1
|
Bjerg CSB, Poehlein A, Bömeke M, Himmelbach A, Schramm A, Brüggemann H. Increased biofilm formation in dual-strain compared to single-strain communities of Cutibacterium acnes. Sci Rep 2024; 14:14547. [PMID: 38914744 PMCID: PMC11196685 DOI: 10.1038/s41598-024-65348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
Cutibacterium acnes is a known opportunistic pathogen in orthopedic implant-associated infections (OIAIs). The species of C. acnes comprises distinct phylotypes. Previous studies suggested that C. acnes can cause single- as well as multi-typic infections, i.e. infections caused by multiple strains of different phylotypes. However, it is not known if different C. acnes phylotypes are organized in a complex biofilm community, which could constitute a multicellular strategy to increase biofilm strength and persistency. Here, the interactions of two C. acnes strains belonging to phylotypes IB and II were determined in co-culture experiments. No adverse interactions between the strains were observed in liquid culture or on agar plates; instead, biofilm formation in both microtiter plates and on titanium discs was significantly increased when combining both strains. Fluorescence in situ hybridization showed that both strains co-occurred throughout the biofilm. Transcriptome analyses revealed strain-specific alterations of gene expression in biofilm-embedded cells compared to planktonic growth, in particular affecting genes involved in carbon and amino acid metabolism. Overall, our results provide first insights into the nature of dual-type biofilms of C. acnes, suggesting that strains belonging to different phylotypes can form biofilms together with additive effects. The findings might influence the perception of C. acnes OIAIs in terms of diagnosis and treatment.
Collapse
Affiliation(s)
- Cecilie Scavenius Brønnum Bjerg
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Mechthild Bömeke
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Schramm
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
2
|
Keskin B, Chen CS, Tsai PS, Du PX, Santos JHM, Syu GD. Reverse-Phase Protein Microarrays for Overexpressed Escherichia coli Lysates Reveal a Novel Tyrosine Kinase. Anal Chem 2024; 96:8721-8729. [PMID: 38683735 PMCID: PMC11140677 DOI: 10.1021/acs.analchem.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Tyrosine phosphorylation is one of the most important posttranslational modifications in bacteria, linked to regulating growth, migration, virulence, secondary metabolites, biofilm formation, and capsule production. Only two tyrosine kinases (yccC (etk) and wzc) have been identified in Escherichia coli. The investigation by similarity has not revealed any novel BY-kinases in silico so far, most probably due to their sequence and structural variability. Here we developed a reverse-phase protein array from 4126 overexpressed E. coli clones, lysed, and printed on coated glass slides. These high-density E. coli lysate arrays (ECLAs) were quality controlled by the reproducibility and immobilization of total lysate proteins and specific overexpressed proteins. ECLAs were used to interrogate the relationship between protein overexpression and tyrosine phosphorylation in the total lysate. We identified 6 protein candidates, including etk and wzc, with elevated phosphotyrosine signals in the total lysates. Among them, we identified a novel kinase nrdD with autophosphorylation and transphosphorylation activities in the lysates. Moreover, the overexpression of nrdD induced biofilm formation. Since nrdD is a novel kinase, we used E. coli proteome microarrays (purified 4,126 E. coli proteins) to perform an in vitro kinase assay and identified 33 potential substrates. Together, this study established a new ECLA platform for interrogating posttranslational modifications and identified a novel kinase that is important in biofilm formation, which will shed some light on bacteria biochemistry and new ways to impede drug resistance.
Collapse
Affiliation(s)
- Batuhan
Birol Keskin
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Chien-Sheng Chen
- Department
of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute
of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Pei-Shan Tsai
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Pin-Xian Du
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - John Harvey M. Santos
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- Centre
for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Guan-Da Syu
- Department
of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan 701, Taiwan
- International
Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 701, Taiwan
- Medical Device
Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
3
|
Yin L, Wang X, Xu H, Yin B, Wang X, Zhang Y, Li X, Luo Y, Chen Z. Unrecognized risk of perfluorooctane sulfonate in promoting conjugative transfers of bacterial antibiotic resistance genes. Appl Environ Microbiol 2023; 89:e0053323. [PMID: 37565764 PMCID: PMC10537727 DOI: 10.1128/aem.00533-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
Antibiotic resistance is a major global health crisis facing humanity, with horizontal gene transfer (HGT) as a principal dissemination mechanism in the natural and clinical environments. Perfluoroalkyl substances (PFASs) are emerging contaminants of global concern due to their high persistence in the environment and adverse effects on humans. However, it is unknown whether PFASs affect the HGT of bacterial antibiotic resistance. Using a genetically engineered Escherichia coli MG1655 as the donor of plasmid-encoded antibiotic resistance genes (ARGs), E. coli J53 and soil bacterial community as two different recipients, this study demonstrated that the conjugation frequency of ARGs between two E. coli strains was (1.45 ± 0.17) × 10-5 and perfluorooctane sulfonate (PFOS) at environmentally relevant concentrations (2-50 μg L-1) increased conjugation transfer between E. coli strains by up to 3.25-fold. Increases in reactive oxygen species production, cell membrane permeability, biofilm formation capacity, and cell contact in two E. coli strains were proposed as major promotion mechanisms from PFOS exposure. Weighted gene co-expression network analysis of transcriptome data identified a series of candidate genes whose expression changes could contribute to the increase in conjugation transfer induced by PFOS. Furthermore, PFOS also generally increased the ARG transfer into the studied soil bacterial community, although the uptake ability of different community members of the plasmid either increased or decreased upon PFOS exposure depending on specific bacterial taxa. Overall, this study reveals an unrecognized risk of PFOS in accelerating the dissemination of antibiotic resistance. IMPORTANCE Perfluoroalkyl substances (PFASs) are emerging contaminants of global concern due to their high persistence in the environment and adverse health effects. Although the influence of environmental pollutants on the spread of antibiotic resistance, one of the biggest threats to global health, has attracted increasing attention in recent years, it is unknown whether environmental residues of PFASs affect the dissemination of bacterial antibiotic resistance. Considering PFASs, often called "forever" compounds, have significantly higher environmental persistence than most emerging organic contaminants, exploring the effect of PFASs on the spread of antibiotic resistance is more environmentally relevant and has essential ecological and health significance. By systematically examining the influence of perfluorooctane sulfonate on the antibiotic resistance gene conjugative transfer, not only at the single-strain level but also at the community level, this study has uncovered an unrecognized risk of PFASs in promoting conjugative transfers of bacterial antibiotic resistance genes, which could be incorporated into the risk assessment framework of PFASs.
Collapse
Affiliation(s)
- Lichun Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xiaolong Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Han Xu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Bo Yin
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xingshuo Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yulin Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Xinyao Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yi Luo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Zeyou Chen
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Fuji N, Pichichero M, Ehrlich RL, Mell JC, Ehrlich GD, Kaur R. Transition of Serotype 35B Pneumococci From Commensal to Prevalent Virulent Strain in Children. Front Cell Infect Microbiol 2021; 11:744742. [PMID: 34765566 PMCID: PMC8577857 DOI: 10.3389/fcimb.2021.744742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
In our community-based prospective cohort study in young children, we observed a significant increase in pneumococcal serotype 35B nasopharyngeal (NP) commensal colonization during the 2011–2014 timeframe, but these strains were not associated with disease. Beginning in 2015 and continuing through to the present, the serotype 35B virulence changed, and it became the dominant bacteria isolated and associated with pneumococcal acute otitis-media (AOM) in our cohort. We performed comparative analyses of 250 35B isolates obtained from 140 children collected between 2006 and 2019. Changes in prevalence, clonal-complex composition, and antibiotic resistance were analyzed. Seventy-two (29%) of 35B isolates underwent whole-genome sequencing to investigate genomic changes associated with the shift in virulence that resulted in increased rates of 35B-associated AOM disease. 35B strains that were commensals and AOM disease-causing were mainly associated with sequence type (ST) 558. Antibiotic concentrations of β-lactams and ofloxacin necessary to inhibit growth of 35B strains rose significantly (2006–2019) (p<0.005). However, only isolates from the 35B/ST558 showed significant increases in MIC50 of penicillin and ofloxacin between the years 2006–2014 and 2015–2019 (p=0.007 and p<0.0001). One hundred thirty-eight SNPs located in 34 different genes were significantly associated with post-2015 strains. SNPs were found in nrdG (metal binding, 10%); metP and metN (ABC transporter, 9%); corA (Mg2+ transporter, 6%); priA (DNA replication, 5%); and on the enzymic gene ldcB (LD-carboxypeptidase, 3%). Pneumococcal serotype 35B strains was a common NP commensal during 2010–2014. In 2015, a shift in increasing number of AOM cases occurred in young children caused by 35B, that was associated with changes in genetic composition and antibiotic susceptibility.
Collapse
Affiliation(s)
- Naoko Fuji
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| | - Michael Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| | - Rachel L Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, and Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Philadelphia, PA, United States
| | - Joshua Chang Mell
- Department of Microbiology and Immunology, Drexel University College of Medicine, and Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Philadelphia, PA, United States
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, and Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Philadelphia, PA, United States.,Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, NY, United States
| |
Collapse
|
5
|
McLean JT, Benny A, Nolan MD, Swinand G, Scanlan EM. Cysteinyl radicals in chemical synthesis and in nature. Chem Soc Rev 2021; 50:10857-10894. [PMID: 34397045 DOI: 10.1039/d1cs00254f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nature harnesses the unique properties of cysteinyl radical intermediates for a diverse range of essential biological transformations including DNA biosynthesis and repair, metabolism, and biological photochemistry. In parallel, the synthetic accessibility and redox chemistry of cysteinyl radicals renders them versatile reactive intermediates for use in a vast array of synthetic applications such as lipidation, glycosylation and fluorescent labelling of proteins, peptide macrocyclization and stapling, desulfurisation of peptides and proteins, and development of novel therapeutics. This review provides the reader with an overview of the role of cysteinyl radical intermediates in both chemical synthesis and biological systems, with a critical focus on mechanistic details. Direct insights from biological systems, where applied to chemical synthesis, are highlighted and potential avenues from nature which are yet to be explored synthetically are presented.
Collapse
Affiliation(s)
- Joshua T McLean
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Alby Benny
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Mark D Nolan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Glenna Swinand
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| | - Eoin M Scanlan
- Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse St., Dublin, D02 R590, Ireland.
| |
Collapse
|
6
|
Pedraz L, Blanco‐Cabra N, Torrents E. Gradual adaptation of facultative anaerobic pathogens to microaerobic and anaerobic conditions. FASEB J 2019; 34:2912-2928. [DOI: 10.1096/fj.201902861r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Lucas Pedraz
- "Bacterial Infections: Antimicrobial Therapies” group Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Barcelona Spain
| | - Núria Blanco‐Cabra
- "Bacterial Infections: Antimicrobial Therapies” group Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Barcelona Spain
| | - Eduard Torrents
- "Bacterial Infections: Antimicrobial Therapies” group Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology (BIST) Barcelona Spain
| |
Collapse
|
7
|
Cendra MDM, Blanco-Cabra N, Pedraz L, Torrents E. Optimal environmental and culture conditions allow the in vitro coexistence of Pseudomonas aeruginosa and Staphylococcus aureus in stable biofilms. Sci Rep 2019; 9:16284. [PMID: 31705015 PMCID: PMC6841682 DOI: 10.1038/s41598-019-52726-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
The coexistence between species that occurs in some infections remains hard to achieve in vitro since bacterial fitness differences eventually lead to a single organism dominating the mixed culture. Pseudomonas aeruginosa and Staphylococcus aureus are major pathogens found growing together in biofilms in disease-affected lungs or wounds. Herein, we tested and analyzed different culture media, additives and environmental conditions to support P. aeruginosa and S. aureus coexistence in vitro. We have unraveled the potential of DMEM to support the growth of these two organisms in mature cocultured biofilms (three days old) in an environment that dampens the pH rise. Our conditions use equal initial inoculation ratios of both strains and allow the stable formation of separate S. aureus microcolonies that grow embedded in a P. aeruginosa biofilm, as well as S. aureus biofilm overgrowth when bovine serum albumin is added to the system. Remarkably, we also found that S. aureus survival is strictly dependent on a well-characterized phenomenon of oxygen stratification present in the coculture biofilm. An analysis of differential tolerance to gentamicin and ciprofloxacin treatment, depending on whether P. aeruginosa and S. aureus were growing in mono- or coculture biofilms, was used to validate our in vitro coculture conditions.
Collapse
Affiliation(s)
- Maria Del Mar Cendra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain.
| | - Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Lucas Pedraz
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028, Barcelona, Spain.
| |
Collapse
|
8
|
Miret-Casals L, Baelo A, Julián E, Astola J, Lobo-Ruiz A, Albericio F, Torrents E. Hydroxylamine Derivatives as a New Paradigm in the Search of Antibacterial Agents. ACS OMEGA 2018; 3:17057-17069. [PMID: 31458325 PMCID: PMC6643834 DOI: 10.1021/acsomega.8b01384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/28/2018] [Indexed: 06/10/2023]
Abstract
Serious infections caused by bacteria that are resistant to commonly used antibiotics have become a major global healthcare problem in the 21st century. Multidrug-resistant bacteria causing severe infections mainly grow in complex bacterial communities known as biofilms, in which bacterial resistance to antibacterial agents and to the host immune system is strengthened. As drug resistance is becoming a threatening problem, it is necessary to develop new antimicrobial agents with novel mechanisms of action. Here, we designed and synthesized a small library of N-substituted hydroxylamine (N-HA) compounds with antibacterial activity. These compounds, acting as radical scavengers, inhibit the bacterial ribonucleotide reductase (RNR) enzyme. RNR enzyme is essential for bacterial proliferation during infection, as it provides the building blocks for DNA synthesis and repair. We demonstrate the broad antimicrobial effect of several drug candidates against a variety of Gram-positive and Gram-negative bacteria, together with low toxicity toward eukaryotic cells. Furthermore, the most promising compounds can reduce the biomass of an established biofilm on Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. This study settles the starting point to develop new N-hydroxylamine compounds as potential effective antibacterial agents to fight against drug-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Laia Miret-Casals
- Department
of Organic Chemistry, University of Barcelona, C/ Martí i Franquès,
1-11, 08028 Barcelona, Spain
| | - Aida Baelo
- Bacterial
Infections: Antimicrobial Therapies, Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | - Esther Julián
- Group
of Mycobacteriology, Department of Genetics
and Microbiology, Facultat de Biociències Universitat Autònoma de Barcelona, Building C, 08193 Bellaterra, Barcelona, Spain
| | - Josep Astola
- Bacterial
Infections: Antimicrobial Therapies, Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| | - Ariadna Lobo-Ruiz
- Department
of Organic Chemistry, University of Barcelona, C/ Martí i Franquès,
1-11, 08028 Barcelona, Spain
| | - Fernando Albericio
- Department
of Organic Chemistry, University of Barcelona, C/ Martí i Franquès,
1-11, 08028 Barcelona, Spain
- CIBER-BBN,
Networking Centre on Bioengineering, Biomaterials and Nanomedicine, C/ Martí i Franquès,
1-11, 08028 Barcelona, Spain
- School
of Chemistry & Physics, University of
Kwazulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Eduard Torrents
- Bacterial
Infections: Antimicrobial Therapies, Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac, 15-21, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Backman LRF, Funk MA, Dawson CD, Drennan CL. New tricks for the glycyl radical enzyme family. Crit Rev Biochem Mol Biol 2017; 52:674-695. [PMID: 28901199 DOI: 10.1080/10409238.2017.1373741] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glycyl radical enzymes (GREs) are important biological catalysts in both strict and facultative anaerobes, playing key roles both in the human microbiota and in the environment. GREs contain a backbone glycyl radical that is post-translationally installed, enabling radical-based mechanisms. GREs function in several metabolic pathways including mixed acid fermentation, ribonucleotide reduction and the anaerobic breakdown of the nutrient choline and the pollutant toluene. By generating a substrate-based radical species within the active site, GREs enable C-C, C-O and C-N bond breaking and formation steps that are otherwise challenging for nonradical enzymes. Identification of previously unknown family members from genomic data and the determination of structures of well-characterized GREs have expanded the scope of GRE-catalyzed reactions as well as defined key features that enable radical catalysis. Here, we review the structures and mechanisms of characterized GREs, classifying members into five categories. We consider the open questions about each of the five GRE classes and evaluate the tools available to interrogate uncharacterized GREs.
Collapse
Affiliation(s)
- Lindsey R F Backman
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Michael A Funk
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.,b Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Christopher D Dawson
- c Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Catherine L Drennan
- a Department of Chemistry , Massachusetts Institute of Technology , Cambridge , MA , USA.,c Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA.,d Howard Hughes Medical Institute , Massachusetts Institute of Technology , Cambridge , MA , USA
| |
Collapse
|
10
|
Crespo A, Pedraz L, Astola J, Torrents E. Pseudomonas aeruginosa Exhibits Deficient Biofilm Formation in the Absence of Class II and III Ribonucleotide Reductases Due to Hindered Anaerobic Growth. Front Microbiol 2016; 7:688. [PMID: 27242714 PMCID: PMC4860495 DOI: 10.3389/fmicb.2016.00688] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/26/2016] [Indexed: 01/11/2023] Open
Abstract
Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments. Ribonucleotide reductases (RNRs) are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II, and III). Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development. In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the understanding of this complex growth pattern, essential for P. aeruginosa chronic infections.
Collapse
Affiliation(s)
- Anna Crespo
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| | - Lucas Pedraz
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| | - Josep Astola
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies, Institute for Bioengineering of Catalonia Barcelona, Spain
| |
Collapse
|
11
|
Ribonucleotide reductase NrdR as a novel regulator for motility and chemotaxis during adherent-invasive Escherichia coli infection. Infect Immun 2015; 83:1305-17. [PMID: 25605769 DOI: 10.1128/iai.02772-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A critical step in the life cycle of all organisms is the duplication of the genetic material during cell division. Ribonucleotide reductases (RNRs) are essential enzymes for this step because they control the de novo production of the deoxyribonucleotides required for DNA synthesis and repair. Enterobacteriaceae have three functional classes of RNRs (Ia, Ib, and III), which are transcribed from separate operons and encoded by the genes nrdAB, nrdHIEF, and nrdDG, respectively. Here, we investigated the role of RNRs in the virulence of adherent-invasive Escherichia coli (AIEC) isolated from Crohn's disease (CD) patients. Interestingly, the LF82 strain of AIEC harbors four different RNRs (two class Ia, one class Ib, and one class III). Although the E. coli RNR enzymes have been extensively characterized both biochemically and enzymatically, little is known about their roles during bacterial infection. We found that RNR expression was modified in AIEC LF82 bacteria during cell infection, suggesting that RNRs play an important role in AIEC virulence. Knockout of the nrdR and nrdD genes, which encode a transcriptional regulator of RNRs and class III anaerobic RNR, respectively, decreased AIEC LF82's ability to colonize the gut mucosa of transgenic mice that express human CEACAM6 (carcinoembryonic antigen-related cell adhesion molecule 6). Microarray experiments demonstrated that NrdR plays an indirect role in AIEC virulence by interfering with bacterial motility and chemotaxis. Thus, the development of drugs targeting RNR classes, in particular NrdR and NrdD, could be a promising new strategy to control gut colonization by AIEC bacteria in CD patients.
Collapse
|
12
|
The case for an early biological origin of DNA. J Mol Evol 2014; 79:204-12. [PMID: 25425102 PMCID: PMC4247479 DOI: 10.1007/s00239-014-9656-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 11/18/2014] [Indexed: 11/16/2022]
Abstract
All life generates deoxyribonucleotides, the building blocks of DNA, via ribonucleotide reductases (RNRs). The complexity of this reaction suggests it did not evolve until well after the advent of templated protein synthesis, which in turn suggests DNA evolved later than both RNA and templated protein synthesis. However, deoxyribonucleotides may have first been synthesised via an alternative, chemically simpler route—the reversal of the deoxyriboaldolase (DERA) step in deoxyribonucleotide salvage. In light of recent work demonstrating that this reaction can drive synthesis of deoxyribonucleosides, we consider what pressures early adoption of this pathway would have placed on cell metabolism. This in turn provides a rationale for the replacement of DERA-dependent DNA production by RNR-dependent production.
Collapse
|
13
|
Pawar V, Crull K, Komor U, Kasnitz N, Frahm M, Kocijancic D, Westphal K, Leschner S, Wolf K, Loessner H, Rohde M, Häussler S, Weiss S. Murine solid tumours as a novel model to study bacterial biofilm formation in vivo. J Intern Med 2014; 276:130-9. [PMID: 24724621 DOI: 10.1111/joim.12258] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bacteria of many species are able to invade and colonize solid tumours in mice. We have focused on Salmonella enterica serovar Typhimurium. Detailed analysis revealed that such tumour-invading Salmonella form biofilms, thus providing a versatile in vivo test system for studying bacterial phenotypes and host-pathogen interactions. It appears that biofilm formation by S. typhimurium is induced as a defence against the immune system of the host, and in particular against neutrophils. Further, we extended our work to the clinically more relevant biofilm infection by Pseudomonas aeruginosa. The induction of P. aeruginosa biofilms in neoplastic tissue appears to be elicited as a reaction against the immune system. Reconstitution experiments reveal that T cells are responsible for biofilm induction. Isogenic mutants that are no longer able to form biofilms can be used for comparison studies to determine antimicrobial resistance, especially therapeutic efficacy against P. aeruginosa located in biofilms.
Collapse
Affiliation(s)
- V Pawar
- Department of Molecular Immunology, TWINCORE GmbH, Centre for Clinical and Experimental Infection Research, a Joint Venture of the Hannover Medical School and the Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol 2014; 80:5340-8. [PMID: 24951790 DOI: 10.1128/aem.01434-14] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings.
Collapse
|
15
|
Torrents E. Ribonucleotide reductases: essential enzymes for bacterial life. Front Cell Infect Microbiol 2014; 4:52. [PMID: 24809024 PMCID: PMC4009431 DOI: 10.3389/fcimb.2014.00052] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/08/2014] [Indexed: 11/13/2022] Open
Abstract
Ribonucleotide reductase (RNR) is a key enzyme that mediates the synthesis of deoxyribonucleotides, the DNA precursors, for DNA synthesis in every living cell. This enzyme converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication, and repair. Clearly, RNR enzymes have contributed to the appearance of genetic material that exists today, being essential for the evolution of all organisms on Earth. The strict control of RNR activity and dNTP pool sizes is important, as pool imbalances increase mutation rates, replication anomalies, and genome instability. Thus, RNR activity should be finely regulated allosterically and at the transcriptional level. In this review we examine the distribution, the evolution, and the genetic regulation of bacterial RNRs. Moreover, this enzyme can be considered an ideal target for anti-proliferative compounds designed to inhibit cell replication in eukaryotic cells (cancer cells), parasites, viruses, and bacteria.
Collapse
Affiliation(s)
- Eduard Torrents
- Bacterial Infections and Antimicrobial Therapies Group, Institute for Bioengineering of Catalonia Barcelona, Spain
| |
Collapse
|
16
|
H-NS is a novel transcriptional modulator of the ribonucleotide reductase genes in Escherichia coli. J Bacteriol 2013; 195:4255-63. [PMID: 23873909 DOI: 10.1128/jb.00490-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ribonucleotide reductases (RNRs) are essential enzymes for DNA synthesis because they are responsible for the production of the four deoxyribonucleotides (dNTPs) from their corresponding ribonucleotides. Escherichia coli contains two classes of aerobic RNRs, encoded by the nrdAB (class Ia) and nrdHIEF (class Ib) operons, and a third RNR class, which is functional under anaerobic conditions and is encoded by the nrdDG (class III) operon. Because cellular imbalances in the amounts of the four dNTPs cause an increase in the rate of mutagenesis, the activity and the expression of RNRs must be tightly regulated during bacterial chromosome replication. The transcriptional regulation of these genes requires several transcription factors (including DnaA, IciA, FIS [factor for inversion stimulation], Fnr, Fur, and NrdR), depending on the RNR class; however, the factors that dictate the expression of some RNR genes in response to different environmental conditions are not known. We show that H-NS modulates the expression of the nrdAB and nrdDG operons. H-NS represses expression both in aerobically and in anaerobically growing cells. Under aerobic conditions, repression occurs at the exponential phase of growth as well as at the transition from the exponential to the stationary phase, a period when no dNTPs are needed. Under anoxic conditions, repression occurs mainly in exponentially growing cells. Electrophoretic mobility assays performed with two DNA fragments from the regulatory region of the nrdAB operon demonstrated the direct interaction of H-NS with these sequences.
Collapse
|