rev Microbiol 2023; 49:231-255. [PMID: 35254957 DOI: 10.1080/1040841x.2022.2047008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The increasing incidence and rapid spread of bacterial resistance to conventional antibiotics are a serious global threat to public health, highlighting the need to develop new antimicrobial alternatives. Antimicrobial peptides (AMPs) represent a class of promising natural antibiotic candidates due to their broad-spectrum activity and low tendency to induce resistance. However, the development of AMPs for medical use is hampered by several obstacles, such as moderate activity, lability to proteolytic degradation, and low bioavailability. To date, many researchers have focussed on the optimization or design of novel artificial AMPs with desired properties. Unnatural amino acids (UAAs) are valuable building blocks in the manufacture of a variety of pharmaceuticals, and have been used to develop artificial AMPs with specific structural and physicochemical properties. Rational incorporation of UAAs has become a very promising approach to endow AMPs with strong and long-lasting activity but no toxicity. This review aims to summarize key approaches that have been used to incorporate UAAs to develop novel AMPs with improved properties and better performance. It is anticipated that this review will guide future design considerations for UAA-based antimicrobial applications.
Collapse
Affiliation(s)
- Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Xiaomin Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China
| | - Qiaoe Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, People's Republic of China.,Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Rahman M, Almalki WH, Afzal O, Alfawaz Altamimi AS, Najib Ullah SNM, Abul Barkat M, Beg S. Chiral-engineered supraparticles: Emerging tools for drug delivery. Drug Discov Today 2023; 28:103420. [PMID: 36309193 DOI: 10.1016/j.drudis.2022.103420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 02/02/2023]
Abstract
The handedness of chiral-engineered supraparticles (CE-SPs) influences their interactions with cells and proteins, as evidenced by the increased penetration of breast, cervical, and myeloma cell membranes by d-chirality-coordinated SPs. Quartz crystal dissipation and isothermal titration calorimetry have been used to investigate such chiral-specific interactions. d-SPs are more thermodynamically stable compared with l-SPs in terms of their adhesion. Proteases and other endogenous proteins can be shielded by the opposite chirality of d-SPs, resulting in longer half-lives. Incorporating nanosystems with d-chirality increases uptake by cancer cells and prolongs in vivo stability, demonstrating the importance of chirality in biomaterials. Thus, as we discuss here, chiral nanosystems could enhance drug delivery systems, tumor markers, and biosensors, among other biomaterial-based technologies, by allowing for better control over their features.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Science, SIHAS, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | | | | | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Saudi Arabia
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
14
|
Cresti L, Conte G, Cappello G, Brunetti J, Falciani C, Bracci L, Quaglia F, Ungaro F, d’Angelo I, Pini A. Inhalable Polymeric Nanoparticles for Pulmonary Delivery of Antimicrobial Peptide SET-M33: Antibacterial Activity and Toxicity In Vitro and In Vivo. Pharmaceutics 2022; 15:pharmaceutics15010003. [PMID: 36678633 PMCID: PMC9863998 DOI: 10.3390/pharmaceutics15010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Development of inhalable formulations for delivering peptides to the conductive airways and shielding their interactions with airway barriers, thus enhancing peptide/bacteria interactions, is an important part of peptide-based drug development for lung applications. Here, we report the construction of a biocompatible nanosystem where the antimicrobial peptide SET-M33 is encapsulated within polymeric nanoparticles of poly(lactide-co-glycolide) (PLGA) conjugated with polyethylene glycol (PEG). This system was conceived for better delivery of the peptide to the lungs by aerosol. The encapsulated peptide showed prolonged antibacterial activity, due to its controlled release, and much lower toxicity than the free molecule. The peptide-based nanosystem killed Pseudomonas aeruginosa in planktonic and sessile forms in a dose-dependent manner, remaining active up to 72 h after application. The encapsulated peptide showed no cytotoxicity when incubated with human bronchial epithelial cells from healthy individuals and from cystic fibrosis patients, unlike the free peptide, which showed an EC50 of about 22 µM. In vivo acute toxicity studies in experimental animals showed that the peptide nanosystem did not cause any appreciable side effects, and confirmed its ability to mitigate the toxic and lethal effects of free SET-M33.
Collapse
Affiliation(s)
- Laura Cresti
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- SetLance srl, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Gemma Conte
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Giovanni Cappello
- SetLance srl, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Luisa Bracci
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy
| | - Ivana d’Angelo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Correspondence: (I.d.); (A.P.)
| | - Alessandro Pini
- Laboratory of Clinical Pathology, Santa Maria alle Scotte University Hospital, 53100 Siena, Italy
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
- Correspondence: (I.d.); (A.P.)
| |
Collapse
|
15
|
Hadjicharalambous A, Bournakas N, Newman H, Skynner MJ, Beswick P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel) 2022; 11:1636. [PMID: 36421280 PMCID: PMC9686638 DOI: 10.3390/antibiotics11111636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short oligopeptides that can penetrate the bacterial inner and outer membranes. Together with cell-penetrating peptides (CPPs), they are called membrane active peptides; peptides which can translocate across biological membranes. Over the last fifty years, attempts have been made to understand the molecular features that drive the interactions of membranes with membrane active peptides. This review examines the features of a membrane these peptides exploit for translocation, as well as the physicochemical characteristics of membrane active peptides which are important for translocation. Moreover, it presents examples of how these features have been used in recent years to create conjugates consisting of a membrane active peptide, called a "vector", attached to either a current or novel antibiotic, called a "cargo" or "payload". In addition, the review discusses what properties may contribute to an ideal peptide vector able to deliver cargoes across the bacterial outer membrane as the rising issue of antimicrobial resistance demands new strategies to be employed to combat this global public health threat.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QN, UK
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Nikolaos Bournakas
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Hector Newman
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J. Skynner
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| | - Paul Beswick
- BicycleTx Limited, Portway Building, Granta Park, Cambridge CB21 6GS, UK
| |
Collapse
|
16
|
Safety evaluations of a synthetic antimicrobial peptide administered intravenously in rats and dogs. Sci Rep 2022; 12:19294. [PMID: 36369523 PMCID: PMC9652379 DOI: 10.1038/s41598-022-23841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The antimicrobial peptide SET-M33 is under study for the development of a new antibiotic against major Gram-negative pathogens. Here we report the toxicological evaluation of SET-M33 administered intravenously to rats and dogs. Dose range finding experiments determined the doses to use in toxicokinetic evaluation, clinical biochemistry analysis, necroscopy and in neurological and respiratory measurements. Clinical laboratory investigations in dogs and rats showed a dose-related increase in creatinine and urea levels, indicating that the kidneys are the target organ. This was also confirmed by necroscopy studies of animal tissues, where signs of degeneration and regeneration were found in kidney when SET-M33 was administered at the highest doses in the two animal species. Neurological toxicity measurements by the Irwin method and respiratory function evaluation in rats did not reveal any toxic effect even at the highest dose. Finally, repeated administration of SET-M33 by short infusion in dogs revealed a no-observed-adverse-effect-level of 0.5 mg/kg/day.
Collapse
|
17
|
Antimicrobial Peptides Active in In Vitro Models of Endodontic Bacterial Infections Modulate Inflammation in Human Cardiac Fibroblasts. Pharmaceutics 2022; 14:pharmaceutics14102081. [PMID: 36297519 PMCID: PMC9611259 DOI: 10.3390/pharmaceutics14102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Endodontic and periodontal disease are conditions of infectious origin that can lead to tooth loss or develop into systemic hyperinflammation, which may be associated with a wide variety of diseases, including cardiovascular. Endodontic and periodontal treatment often relies on antibiotics. Since new antimicrobial resistances are a major threat, the use of standard antibiotics is not recommended when the infection is only local. Antimicrobial peptides were recently demonstrated to be valid alternatives for dental treatments. The antimicrobial peptide M33D is a tetrabranched peptide active against Gram-negative and Gram-positive bacteria. It has a long life, unusual for peptides, because its branched form provides resistance to proteases. Here the efficacy of M33D and of its analog M33i/l as antibiotics for local use in dentistry was evaluated. M33D and M33i/l were active against reference strains and multidrug-resistant clinical isolates of Gram-negative and Gram-positive species. Their minimum inhibitory concentration against different strains of dental interest was between 0.4 and 6.0 μM. Both peptides acted rapidly on bacteria, impairing membrane function. They also disrupted biofilm effectively. Disinfection of the root canal is crucial for endodontic treatments. M33D and M33i/l reduced E. faecalis colonies to one-twentieth in a dentin slices model reproducing root canal irrigation. They both captured and neutralized lipopolysaccharide (LPS), a bacterial toxin responsible for inflammation. The release of IL-1β and TNFα by LPS-stimulated murine macrophages was reduced by both peptides. Human cardiac fibroblasts respond to different insults with the release of proinflammatory cytokines, and consequently, they are considered directly involved in atherogenic cardiovascular processes, including those triggered by infections. The presence of M33D and M33i/l at MIC concentration reduced IL6 release from LPS- stimulated human cardiac fibroblasts, hence proving to be promising in preventing bacteria-induced atherogenesis. The two peptides showed low toxicity to mammalian cells, with an EC50 one order of magnitude higher than the average MIC and low hemolytic activity. The development of antimicrobial peptides for dental irrigations and medication is a very promising new field of research that will provide tools to fight dental infections and their severe consequences, while at the same time protecting standard antibiotics from new outbreaks of antimicrobial resistance.
Collapse
|
18
|
Gorr SU, Brigman HV, Anderson JC, Hirsch EB. The antimicrobial peptide DGL13K is active against drug-resistant gram-negative bacteria and sub-inhibitory concentrations stimulate bacterial growth without causing resistance. PLoS One 2022; 17:e0273504. [PMID: 36006947 PMCID: PMC9409508 DOI: 10.1371/journal.pone.0273504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/09/2022] [Indexed: 11/19/2022] Open
Abstract
Antimicrobial peptides may be alternatives to traditional antibiotics with reduced bacterial resistance. The antimicrobial peptide GL13K was derived from the salivary protein BPIFA2. This study determined the relative activity of the L-and D-enantiomers of GL13K to wild-type and drug-resistant strains of three gram-negative species and against Pseudomonas aeruginosa biofilms. DGL13K displayed in vitro activity against extended-spectrum beta-lactamase (ESBL)-producing and Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae (MICs 16-32 μg/ml), MDR and XDR P. aeruginosa, and XDR Acinetobacter baumannii carrying metallo-beta-lactamases (MICs 8-32 μg/ml). P. aeruginosa showed low inherent resistance to DGL13K and the increased metabolic activity and growth caused by sub-MIC concentrations of GL13K peptides did not result in acquired bacterial resistance. Daily treatment for approximately two weeks did not increase the MIC of DGL13K or cause cross-resistance between LGL13K and DGL13K. These data suggest that DGL13K is a promising antimicrobial peptide candidate for further development.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Hunter V. Brigman
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, United States of America
| | - Jadyn C. Anderson
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, United States of America
| | - Elizabeth B. Hirsch
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, United States of America
| |
Collapse
|
19
|
In pursuit of next-generation therapeutics: Antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol 2022; 218:135-156. [PMID: 35868409 DOI: 10.1016/j.ijbiomac.2022.07.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/12/2022]
Abstract
Antimicrobial peptides (AMPs) attracted attention as potential source of novel antimicrobials. Multi-drug resistant (MDR) infections have emerged as a global threat to public health in recent years. Furthermore, due to rapid emergence of new diseases, there is pressing need for development of efficient antimicrobials. AMPs are essential part of the innate immunity in most living organisms, acting as the primary line of defense against foreign invasions. AMPs kill a wide range of microorganisms by primarily targeting cell membranes or intracellular components through a variety of ways. AMPs can be broadly categorized based on their physico-chemical properties, structure, function, target and source of origin. The synthetic analogues produced either with suitable chemical modifications or with the use of suitable delivery systems are projected to eliminate the constraints of toxicity and poor stability commonly linked with natural AMPs. The concept of peptidomimetics is gaining ground around the world nowadays. Among the delivery systems, nanoparticles are emerging as potential delivery tools for AMPs, amplifying their utility against a variety of pathogens. In the present review, the broad classification of various AMPs, their mechanism of action (MOA), challenges associated with AMPs, current applications, and novel strategies to overcome the limitations have been discussed.
Collapse
|
20
|
Shen Y, Wang Y, Hamley IW, Qi W, Su R, He Z. Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Han Y, Zhang M, Lai R, Zhang Z. Chemical modifications to increase the therapeutic potential of antimicrobial peptides. Peptides 2021; 146:170666. [PMID: 34600037 DOI: 10.1016/j.peptides.2021.170666] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
The continued use of antibiotics has been accompanied by the rapid emergence and spread of antibiotic-resistant strains of bacteria. Antimicrobial peptides (AMPs), also known as host defense peptides, show multiple features as an ideal antimicrobial agent, including potent, rapid, and broad-spectrum antimicrobial activity, low promotion of antimicrobial resistance, potent anti-biofilm activity, and lethality against metabolically inactive microorganisms. However, several crucial drawbacks constrain the use of AMPs as clinical drugs, e.g., liability in vivo, toxicity when used systemically, and high production costs. Based on recent findings and our own experiences, here we summarize some chemical modifications and key design strategies to increase the therapeutic potential of AMPs, including 1) enhancing antimicrobial activities, 2) improving in vivo effectiveness, and 3) reduction in toxicity, which may facilitate the design and optimization of AMPs for the development of drug candidates. We also discuss the present challenges in the optimization of AMPs and future concerns about the resistance and cross-resistance to AMPs in the development of AMPs as therapeutic drugs.
Collapse
Affiliation(s)
- Yajun Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223 Yunnan, China
| | - Manli Zhang
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital, Jilin University, Changchun, 130021 Jilin Province, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223 Yunnan, China
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Kunming, 650223 Yunnan, China.
| |
Collapse
|
22
|
Rounds T, Straus SK. Lipidation of Antimicrobial Peptides as a Design Strategy for Future Alternatives to Antibiotics. Int J Mol Sci 2020; 21:ijms21249692. [PMID: 33353161 PMCID: PMC7766664 DOI: 10.3390/ijms21249692] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Multi-drug-resistant bacteria are becoming more prevalent, and treating these bacteria is becoming a global concern. One alternative approach to combat bacterial resistance is to use antimicrobial (AMPs) or host-defense peptides (HDPs) because they possess broad-spectrum activity, function in a variety of ways, and lead to minimal resistance. However, the therapeutic efficacy of HDPs is limited by a number of factors, including systemic toxicity, rapid degradation, and low bioavailability. One approach to circumvent these issues is to use lipidation, i.e., the attachment of one or more fatty acid chains to the amine groups of the N-terminus or a lysine residue of an HDP. In this review, we examined lipidated analogs of 66 different HDPs reported in the literature to determine: (i) whether there is a link between acyl chain length and antibacterial activity; (ii) whether the charge and (iii) the hydrophobicity of the HDP play a role; and (iv) whether acyl chain length and toxicity are related. Overall, the analysis suggests that lipidated HDPs with improved activity over the nonlipidated counterpart had acyl chain lengths of 8–12 carbons. Moreover, active lipidated peptides attached to short HDPs tended to have longer acyl chain lengths. Neither the charge of the parent HDP nor the percent hydrophobicity of the peptide had an apparent significant impact on the antibacterial activity. Finally, the relationship between acyl chain length and toxicity was difficult to determine due to the fact that toxicity is quantified in different ways. The impact of these trends, as well as combined strategies such as the incorporation of d- and non-natural amino acids or alternative approaches, will be discussed in light of how lipidation may play a role in the future development of antimicrobial peptide-based alternatives to current therapeutics.
Collapse
|
23
|
Brunetti J, Carnicelli V, Ponzi A, Di Giulio A, Lizzi AR, Cristiano L, Cresti L, Cappello G, Pollini S, Mosconi L, Rossolini GM, Bracci L, Falciani C, Pini A. Antibacterial and Anti-Inflammatory Activity of an Antimicrobial Peptide Synthesized with D Amino Acids. Antibiotics (Basel) 2020; 9:antibiotics9120840. [PMID: 33255172 PMCID: PMC7760307 DOI: 10.3390/antibiotics9120840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/17/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
The peptide SET-M33 is a molecule synthesized in tetra-branched form which is being developed as a new antibiotic against Gram-negative bacteria. Its isomeric form with D amino acids instead of the L version (SET-M33D) is also able to kill Gram-positive bacteria because of its higher resistance to bacterial proteases (Falciani et al., PLoS ONE, 2012, 7, e46259). Here we report the strong in vitro activity of SET-M33D (MIC range 0.7-6.0 µM) against multiresistant pathogens of clinical interest, including Gram-positives Staphylococcus aureus, Staphylococcus saprophyticus, and Enterococcus faecalis, and various Gram-negative enterobacteriaceae. SET-M33D antibacterial activity is also confirmed in vivo against a MRSA strain of S. aureus with doses perfectly compatible with clinical use (5 and 2.5 mg/Kg). Moreover, SET-M33D strongly neutralized lipopolysaccharide (LPS) and lipoteichoic acid (LTA), thus exerting a strong anti-inflammatory effect, reducing expression of cytokines, enzymes, and transcription factors (TNF-α, IL6, COX-2, KC, MIP-1, IP10, iNOS, NF-κB) involved in the onset and evolution of the inflammatory process. These results, along with in vitro and in vivo toxicity data and the low frequency of resistance selection reported here, make SET-M33D a strong candidate for the development of a new broad spectrum antibiotic.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
- Correspondence:
| | - Veronica Carnicelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Alessia Ponzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Antonio Di Giulio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Anna Rita Lizzi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (A.P.); (A.D.G.); (A.R.L.)
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Laura Cresti
- SetLance srl, Toscana Life Sciences, 53100 Siena, Italy;
| | - Giovanni Cappello
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
| | - Simona Pollini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (L.M.); (G.M.R.)
- Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Lara Mosconi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (L.M.); (G.M.R.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.P.); (L.M.); (G.M.R.)
- Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
- Laboratory of Clinical Pathology, Santa Maria alle Scotte Hospital, 53100 Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (G.C.); (L.B.); (C.F.); (A.P.)
- Laboratory of Clinical Pathology, Santa Maria alle Scotte Hospital, 53100 Siena, Italy
| |
Collapse
|
24
|
Drayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules 2020; 25:molecules25133048. [PMID: 32635310 PMCID: PMC7412191 DOI: 10.3390/molecules25133048] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs), otherwise known as host defence peptides (HDPs), are naturally occurring biomolecules expressed by a large array of species across the phylogenetic kingdoms. They have great potential to combat microbial infections by directly killing or inhibiting bacterial activity and/or by modulating the immune response of the host. Due to their multimodal properties, broad spectrum activity, and minimal resistance generation, these peptides have emerged as a promising response to the rapidly concerning problem of multidrug resistance (MDR). However, their therapeutic efficacy is limited by a number of factors, including rapid degradation, systemic toxicity, and low bioavailability. As such, many strategies have been developed to mitigate these limitations, such as peptide modification and delivery vehicle conjugation/encapsulation. Oftentimes, however, particularly in the case of the latter, this can hinder the activity of the parent AMP. Here, we review current delivery strategies used for AMP formulation, focusing on methodologies utilized for targeted infection site release of AMPs. This specificity unites the improved biocompatibility of the delivery vehicle with the unhindered activity of the free AMP, providing a promising means to effectively translate AMP therapy into clinical practice.
Collapse
Affiliation(s)
- Matthew Drayton
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine, and Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC V6T 1Z3, Canada;
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
- Correspondence: ; Tel.: +1-604-822-2537
| |
Collapse
|
25
|
Falciani C, Zevolini F, Brunetti J, Riolo G, Gracia R, Marradi M, Loinaz I, Ziemann C, Cossío U, Llop J, Bracci L, Pini A. Antimicrobial Peptide-Loaded Nanoparticles as Inhalation Therapy for Pseudomonas aeruginosa Infections. Int J Nanomedicine 2020; 15:1117-1128. [PMID: 32110011 PMCID: PMC7034994 DOI: 10.2147/ijn.s218966] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/27/2020] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Antibiotic-resistant bacteria kill 25,000 people every year in the EU. Patients subject to recurrent lung infections are the most vulnerable to severe or even lethal infections. For these patients, pulmonary delivery of antibiotics would be advantageous, since inhalation can achieve higher concentration in the lungs than iv administration and can provide a faster onset of action. This would allow for the delivery of higher doses and hence reduce the number of treatments required. We report here about a new nanosystem (M33-NS) obtained by capturing SET-M33 peptide on single-chain dextran nanoparticles. SET-M33 is a non-natural antimicrobial peptide synthesized in branched form. This form gives the peptide resistance to degradation in biological fluids. SET-M33 has previously shown efficacy in vitro against about one hundred of Gram-negative multidrug and extensively drug-resistant clinical isolates and was also active in preclinical infection models of pneumonia, sepsis and skin infections. METHODS The new nanosystem was evaluated for its efficacy in bacteria cells and in a mouse model of pneumonia. Toxicity and genotoxicity were also tested in vitro. Biodistribution and pharmacokinetic studies in healthy rats were carried out using a radiolabeled derivative of the nanosystem. RESULTS The M33-nanosystem, studied here, showed to be effective against Pseudomonas aeruginosa in time-kill kinetic experiments. Cytotoxicity towards different animal cell lines was acceptable. Lung residence time of the antimicrobial peptide, administered via aerosol in healthy rats, was markedly improved by capturing SET-M33 on dextran nanoparticles. M33-NS was also efficient in eradicating pulmonary infection in a BALB/c mouse model of pneumonia caused by P. aeruginosa. DISCUSSION This study revealed that the encapsulation of the antimicrobial peptide in dextran nanoparticles markedly improved lung residence time of the peptide administered via aerosol. The result has to be considered among the aims of the development of a new therapeutic option for patients suffering recurrent infections, that will benefit from high local doses of persistent antimicrobials.
Collapse
Affiliation(s)
- Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Fabrizia Zevolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Raquel Gracia
- CIDETEC, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Marco Marradi
- CIDETEC, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Iraida Loinaz
- CIDETEC, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover, Germany
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
- Centro de Investigación Biomédica en red Enfermedades Respiratorias – CIBERES, Madrid, Spain
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
26
|
Al Tall Y, Abualhaijaa A, Qaoud MT, Alsaggar M, Masadeh M, Alzoubi KH. The Ultrashort Peptide OW: A New Antibiotic Adjuvant. Curr Pharm Biotechnol 2020; 20:745-754. [PMID: 31258076 DOI: 10.2174/1389201020666190618111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The over use of current antibiotics and low discovery rate of the new ones are leading to rapid development of multidrug-resistant pathogens worldwide. Antimicrobial peptides have shown promising results against multidrug-resistant bacteria. OBJECTIVE To investigate the antimicrobial activity of a new ultrashort hexapeptide (OW). METHODS The OW hexapeptide was designed and tested against different strains of bacteria with different levels of sensitivity. Bacterial susceptibility assays were performed according to the guidelines of the Clinical and Laboratory Institute (CLSI). The synergistic studies were then conducted using the Checkerboard assay. This was followed by checking the hemolytic effect of the hexapeptide against human blood cells and Human Embryonic Kidney cell line (HEK293). Finally, the antibiofilm activities of the hexapeptide were studied using the Biofilm Calgary method. RESULTS Synergistic assays showed that OW has synergistic effects with antibiotics of different mechanisms of action. It showed an outstanding synergism with Rifampicin against methicillin resistant Staphylococcus aureus; ΣFIC value was 0.37, and the MIC value of Rifampicin was decreased by 85%. OW peptide also displayed an excellent synergism with Ampicillin against multidrug-resistant Pseudomonas aeruginosa, with ΣFIC value of less than 0.38 and a reduction of more than 96% in the MIC value of Ampicillin. CONCLUSION This study introduced a new ultrashort peptide (OW) with promising antimicrobial potential in the management of drug-resistant infectious diseases as a single agent or in combination with commonly used antibiotics. Further studies are needed to investigate the exact mechanism of action of these peptides.
Collapse
Affiliation(s)
- Yara Al Tall
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad Abualhaijaa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammed T Qaoud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alsaggar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Majed Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
27
|
Mwangi J, Hao X, Lai R, Zhang ZY. Antimicrobial peptides: new hope in the war against multidrug resistance. Zool Res 2019; 40:488-505. [PMID: 31592585 PMCID: PMC6822926 DOI: 10.24272/j.issn.2095-8137.2019.062] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
The discovery of antibiotics marked a golden age in the revolution of human medicine. However, decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant (MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and extended-spectrum β-lactamases (ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options, increased hospital stay, and exorbitant medical costs. Antimicrobial peptides (AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.
Collapse
Affiliation(s)
- James Mwangi
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming Yunnan 650204, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Xue Hao
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan Hubei 430071, China
| | - Zhi-Ye Zhang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China, E-mail:
| |
Collapse
|
28
|
Casciaro B, Calcaterra A, Cappiello F, Mori M, Loffredo MR, Ghirga F, Mangoni ML, Botta B, Quaglio D. Nigritanine as a New Potential Antimicrobial Alkaloid for the Treatment of Staphylococcus aureus-Induced Infections. Toxins (Basel) 2019; 11:toxins11090511. [PMID: 31480508 PMCID: PMC6783983 DOI: 10.3390/toxins11090511] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen causing a wide range of nosocomial infections including pulmonary, urinary, and skin infections. Notably, the emergence of bacterial strains resistant to conventional antibiotics has prompted researchers to find new compounds capable of killing these pathogens. Nature is undoubtedly an invaluable source of bioactive molecules characterized by an ample chemical diversity. They can act as unique platform providing new scaffolds for further chemical modifications in order to obtain compounds with optimized biological activity. A class of natural compounds with a variety of biological activities is represented by alkaloids, important secondary metabolites produced by a large number of organisms including bacteria, fungi, plants, and animals. In this work, starting from the screening of 39 alkaloids retrieved from a unique in-house library, we identified a heterodimer -carboline alkaloid, nigritanine, with a potent anti-Staphylococcus action. Nigritanine, isolated from Strychnos nigritana, was characterized for its antimicrobial activity against a reference and three clinical isolates of S. aureus. Its potential cytotoxicity was also evaluated at short and long term against mammalian red blood cells and human keratinocytes, respectively. Nigritanine showed a remarkable antimicrobial activity (minimum inhibitory concentration of 128 µM) without being toxic in vitro to both tested cells. The analysis of the antibacterial activity related to the nigritanine scaffold furnished new insights in the structure-activity relationships (SARs) of -carboline, confirming that dimerization improves its antibacterial activity. Taking into account these interesting results, nigritanine can be considered as a promising candidate for the development of new antimicrobial molecules for the treatment of S. aureus-induced infections.
Collapse
Affiliation(s)
- Bruno Casciaro
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, "Department of Excellence 2018-2022", Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, "Department of Excellence 2018-2022", University of Siena, via Aldo Moro 2, Siena 53100, Italy
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Francesca Ghirga
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy.
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy.
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, "Department of Excellence 2018-2022", Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Deborah Quaglio
- Department of Chemistry and Technology of Drugs, "Department of Excellence 2018-2022", Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
29
|
van der Weide H, Vermeulen-de Jongh DMC, van der Meijden A, Boers SA, Kreft D, Ten Kate MT, Falciani C, Pini A, Strandh M, Bakker-Woudenberg IAJM, Hays JP, Goessens WHF. Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles. Int J Antimicrob Agents 2019; 54:159-166. [PMID: 31173867 DOI: 10.1016/j.ijantimicag.2019.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/26/2019] [Indexed: 02/01/2023]
Abstract
Colistin is an antimicrobial peptide (AMP) used as a drug of last resort, although plasmid-mediated colistin resistance (MCR) has been reported. AA139 and SET-M33 are novel AMPs currently in development for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. As many AMPs have a similar mode of action to colistin, potentially leading to cross-resistance, the antimicrobial activity of AA139 and SET-M33 was investigated against a collection of 50 clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles, including colistin-resistant strains. The collection was genotypically characterised and susceptibility to clinically relevant antibiotics was determined. Susceptibility to AA139 and SET-M33 did not differ among the collection despite differences in underlying mechanisms of resistance or susceptibility to colistin. For three colistin-susceptible and three colistin-resistant strains with distinct MDR profiles as well as an additional MCR-producing strain, the bactericidal activity of AA139, SET-M33 and colistin during 24 h of exposure was examined. Following 24 h of exposure to AA139, SET-M33 or colistin, the seven strains were tested for changes in susceptibility to the respective AMPs. AA139 and SET-M33 showed a concentration-dependent bactericidal effect irrespective of bacterial susceptibility to colistin. Exposure to low colistin concentrations resulted in the development of colistin resistance in colistin-susceptible strains, whereas susceptibility to AA139 and SET-M33 following exposure to the respective AMPs was maintained. The two novel AMPs remained effective against colistin-resistant strains and may be promising novel drugs for the treatment of clinically and genotypically diverse MDR K. pneumoniae infections, including infections associated with colistin-resistant bacteria.
Collapse
Affiliation(s)
- Hessel van der Weide
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Denise M C Vermeulen-de Jongh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Aart van der Meijden
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stefan A Boers
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deborah Kreft
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marian T Ten Kate
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Siena, Italy; Setlance srl, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnology, University of Siena, Siena, Italy; Setlance srl, Siena, Italy
| | | | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - John P Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Wil H F Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
30
|
Al Tall Y, Abualhaijaa A, Alsaggar M, Almaaytah A, Masadeh M, Alzoubi KH. Design and characterization of a new hybrid peptide from LL-37 and BMAP-27. Infect Drug Resist 2019; 12:1035-1045. [PMID: 31118709 PMCID: PMC6503343 DOI: 10.2147/idr.s199473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/13/2019] [Indexed: 01/11/2023] Open
Abstract
Background and purpose: The world is heading to a post-antibiotic era where the treatment of bacterial infections will not be possible even with well-known last-line antibiotics. Unfortunately, the emergence of multidrug resistant bacterial strains is uncontrollable, and the humanity will face a life-threatening fate unless new antimicrobial agents with new bacterial target sites are promptly developed. Herein, we design a hybrid antimicrobial peptide (B1) from helical parts taken from the parent peptides: LL-37 and BMAP-27. The purpose of this design is to improve the potency and enhance the toxicity profile of the parent peptides. Methods: Rational design was used to hybridize two antimicrobial peptides, in which two helical parts from the bovine analog BMAP-27, and the human cathelicidin LL-37 were used to generate a novel peptide (B1). The physicochemical properties were checked using in silico methods. The antimicrobial activities were tested against nine control and resistant strains of Gram-positive and Gram-negative bacteria. On the other hand, the antibiofilm activities were tested against four resistant strains. The cytotoxicity on mammalian cells was tested using HEK293, and the hemolysis activity was also investigated on human blood. Finally, synergistic studies were performed with four conventional antibiotics against four resistant strains of Gram-positive and Gram-negative bacteria. Results: The new peptide B1 exhibited broad-spectrum activities against all tested strains. The concentration against planktonic cells ranged between 10 and 20 µM. However, 40-60 µM were needed to eradicate the biofilms. B1 showed reduced toxicity toward mammalian cells with minimal hemolysis risk. On the other hand, the synergistic studies showed improved activities for the combined conventional antibiotics with a huge reduction in their minimum inhibitory concentration values. The concentrations of B1 peptide combined with the tested antibiotics were also decreased markedly down to 0.5 µM in some cases. Conclusion: B1 is a hybrid peptide from two cathelicidin peptides. It showed an improved activity compared to parent peptides. The hybridization was successful in this study. It generated a new potent broad-spectrum antimicrobial. The toxicity profile was improved, and the synergism with the convention antibiotics showed promising results.
Collapse
Affiliation(s)
| | | | | | | | | | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
31
|
Kumar P, Pletzer D, Haney EF, Rahanjam N, Cheng JTJ, Yue M, Aljehani W, Hancock REW, Kizhakkedathu JN, Straus SK. Aurein-Derived Antimicrobial Peptides Formulated with Pegylated Phospholipid Micelles to Target Methicillin-Resistant Staphylococcus aureus Skin Infections. ACS Infect Dis 2019; 5:443-453. [PMID: 30565465 DOI: 10.1021/acsinfecdis.8b00319] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antimicrobial peptides have been the focus of considerable research; however, issues associated with toxicity and aggregation have the potential to limit clinical applications. Here, a derivative of a truncated version of aurein 2.2 (aurein 2.2Δ3), namely peptide 73, was investigated, along with its d-amino acid counterpart (D-73) and a retro-inverso version (RI-73). A version that incorporated a cysteine residue to the C-terminus (73c) was also generated, as this form is required to covalently attach antimicrobial peptides to polymers (e.g., polyethylene glycol (PEG) or hyperbranched polyglycerol (HPG)). The antimicrobial activity of the 73-derived peptides was enhanced 2- to 8-fold, and all the derivatives eradicated preformed Staphylococcus aureus biofilms. Formulation of the peptides with compatible polyethylene glycol (PEG)-modified phospholipid micelles alleviated toxicity toward human cells and reduced aggregation. When evaluated in vivo, the unformulated d-enantiomers aggregated when injected under the skin of mice, but micelle encapsulated peptides were well absorbed. Pegylated micelle formulated peptides were investigated for their potential as therapeutic agents for treating high-density infections in a murine cutaneous abscess model. Formulated peptide 73 reduced abscess size by 36% and bacterial loads by 2.2-fold compared to the parent peptide aurein 2.2Δ3. Micelle encapsulated peptides 73c and D-73 exhibited superior activity, further reducing abscess sizes by 85% and 63% and lowering bacterial loads by 510- and 9-fold compared to peptide 73.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Negin Rahanjam
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - John T. J. Cheng
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Marty Yue
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Waleed Aljehani
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Jayachandran N. Kizhakkedathu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| |
Collapse
|
32
|
Brunetti J, Falciani C, Bracci L, Pini A. Branched peptides as bioactive molecules for drug design. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jlenia Brunetti
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| | - Chiara Falciani
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| | - Luisa Bracci
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| | - Alessandro Pini
- Department of Medical BiotechnologiesUniversity of Siena Siena Italy
| |
Collapse
|
33
|
Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection. Acta Biomater 2018; 77:96-105. [PMID: 30031161 DOI: 10.1016/j.actbio.2018.07.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022]
Abstract
Biofilms present a major problem to industry and healthcare worldwide. Composed of a population of surface-attached microbial cells surrounded by a protective extracellular polysaccharide matrix, they are responsible for increased tolerance to antibiotics, treatment failure and a resulting rise in antimicrobial resistance. Here we demonstrate that self-assembled peptide nanostructures composed of a diphenylalanine motif provide sufficient antibacterial activity to eradicate mature biofilm forms of bacteria widely implicated in hospital infections. Modification of terminal functional groups to amino (-NH2), carboxylic acid (-COOH) or both modalities, and switch to d-isomers, resulted in changes in antibacterial selectivity and mammalian cell toxicity profiles. Of the three peptide nanotubes structures studied (NH2-FF-COOH, NH2-ff-COOH and NH2-FF-NH2), NH2-FF-COOH demonstrated the most potent activity against both planktonic (liquid, free-floating) and biofilm forms of bacteria, possessing minimal mammalian cell toxicity. NH2-FF-COOH resulted in greater than 3 Log10 CFU/mL viable biofilm reduction (>99.9%) at 5 mg/mL and total biofilm kill at 10 mg/mL against Staphylococcus aureus after 24 h exposure. Scanning electron microscopy proved that antibiofilm activity was primarily due to the formation of ion channels and/or surfactant-like action, with NH2-FF-COOH and NH2-ff-COOH capable of degrading the biofilm matrix and disrupting cell membranes, leading to cell death in Gram-positive bacterial isolates. Peptide-based nanotubes are an exciting platform for drug delivery and engineering applications. This is the first report of using peptide nanotubes to eradicate bacterial biofilms and provides evidence of a new platform that may alleviate their negative impact throughout society. STATEMENT OF SIGNIFICANCE We outline, for the first time, the antibiofilm activity of diphenylalanine (FF) peptide nanotubes. Biofilm bacteria exhibit high tolerance to antimicrobials 10-10,000 times that of free-flowing planktonic forms. Biofilm infections are difficult to treat using conventional antimicrobial agents, leading to a rise in antimicrobial resistance. We discovered nanotubes composed of NH2-FF-COOH demonstrated potent activity against staphylococcal biofilms implicated in hospital infections, resulting in complete kill at concentrations of 10 mg/mL. Carboxylic acid terminated FF nanotubes were able to destroy the exopolysaccharide architecture of staphylococcal biofilms expressing minimal toxicity, highlighting their potential for use in patients. Amidated (NH2-FF-NH2) forms demonstrated reduced antibiofilm efficacy and significant toxicity. These results contribute significantly to the development of innovative antibacterial technologies and peptide nanomaterials.
Collapse
|
34
|
Kumar P, Kizhakkedathu JN, Straus SK. Antimicrobial Peptides: Diversity, Mechanism of Action and Strategies to Improve the Activity and Biocompatibility In Vivo. Biomolecules 2018; 8:E4. [PMID: 29351202 PMCID: PMC5871973 DOI: 10.3390/biom8010004] [Citation(s) in RCA: 694] [Impact Index Per Article: 99.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is projected as one of the greatest threats to human health in the future and hence alternatives are being explored to combat resistance. Antimicrobial peptides (AMPs) have shown great promise, because use of AMPs leads bacteria to develop no or low resistance. In this review, we discuss the diversity, history and the various mechanisms of action of AMPs. Although many AMPs have reached clinical trials, to date not many have been approved by the US Food and Drug Administration (FDA) due to issues with toxicity, protease cleavage and short half-life. Some of the recent strategies developed to improve the activity and biocompatibility of AMPs, such as chemical modifications and the use of delivery systems, are also reviewed in this article.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC V6T 1Z3, Canada.
| | - Jayachandran N Kizhakkedathu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC V6T 1Z3, Canada.
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
35
|
Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3159-3170. [PMID: 29138537 PMCID: PMC5679673 DOI: 10.2147/dddt.s147450] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conventional antibiotics are facing strong microbial resistance that has recently reached critical levels. This situation is leading to significantly reduced therapeutic potential of a huge proportion of antimicrobial agents currently used in clinical settings. Antimicrobial peptides (AMPs) could provide the medical community with an alternative strategy to traditional antibiotics for combating microbial resistance. However, the development of AMPs into clinically useful antibiotics is hampered by their relatively low stability, toxicity, and high manufacturing costs. In this study, a novel in-house-designed potent ultrashort AMP named RBRBR was encapsulated into chitosan-based nanoparticles (CS-NPs) based on the ionotropic gelation method. The encapsulation efficacy reported for RBRBR into CS-NPs was 51.33%, with a loading capacity of 10.17%. The release kinetics of RBRBR from the nanocarrier exhibited slow release followed by progressive linear release for 14 days. The antibacterial kinetics of RBRBR-CS-NPs was tested against four strains of Staphylococcus aureus for 4 days, and the developed RBRBR-CS-NPs exhibited a 3-log decrease in the number of colonies when compared to CS-NP and a 5-log decrease when compared to control bacteria. The encapsulated peptide NP formulation managed to limit the toxicity of the free peptide against both mammalian cells and human erythrocytes. Additionally, the peptide NPs demonstrated up to 98% inhibition of biofilm formation when tested against biofilm-forming bacteria. Loading RBRBR into CS-NPs could represent an innovative approach to develop delivery systems based on NP technology for achieving potent antimicrobial effects against multidrug-resistant and biofilm-forming bacteria, with negligible systemic toxicity and reduced synthetic costs, thereby overcoming the obstructions to clinical development of AMPs.
Collapse
Affiliation(s)
- Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy
| | | | - Ahmad Abualhaijaa
- Department of Applied Biological Sciences, Faculty of Science and Arts
| | - Qosay Al-Balas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
36
|
van der Weide H, Brunetti J, Pini A, Bracci L, Ambrosini C, Lupetti P, Paccagnini E, Gentile M, Bernini A, Niccolai N, Jongh DVD, Bakker-Woudenberg IAJM, Goessens WHF, Hays JP, Falciani C. Investigations into the killing activity of an antimicrobial peptide active against extensively antibiotic-resistant K. pneumon iae and P. aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1796-1804. [PMID: 28583831 DOI: 10.1016/j.bbamem.2017.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
SET-M33 is a multimeric antimicrobial peptide active against Gram-negative bacteria in vitro and in vivo. Insights into its killing mechanism could elucidate correlations with selectivity. SET-M33 showed concentration-dependent bactericidal activity against colistin-susceptible and resistant isolates of P. aeruginosa and K. pneumoniae. Scanning and transmission microscopy studies showed that SET-M33 generated cell blisters, blebs, membrane stacks and deep craters in K. pneumoniae and P. aeruginosa cells. NMR analysis and CD spectra in the presence of sodium dodecyl sulfate micelles showed a transition from an unstructured state to a stable α-helix, driving the peptide to arrange itself on the surface of micelles. SET-M33 kills Gram-negative bacteria after an initial interaction with bacterial LPS. The molecule becomes then embedded in the outer membrane surface, thereby impairing cell function. This activity of SET-M33, in contrast to other similar antimicrobial peptides such as colistin, does not generate resistant mutants after 24h of exposure, non-specific interactions or toxicity against eukaryotic cell membranes, suggesting that SET-M33 is a promising new option for the treatment of Gram-negative antibiotic-resistant infections.
Collapse
Affiliation(s)
- Hessel van der Weide
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jlenia Brunetti
- Department of Medical Biotechnology, University of Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnology, University of Siena, Italy
| | - Luisa Bracci
- Department of Medical Biotechnology, University of Siena, Italy
| | | | | | | | | | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Neri Niccolai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | - Denise Vermeulen-de Jongh
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wil H F Goessens
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John P Hays
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Chiara Falciani
- Department of Medical Biotechnology, University of Siena, Italy; Setlance srl, Research and Development Department, Siena, Italy.
| |
Collapse
|
37
|
Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017; 34:832-885. [PMID: 28530279 DOI: 10.1039/c7np00006e] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to the end of 2016Novel antimicrobial drugs are continuously needed to counteract bacterial resistance development. An innovative molecular design strategy for novel antibiotic drugs is based on the hybridization of an antibiotic with a second functional entity. Such conjugates can be grouped into two major categories. In the first category (antimicrobial hybrids), both functional elements of the hybrid exert antimicrobial activity. Due to the dual targeting, resistance development can be significantly impaired, the pharmacokinetic properties can be superior compared to combination therapies with the single antibiotics, and the antibacterial potency is often enhanced in a synergistic manner. In the second category (antimicrobial conjugates), one functional moiety controls the accumulation of the other part of the conjugate, e.g. by mediating an active transport into the bacterial cell or blocking the efflux. This approach is mostly applied to translocate compounds across the cell envelope of Gram-negative bacteria through membrane-embedded transporters (e.g. siderophore transporters) that provide nutrition and signalling compounds to the cell. Such 'Trojan Horse' approaches can expand the antibacterial activity of compounds against Gram-negative pathogens, or offer new options for natural products that could not be developed as standalone antibiotics, e.g. due to their toxicity.
Collapse
Affiliation(s)
- P Klahn
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. and Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - M Brönstrup
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
38
|
Xie J, Zhao Q, Li S, Yan Z, Li J, Li Y, Mou L, Zhang B, Yang W, Miao X, Jiang X, Wang R. Novel antimicrobial peptide CPF-C1 analogs with superior stabilities and activities against multidrug-resistant bacteria. Chem Biol Drug Des 2017; 90:690-702. [PMID: 28371431 DOI: 10.1111/cbdd.12988] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/17/2023]
Abstract
As numerous clinical isolates are resistant to most conventional antibiotics, infections caused by multidrug-resistant bacteria are associated with a higher death rate. Antimicrobial peptides show great potential as new antibiotics. However, a major obstacle to the development of these peptides as useful drugs is their low stability. To overcome the problem of the natural antimicrobial peptide CPF-C1, we designed and synthesized a series of analogs. Our results indicated that by introducing lysine, which could increase the number of positive charges, and by introducing tryptophan, which could increase the hydrophobicity, we could improve the antimicrobial activity of the peptides against multidrug-resistant strains. The introduction of d-amino acids significantly improved stability. Certain analogs demonstrated antibiofilm activities. In mechanistic studies, the analogs eradicated bacteria not just by interrupting the bacterial membranes, but also by linking to DNA, which was not impacted by known mechanisms of resistance. In a mouse model, certain analogs were able to significantly reduce the bacterial load. Among the analogs, CPF-9 was notable due to its greater antimicrobial potency in vitro and in vivo and its superior stability, lower hemolytic activity, and higher antibiofilm activity. This analog is a potential antibiotic candidate for treating infections induced by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Junqiu Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qian Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sisi Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zhibin Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yao Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lingyun Mou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bangzhi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wenle Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaokang Miao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
39
|
Abstract
More than 40 antimicrobial peptides and proteins (AMPs) are expressed in the oral cavity. These AMPs have been organized into 6 functional groups, 1 of which, cationic AMPs, has received extensive attention in recent years for their promise as potential antibiotics. The goal of this review is to describe recent advances in our understanding of the diverse mechanisms of action of cationic AMPs and the bacterial resistance against these peptides. The recently developed peptide GL13K is used as an example to illustrate many of the discussed concepts. Cationic AMPs typically exhibit an amphipathic conformation, which allows increased interaction with negatively charged bacterial membranes. Peptides undergo changes in conformation and aggregation state in the presence of membranes; conversely, lipid conformation and packing can adapt to the presence of peptides. As a consequence, a single peptide can act through several mechanisms depending on the peptide's structure, the peptide:lipid ratio, and the properties of the lipid membrane. Accumulating evidence shows that in addition to acting at the cell membrane, AMPs may act on the cell wall, inhibit protein folding or enzyme activity, or act intracellularly. Therefore, once a peptide has reached the cell wall, cell membrane, or its internal target, the difference in mechanism of action on gram-negative and gram-positive bacteria may be less pronounced than formerly assumed. While AMPs should not cause widespread resistance due to their preferential attack on the cell membrane, in cases where specific protein targets are involved, the possibility exists for genetic mutations and bacterial resistance. Indeed, the potential clinical use of AMPs has raised the concern that resistance to therapeutic AMPs could be associated with resistance to endogenous host-defense peptides. Current evidence suggests that this is a rare event that can be overcome by subtle structural modifications of an AMP.
Collapse
Affiliation(s)
- B. Bechinger
- University of Strasbourg/CNRS, Chemistry Institute, Strasbourg, France
| | - S.-U. Gorr
- University of Minnesota School of Dentistry, Minneapolis, MN, USA
| |
Collapse
|
40
|
Pollini S, Brunetti J, Sennati S, Rossolini GM, Bracci L, Pini A, Falciani C. Synergistic activity profile of an antimicrobial peptide against multidrug-resistant and extensively drug-resistant strains of Gram-negative bacterial pathogens. J Pept Sci 2017; 23:329-333. [PMID: 28176481 DOI: 10.1002/psc.2978] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/22/2022]
Abstract
Infection sustained by multidrug-resistant and extensively drug-resistant bacterial pathogens is often untreatable with the standard of care antibiotics, and the combination of anti-infective compounds often represents the only therapeutic strategy to face this major clinical treat. SET-M33 is a novel antimicrobial peptide (AMP) that has demonstrated in vitro and in vivo antimicrobial activity against Gram-negative bacteria and has shown interesting features in preclinical evaluations. Particularly, it showed efficacy against a number of multidrug-resistant and extensively drug-resistant clinical strains of Gram-negative pathogens, in in vitro and in vivo assessments. Here, we explored the potential synergistic activity of SET-M33 in combination with different standard of care antibiotics by the checkerboard method against a panel of six strains of Gram-negative pathogens including multidrug-resistant and extensively drug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. SET-M33 showed synergistic activity with antibiotics of different families against these clinically relevant strains. A synergistic effect was observed for SET-M33 in combination with rifampin, meropenem, aztreonam, and tobramycin mostly on K. pneumoniae and A. baumannii strains, while the SET-M33 plus ciprofloxacin combination was additive with all tested strains. Synergy was not apparently linked to the bacterial species or phenotype but was rather strain-specific, highlighting the need for individual strain testing for synergistic antimicrobial combinations. These findings extend current knowledge on synergistic activity of AMPs in combination with conventional agents and support the potential role of SET-M33 as a novel therapeutic agent against antibiotic-resistant Gram-negative pathogens. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Simona Pollini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Samanta Sennati
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Clinical Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy.,Don Carlo Gnocchi Foundation, Florence, Italy
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Chiara Falciani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Setlance srl, Siena, Italy
| |
Collapse
|
41
|
Brunetti J, Roscia G, Lampronti I, Gambari R, Quercini L, Falciani C, Bracci L, Pini A. Immunomodulatory and Anti-inflammatory Activity in Vitro and in Vivo of a Novel Antimicrobial Candidate. J Biol Chem 2016; 291:25742-25748. [PMID: 27758868 PMCID: PMC5207269 DOI: 10.1074/jbc.m116.750257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/15/2016] [Indexed: 01/24/2023] Open
Abstract
The synthetic antimicrobial peptide SET-M33 has strong activity against bacterial infections caused by Gram-negative bacteria. It is currently in preclinical development as a new drug to treat lung infections caused by Gram-negative bacteria. Here we report its strong anti-inflammatory activity in terms of reduced expression of a number of cytokines, enzymes, and signal transduction factors involved in inflammation triggered by LPS from Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. Sixteen cytokines and other major agents involved in inflammation were analyzed in macrophages and bronchial cells after stimulation with LPS and incubation with SET-M33. The bronchial cells were obtained from a cystic fibrosis patient. A number of these proteins showed up to 100% reduction in expression as measured by RT-PCR, Western blotting, or Luminex technology. LPS neutralization was also demonstrated in vivo by challenging bronchoalveolar lavage of SET-M33-treated mice with LPS, which led to a sharp reduction in TNF-α with respect to non-SET-M33-treated animals. We also describe a strong activity of SET-M33 in stimulating cell migration of keratinocytes in wound healing experiments in vitro, demonstrating a powerful immunomodulatory action generally characteristic of molecules taking part in innate immunity.
Collapse
Affiliation(s)
- Jlenia Brunetti
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giulia Roscia
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Ilaria Lampronti
- the Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy, and
| | - Roberto Gambari
- the Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy, and
| | - Leila Quercini
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | | | - Luisa Bracci
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandro Pini
- From the Department of Medical Biotechnology, University of Siena, via Aldo Moro 2, 53100 Siena, Italy,
| |
Collapse
|
42
|
Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides. Int J Mol Sci 2016; 17:ijms17071023. [PMID: 27376281 PMCID: PMC4964399 DOI: 10.3390/ijms17071023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 12/15/2022] Open
Abstract
Host defense peptides (HDPs) are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA) is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs.
Collapse
|
43
|
Improvement of in vivo antimicrobial activity of HBcARD peptides by D-arginine replacement. Appl Microbiol Biotechnol 2016; 100:9125-9132. [PMID: 27241023 DOI: 10.1007/s00253-016-7621-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/11/2016] [Accepted: 05/02/2016] [Indexed: 01/25/2023]
Abstract
We previously identified a novel antimicrobial peptide with a broad spectrum bactericidal activity from human hepatitis B virus (HBV) core protein (HBc) arginine-rich domain (ARD). We compared the antimicrobial activities of HBcARD peptides from different hepadnaviruses which share similar amino acid sequences. In general, mammalian HBcARD peptides exhibited stronger antimicrobial activity than avian peptides. Using the strategy of D-amino acid substitutions, we improved the antimicrobial efficacy of human HBcARD peptide. This D-HBcARD peptide was much more resistant than L-HBcARD peptide to proteolytic degradation in vitro. Moreover, this D-HBcARD peptide maintained similar minimal bactericidal concentrations (MBC) against tested bacteria, and showed very low hemolytic activity. In the Staphylococcus aureus-infected mouse model, this D-HBcARD peptide was more protective than the L-HBcARD peptide. Repeated treatments with either L- or D-HBcARD peptides induced no significant immunogenicity. New derivatives of HBcARD peptides could serve as alternatives to the conventional antibiotics in clinical medicine in the future.
Collapse
|
44
|
Brunetti J, Falciani C, Roscia G, Pollini S, Bindi S, Scali S, Arrieta UC, Gómez-Vallejo V, Quercini L, Ibba E, Prato M, Rossolini GM, Llop J, Bracci L, Pini A. In vitro and in vivo efficacy, toxicity, bio-distribution and resistance selection of a novel antibacterial drug candidate. Sci Rep 2016; 6:26077. [PMID: 27169671 PMCID: PMC4864329 DOI: 10.1038/srep26077] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/25/2016] [Indexed: 11/24/2022] Open
Abstract
A synthetic antimicrobial peptide was identified as a possible candidate for the development of a new antibacterial drug. The peptide, SET-M33L, showed a MIC90 below 1.5 μM and 3 μM for Pseudomonas aeruginosa and Klebsiella pneumoniae, respectively. In in vivo models of P. aeruginosa infections, the peptide and its pegylated form (SET-M33L-PEG) enabled a survival percentage of 60–80% in sepsis and lung infections when injected twice i.v. at 5 mg/Kg, and completely healed skin infections when administered topically. Plasma clearance showed different kinetics for SET-M33L and SET-M33L-PEG, the latter having greater persistence two hours after injection. Bio-distribution in organs did not show significant differences in uptake of the two peptides. Unlike colistin, SET-M33L did not select resistant mutants in bacterial cultures and also proved non genotoxic and to have much lower in vivo toxicity than antimicrobial peptides already used in clinical practice. The characterizations reported here are part of a preclinical development plan that should bring the molecule to clinical trial in the next few years.
Collapse
Affiliation(s)
- Jlenia Brunetti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | - Giulia Roscia
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Simona Pollini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Stefano Bindi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Clinical Pathology Laboratory, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, viale Bracci, Siena, Italy
| | - Silvia Scali
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Unai Cossio Arrieta
- Radiochemistry and Nuclear Imaging Group CIC biomaGUNE, San Sebastián, Spain
| | | | - Leila Quercini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Ibba
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Prato
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Gian Maria Rossolini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Department of Experimental and Clinical Medicine, University of Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy.,Don Carlo Gnocchi Foundation I.R.C.C.S., Florence, Italy
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group CIC biomaGUNE, San Sebastián, Spain
| | - Luisa Bracci
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Clinical Pathology Laboratory, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, viale Bracci, Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Clinical Pathology Laboratory, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, viale Bracci, Siena, Italy
| |
Collapse
|
45
|
Almaaytah A, Alnaamneh A, Abualhaijaa A, Alshari’ N, Al-Balas Q. In Vitro Synergistic Activities of the Hybrid Antimicrobial Peptide MelitAP-27 in Combination with Conventional Antibiotics Against Planktonic and Biofilm Forming Bacteria. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9530-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Khara JS, Priestman M, Uhía I, Hamilton MS, Krishnan N, Wang Y, Yang YY, Langford PR, Newton SM, Robertson BD, Ee PLR. Unnatural amino acid analogues of membrane-active helical peptides with anti-mycobacterial activity and improved stability. J Antimicrob Chemother 2016; 71:2181-91. [DOI: 10.1093/jac/dkw107] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/02/2016] [Indexed: 01/04/2023] Open
|
47
|
Datta A, Kundu P, Bhunia A. Designing potent antimicrobial peptides by disulphide linked dimerization and N-terminal lipidation to increase antimicrobial activity and membrane perturbation: Structural insights into lipopolysaccharide binding. J Colloid Interface Sci 2016; 461:335-345. [DOI: 10.1016/j.jcis.2015.09.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/25/2022]
|
48
|
Ceccherini F, Falciani C, Onori M, Scali S, Pollini S, Rossolini GM, Bracci L, Pini A. Antimicrobial activity of levofloxacin – M33 peptide conjugation or combination. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00392j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
M33 is a branched antimicrobial peptide against Gram-negative bacteria. We reported its conjugation with levofloxacin and its antibacterial activity.
Collapse
Affiliation(s)
| | | | | | - Silvia Scali
- Department of Medical Biotechnologies
- University of Siena
- Italy
| | - Simona Pollini
- Department of Medical Biotechnologies
- University of Siena
- Italy
| | - Gian Maria Rossolini
- Department of Medical Biotechnologies
- University of Siena
- Italy
- Department of Experimental and Clinical Medicine
- University of Florence
| | - Luisa Bracci
- Department of Medical Biotechnologies
- University of Siena
- Italy
- Clinical Pathology Unit
- Siena University Hospital
| | - Alessandro Pini
- Department of Medical Biotechnologies
- University of Siena
- Italy
- Clinical Pathology Unit
- Siena University Hospital
| |
Collapse
|
49
|
Batoni G, Casu M, Giuliani A, Luca V, Maisetta G, Mangoni ML, Manzo G, Pintus M, Pirri G, Rinaldi AC, Scorciapino MA, Serra I, Ulrich AS, Wadhwani P. Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties. Amino Acids 2015; 48:887-900. [PMID: 26614437 DOI: 10.1007/s00726-015-2136-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/08/2015] [Indexed: 01/05/2023]
Abstract
Peptide-based antibiotics might help containing the rising tide of antimicrobial resistance. We developed SB056, a semi-synthetic peptide with a dimeric dendrimer scaffold, active against both Gram-negative and Gram-positive bacteria. Being the mechanism of SB056 attributed to disruption of bacterial membranes, we enhanced the amphiphilic profile of the original, empirically derived sequence [WKKIRVRLSA-NH2] by interchanging the first two residues [KWKIRVRLSA-NH2], and explored the effects of this modification on the interaction of peptide, both in linear and dimeric forms, with model membranes and on antimicrobial activity. Results obtained against Escherichia coli and Staphylococcus aureus planktonic strains, with or without salts at physiological concentrations, confirmed the added value of dendrimeric structure over the linear one, especially at physiological ionic strength, and the impact of the higher amphipathicity obtained through sequence modification on enhancing peptide performances. SB056 peptides also displayed intriguing antibiofilm properties. Staphylococcus epidermidis was the most susceptible strain in sessile form, notably to optimized linear analog lin-SB056-1 and the wild-type dendrimer den-SB056. Membrane affinity of all peptides increased with the percentage of negatively charged lipids and was less influenced by the presence of salt in the case of dendrimeric peptides. The analog lin-SB056-1 displayed the highest overall affinity, even for zwitterionic PC bilayers. Thus, in addition to electrostatics, distribution of charged/polar and hydrophobic residues along the sequence might have a significant role in driving peptide-lipid interaction. Supporting this view, dendrimeric analog den-SB056-1 retained greater membrane affinity in the presence of salt than den-SB056, despite the fact that they bear exactly the same net positive charge.
Collapse
Affiliation(s)
- Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mariano Casu
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | - Andrea Giuliani
- Research and Development Unit, Spider Biotech S.r.l., Colleretto Giacosa (TO), Italy
| | - Vincenzo Luca
- Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Luisa Mangoni
- Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Giorgia Manzo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | - Manuela Pintus
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | - Giovanna Pirri
- Research and Development Unit, Spider Biotech S.r.l., Colleretto Giacosa (TO), Italy
| | - Andrea C Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy.
| | - Mariano A Scorciapino
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | - Ilaria Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
50
|
d’Angelo I, Casciaro B, Miro A, Quaglia F, Mangoni ML, Ungaro F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf B Biointerfaces 2015; 135:717-725. [DOI: 10.1016/j.colsurfb.2015.08.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/17/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
|