1
|
Ždralević M, Radović A, Raonić J, Popovic N, Klisic A, Vučković L. Advances in microRNAs as Emerging Biomarkers for Colorectal Cancer Early Detection and Diagnosis. Int J Mol Sci 2024; 25:11060. [PMID: 39456841 PMCID: PMC11507567 DOI: 10.3390/ijms252011060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Colorectal cancer (CRC) remains the second most common cause of cancer-related mortality worldwide, necessitating advancements in early detection and innovative treatment strategies. MicroRNAs (miRNAs), small non-coding RNAs involved in gene regulation, have emerged as crucial players in the pathogenesis of CRC. This review synthesizes the latest findings on miRNA deregulated in precancerous lesions and in CRC. By examining the deregulation patterns of miRNAs across different stages of CRC development, this review highlights their potential as diagnostic tools. We specifically analyse the roles and diagnostic relevance of four miRNAs-miR-15b, miR-21, miR-31, and miR-146a-that consistently exhibit altered expression in CRC. The current knowledge of their role in key oncogenic pathways, drug resistance, and clinical relevance is discussed. Despite challenges posed by the heterogeneity of the research findings on miRNA deregulation and their role in CRC, integrating miRNA diagnostics into current screening methods holds promise for enhancing personalized medicine approaches. This review emphasizes the transformative potential of miRNAs in CRC diagnosis, paving the way for improved patient outcomes and novel therapeutic paradigms.
Collapse
Affiliation(s)
- Maša Ždralević
- Institute for Advanced Studies, University of Montenegro, Cetinjska 2, 81000 Podgorica, Montenegro
| | - Andrijana Radović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
| | - Janja Raonić
- Center for Pathology, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro;
| | - Natasa Popovic
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
| | - Aleksandra Klisic
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
- Center for Laboratory Diagnostics, Primary Health Care Center, 81000 Podgorica, Montenegro
| | - Ljiljana Vučković
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro (N.P.); (A.K.); (L.V.)
- Center for Pathology, Clinical Center of Montenegro, Ljubljanska bb, 81000 Podgorica, Montenegro;
| |
Collapse
|
2
|
AmiRsardari Z, Gholipour A, Khajali Z, Maleki M, Malakootian M. Exploring the role of non-coding RNAs in atrial septal defect pathogenesis: A systematic review. PLoS One 2024; 19:e0306576. [PMID: 39172906 PMCID: PMC11340980 DOI: 10.1371/journal.pone.0306576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Extensive research has recognized the significant roles of non-coding RNAs (ncRNAs) in various cellular pathophysiological processes and their association with diverse diseases, including atrial septal defect (ASD), one of the most prevalent congenital heart diseases. This systematic review aims to explore the intricate involvement and significance of ncRNAs in the pathogenesis and progression of ASD. METHODS Four databases (PubMed, Embase, Scopus, and the Web of Science) were searched systematically up to June 19, 2023, with no year restriction. The risk of bias assessment was evaluated using the Newcastle-Ottawa scale. RESULTS The present systematic review included thirteen studies with a collective study population of 874 individuals diagnosed with ASD, 21 parents of ASD patients, and 22 pregnant women carrying ASD fetuses. Our analysis revealed evidence linking five long ncRNAs (STX18-AS1, HOTAIR, AA709223, BX478947, and Moshe) and several microRNAs (hsa-miR-19a, hsa-miR-19b, hsa-miR-375, hsa-miR-29c, miR-29, miR-143/145, miR-17-92, miR-106b-25, and miR-503/424, miR-9, miR-30a, miR-196a2, miR-139-5p, hsa-let-7a, hsa-let-7b, and hsa-miR-486) to ASD progression, corresponding to previous studies. CONCLUSIONS NcRNAs play a crucial role in unraveling the underlying mechanisms of ASD, contributing to both biomarker discovery and therapeutic advancements. This systematic review sheds light on the mechanisms of action of key ncRNAs involved in ASD progression, providing valuable insights for future research in this field.
Collapse
Affiliation(s)
- Zahra AmiRsardari
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Congenital Heart Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Gholipour
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khajali
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Congenital Heart Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jayawickrama SM, Ranaweera PM, Pradeep RGGR, Jayasinghe YA, Senevirathna K, Hilmi AJ, Rajapakse RMG, Kanmodi KK, Jayasinghe RD. Developments and future prospects of personalized medicine in head and neck squamous cell carcinoma diagnoses and treatments. Cancer Rep (Hoboken) 2024; 7:e2045. [PMID: 38522008 PMCID: PMC10961052 DOI: 10.1002/cnr2.2045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Precision healthcare has entered a new era because of the developments in personalized medicine, especially in the diagnosis and treatment of head and neck squamous cell carcinoma (HNSCC). This paper explores the dynamic landscape of personalized medicine as applied to HNSCC, encompassing both current developments and future prospects. RECENT FINDINGS The integration of personalized medicine strategies into HNSCC diagnosis is driven by the utilization of genetic data and biomarkers. Epigenetic biomarkers, which reflect modifications to DNA that can influence gene expression, have emerged as valuable indicators for early detection and risk assessment. Treatment approaches within the personalized medicine framework are equally promising. Immunotherapy, gene silencing, and editing techniques, including RNA interference and CRISPR/Cas9, offer innovative means to modulate gene expression and correct genetic aberrations driving HNSCC. The integration of stem cell research with personalized medicine presents opportunities for tailored regenerative approaches. The synergy between personalized medicine and technological advancements is exemplified by artificial intelligence (AI) and machine learning (ML) applications. These tools empower clinicians to analyze vast datasets, predict patient responses, and optimize treatment strategies with unprecedented accuracy. CONCLUSION The developments and prospects of personalized medicine in HNSCC diagnosis and treatment offer a transformative approach to managing this complex malignancy. By harnessing genetic insights, biomarkers, immunotherapy, gene editing, stem cell therapies, and advanced technologies like AI and ML, personalized medicine holds the key to enhancing patient outcomes and ushering in a new era of precision oncology.
Collapse
Affiliation(s)
| | | | | | | | - Kalpani Senevirathna
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaKandySri Lanka
| | | | | | - Kehinde Kazeem Kanmodi
- School of DentistryUniversity of RwandaKigaliRwanda
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
- Cephas Health Research Initiative IncIbadanNigeria
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
| | - Ruwan Duminda Jayasinghe
- Centre for Research in Oral Cancer, Faculty of Dental SciencesUniversity of PeradeniyaKandySri Lanka
- Faculty of DentistryUniversity of PuthisastraPhnom PenhCambodia
- School of Health and Life SciencesTeesside UniversityMiddlesbroughUK
- Department of Oral Medicine and Periodontology, Faculty of Dental SciencesUniversity of PeradeniyaKandySri Lanka
| |
Collapse
|
4
|
Chen Y, Lin T, Tang L, He L, He Y. MiRNA signatures in nasopharyngeal carcinoma: molecular mechanisms and therapeutic perspectives. Am J Cancer Res 2023; 13:5805-5824. [PMID: 38187072 PMCID: PMC10767356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/10/2023] [Indexed: 01/09/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a prevalent cancerous tumor that affects the head and neck region. Recent studies have provided compelling evidence indicating the significant involvement of microRNAs (miRNAs) in the development and progression of NPC. This review aims to present a comprehensive summary of the current knowledge regarding miRNA signatures in NPC, encompassing their expression patterns, molecular mechanisms, and potential therapeutic implications. Initially, the article outlines the aberrant expression of miRNAs in NPC and elucidates their roles in tumor initiation, invasion, and metastasis. Subsequently, the underlying molecular mechanisms of miRNA-mediated regulation of NPC-associated signaling pathways are discussed. Additionally, the review highlights the potential clinical applications of miRNAs as diagnostic and prognostic biomarkers, as well as their therapeutic potential in NPC treatment. In conclusion, this review underscores the critical involvement of miRNAs in NPC pathogenesis and underscores their promise as novel therapeutic targets for combating this devastating disease.
Collapse
Affiliation(s)
- Yan Chen
- School of Medicine, Hunan University of Chinese MedicineChangsha, Hunan, China
| | - Ting Lin
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
- Hunan Provincial Key Lab for The Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese MedicineChangsha 410208, China
| | - Le Tang
- School of Medicine, Hunan University of Chinese MedicineChangsha, Hunan, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
| | - Lan He
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
- The First Affiliated Hospital of Hunan University of Chinese MedicineChangsha, Hunan, China
| | - Yingchun He
- School of Medicine, Hunan University of Chinese MedicineChangsha, Hunan, China
- Hunan Provincial Engineering and Technological Research Center for Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine and Protecting Visual Function, Hunan University of Chinese MedicineChangsha 410208, China
- Hunan Provincial Key Lab for The Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Traditional Chinese Medicine, Hunan University of Chinese MedicineChangsha 410208, China
| |
Collapse
|
5
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
6
|
Circulating microRNAs as the Potential Diagnostic and Prognostic Biomarkers for Nasopharyngeal Carcinoma. Genes (Basel) 2022; 13:genes13071160. [PMID: 35885944 PMCID: PMC9318750 DOI: 10.3390/genes13071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
microRNAs are endogenous non-coding miRNAs, 19–25 nucleotides in length, that can be detected in the extracellular environment in stable forms, named circulating miRNAs (CIR-miRNAs). Since the first discovery of CIR-miRNAs, a large number of studies have demonstrated that the abnormal changes in its expression could be used to significantly distinguish nasopharyngeal carcinoma (NPC) from healthy cells. We herein reviewed and highlighted recent advances in the study of CIR-miRNAs in NPC, which pointed out the main components serving as promising and effective biomarkers for NPC diagnosis and prognosis. Furthermore, brief descriptions of its origin and unique characteristics are provided.
Collapse
|
7
|
Chiantore MV, Iuliano M, Mongiovì RM, Dutta S, Tommasino M, Di Bonito P, Accardi L, Mangino G, Romeo G. The E6 and E7 proteins of beta3 human papillomavirus 49 can deregulate both cellular and extracellular vesicles-carried microRNAs. Infect Agent Cancer 2022; 17:29. [PMID: 35705991 PMCID: PMC9199308 DOI: 10.1186/s13027-022-00445-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The β3 human papillomavirus (HPV)49 induces immortalization of primary keratinocytes through the action of E6 and E7 oncoproteins with an efficiency similar to alpha high risk (HR)-HPV16. Since HR-HPV oncoproteins are known to alter microRNA (miRNA) expression and extracellular vesicle (EV) production, we investigated the impact of HPV49 E6 and E7 proteins on miRNA profile and EV expression, and their involvement in the control of cell proliferation. METHODS The miRNA expression was evaluated by a miRNA array and validated by RT-qPCR in primary human keratinocytes immortalized by β3 HPV49 (K49) or α9 HR-HPV16 (K16), and in EVs from K49 and K16. The modulation of miRNA target proteins was investigated by immunoblotting analyses. RESULTS By comparing miRNA expression in K49 and K16 and the derived EVs, six miRNAs involved in HPV tumorigenesis were selected and validated. MiR-19a and -99a were found to be upregulated and miR-34a downregulated in both cell lines; miR-17 and -590-5p were upregulated in K49 and downmodulated in K16; miR-21 was downregulated only in K16. As for EV-carried miRNAs, the expression of miR-17, -19a, -21 and -99a was decreased and miR-34a was increased in K49 EVs. In K16 EVs, we revealed the same modulation of miR-19a, -34a, and -99a observed in producing cells, while miR-21 was upregulated. Cyclin D1, a common target of the selected miRNAs, was downmodulated in both cell lines, whereas cyclin-dependent kinase 4 was down-modulated in K49 but upregulated in K16. CONCLUSION These data suggest that E6 and E7 proteins of β3 HPV49 and α9 HR-HPV16 affect key factors of cell cycle control by indirect mechanisms based on miRNA modulation.
Collapse
Affiliation(s)
| | - Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome - Polo Pontino, Latina, Italy
| | - Roberta Maria Mongiovì
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome - Polo Pontino, Latina, Italy
| | - Sankhadeep Dutta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
- Present Address: Department of Pharmacy-Pharmaceutical Sciences, University of Bari A. Moro, Bari, Italy
| | - Paola Di Bonito
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Luisa Accardi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome - Polo Pontino, Latina, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome - Polo Pontino, Latina, Italy
| |
Collapse
|
8
|
Subha ST, Chin JW, Cheah YK, Mohtarrudin N, Saidi HI. Multiple microRNA signature panel as promising potential for diagnosis and prognosis of head and neck cancer. Mol Biol Rep 2021; 49:1501-1511. [PMID: 34837627 DOI: 10.1007/s11033-021-06954-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023]
Abstract
MicroRNAs are small non-coding RNA that regulate gene expressions of human body. To date, numerous studies have reported that microRNAs possess great diagnostic and prognostic power in head and neck cancer and had governed a lot of attention. The factor for the successfulness of miRNAs in these aspects is due to cancer being fundamentally tied to genetic changes, which are regulated by these miRNAs. Head and neck cancer, leading the world record for cancer as number sixth, is caused by multiple risk factors such as tobacco consumption, alcohol consumption, dietary factors, ethnicity, family history, and human papilloma virus. It derives at locations such as oral cavity, pharynx, larynx, paranasal sinus and salivary gland and have high rate of mortality with high recurrence rate. Besides, head and neck cancer is also usually having poor prognosis due to its asymptomatic nature. However, this diagnostic and prognostic power can be further improved by using multiple panels of miRNA as a signature or even combined with TNM staging system to obtain even more remarkable results. This is due to multiple factors such as tumour heterogeneity and components of the tumour which may affect the composition of miRNAs. This review covers the examples of such miRNA signatures, compare their diagnostic and prognostic powers, discuss some controversial roles of unreported miRNAs, and the molecular mechanisms of the miRNAs in gene targeting and pathways.
Collapse
Affiliation(s)
- Sethu Thakachy Subha
- Department of Otorhinolaryngology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jun Wei Chin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hasni Idayu Saidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Exosomes in nasopharyngeal carcinoma. Clin Chim Acta 2021; 523:355-364. [PMID: 34666030 DOI: 10.1016/j.cca.2021.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant epithelial tumor with a unique geographical distribution, primarily prevalent in East Africa and Asia. Although there is an increased understanding of the pathogenesis and risk factors of NPC, prevention and treatment efforts remain limited. Various studies have indicated that exosomes are actively involved in NPC by delivering biomolecules such as non-coding RNAs and proteins to target cells. In this review, we summarize the biological functions of exosomes in NPC and highlight their prospects as diagnostic biomarkers. In NPC, exosomes can manipulate the tumor microenvironment, participate in chemotherapy and radiation resistance, induce immune suppression, promote pathological angiogenesis, and support metastasis, and thus they could also be promising biomarkers. Because exosomes have essential effects and unusual biological properties, they have a promising future in diagnostic monitoring and prognostic evaluation. Although there are technical issues associated with using exosomes in large-scale applications, they have unparalleled advantages in assisting the clinical management of NPC.
Collapse
|
10
|
Shi QP, Wang X, Liu ZX, Zhang JJ, Wang ZY. Autoantibody Signatures as a Biomarker Panel for the Detection of Nasopharyngeal Carcinoma. Arch Med Res 2021; 52:620-626. [PMID: 33653596 DOI: 10.1016/j.arcmed.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/01/2021] [Accepted: 02/11/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The early symptoms of nasopharyngeal carcinoma (NPC) are not obvious, and it is difficult to make early diagnosis. A case-control study was conducted to identify potential biomarkers and established a diagnosis model for nasopharyngeal carcinoma. METHODS Plasma samples of 131 cases of NPC and 132 cases of healthy individuals were incubated with the Ray Biotech Human Lung Cancer IgG Autoantibody Detection Array G1, and signal values were used to develop a risk prediction model for NPC diagnosis. RESULTS Of the 30 autoantibodies, high expression of MAGE-A4, NY-ESO-1, HuD, Survivin, IMDH2, Ubiquilin-1, IMP1, PGP9.5, IMP3, C-Myc and low expression of Cyclin B1 were potential biomarkers for NPC diagnosis (p <0.05), among which Survivin, MAGE-A4 and IMP3 shows higher AUC of 0.674, 0.652 and 0.650 respectively, the specificity of them was 89.39% (95% CI: 82.85-94.08%), 90.15% (95% CI: 83.75-94.65%) and 88.64% (81.95-93.50%).The risk probability analysis for NPC diagnosis based on the panel of Cyclin B1, NY-ESO-1, Survivin, and IMP3 displayed the best diagnosis performance with an AUC of 0.779, p (Yi = 1) = 1/(1+EXP[8.316+1.672*CyclinB1-1.152*NY-ESO-1-2.052*Survivin-0.950*IMP3]), the specificity of that was 86.36% (95% CI: 79.31-91.71%). CONCLUSIONS Our findings demonstrated that the panel of Cyclin B1, NY-ESO-1, Survivin, and IMP3 has a good performance in the detection of NPC, and all 11 autoantibodies may also have a certain significance for the prognosis of NPC.
Collapse
Affiliation(s)
- Qian-Ping Shi
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong, China; Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xuan Wang
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhi-Xi Liu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, Guangdong, China; Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jian-Jun Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, Guangdong, China.
| | - Zhao-Yang Wang
- Department of Radiation Oncology, Shenzhen People's Hospital, Second Clinical Medicine College of Jinan University, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Current Status and Future Perspectives about Molecular Biomarkers of Nasopharyngeal Carcinoma. Cancers (Basel) 2021; 13:cancers13143490. [PMID: 34298701 PMCID: PMC8305767 DOI: 10.3390/cancers13143490] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is a serious major public health problem in its endemic countries. Up to 80% of NPC patients with locally advanced disease or distant metastasis at diagnosis were associated with poor prognosis and with median survival less than 4 months. The mortality rate of NPC metastasis is up to 91%. To date, there is no available curative treatment or reliable early diagnosis or prognosis for NPC. Discovery and development of reliable early diagnosis and prognosis biomarkers for nasopharyngeal carcinoma are urgent needed. Hence, we have here listed the potential early diagnosis and prognosis biomarker candidates for nasopharyngeal carcinoma. This review will give an insight to readers on the progress of NPC biomarker discovery to date, as well as future prospective biomarker development and their translation to clinical use. Abstract Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable ethnic and geographical distribution. It is one of the major public health problems in some countries, especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial interactions such as Epstein–Barr virus infection, individual’s genetic susceptibility, as well as environmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis, prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the recent research status of potential biomarker discovery and the problems that need to be explored further for better NPC management. By studying the aberrant pattern of these candidate biomarkers that promote NPC development and progression, we are able to understand the complexity of this malignancy better, hence positing our stands better towards strategies that may provide a way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted therapeutic development.
Collapse
|
12
|
Liao C, Liu H, Luo X. The emerging roles of exosomal miRNAs in nasopharyngeal carcinoma. Am J Cancer Res 2021; 11:2508-2520. [PMID: 34249413 PMCID: PMC8263644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a unique subtype of head and neck cancer that is endemic to Southern China and Southeast Asia. Due to the concealed location and intrinsic invasiveness of this disease, majority of NPC patients are diagnosed with advanced stages (III and IV) and poor prognosis. Chemoradiotherapy resistance is a major problem for NPC patients, leading to incomplete local elimination, recurrence and metastasis. Therefore, it is of great significance to seek novel biomarkers and effective therapeutic regimen for clinical management of this deadly cancer. Exosomes are tiny membrane vesicles with a lipid bilayer secreted by most cells in the body, which are widely distributed in various body fluids. They are functionally active in different physiopathological process by carrying and transmitting important signal molecules such as miRNA, mRNA, protein, lipid, etc. Exosomal miRNAs play an important role in tumorigenesis and development of NPC. They are extensively involved in NPC cell proliferation, migration, invasion, neovascularization, radiotherapy resistance and the regulation of tumor immune microenvironment through intercellular communication and control of gene expression. Moreover, exosomal miRNAs can be used as valuable biomarkers for early diagnosis and therapeutic targets of NPC.
Collapse
Affiliation(s)
- Chaoliang Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, PR China
- Cancer Research Institute, School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, PR China
- Key Laboratory of Carcinogenesis, Chinese Ministry of HealthChangsha 410078, Hunan, PR China
| | - Huiwen Liu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, PR China
- Cancer Research Institute, School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, PR China
- Key Laboratory of Carcinogenesis, Chinese Ministry of HealthChangsha 410078, Hunan, PR China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, PR China
- Cancer Research Institute, School of Basic Medicine, Central South UniversityChangsha 410078, Hunan, PR China
- Key Laboratory of Carcinogenesis, Chinese Ministry of HealthChangsha 410078, Hunan, PR China
- Molecular Imaging Research Center of Central South UniversityChangsha 410078, Hunan, PR China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangsha 410078, Hunan, China
| |
Collapse
|
13
|
Diez-Fraile A, Ceulaer JD, Derpoorter C, Spaas C, Backer TD, Lamoral P, Abeloos J, Lammens T. Circulating Non-Coding RNAs in Head and Neck Cancer: Roles in Diagnosis, Prognosis, and Therapy Monitoring. Cells 2020; 10:cells10010048. [PMID: 33396240 PMCID: PMC7823329 DOI: 10.3390/cells10010048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022] Open
Abstract
Head and neck cancer (HNC), the seventh most common form of cancer worldwide, is a group of epithelial malignancies affecting sites in the upper aerodigestive tract. The 5-year overall survival for patients with HNC has stayed around 40–50% for decades, with mortality being attributable mainly to late diagnosis and recurrence. Recently, non-coding RNAs, including tRNA halves, YRNA fragments, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs), have been identified in the blood and saliva of patients diagnosed with HNC. These observations have recently fueled the study of their potential use in early detection, diagnosis, and risk assessment. The present review focuses on recent insights and the potential impact that circulating non-coding RNA evaluation may have on clinical decision-making in the management of HNC.
Collapse
Affiliation(s)
- Araceli Diez-Fraile
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Joke De Ceulaer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Charlotte Derpoorter
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (C.R.I.G.), 9000 Ghent, Belgium
| | - Christophe Spaas
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Tom De Backer
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Philippe Lamoral
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Johan Abeloos
- Division of Oral and Maxillofacial Surgery, Department of Surgery, AZ Sint-Jan Brugge-Oostende A.V., 8000 Bruges, Belgium; (A.D.-F.); (J.D.C.); (C.S.); (T.D.B.); (P.L.); (J.A.)
| | - Tim Lammens
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (C.R.I.G.), 9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-332-2480
| |
Collapse
|
14
|
Panico A, Tumolo MR, Leo CG, Donno AD, Grassi T, Bagordo F, Serio F, Idolo A, Masi RD, Mincarone P, Sabina S. The influence of lifestyle factors on miRNA expression and signal pathways: a review. Epigenomics 2020; 13:145-164. [PMID: 33355508 DOI: 10.2217/epi-2020-0289] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The term 'lifestyle' includes different factors that contribute to the maintenance of a good health status. Increasing evidences suggest that lifestyle factors may influence epigenetic mechanisms, such as miRNAs expression. The dysregulation of miRNAs can modify the expression of genes and molecular pathways that may lead to functional alterations. This review summarizes human studies highlighting that diet, physical activity, smoking and alcohol consumption may affect the miRNA machinery and several biological functions. Most miRNAs are involved in molecular pathways that influence inflammation, cell cycle regulation and carcinogenesis resulting in the onset or progression of pathological conditions. Investigating these interactions will be pivotal for understanding the etiology of pathologic processes, the potential new treatment strategies and for preventing diseases.
Collapse
Affiliation(s)
- Alessandra Panico
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Maria R Tumolo
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Carlo G Leo
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| | - Antonella De Donno
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Tiziana Grassi
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesco Bagordo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Francesca Serio
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Adele Idolo
- Department of Biological & Environmental Sciences & Technology, University of Salento, via Monteroni 165, Lecce, 73100, Italy
| | - Roberto De Masi
- Laboratory of Neuroproteomics, Multiple Sclerosis Centre, 'F. Ferrari' Hospital, Casarano, Lecce, 73042, Italy
| | - Pierpaolo Mincarone
- Institute for Research on Population & Social Policies, National Research Council, Research Unit of Brindisi, c/o ex Osp. Di Summa, Piazza Di Summa, Brindisi, 72100, Italy
| | - Saverio Sabina
- Institute of Clinical Physiology, National Research Council, Branch of Lecce, c/o Ecotekne via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
15
|
Wu L, Wang J, Zhu D, Zhang S, Zhou X, Zhu W, Zhu J, He X. Circulating Epstein-Barr virus microRNA profile reveals novel biomarker for nasopharyngeal carcinoma diagnosis. Cancer Biomark 2020; 27:365-375. [PMID: 31958073 DOI: 10.3233/cbm-190160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nasopharyngeal carcinoma (NPC), a tumor quite prevalent in Asia, is closely associated with Epstein-Barr virus (EBV) infection status. Many NPC patients are not able to be treated in time when being diagnosed at an advanced stage. EBV-encoded microRNAs are reliable sources of biomarkers for NPC diagnosis. In this study, we conducted circulating EBV microRNAs profiling by quantitative reverse transcription polymerase chain reaction (qRT-PCR) among plasma samples of 159 NPC patients versus 145 normal controls (NCs) and serum samples of 60 NPC patients versus 60 NCs. Among the 44 mature EBV-encoded miRNAs, only miR-BART19-3p in plasma was proved to be significantly up-regulated in NPC patients (P< 0.05; fold change (FC) > 2.0). The area under the receiver operating characteristic curve (AUC) for the signature to discriminate NPC patients from NCs was 0.848 with the sensitivity and specificity being 71.7% and 72.3%, respectively. The identified biomarker was analyzed in tissue specimens (44 NPC VS. 32 NCs) and proved to be consistently up-regulated in NPC tumor tissues. Bioinformatics analysis was further conducted to predict the potential targets of miR-BART-19-3p, which provided some hints to its close relationship with NPC development. In conclusion, we identified a novel biomarker - plasma miR-BART19-3p for the detection of NPC.
Collapse
Affiliation(s)
- Lirong Wu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jingyi Wang
- Department of Breast Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Shiyu Zhang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xia He
- Department of Radiation Oncology, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
Carron J, Torricelli C, Silva JK, Queiroz GSR, Ortega MM, Lima CSP, Lourenço GJ. microRNAs deregulation in head and neck squamous cell carcinoma. Head Neck 2020; 43:645-667. [PMID: 33159410 DOI: 10.1002/hed.26533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/30/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Head and neck (HN) squamous cell carcinoma (SCC) is the eighth most common human cancer worldwide. Besides tobacco and alcohol consumption, genetic and epigenetic alterations play an important role in HNSCC occurrence and progression. microRNAs (miRNAs) are small noncoding RNAs that regulate cell cycle, proliferation, development, differentiation, and apoptosis by interfering in gene expression. Expression profiling of miRNAs showed that some miRNAs are upregulated or downregulated in tumor cells when compared with the normal cells. The present review focuses on the role of miRNAs deregulations in HNSCC, enrolled in risk, development, outcome, and therapy sensitivity. Moreover, the influence of single nucleotide variants in miRNAs target sites, miRNAs seed sites, and miRNAs-processing genes in HNSCC was also revised. Due to its potential for cancer diagnosis, progression, and as a therapeutic target, miRNAs may bring new perspectives in HNSCC understanding and therapy, especially for those patients with no or insufficient treatment options.
Collapse
Affiliation(s)
- Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Caroline Torricelli
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Janet K Silva
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Gabriela S R Queiroz
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Manoela M Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, Brazil
| | - Carmen S P Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Gustavo J Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| |
Collapse
|
17
|
Patil S, Warnakulasuriya S. Blood-based circulating microRNAs as potential biomarkers for predicting the prognosis of head and neck cancer-a systematic review. Clin Oral Investig 2020; 24:3833-3841. [PMID: 33009627 DOI: 10.1007/s00784-020-03608-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/28/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The aim of the present study was to systematically review the role of circulating miRNAs as potential prognostic biomarkers in head and neck cancer patients. MATERIALS AND METHODS PubMed, EMBASE, Scopus, Web of Science, and gray literature from January 1990 up to and including September 2019 were searched. The study selection was performed by two independent reviewers according to eligibility criteria. RESULTS A total of 13 studies that met the eligibility criteria were included. Significant number of studies were executed majorly in China and predominant number of them were case-control in nature. A total of 22 different miRNAs were found to be concomitant with very poor prognosis in cancers of the head and neck region. Of these, eighteen miRNAs (miR-375, miR-1234, miR-103, miR-638, miR-200b-3p, miR-191-5p, miR-24-3p, miR-572, miR-483-5p, miR-20a, miR-22, miR-29a, miR-29b, mir-let-7c, miR-17, miR-374b-5p, miR-425-5p, and miR-196a) were upregulated and four miRNAs (miR-9, miR-29c, miR-223, and miR-187∗) were downregulated. The hazard ratio (HR) ranged from twofold to fivefold. CONCLUSION Based on the results, circulating miRNA may assist in the prediction of prognosis of head and neck cancer. Further multi-center randomized controlled clinical trials with large sample size are required to validate the results of the present review. CLINICAL RELEVANCE Decoding the circulating miRNA profile could aid in accurate prognostication of head and neck cancer.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia.
| | - Saman Warnakulasuriya
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
- WHO Collaborating Centre for Oral Cancer, London, UK
| |
Collapse
|
18
|
E. A. R. ENS, Irekeola AA, Yean Yean C. Diagnostic and Prognostic Indications of Nasopharyngeal Carcinoma. Diagnostics (Basel) 2020; 10:E611. [PMID: 32825179 PMCID: PMC7554987 DOI: 10.3390/diagnostics10090611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a disease that is highly associated with the latent infection of Epstein-Barr virus. The absence of obvious clinical signs at the early stage of the disease has made early diagnosis practically impossible, thereby promoting the establishment and progression of the disease. To enhance the stride for a reliable and less invasive tool for the diagnosis and prognosis of NPC, we synopsize biomarkers belonging to the two most implicated biological domains (oncogenes and tumor suppressors) in NPC disease. Since no single biomarker is sufficient for diagnosis and prognosis, coupled with the fact that the known established methods such as methylation-specific polymerase chain reaction (PCR), multiplex methylation-specific PCR, microarray assays, etc., can only accommodate a few biomarkers, we propose a 10-biomarker panel (KIT, LMP1, PIKC3A, miR-141, and miR-18a/b (oncogenic) and p16, RASSF1A, DAP-kinase, miR-9, and miR-26a (tumor suppressors)) based on their diagnostic and prognostic values. This marker set could be explored in a multilevel or single unified assay for the diagnosis and prognosis of NPC. If carefully harnessed and standardized, it is hoped that the proposed marker set would help transform the diagnostic and prognostic realm of NPC, and ultimately, help prevent the life-threatening late-stage NPC disease.
Collapse
Affiliation(s)
- Engku Nur Syafirah E. A. R.
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Department of Biological Sciences, Microbiology Unit, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara State, Nigeria
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
19
|
MicroRNAs: Biogenesis, Functions and Potential Biomarkers for Early Screening, Prognosis and Therapeutic Molecular Monitoring of Nasopharyngeal Carcinoma. Processes (Basel) 2020. [DOI: 10.3390/pr8080966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
According to reports published, the aberrant expression of microRNAs (miRNAs), a class of 19–25 nucleotide-long small non-coding RNAs, is responsible for human cancers, including nasopharyngeal cancer (NPC). The dysregulation of miRNAs that act either as a tumor suppressor or oncogene, leading to a wide range of NPC pathogenesis pathways, includes the proliferation, invasion, migration as well as the metastasis of NPC cells. This article reviews and highlights recent advances in the studies of miRNAs in NPC, with a specific demonstration of the functions of miRNA, especially circulating miRNAs, in the pathway of NPC pathogenesis. Additionally, the possible use of miRNAs as early screening and prognostic biomarkers and for therapeutic molecular monitoring has been extensively studied.
Collapse
|
20
|
Lv B, Li F, Liu X, Lin L. The tumor-suppressive role of microRNA-873 in nasopharyngeal carcinoma correlates with downregulation of ZIC2 and inhibition of AKT signaling pathway. Cancer Gene Ther 2020; 28:74-88. [PMID: 32555352 DOI: 10.1038/s41417-020-0185-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are responsible for tumor initiation, relapse, and metastasis. Thus, residual CSCs after chemotherapy may result in poor prognosis for nasopharyngeal carcinoma (NPC). Emerging evidence suggests that differentially expressed microRNAs (miRNAs) regulate genes that carry out important functions in CSCs. Here we investigate the interaction of microRNA-873 (miR-873) with the Zic family member 2 (ZIC2) and the effects on downstream serine-threonine protein kinase (AKT) signaling pathway in CSCs in the context of NPC. Initially, microarray-based gene expression profiling identified ZIC2 as a key differentially expressed gene in NPC, which was subsequently confirmed to be upregulated in clinical NPC tissue samples. NPC cells were subjected to sphere-formation conditions in low-attachment plates, followed by sorting of CD133+ cells, which were selected as NPC stem cells after further characterization of stem cell biomarkers. ZIC2 was then shown to be enriched in NPC stem cells at both mRNA and protein levels. However, loss of ZIC2 was associated with the self-renewal, proliferative and tumorigenic properties of NPC stem cells. Next, miRNAs potentially able to target ZIC2 were predicted by the intersection of mirDIP and TargetScan database results, and miRNA miR-873 was found to be downregulated in NPC tissues in general but especially in NPC stem cells. Upregulation of miR-873 inhibited the stem-like properties and tumorigenicity of NPC stem cells, which was found to take place through downregulation of ZIC2 and disruption of the AKT signaling pathway. Collectively, the results obtained suggest that overexpression of miR-873 could aid NPC tumor suppression through reduction of the malignant potential of CSCs.
Collapse
Affiliation(s)
- Baotao Lv
- Department of Radiology, Linyi People's Hospital, 276000, Linyi, P.R. China
| | - Fuzhou Li
- Department of Radiology, Linyi People's Hospital, 276000, Linyi, P.R. China
| | - Xiaoli Liu
- Department of Psychology, Linyi Rongjun Hospital, 276003, Linyi, P.R. China
| | - Liqiang Lin
- Department of E.N.T., Linyi People's Hospital, 276000, Linyi, P.R. China.
| |
Collapse
|
21
|
Clinical Theragnostic Potential of Diverse miRNA Expressions in Prostate Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2020; 12:cancers12051199. [PMID: 32397507 PMCID: PMC7281275 DOI: 10.3390/cancers12051199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Prostate cancer (PrC) is the second-most frequent cancer in men, its incidence is emerging globally and is the fifth leading cause of death worldwide. While diagnosis and prognosis of PrC have been studied well, the associated therapeutic biomarkers have not yet been investigated comprehensively. This systematic review and meta-analysis aim to evaluate the theragnostic effects of microRNA expressions on chemoresistance in prostate cancer and to analyse the utility of miRNAs as clinical theragnostic biomarkers. Methods: A systematic literature search for studies reporting miRNA expressions and their role in chemoresistance in PrC published until 2018 was collected from bibliographic databases. The evaluation of data was performed as per PRISMA guidelines for systematic review and meta-analysis. Meta-analysis was performed using a random-effects model using Comprehensive Meta-Analysis (CMA) software. Heterogeneity between studies was analysed using Cochran’s Q test, I2 and the Tau statistic. Quality assessment of the studies was performed using the Newcastle–Ottawa Scale (NOS) for the methodological assessment of cohort studies. Publication bias was assessed using Egger’s bias indicator test, Orwin and classic fail-safe N test, Begg and Mazumdar rank collection test, and Duval and Tweedie’s trim and fill methods. Findings: Out of 2909 studies retrieved, 79 studies were shortlisted and reviewed. A total of 17 studies met our eligibility criteria, from which 779 PrC patients and 17 chemotherapy drugs were examined, including docetaxel and paclitaxel. The majority of the drug regulatory genes reported were involved in cell survival, angiogenesis and cell proliferation pathways. We studied 42 miRNAs across all studies, out of which two miRNAs were found to be influencing chemosensitivity, while 21 were involved in chemoresistance. However, the remaining 19 miRNAs did not appear to have any theragnostic effects. Besides, the prognostic impact of the miRNAs was evaluated and had a pooled HR value of 1.960 with 95% CI (1.377–2.791). Interpretation: The observation of the current study depicts the significance of miRNA expression as a theragnostic biomarker in medical oncology. This review suggests the involvement of specific miRNAs as predictors of chemoresistance and sensitivity in PrC. Hence, the current systematic review and meta-analysis provide insight on the use of miRNA as PrC biomarkers, which can be harnessed as molecular candidates for therapeutic targeting.
Collapse
|
22
|
Wang Y, Zhang L, Pang Y, Song L, Shang H, Li Z, Liu Q, Zhang Y, Wang X, Li Q, Zhang Q, Liu C, Li F. MicroRNA-29 family inhibits rhabdomyosarcoma formation and progression by regulating GEFT function. Am J Transl Res 2020; 12:1136-1154. [PMID: 32269740 PMCID: PMC7137044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
The microRNA-29 family, which contains mir-29a, mir-29b, and mir-29c, can promote or resist the development of several types of tumors. However, its role in rhabdomyosarcoma (RMS) has not been determined. In this work, we detected the expression of mir-29a/b/c in RMS. Results showed that the tissues and cell lines in RMS were significantly lower than those in muscle and human skeletal muscle cells, and that these cell lines could also inhibit the proliferation, migration, and invasion and induce apoptosis of RMS cells. Dual-luciferase reporter assay and RNA immunoprecipitation verified the direct binding site between mir-29a/b/c and GEFT. Under the combined actions of mir-29a/b/c and GEFT, the former weakened the promoting effect of GEFT on RMS cells. Finally, mir-29a inhibited the tumorigenesis of subcutaneous xenografts in nude mice and inhibited the mRNA and protein expression levels of GEFT in transplanted tumors. These findings proved that mir-29 inhibits the occurrence of RMS and may be a potential molecular target.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Liang Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Yuweng Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Lingxie Song
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| | - Hao Shang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Zhenzhen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qianqian Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Yangyang Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Xiaomeng Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qianru Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qiaochu Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| |
Collapse
|
23
|
Bie LY, Li N, Deng WY, Lu XY, Guo P, Luo SX. Serum miR-191 and miR-425 as Diagnostic and Prognostic Markers of Advanced Gastric Cancer Can Predict the Sensitivity of FOLFOX Chemotherapy Regimen. Onco Targets Ther 2020; 13:1705-1715. [PMID: 32158234 PMCID: PMC7049268 DOI: 10.2147/ott.s233086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/07/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose miR-191 and miR-425 have been proved to be highly expressed in gastric carcinoma (GC). However, little research has been done on their clinical value in serum of patients with advanced GC. In addition, it is not clear whether they can be used as markers for the response and prognosis of GC patients treated with oxaliplatin combined with 5-fluorouracil and FOLFOX chemotherapy. Patients and Methods A total of 230 patients with advanced GC admitted to our hospital were selected as the study objects, all of whom received FOLFOX chemotherapy regimen. Another 100 cases of healthy subjects were included. QRT-PCR was employed to detect the serum expression of miR-191 and miR-425 in patients. Results Compared with the healthy subjects, the serum expressions of miR-191 and miR-425 in GC patients were significantly upregulated, which were correlated with differentiation degree and TNM staging, respectively. According to the ROC curve, the AUC of miR-191 and miR-425 for GC diagnosis was 0.937 and 0.901, respectively, while the AUC for differentiation degree diagnosis was 0.854 and 0.822, and that for TNM staging diagnosis was 0.860 and 0.829, respectively. The predictive AUC of miR-191 and miR-425 for chemosensitivity was 0.868 and 0.835, respectively, with a combined predictive AUC of 0.935. Low differentiation degree, high TNM staging, high miR-191 and high miR-425 expressions were independent risk factors for chemotherapy insensitivity. Differentiation degree, TNM staging, chemotherapy effect, miR-191 and miR-425 were independent influencing factors for the prognosis of GC patients. Conclusion Up-regulated expression of miR-191 and miR-425 in the serum of patients with advanced GC are effective biomarkers for the diagnosis, chemotherapy and prognosis evaluation of GC.
Collapse
Affiliation(s)
- Liang-Yu Bie
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Ning Li
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Wen-Ying Deng
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Xiao-Yu Lu
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan Province, People's Republic of China
| | - Ping Guo
- Department of Oncology, The First Affiliated Hospital of Nanyang Medical College, Nanyang 473061, People's Republic of China
| | - Su-Xia Luo
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou 450008, Henan Province, People's Republic of China
| |
Collapse
|
24
|
Sun J, Yong J, Zhang H. microRNA-93, upregulated in serum of nasopharyngeal carcinoma patients, promotes tumor cell proliferation by targeting PDCD4. Exp Ther Med 2020; 19:2579-2587. [PMID: 32256737 PMCID: PMC7086147 DOI: 10.3892/etm.2020.8520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
Deregulation of microRNAs (miRs) has been demonstrated to contribute to the development and malignant progression of nasopharyngeal carcinoma (NPC). Recently, miR-93 was reported to be significantly upregulated in NPC tissues and cell lines, and promote the proliferation, migration and invasion of NPC cells in vitro, as well as tumor growth in vivo. However, whether there is any clinical value of serum miR-93 expression in NPC still remains unclear. Therefore, the present study aimed to explore the clinical significance of serum miR-93 expression in NPC. A total of 85 serum samples from NPC patients and 30 from healthy controls were collected. Reverse transcription-quantitative polymerase chain reaction data demonstrated that the serum expression of miR-93 was significantly increased in NPC patients, when compared with those in healthy controls. Following receiving chemo-radiotherapy, the serum miR-93 levels were significantly decreased in NPC patients. Furthermore, the increased serum levels of miR-93 were significantly associated with advanced grade, clinical stage, lymph node metastasis, as well as worse 5-year overall survival of NPC patients. Furthermore, the serum miR-93 expression was demonstrated to be an independent factor for predicating the prognosis of NPC. In vitro experiments demonstrated that knockdown of miR-93 caused a decrease in NPC cell proliferation, whereas overexpression of miR-93 promoted NPC cell proliferation. PDCD4 was then identified as a direct target of miR-93 in NPC cells. Overexpression of PDCD4 significantly eliminated the promoting effects of miR-93 overexpression on NPC cell proliferation. Taken together, these findings suggest that the serum miR-93 expression could be used as a predicator for the clinical outcome of NPC patients, and suggest that miR-93 may also become a potential therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Jie Sun
- Department of Otolaryngology-Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-Senl University, Shenzhen, Guangdong 518000, P.R. China
| | - Jun Yong
- Department of Otolaryngology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Hua Zhang
- Department of Otolaryngology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| |
Collapse
|
25
|
Xiao Z, Chen S, Feng S, Li Y, Zou J, Ling H, Zeng Y, Zeng X. Function and mechanisms of microRNA-20a in colorectal cancer. Exp Ther Med 2020; 19:1605-1616. [PMID: 32104211 PMCID: PMC7027132 DOI: 10.3892/etm.2020.8432] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of cancer-associated mortality worldwide. CRC currently has no specific biomarkers to promote its diagnosis and treatment and the underlying mechanisms regulating its pathogenesis have not yet been determined. MicroRNAs (miRs) are small, non-coding RNAs that exhibit regulatory functions and have been demonstrated to serve a crucial role in the post-transcriptional regulatory processes of gene expression that is associated with cell physiology and disease progression. Recently, abnormal miR-20a expression has been identified in a number of cancers types and this has become a novel focus within cancer research. High levels of miR-20a expression have been identified in CRC tissues, serum and plasma. In a recent study, miR-20a was indicated to be present in feces and to exhibit a high sensitivity to CRC. Therefore, miR-20a may be used as a marker for CRC and an indicator that can prevent the invasive examination of patients with this disease. Changes in the expression of miR-20a during chemotherapy can be used as a biomarker for monitoring resistance to treatment. In conclusion, miR-20a exhibits the potential for clinical application as a novel diagnostic biomarker and therapeutic target for use in patients with CRC. The present study focused on the role and mechanisms of miR-20a in CRC.
Collapse
Affiliation(s)
- Zheng Xiao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shi Chen
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shujun Feng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yukun Li
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui Ling
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ying Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China.,School of Nursing, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
26
|
Wang J, Xu Y, Wang J, Ying H. Circulating miR-214-3p predicts nasopharyngeal carcinoma recurrence or metastasis. Clin Chim Acta 2020; 503:54-60. [PMID: 31926154 DOI: 10.1016/j.cca.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Due to the remarkably stable form in the bloodstream, circulating microRNAs (miRNAs) are indicated as promising novel minimally invasive biomarkers in many cancers. However, available data of miRNAs in nasopharyngeal carcinoma (NPC) are relatively limited. METHODS Based on the GEO database and previous published reports, 21 dysregulated miRNAs were selected for screening via microarray analysis (20 NPC samples vs 10 controls). Dysregulated miRNAs were then detected and verified by the method of quantitative reverse transcription-polymerase chain reaction (qRT-PCR) in the training and validation sets. The candidate miR-214-3p was then evaluated in the evaluation set, including the association between miR-214-3p and clinicopathological characteristics, dynamic changes in NPC patients and the predictive value for NPC recurrence or metastasis. RESULTS Seven miRNAs were significantly altered in comparison with healthy controls by microarray analysis. MiR-214-3p was the most significantly expressed in training and validation sets by qRT-PCR. Plasma miR-214-3p expressions were significantly associated with UICC stages and NPC recurrence or metastasis. Plasma miR-214-3p expressions showed a gradual decrease during the follow-up after treatment in NPC patients. Patients with recurrence or metastasis were always accompanied with higher levels of plasma miR-214-3p at the same time point. High pretreatment miR-214-3p expression (≥3.12) was significantly associated with NPC recurrence or metastasis by log-rank test using Kaplan-Meier survival curve analysis (P = 0.006). CONCLUSIONS Circulating miR-214-3p can serve as a noninvasive biomarker for the prediction of recurrence or metastasis in NPC patients.
Collapse
Affiliation(s)
- Jianfeng Wang
- Department and Institution: Department of Otolaryngology, HwaMei Hospital, University of Chinese Academy of Sciences, China
| | - Yi Xu
- Department and Institution: Department of Otolaryngology, HwaMei Hospital, University of Chinese Academy of Sciences, China.
| | - Jiyun Wang
- Department and Institution: Department of Otolaryngology, HwaMei Hospital, University of Chinese Academy of Sciences, China
| | - Haiyue Ying
- Department and Institution: Department of Otolaryngology, HwaMei Hospital, University of Chinese Academy of Sciences, China.
| |
Collapse
|
27
|
Powrózek T, Porgador A, Małecka-Massalska T. Detection, prediction, and prognosis: blood circulating microRNA as novel molecular markers of head and neck cancer patients. Expert Rev Mol Diagn 2019; 20:31-39. [DOI: 10.1080/14737159.2020.1699062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Lublin, Poland
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
28
|
Combined identification of three miRNAs in serum as effective diagnostic biomarkers for HNSCC. EBioMedicine 2019; 50:135-143. [PMID: 31780396 PMCID: PMC6921333 DOI: 10.1016/j.ebiom.2019.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is a disastrous disease with substantial morbidity and mortality. This study aims to explore the effective diagnostic and prognostic biomarkers for HNSCC. Methods: MiRNA expression data and corresponding clinical information of HNSCC from The Cancer Genome Atlas (TCGA) database were analyzed comprehensively to identify the miRNAs with diagnostic and prognostic power. The predictive ability of different classifications was analyzed for the three-miRNA combinations. Diagnostic and prognostic value were then evaluated and verified in clinical patients. Findings: 128 differentially expressed miRNAs in HNSCC tissues were identified in the TCGA dataset, and 10 miRNAs were finally selected for further study. Classification analysis developed a three-miRNA signature of hsa-mir-383, hsa-mir-615, and hsa-mir-877 with the best diagnosis power, which was verified in validation patients. Survival analysis indicated that different expression levels of hsa-mir-383, rather than that of hsa-mir-615 or hsa-mir-877 led to significantly different survival rates in both cohorts. Furthermore, the multivariate Cox hazards analysis suggested that the microRNA signature yielded statistical significance to predict clinical outcome independently from other clinical variables in validation patients. Interpretation: A three-miRNA signature of hsa-mir-383, hsa-mir-615, and hsa-mir-877 may serve as an excellent diagnostic biomarker for HNSCC, and potential prognostic significance for HNSCC patients. Funding: This work was supported by the grants of the National Natural Science Foundation of China (81901021), Key Research and Development Program of Shandong (2019GSF108277), China postdoctoral Scinence Foundation Grant (2019M652380), Fundamental Research Funds of Shandong University (2018CJ047).
Collapse
|
29
|
Zhong Q, Chen Y, Chen Z. LncRNA MINCR regulates irradiation resistance in nasopharyngeal carcinoma cells via the microRNA-223/ZEB1 axis. Cell Cycle 2019; 19:53-66. [PMID: 31760895 PMCID: PMC6927709 DOI: 10.1080/15384101.2019.1692176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence suggests long non-coding RNA (lncRNA) could sponge microRNAs (miRs) and monitor gene expression. In this study, we intended to search the network involving lncRNA MINCR/miR-223/ZEB1 in nasopharyngeal carcinoma (NPC) cell radiosensitivity. MINCR expression in NPC tissues, precancerous lesions and chronic nasopharyngeal mucosal inflammation tissues, and in NP460, CNE2 and CNE2R cells was detected. The associations between MINCR expression and prognosis and radiotherapy efficacy of NPC patients were evaluated. The interactions among MINCR, miR-223 and ZEB1 were verified via dual luciferase reporter gene assay, RNA pull-down and FISH assays. The gain- and loss-of-functions were performed to explore their effects on NPC cell viability, apoptosis and radiosensitivity. Levels of MINCR, miR-223, ZEB1, and AKT/PI3K-related proteins were detected after different treatments. An in vivo analysis was carried out in nude mice. Consequently, MINCR was upregulated in NPC, and linked with worse prognosis and radiotherapy efficacy. MINCR intervention weakened NPC cell radioresistance. MINCR sponged miR-223 to regulate ZEB1. Inactivating AKT eliminated the increased radioresistance of CNE2 cells induced by overexpressing MINCR. Briefly, MINCR diminished NPC cell radiosensitivity by sponging miR-223, increasing ZEB1 and activating the AKT/PI3K axis. This study may offer novel insight for NPC treatment.
Collapse
Affiliation(s)
- Qingmu Zhong
- Department of Radiation Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Yifeng Chen
- Department of Pathology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Zilong Chen
- Department of Radiation Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, P.R. China
| |
Collapse
|
30
|
Circulating MicroRNAs as Prognostic Molecular Biomarkers in Human Head and Neck Cancer: A Systematic Review and Meta-Analysis. DISEASE MARKERS 2019; 2019:8632018. [PMID: 31827646 PMCID: PMC6885815 DOI: 10.1155/2019/8632018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/08/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023]
Abstract
Background Circulating microRNAs (miRNAs) are potential molecular biomarkers for cancer detection; however, little is known about their prognostic role in head and neck cancer. This current study is aimed at evaluating the role of novel miRNAs in the survival of head and neck cancer patients. Materials and Methods We performed a systematic literature search using online databases for articles published between December 2006 and February 2019. A meta-analysis was conducted to assess the correlation between miRNA expressions and overall survival (OS) among the selected head and neck cancer studies. After multilevel screening by reviewers, meta-analysis was performed using hazard ratios (HR) and associated 95% confidence interval (CI) of survival to calculate a pooled effect size. Result A total of 1577 patients across 13 studies were included in the literature review, with 18 miRNAs upregulated and 4 miRNAs downregulated predicting a poor overall survival. The forest plot generated using cumulated survival data resulted in a pooled HR value of 2.943 (95% CI: 2.394-3.618) indicating a strong association of dysregulated miRNA expression with a poor outcome. Only 2 miRNAs—low levels of miR-9 and high levels of miR-483-5p—were observed in two studies, both showing a significant association with overall cancer survival. Conclusion To our knowledge, this is the first comprehensive systematic review and meta-analysis that examines the prognostic role of circulating miRNAs from blood in head and neck cancer patients. The combined effect estimates a HR across multiple studies and also supports the previous individual findings that an alteration in miRNA expression is highly associated with poor prognosis. This has the potential to use serum and/or plasma miRNAs as biomarkers and become novel tools for predicting the prognosis of head and neck cancer patients in the near future.
Collapse
|
31
|
MicroRNA expression profiling analysis in serum for nasopharyngeal carcinoma diagnosis. Gene 2019; 727:144243. [PMID: 31743768 DOI: 10.1016/j.gene.2019.144243] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Circulating microRNAs have become reliable sources of non-invasive biomarkers for cancer diagnosis. miRNA expression analysis in blood circulation for the identification of novel signatures might assist the early detection of nasopharyngeal carcinoma (NPC) patients. METHODS In the screening stage, the Exiqon miRNA qPCR panel was applied for the selection of candidate miRNAs. Serum samples taken from 208 NPC patients and 238 healthy donors (as normal controls (NCs)) were assigned to into the following three stages (training (30 NPC VS. 30 NCs), testing (138 NPC VS. 166 NCs) and external validation stage (40 NPC VS. 42 NCs)) for further confirmation of differently expressed miRNAs using qRT-PCR. The identified miRNA signatures were further explored in tissue specimens (48 NPC VS. 32 NCs) and serum-derived exosomes samples (32 NPC VS. 32 NCs). RESULTS Five miRNAs in serum including let-7b-5p, miR-140-3p, miR-192-5p, miR-223-3p and miR-24-3p were found to be significantly up-regulated in NPC patients compared to NCs. The five identified miRNAs were further combined into one panel and the areas under the receiver operating characteristic curve (AUCs) for three independent stages were 0.910 (training), 0.916 (testing) and 0.968 (external validation), respectively. miR-192-5p and miR-24-3p were consistently up-regulated in NPC tissues while let-7b-5p and miR-140-3p were conversely down-regulated. In serum-derived exosomes samples, no expression difference was observed between NPC patients and NCs. CONCLUSION A five-miRNA signature was identified in serum to be potential biomarkers for NPC detection.
Collapse
|
32
|
Genome-wide study of salivary microRNAs as potential noninvasive biomarkers for detection of nasopharyngeal carcinoma. BMC Cancer 2019; 19:843. [PMID: 31455274 PMCID: PMC6712819 DOI: 10.1186/s12885-019-6037-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Background Recent studies reported that blood-based microRNAs (miRNAs) could detect cancers and predict prognosis have opened a new field of utilizing circulating miRNAs as cancer biomarkers. In this pilot study, we conducted for the first time, to our knowledge, the evaluation of the applicability of salivary miRNAs as novel biomarkers for nasopharyngeal carcinoma (NPC) detection. Methods Microarray miRNA expression profiling was performed on saliva samples from 22 newly diagnosed NPC patients and 25 healthy controls, and 12 significantly down-regulated miRNAs were selected for quantitative real-time-PCR (qRT-PCR) validation and further analysis. Their target genes enriched by gene ontology and pathway analysis were used to construct regulatory and interaction networks. The receiver operating characteristic analyses (ROC) and logistic regression were calculated to assess discriminatory accuracy. Results Twelve dysregulated miRNAs screened by microarray that showed the same expression patterns with qRT-PCR analysis. Through bioinformatics analysis, the most prominent hub gene probably regulated by the 12 down-regulated miRNAs is found to be TP53. The ROC including the 12 miRNAs separated NPC patients from healthy controls with very high accuracy (areas under the receiver operating characteristic curve [AUC] = 0.999, sensitivity = 100.00%, specificity = 96.00%). Furthermore, if only six significantly dysregulated miRNAs were selected for the ROC analysis, the accuracy is still impressive (AUC = 0.941, sensitivity = 95.45%, specificity = 80.00%). Conclusions This study highlights the potential for salivary miRNAs as biomarkers for the detection of NPC. Meanwhile, differentially expressed miRNAs in saliva might play critical roles in NPC by regulating their target genes, which associated with some significant pathways, such as p53 signaling pathway. Electronic supplementary material The online version of this article (10.1186/s12885-019-6037-y) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Pardini B, Sabo AA, Birolo G, Calin GA. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers (Basel) 2019; 11:E1170. [PMID: 31416190 PMCID: PMC6721601 DOI: 10.3390/cancers11081170] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
The last two decades of cancer research have been devoted in two directions: (1) understanding the mechanism of carcinogenesis for an effective treatment, and (2) improving cancer prevention and screening for early detection of the disease. This last aspect has been developed, especially for certain types of cancers, thanks also to the introduction of new concepts such as liquid biopsies and precision medicine. In this context, there is a growing interest in the application of alternative and noninvasive methodologies to search for cancer biomarkers. The new frontiers of the research lead to a search for RNA molecules circulating in body fluids. Searching for biomarkers in extracellular body fluids represents a better option for patients because they are easier to access, less painful, and potentially more economical. Moreover, the possibility for these types of samples to be taken repeatedly, allows a better monitoring of the disease progression or treatment efficacy for a better intervention and dynamic treatment of the patient, which is the fundamental basis of personalized medicine. RNA molecules, freely circulating in body fluids or packed in microvesicles, have all the characteristics of the ideal biomarkers owing to their high stability under storage and handling conditions and being able to be sampled several times for monitoring. Moreover, as demonstrated for many cancers, their plasma/serum levels mirror those in the primary tumor. There are a large variety of RNA species noncoding for proteins that could be used as cancer biomarkers in liquid biopsies. Among them, the most studied are microRNAs, but recently the attention of the researcher has been also directed towards Piwi-interacting RNAs, circular RNAs, and other small noncoding RNAs. Another class of RNA species, the long noncoding RNAs, is larger than microRNAs and represents a very versatile and promising group of molecules which, apart from their use as biomarkers, have also a possible therapeutic role. In this review, we will give an overview of the most common noncoding RNA species detectable in extracellular fluids and will provide an update concerning the situation of the research on these molecules as cancer biomarkers.
Collapse
Affiliation(s)
- Barbara Pardini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy.
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Alexandru Anton Sabo
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 077120 Bucharest, Romania
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
34
|
Moody L, Dvoretskiy S, An R, Mantha S, Pan YX. The Efficacy of miR-20a as a Diagnostic and Prognostic Biomarker for Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2019; 11:cancers11081111. [PMID: 31382594 PMCID: PMC6721456 DOI: 10.3390/cancers11081111] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs have altered expression levels in various diseases and may play an important role in the diagnosis and prognosis of colorectal cancer (CRC). Methods: We systemically reviewed and quantitatively synthesized the scientific evidence pertaining to microRNA-20a (miR-20a) as a CRC biomarker. A keyword and reference search in PubMed yielded 32 studies, in which miR-20a was measured in feces, serum, or tumor tissue. Data were extracted from a total of 5014 cancer cases and 2863 controls. Results: Twenty out of 21 relevant studies found that miR-20a was upregulated in CRC patients compared to controls. Meta-analysis revealed a pooled miR-20a fold change of 2.45 (95% CI: 2.24-2.66) in CRC patients versus controls. To estimate sensitivity and specificity of miR-20a as a diagnostic biomarker of CRC, a pooled area under the receiver operating characteristic curve (AUROC) was calculated (0.70, 95% CI: 0.63-0.78). The prognostic capacity of miR-20a was assessed using hazard ratios (HRs) for the overall survival (OS). The meta-analysis estimated the pooled HR for OS to be 2.02 (95% CI: 0.90-3.14) in CRC patients with high miR-20a expression. Conclusions: miR-20a may be a valid biomarker for CRC detection but may not be a strong predictor of poor prognosis in CRC.
Collapse
Affiliation(s)
- Laura Moody
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Svyatoslav Dvoretskiy
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruopeng An
- Department of Kinesiology and Community Health, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Suparna Mantha
- Carle Physician Group, Carle Cancer Center, Carle Foundation Hospital, Urbana, IL 61802, USA
| | - Yuan-Xiang Pan
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, and Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
35
|
Kumarasamy C, Madhav MR, Sabarimurugan S, Krishnan S, Baxi S, Gupta A, Gothandam KM, Jayaraj R. Prognostic Value of miRNAs in Head and Neck Cancers: A Comprehensive Systematic and Meta-Analysis. Cells 2019; 8:cells8080772. [PMID: 31349668 PMCID: PMC6721479 DOI: 10.3390/cells8080772] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Head and Neck Cancer (HNC) is the sixth most common type of cancer across the globe, with more than 300,000 deaths each year, globally. However, there are currently no standardised molecular markers that assist in determining HNC prognosis. The literature for this systematic review and meta-analysis were sourced from multiple bibliographic databases. This review followed PRISMA guidelines. The Hazard Ratio (HR) was selected as the effect size metric to independently assess overall survival (OS), disease-free survival (DFS), and prognosis. Subgroup analysis was performed for individual highly represented miRNA. A total of 6843 patients across 50 studies were included in the systematic review and 34 studies were included in the meta-analysis. Studies across 12 countries were assessed, with China representing 36.7% of all included studies. The analysis of the survival endpoints of OS and DFS were conducted separately, with the overall pooled effect size (HR) for each being 1.825 (95% CI 1.527–2.181; p < 0.05) and 2.596 (95% CI 1.917–3.515; p < 0.05), respectively. Subgroup analysis was conducted for impact of miR-21, 200b, 155, 18a, 34c-5p, 125b, 20a and 375 on OS, and miR-21 and 34a on DFS. The pooled results were found to be statistically significant for both OS and DFS. The meta-analysis indicated that miRNA alterations can account for an 82.5% decrease in OS probability and a 159.6% decrease in DFS probability. These results indicate that miRNAs have potential clinical value as prognostic biomarkers in HNC, with miR-21, 125b, 34c-5p and 18a, in particular, showing great potential as prognostic molecular markers. Further large scale cohort studies focusing on these miRNAs are recommended to verify the clinical utility of these markers individually and/or in combination.
Collapse
Affiliation(s)
- Chellan Kumarasamy
- North Terrace Campus, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Shanthi Sabarimurugan
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Sunil Krishnan
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Siddhartha Baxi
- John Flynn Private Hospital, Genesis Cancer Care, 42 Inland Drive, Tugun, Queensland 4224, Australia
| | - Ajay Gupta
- Medical Oncology P-41, South Extension Part 2, New Delhi 110049, India
| | - K M Gothandam
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Rama Jayaraj
- College of Health and Human Sciences, Yellow 1.1.05, Ellengowan Drive, Casuarina, Darwin, Northern Territory 0909, Charles Darwin University, Australia.
| |
Collapse
|
36
|
Wen W, Mai SJ, Lin HX, Zhang MY, Huang JL, Hua X, Lin C, Long ZQ, Lu ZJ, Sun XQ, Liu SL, Yang Q, Zhu Q, Wang HY, Guo L. Identification of two microRNA signatures in whole blood as novel biomarkers for diagnosis of nasopharyngeal carcinoma. J Transl Med 2019; 17:186. [PMID: 31159814 PMCID: PMC6547589 DOI: 10.1186/s12967-019-1923-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Early diagnosis is critical to reduce the mortality caused by nasopharyngeal carcinoma (NPC). MicroRNAs (miRNAs) are dysregulated and play important roles in carcinogenesis. Therefore, this study aimed to identify diagnostically relevant circulating miRNA signatures in patients with NPC. Methods Total RNA was extracted from whole blood samples obtained from 120 patients with NPC, 30 patients with head-neck tumors (HNT), and 30 healthy subjects (HSs), and examined by using a custom microarray. The expression levels of four miRNAs identified by using the microarray were validated with quantitative real-time reverse transcription polymerase chain reaction. The 120 patients with NPC and 30 HSs were randomly assigned to training group-1 and validation group-1, respectively. By using significance analysis of microarray (SAM), the specific miRNA expression profiles in whole blood from patients with NPC are obtained. By using lasso regression and adaptive boosting, a diagnostic signature was identified in training group-1, and its accuracy was verified in validation group-1. By using the same methods, another signature to distinguish patients with NPC from those with HNT and HSs was identified in training group-2 and confirmed in validation group-2. Results There were 117 differentially expressed miRNAs (upregulated and downregulated fold change ≥ 1.5) between the patients with NPC and HSs, among which an 8-miRNA signature was identified with 96.43% sensitivity and 100% specificity [area under the curve (AUC) = 0.995] to diagnose NPC in training group-1 and 86.11% sensitivity and 88.89% specificity (AUC = 0.941) in validation group-1. Compared with traditional Epstein–Barr virus (EBV) seromarkers, this signature was more specific for NPC. Furthermore, a 16-miRNA signature to differentiate NPC from HNT and HS (HNT-HS) was established from 164 differentially expressed miRNAs, which diagnosed NPC and HNT-HS with 100% accuracy (AUC = 1.000) in training group-2 and 87.04% (AUC = 0.924) in validation group-2. Conclusions The present study identified two miRNA signatures for the highly accurate diagnosis and differential diagnosis of patients with NPC from HSs and patients with HNT. The identified miRNAs might represent novel serological biomarkers and potential therapeutic targets for NPC. Electronic supplementary material The online version of this article (10.1186/s12967-019-1923-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen Wen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Shi-Juan Mai
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Huan-Xin Lin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jia-Ling Huang
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xin Hua
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chao Lin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhi-Qing Long
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zi-Jian Lu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiao-Qing Sun
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Sai-Lan Liu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Qi Yang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Radiotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Qian Zhu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Ling Guo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China. .,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
37
|
Lucas Grzelczyk W, Szemraj J, Kwiatkowska S, Józefowicz-Korczyńska M. Serum expression of selected miRNAs in patients with laryngeal squamous cell carcinoma (LSCC). Diagn Pathol 2019; 14:49. [PMID: 31138255 PMCID: PMC6540364 DOI: 10.1186/s13000-019-0823-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/10/2019] [Indexed: 12/18/2022] Open
Abstract
Background The aim of the present study was to identify specific serum miRNAs (preoperative serum samples compared to healthy controls) as potential diagnostic markers for detection in laryngeal squamous cell carcinoma (LSCC). Serum samples obtained from 66 patients with LSCC were compared with 100 healthy control subjects. Additionally, miRNA levels were evaluated to identify possible correlations with clinicopathological features. Methods The expression of 377 miRNAs (screening set) was evaluated by microarray screening. The most differentially expressed miRNAs were validated by high-throughput real-time quantitative polymerase chain reaction (RT-qPCR) in the group of LSCC patients and healthy controls. Receiver-operator characteristic (ROC) curve analysis was conducted to evaluate the diagnostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). Results According to the array analysis, eleven miRNAs revealed an altered expression profile. The levels of serum expression of miR-31, miR-141, miR-149a, miR-182, LET-7a, miR-4853p, miR-122 and miR-33 were up-regulated, and those of miR-145, miR-223 and miR-133a down-regulated, in the LSCC group compared to healthy controls. ROC curve analyses revealed an AUC (area under the ROC curve) of 1.00 (95%Cl: 0.999–1.00; P < 0.001) for miR-31 and LET-7a, 1.00 (95%Cl: 1.00–1.00; P < 0.001) for miR-33 respectively, indicating that these three miRNAs had an additive effect regarding diagnostic value. No statistically significant differences were found between the serum levels of these eleven miRNAs and the tested clinicopathological features. Conclusion Our findings outline a distinct miRNA expression profile in laryngeal cancer (LC) cases which can be used to diagnose LSCC patients with high sensitivity and specificity. Particular miRNA signatures (miR-31, LET-7a and miR-33) may be considered as novel, non-invasive biomarkers for LC diagnosis. Trial registration Registration number: RNN/203/13/KE. Date of registration 18.06.2013r.
Collapse
Affiliation(s)
- Weronika Lucas Grzelczyk
- Department of Otolaryngology, Medical University of Lodz, Norbert Barlicki Memorial Teaching Hospital, Lodz, Poland.
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Sylwia Kwiatkowska
- Department of Pneumonology, Norbert Barlicki Memorial Teaching Hospital, Lodz, Poland
| | | |
Collapse
|
38
|
Fan CM, Wang JP, Tang YY, Zhao J, He SY, Xiong F, Guo C, Xiang B, Zhou M, Li XL, Li Y, Li GY, Xiong W, Zeng ZY. circMAN1A2 could serve as a novel serum biomarker for malignant tumors. Cancer Sci 2019; 110:2180-2188. [PMID: 31046163 PMCID: PMC6609809 DOI: 10.1111/cas.14034] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/13/2022] Open
Abstract
Novel diagnostic and prognostic biomarkers of cancers are needed to improve precision medicine. Circular RNAs act as important regulators in cancers at the transcriptional and posttranscriptional levels. The circular RNA circMAN1A2 is highly expressed in nasopharyngeal carcinoma according to our previous RNA sequencing data; however, the expression and functions of circMAN1A2 in cancers are still obscure. Therefore, in this study, we evaluated the expression of circMAN1A2 in the sera of patients with nasopharyngeal carcinoma and other malignant tumors and analyzed its correlations with clinical features and diagnostic values. The expression levels of circMAN1A2 were detected by quantitative real-time PCR, and the correlations of clinical features with circMAN1A2 expression were analyzed by χ2 tests. Receiver operating characteristic curves were used to evaluate the clinical applications of circMAN1A2. The results showed that circMAN1A2 was upregulated in nasopharyngeal carcinoma, oral cancer, thyroid cancer, ovarian cancer, and lung cancer, with areas under the curves of 0.911, 0.779, 0.734, 0.694, and 0.645, respectively, indicating the good diagnostic value of circMAN1A2. Overall, our findings suggested that circMAN1A2 could be a serum biomarker for malignant tumors, providing important insights into diagnostic approaches for malignant tumors. Further studies are needed to elucidate the mechanisms of circMAN1A2 in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Chun-Mei Fan
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Peng Wang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yan-Yan Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jin Zhao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Shu-Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xiao-Ling Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gui-Yuan Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Yang Zeng
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Dharmawardana N, Ooi EH, Woods C, Hussey D. Circulating microRNAs in head and neck cancer: a scoping review of methods. Clin Exp Metastasis 2019; 36:291-302. [PMID: 30877500 DOI: 10.1007/s10585-019-09961-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/06/2019] [Indexed: 12/15/2022]
Abstract
Circulating microRNAs have been described as head and neck cancer biomarkers in multiple anatomical subsites including the oral cavity, nasopharynx, larynx, salivary glands and the skin. While there is an expanding volume of published literature showing the significance of individual or panels of microRNAs, the clinical validation of candidate biomarkers is lacking. The various methods used to collect, store, process and interpret these microRNAs are likely introducing bias and contributing to the inconsistent results. A systematic scoping review was conducted using PRISMA standards to identify published English literature between 2007 and 2018. Pubmed and EMBASE databases were searched using specific keyword combinations related to head and neck cancer, circulating samples (whole blood, plasma or serum) and microRNA. Following the title and abstract review, two primary authors appraised the articles for their suitability to include in the review based on the detail of methodological descriptions. Thirty suitable articles were identified relating to nasopharyngeal carcinoma, oral cavity, oropharyngeal and laryngeal squamous cell carcinoma as well as primary salivary gland malignancies. Comprehensive methodological analysis identified poor reporting of detailed methodology, variations in collection, storage, pre-processing, RNA isolation and relative quantification including normalisation method. We recommend standardising the pre-processing, RNA isolation, normalisation and relative quantitation steps at biomarker discovery phase. Such standardisation would allow for bias minimisation and effective progression into clinical validation phases.
Collapse
Affiliation(s)
- Nuwan Dharmawardana
- Department of Otorhinolaryngology-Head and Neck Surgery, Flinders Medical Centre, Bedford Park, Australia.
- Discipline of Surgery, College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
| | - Eng Hooi Ooi
- Department of Otorhinolaryngology-Head and Neck Surgery, Flinders Medical Centre, Bedford Park, Australia
- Discipline of Surgery, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Charmaine Woods
- Department of Otorhinolaryngology-Head and Neck Surgery, Flinders Medical Centre, Bedford Park, Australia
- Discipline of Surgery, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Damian Hussey
- Discipline of Surgery, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|
40
|
Sabarimurugan S, Kumarasamy C, Baxi S, Devi A, Jayaraj R. Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in nasopharyngeal carcinoma. PLoS One 2019; 14:e0209760. [PMID: 30735523 PMCID: PMC6368411 DOI: 10.1371/journal.pone.0209760] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nasopharyngeal cancer (NPC), despite being one of the most malignant head and neck carcinomas (HNC), lacks comprehensive prognostic biomarkers that predict patient survival. Therefore, this systematic review and meta-analysis is aimed to evaluate the potential prognostic value of miRNAs as prognostic biomarkers in NPC. METHODS PRISMA guidelines were used to conduct this systematic review and meta-analysis study. Permutations of multiple "search key-words" were used for the search strategy, which was limited to articles published between January 2012 and March 2018. The retrieved articles were meticulously searched with multi-level screening by two reviewers and confirmed by other reviewers. Meta-analysis was performed using Hazard Ratios (HR) and associated 95% Confidence Interval (CI) of survival obtained from previously published studies. Publication bias was assessed by Egger's bias indicator test and funnel plot symmetry. RESULTS A total of 5069 patients across 21 studies were considered eligible for inclusion in the systematic review, with 65 miRNAs being evaluated in the subsequent meta-analysis. Most articles included in this study originated from China and one study from North Africa. The forest plot was generated using cumulated survival data, resulting in a pooled HR value of 1.196 (95% CI: 0.893-1.601) indicating that the upregulated miRNAs increased the likelihood of death of NPC patients by 19%. CONCLUSION To our knowledge, this is the first meta-analysis that examines the prognostic effectiveness of miRNAs as biomarkers in NPC patients. We noted that the combined effect estimate of HR across multiple studies indicated that increased miRNA expression in NPC potentially leads to poor overall survival. However, further large-scale prospective studies on the clinical significance of the miRNAs, with sizable cohorts are necessary in order to obtain conclusive results.
Collapse
Affiliation(s)
- Shanthi Sabarimurugan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Chellan Kumarasamy
- University of Adelaide, North Terrace Campus, Adelaide South Australia, Australia
| | | | - Arikketh Devi
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattangulathur, Tamilnadu, India
| | - Rama Jayaraj
- Clinical Sciences, College of Health and Human Sciences, Charles Darwin University, Ellengowan Drive, Casuarina, Northern Territory, Australia
| |
Collapse
|
41
|
Qi Y, Wang X, Kong X, Zhai J, Fang Y, Guan X, Wang J. Expression signatures and roles of microRNAs in inflammatory breast cancer. Cancer Cell Int 2019; 19:23. [PMID: 30733644 PMCID: PMC6357482 DOI: 10.1186/s12935-018-0709-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Inflammatory breast cancer (IBC) is an infrequent but aggressive manifestation of breast cancer, which accounts for 2-4% of all breast cancer cases but responsible for 7-10% of breast cancer-related deaths, and with a 20-30% 10-year overall survival compared with 80% for patients with non-IBC with an unordinary phenotype, whose molecular mechanisms are still largely unknown to date. Discovering and identifying novel bio-markers responsible for diagnosis and therapeutic targets is a pressing need. MicroRNAs are a class of small non-coding RNAs that are capable to post-transcriptionally regulate gene expression of genes by targeting mRNAs, exerting vital and tremendous affects in numerous malignancy-related biological processes, including cell apoptosis, metabolism, proliferation and differentiation. In this study, we review present and high-quality evidences regarding the potential applications of inflammatory breast cancer associated microRNAs for diagnosis and prognosis of this lethal disease.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiangyu Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
- Department of Laboratory Medicine, Mayo Clinic, Rochester, MN 55902 USA
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Jie Zhai
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
42
|
MicroRNA-17, MicroRNA-19b, MicroRNA-146a, MicroRNA-302d Expressions in Hepatoblastoma and Clinical Importance. J Pediatr Hematol Oncol 2019; 41:7-12. [PMID: 29889802 DOI: 10.1097/mph.0000000000001234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hepatoblastoma (HB) is the most common liver malignancy in children. The prognosis changes according to the histologic subtypes of HB. In the present study, we aimed to characterize the expression level of selected microRNAs (miRNAs) in HB as well as in histologic subtypes, and to consider the association with the prognosis. A total of 22 HB tumor samples, subtyped as fetal (n=16) and embryonal (n=6), and 10 nontumorous surrounding liver samples were evaluated in this study. Expressions of miR-17, miR-146a, miR-302d, and miR-19b were analyzed in 22 HB tumor samples and 10 nontumorous surrounding liver samples by quantitative real-time polymerase chain reaction. Lower miRNA-17 expression levels were obtained in tumor samples in comparison with nontumorous surrounding liver samples (P=0.028). Lower miRNA-17 expression was significant for predicting prognosis in HB patients (area under receiver-operator characteristic curve=0.875, P=0.044). A higher-level of miR-19b was found in embryonal samples (P=0.008). Overall and event-free survival was not found to correlate with miRNA expression levels (P>0.05). This research finds miRNA-17 and miRNA-19b expression levels can provide important data on diagnosis and prognosis in HB showing different clinical behaviors.
Collapse
|
43
|
Yin W, Shi L, Mao Y. MiR-194 regulates nasopharyngeal carcinoma progression by modulating MAP3K3 expression. FEBS Open Bio 2018; 9:43-52. [PMID: 30652073 PMCID: PMC6325580 DOI: 10.1002/2211-5463.12545] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/21/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
Despite the recent development of treatment strategies for nasopharyngeal carcinoma, the effective management of this disease remains a challenging clinical problem. A better understanding of the regulatory roles of miR‐194 and mitogen‐activated protein kinase kinase kinase 3 (MAP3K3) in the nasopharyngeal‐carcinoma‐related gene network is required to address this issue. Here, we measured relative expression of miR‐194 in human nasopharyngeal carcinoma tissues and normal epithelial tissues by quantitative real time PCR. We transfected cultured CNE‐1 and C666‐1 cells with miR‐194 mimics, and then examined the effects on cell proliferation, cell migration and invasion. Luciferase reporter assay was used to validate the putative binding between miR‐194 and MAP3K3. We then examined the effect of knockdown and overexpression of MAP3K3 on cell tumorigenesis. Expression of miR‐194 is significantly down‐regulated in nasopharyngeal carcinoma specimens and tumor cell lines when compared with normal controls. In addition, miR‐194 suppressed tumor cell proliferation and viability, as well as migration and invasion of carcinoma cells. We found that miR‐194 binds the 3′ untranslated region of MAP3K3, and knockdown of miR‐194 inhibited nasopharyngeal carcinoma cell proliferation, migration and invasion. In accordance, overexpression of MAP3K3 reversed the inhibitory effects of miR‐194 in carcinoma cells. This study suggests that expression of miR‐194 is down‐regulated in nasopharyngeal carcinoma, and that miR‐194 can directly target MAP3K3 to regulate tumor progression. Given the pivotal involvement of MAP3K3 in nasopharyngeal carcinoma development, targeting miR‐194 may be a novel strategy for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Wei Yin
- Hangzhou Cancer Hospital China
| | - Lei Shi
- Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital Affiliated to Shandong University Jinan China
| | | |
Collapse
|
44
|
Change of Circulating and Tissue-Based miR-20a in Human Cancers and Associated Prognostic Implication: A Systematic Review and Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6124927. [PMID: 30596096 PMCID: PMC6286746 DOI: 10.1155/2018/6124927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/14/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022]
Abstract
Background Previous literatures have investigated the change of miR-20a expression level in the progression of multiple cancers and its influence on patients' survival outcome, but results of now-available evidence are inconsistent. Objective To elucidate the prognostic value of circulating and tissue-based miR-20a for patients with various cancers. Methods A systematic search and review of eligible publications were carried out in three electronic databases including the Cochrane Library, PubMed, and Embase, and the methodological quality of included studies was assessed according to Newcastle-Ottawa Scale (NOS). Hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) for overall survival (OS), recurrence-free survival (RFS), disease-free survival (DFS), and progressive-free survival (PFS) of each study were pooled using a random effect model. Results In total, 24 studies involving 4186 samples of multiple cancers published in 20 articles were included in the statistical analysis. As for circulating miR-20a, five kinds of cancers containing gastric cancer, lymphoma, glioblastoma, prostate cancer, and non-small-cell lung cancer reported upregulated level in patients compared with normal healthy control, and overexpressed circulating miR-20a could confer an unfavorable factor for OS (HR = 1.71, 95% CIs: 1.43 -2.04, p < 0.01) and DFS (HR = 1.90, 95% CIs: 1.45-2.49, p < 0.01). As for tissue-based samples, 6 kinds of malignancies including colorectal cancer, salivary adenoid cystic carcinoma, gallbladder carcinoma, colon cancer, gastrointestinal cancer, and alveolar rhabdomyosarcoma revealed upregulated miR-20a expression level compared with paired nontumorous tissue, of which high expression of miR-20a was significantly associated with poor OS (HR = 2.74, 95% CIs: 1.38-5.42, p < 0.01) and DFS (HR = 2.68, 95% CIs: 1.32-5.45, p < 0.01); meanwhile, other 5 tumors containing breast cancer, cutaneous squamous cell carcinoma, hepatocellular carcinoma, oral squamous cell carcinoma, and epithelial ovarian cancer demonstrated downregulated miR-20a expression level compared with benign tissue, of which low miR-20a expression was significantly related to shorter OS (HR = 3.48, 95% CIs: 2.00-6.06, p < 0.01) and PFS/RFS (HR = 4.05, 95% CIs: 2.89-5.66, p < 0.01). Conclusion Change of circulating and tissue-based miR-20a expression possesses vital prognostic implication for human cancers. Augmented expression of circulating miR-20a predicts poor survival outcome for patients with cancers. Tissue-based miR-20a level may be upregulated or downregulated depending on cancer types; in the former condition, high expression of tissue miR-20a is a risk factor for unfavorable prognosis and in the latter condition low expression of tissue miR-20a is associated with shorter survival.
Collapse
|
45
|
Zhao CX, Zhu W, Ba ZQ, Xu HJ, Liu WD, Zhu B, Wang L, Song YJ, Yuan S, Ren CP. The regulatory network of nasopharyngeal carcinoma metastasis with a focus on EBV, lncRNAs and miRNAs. Am J Cancer Res 2018; 8:2185-2209. [PMID: 30555738 PMCID: PMC6291648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023] Open
Abstract
Metastasis of nasopharyngeal carcinoma (NPC) remains a main cause of death for NPC patients even though great advances have been made in therapeutic approaches. An in-depth study into the molecular mechanisms of NPC metastasis will help us combat NPC. Epstein-Barr virus (EBV) infection is an evident feature of nonkeratinizing NPC and is strongly associated with tumor metastasis. Recently, long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have become a hot topic of research due to their epigenetic regulatory roles in NPC metastasis. The EBV products, lncRNAs and miRNAs can target each other and share several common signaling pathways, which form an interconnected, complex molecular regulatory network. In this review, we discuss the features of this regulatory network and summarize the molecular mechanisms of NPC metastasis, focusing on EBV, lncRNAs and miRNAs with updated knowledge.
Collapse
Affiliation(s)
- Chen-Xuan Zhao
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Wei Zhu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Zheng-Qing Ba
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Hong-Juan Xu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Wei-Dong Liu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Bin Zhu
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Lei Wang
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Yu-Jia Song
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Shuai Yuan
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| | - Cai-Ping Ren
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, P. R. China
- Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South UniversityChangsha 410078, Hunan, P. R. China
| |
Collapse
|
46
|
Xu Y, Yang J, Li F, Lian G, Ouyang M. MiR-29a inhibited intestinal epithelial cells autophagy partly by decreasing ATG9A in ulcerative colitis. Anticancer Drugs 2018; 29:652-659. [PMID: 29916896 DOI: 10.1097/cad.0000000000000636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ulcerative colitis (UC), with high morbidity has become one of the fastest-growing severe illnesses in the world. Although MiR-29a is highly expressed in the tissues of UC patients, the mechanism of miR-29a involved in the specific pathogenesis of UC is not known. In this study, a GFP-light chain 3 (LC3) immunofluorescence assay was used to observe the formation of the autophagic spot; qRT-PCR and western blotting analyses were carried out to detect the expression of autophagy-related proteins, including BECN1, Autophagy-related gene (ATG)5, ATG16L, and transcription factor EB. The dual-fluorescence reporter assay was used to analyze the direct effect of miR-29a on ATG9A; experimental dextran sulfate sodium-induced colitis in mice was used to establish the UC model. Our studies showed that the overexpression of miR-29a not only suppressed the production of GFP-LC3 autophagy spots but also inhibited the level of LC3II/LC3I and upregulated the expression of P62 in HT29 and HCT116 cells. Moreover, the results showed that miR-29a directly targeted the 3'UTR region of ATG9A mRNA to suppress the activation of HT29 and HCT116 cells' autophagy. Also, overexpression of ATG9A rescued rapamycin-induced autophagy that was inhibited by overexpression of miR-29a. In addition, miR-29a also affected the expression of autophagy-related proteins (BECN1, ATG5, ATG16L1, and transcription factor EB). Notably, miR-29a was upregulated, whereas ATG9A was downregulated in the experimental dextran sulfate sodium-induced colitis in mice. In effect, this study showed that miR-29a inhibits rapamycin-induced intestinal epithelial cells' autophagy partly by decreasing ATG9A in UC. These findings may provide new insights that may help control the inflammation in UC.
Collapse
Affiliation(s)
| | - Junwen Yang
- Gastroenterology Department, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Fujun Li
- Gastroenterology Department, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Guanghui Lian
- Gastroenterology Department, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Miao Ouyang
- Gastroenterology Department, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
47
|
Zhao YG, Shi BY, Qian YY, Bai HW, Xiao L, He XY. Dynamic Expression Changes between Non-Muscle-Invasive Bladder Cancer and Muscle-Invasive Bladder Cancer. TUMORI JOURNAL 2018. [DOI: 10.1177/1778.19294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yu-gang Zhao
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Bing-yi Shi
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Ye-yong Qian
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Hong-wei Bai
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Li Xiao
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xiu-yun He
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
48
|
Pal JK, Ray SS, Cho SB, Pal SK. Fuzzy-Rough Entropy Measure and Histogram Based Patient Selection for miRNA Ranking in Cancer. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:659-672. [PMID: 27831888 DOI: 10.1109/tcbb.2016.2623605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) are known as an important indicator of cancers. The presence of cancer can be detected by identifying the responsible miRNAs. A fuzzy-rough entropy measure (FREM) is developed which can rank the miRNAs and thereby identify the relevant ones. FREM is used to determine the relevance of a miRNA in terms of separability between normal and cancer classes. While computing the FREM for a miRNA, fuzziness takes care of the overlapping between normal and cancer expressions, whereas rough lower approximation determines their class sizes. MiRNAs are sorted according to the highest relevance (i.e., the capability of class separation) and a percentage among them is selected from the top ranked ones. FREM is also used to determine the redundancy between two miRNAs and the redundant ones are removed from the selected set, as per the necessity. A histogram based patient selection method is also developed which can help to reduce the number of patients to be dealt during the computation of FREM, while compromising very little with the performance of the selected miRNAs for most of the data sets. The superiority of the FREM as compared to some existing methods is demonstrated extensively on six data sets in terms of sensitivity, specificity, and score. While for these data sets the score of the miRNAs selected by our method varies from 0.70 to 0.91 using SVM, those results vary from 0.37 to 0.90 for some other methods. Moreover, all the selected miRNAs corroborate with the findings of biological investigations or pathway analysis tools. The source code of FREM is available at http://www.jayanta.droppages.com/FREM.html.
Collapse
|
49
|
Zhao L, Fong AHW, Liu N, Cho WCS. Molecular subtyping of nasopharyngeal carcinoma (NPC) and a microRNA-based prognostic model for distant metastasis. J Biomed Sci 2018; 25:16. [PMID: 29455649 PMCID: PMC5817810 DOI: 10.1186/s12929-018-0417-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic cancer, with diverse molecular characteristics and clinical outcomes. This study aims to dissect the molecular heterogeneity of NPC, followed by the construction of a microRNA (miRNA)-based prognostic model for prediction of distant metastasis. METHODS We retrieved two NPC datasets: GSE32960 and GSE70970 as training and validation cohorts, respectively. Consensus clustering was employed for cluster discovery, and support vector machine was used to build a classifier. Finally, Cox regression analysis was applied to constructing a prognostic model for predicting risk of distant metastasis. RESULTS Three NPC subtypes (immunogenic, classical and mesenchymal) were identified that are molecularly distinct and clinically relevant, of which mesenchymal subtype (~ 36%) is associated with poor prognosis, characterized by suppressing tumor suppressor miRNAs and the activation of epithelial--mesenchymal transition. Out of the 25 most differentially expressed miRNAs in mesenchymal subtype, miR-142, miR-26a, miR-141 and let-7i have significant prognostic power (P < 0.05). CONCLUSIONS We proposed for the first time that NPC can be stratified into three subtypes. Using a panel of 4 miRNAs, we established a prognostic model that can robustly stratify NPC patients into high- and low- risk groups of distant metastasis.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China.
| | - Alvin H W Fong
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Na Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.
| |
Collapse
|
50
|
Dynamic Changes in Plasma MicroRNAs Have Potential Predictive Values in Monitoring Recurrence and Metastasis of Nasopharyngeal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7329195. [PMID: 29581984 PMCID: PMC5822900 DOI: 10.1155/2018/7329195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/03/2017] [Accepted: 10/15/2017] [Indexed: 12/14/2022]
Abstract
Although circulating microRNAs (miRNAs) have already proven to be useful as diagnostic and prognostic biomarkers in nasopharyngeal carcinoma (NPC), the potential of these molecules to monitor patients over time has been less explored. This study aimed to analyze dynamic changes in plasma miRNAs before and after treatment and explore their clinical significance in monitoring recurrence and metastasis of NPC. Candidate miRNAs were screened by microarray analysis and validated by real-time quantitative polymerase chain reaction (RT-qPCR). In the follow-up cohort including 102 patients, blood samples (plasma) were collected before the treatment initiation, 3 months, 6 months, and 12 months after treatments, and at the time of any recurrence or metastasis. Among these plasma miRNAs, miR-9-3p, miR-124-3p, miR-892b, and miR-3676-3p were significantly upregulated (P = 0.018, P = 0.039, P = 0.001, and P = 0.01, resp.) after treatment compared with pretreatment, and the four plasma miRNAs were downregulated again at recurrence or metastasis (P < 0.001, P = 0.015, P = 0.003, and P = 0.026, resp.). The dynamic changes in plasma miRNAs after treatment reflect the outcome of the disease and have the potential to monitor recurrence and metastasis in patients with NPC.
Collapse
|