1
|
Rawal HC, Ali S, Mondal TK. Role of non-coding RNAs against salinity stress in Oryza species: Strategies and challenges in analyzing miRNAs, tRFs and circRNAs. Int J Biol Macromol 2023; 242:125172. [PMID: 37268077 DOI: 10.1016/j.ijbiomac.2023.125172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Salinity is an imbalanced concentration of mineral salts in the soil or water that causes yield loss in salt-sensitive crops. Rice plant is vulnerable to soil salinity stress at seedling and reproductive stages. Different non-coding RNAs (ncRNAs) post-transcriptionally regulate different sets of genes during different developmental stages under varying salinity tolerance levels. While microRNAs (miRNAs) are well known small endogenous ncRNAs, tRNA-derived RNA fragments (tRFs) are an emerging class of small ncRNAs derived from tRNA genes with a demonstrated regulatory role, like miRNAs, in humans but unexplored in plants. Circular RNA (circRNA), another ncRNA produced by back-splicing events, acts as target mimics by preventing miRNAs from binding with their target mRNAs, thereby reducing the miRNA's action upon its target. Same may hold true between circRNAs and tRFs. Hence, the work done on these ncRNAs was reviewed and no reports were found for circRNAs and tRFs under salinity stress in rice, either at seedling or reproductive stages. Even the reports on miRNAs are restricted to seedling stage only, in spite of severe effects on rice crop production due to salt stress during reproductive stage. Moreover, this review sheds light on strategies to predict and analyze these ncRNAs in an effective manner.
Collapse
Affiliation(s)
- Hukam Chand Rawal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India; School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Shakir Ali
- School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India.
| |
Collapse
|
2
|
Rawal HC, Ali S, Mondal TK. miRPreM and tiRPreM: Improved methodologies for the prediction of miRNAs and tRNA-induced small non-coding RNAs for model and non-model organisms. Brief Bioinform 2021; 23:6420093. [PMID: 34734232 DOI: 10.1093/bib/bbab448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/12/2022] Open
Abstract
In recent years, microRNAs (miRNAs) and tRNA-derived RNA fragments (tRFs) have been reported extensively following different approaches of identification and analysis. Comprehensively analyzing the present approaches to overcome the existing variations, we developed a benchmarking methodology each for the identification of miRNAs and tRFs, termed as miRNA Prediction Methodology (miRPreM) and tRNA-induced small non-coding RNA Prediction Methodology (tiRPreM), respectively. We emphasized the use of respective genome of organism under study for mapping reads, sample data with at least two biological replicates, normalized read count support and novel miRNA prediction by two standard tools with multiple runs. The performance of these methodologies was evaluated by using Oryza coarctata, a wild rice species as a case study for model and non-model organisms. With organism-specific reference genome approach, 98 miRNAs and 60 tRFs were exclusively found. We observed high accuracy (13 out of 15) when tested these genome-specific miRNAs in support of analyzing the data with respective organism. Such a strong impact of miRPreM, we have predicted more than double number of miRNAs (186) as compared with the traditional approaches (79) and with tiRPreM, we have predicted all known classes of tRFs within the same small RNA data. Moreover, the methodologies presented here are in standard form in order to extend its applicability to different organisms rather than restricting to plants. Hence, miRPreM and tiRPreM can fulfill the need of a comprehensive methodology for miRNA prediction and tRF identification, respectively, for model and non-model organisms.
Collapse
Affiliation(s)
- Hukam Chand Rawal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India.,School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Shakir Ali
- School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India
| |
Collapse
|
3
|
Perdiguero P, Rodrigues AS, Chaves I, Costa B, Alves A, de María N, Vélez MD, Díaz-Sala C, Cervera MT, Miguel CM. Comprehensive analysis of the isomiRome in the vegetative organs of the conifer Pinus pinaster under contrasting water availability. PLANT, CELL & ENVIRONMENT 2021; 44:706-728. [PMID: 33314160 DOI: 10.1111/pce.13976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
An increasing number of microRNAs (miRNAs) and miRNA-related sequences produced during miRNA biogenesis, comprising the isomiRome, have been recently highlighted in different species as critical mediators of environmental stress responses. Conifers have some of the largest known genomes but an extensive characterization of the isomiRome from any conifer species has been lacking. We provide here a comprehensive overview of the Pinus pinaster isomiRome expressed in roots, stem and needles under well-watered and drought conditions. From the 13,441 unique small RNA sequences identified, 2,980 were annotated as canonical miRNAs or miRNA* and the remaining were classified as isomiRNA or miRNA-like sequences. A survey of their expression patterns highlighted roots as the most responsive organ under drought, where specific sequences of which a 24-nt novel miRNA stood out, were strongly down-regulated. Given the putative roles of the miRNA-targeted transcripts validated specifically in root tissues, some of the miRNAs, conserved and novel, are shortlisted as potential regulators of drought response. These results provide a valuable resource for comparative studies between gymnosperms and angiosperms. Furthermore, it evidences high transferability of the isomiRome between pine species being a useful basis for further molecular regulation and physiological studies, and especially those focused on adaptation to drought conditions.
Collapse
Affiliation(s)
- Pedro Perdiguero
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Andreia Santos Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês Chaves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bruno Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Alves
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - María Dolores Vélez
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain
| | - María Teresa Cervera
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Célia Maria Miguel
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Bhardwaj E, Lal M, Anand S, Das S. Independent recurrent evolution of MICRORNA genes converging onto similar non-canonical organisation across green plant lineages is driven by local and segmental duplication events in species, family and lineages. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110661. [PMID: 33218629 DOI: 10.1016/j.plantsci.2020.110661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
The relationship between evolutionary history, organisation and transcriptional regulation of genes are intrinsically linked. These have been well studied in canonically organised protein-coding genes but not of MIRNAs. In the present study, we investigated the non-canonical arrangement of MIRNAs across taxonomic boundaries from algae to angiosperms employing a combination of genome organization, phylogeny and synteny. We retrieved the complete dataset of MIRNA from twenty-five species to identify and classify based on organisational patterns. The median size of cluster was between 2-5 kb and between 1-20 % of all MIRNAs are organized in head-to-head (with bidirectional promoter), head-to-tail (tandem), and overlapping manner. Although majority of the clusters are composed of MIRNA homologs, 25% of all clusters comprises of non-homologous genes with a potential of generating functional and regulatory complexity. A comparison of phylogeny and organizational patterns revealed that multiple independent events, some of which are species-specific, and some ancient, in different lineages, are responsible for non-canonical organization. Detailed investigation of MIR395 family across the plants revealed a complex origin of non-canonical arrangement through ancient and recent, segmental and local duplications; analysis of MIR399 family revealed major expansion occurred prior to monocot-dicot split, with few lineage-specific events. Evolution of "convergent" organization pattern of non-canonical arrangement originating from independent loci through recurrent event highlights our poor understanding of evolutionary process of MIRNA genes. The present investigation thus paves way for comparative functional genomics to understand the role of non-canonical organization on transcriptional regulation and regulatory diversity in MIRNA gene families.
Collapse
Affiliation(s)
- Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Mukund Lal
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - S Anand
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
5
|
Chitarra W, Pagliarani C, Abbà S, Boccacci P, Birello G, Rossi M, Palmano S, Marzachì C, Perrone I, Gambino G. miRVIT: A Novel miRNA Database and Its Application to Uncover Vitis Responses to Flavescence dorée Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1034. [PMID: 30065744 PMCID: PMC6057443 DOI: 10.3389/fpls.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 05/08/2023]
Abstract
Micro(mi)RNAs play crucial roles in plant developmental processes and in defense responses to biotic and abiotic stresses. In the last years, many works on small RNAs in grapevine (Vitis spp.) were published, and several conserved and putative novel grapevine-specific miRNAs were identified. In order to reorganize the high quantity of available data, we produced "miRVIT," the first database of all novel grapevine miRNA candidates characterized so far, and still not deposited in miRBase. To this aim, each miRNA accession was renamed, repositioned in the last version of the grapevine genome, and compared with all the novel and conserved miRNAs detected in grapevine. Conserved and novel miRNAs cataloged in miRVIT were then used for analyzing Vitis vinifera plants infected by Flavescence dorée (FD), one of the most severe phytoplasma diseases affecting grapevine. The analysis of small RNAs from healthy, recovered (plants showing spontaneous and stable remission of symptoms), and FD-infected "Barbera" grapevines showed that FD altered the expression profiles of several miRNAs, including those involved in cell development and photosynthesis, jasmonate signaling, and disease resistance response. The application of miRVIT in a biological context confirmed the effectiveness of the followed approach, especially for the identification of novel miRNA candidates in grapevine. miRVIT database is available at http://mirvit.ipsp.cnr.it. Highlights: The application of the newly produced database of grapevine novel miRNAs to the analysis of plants infected by Flavescence dorée reveals key roles of miRNAs in photosynthesis and jasmonate signaling.
Collapse
Affiliation(s)
- Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Viticultural and Enology Research Centre, Council for Agricultural Research and Economics, Conegliano, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giancarlo Birello
- Research Institute on Sustainable Economic Growth, National Research Council of Italy, Turin, Italy
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Sabrina Palmano
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
6
|
Boström AE, Ciuculete DM, Attwood M, Krattinger R, Nikontovic L, Titova OE, Kullak-Ublick GA, Mwinyi J, Schiöth HB. A MIR4646 associated methylation locus is hypomethylated in adolescent depression. J Affect Disord 2017; 220:117-128. [PMID: 28618313 DOI: 10.1016/j.jad.2017.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 05/06/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Studies of epigenetics and transcriptional activity in adolescents may provide knowledge about possible preventive strategies of depression. METHODS We present a methylome-wide association study (MWAS) and cohort validation analysis of depression in adolescents, in two separate cohorts: discovery (n=93) and validation data set 1 (n=78). The genome-wide methylation pattern was measured from whole blood using the Illumina 450K array. A second validation cohort, validation data set 2, consists of post-mortem brain biopsies from depressed adults (n=58). We performed a MWAS by robust multiple linear regressions of methylation to a modified risk-score assessment of depression. Methylation levels of candidate CpG sites were correlated with expression levels of the associated gene in an independent cohort of 11 healthy volunteers. RESULTS The methylation state of two CpG sites reliably predicted ratings of depression in adolescents (cg13227623 and cg04102384) (p<10E-06). Cohort validation analysis confirmed cg04102384 - located in the promoter region of microRNA 4646 (MIR4646) - to be hypomethylated in both validation data set 1 and validation data set 2 (p<0.05). Cg04102384 was inversely correlated to expression levels of MIR4646-3p in healthy controls (p<0.05). LIMITATIONS MIR4646 was not differentially expressed in a subset of samples with adolescent depression measured by qRT-PCR measurements. CONCLUSION We identify a specific MIR4646 associated epigenetic risk site to be associated with depression in adolescents. Cg04102384 putatively regulates gene expression of MIR4646-3p. Target gene prediction and gene set overrepresentation analysis revealed involvement of this miRNA in fatty acid elongation, a process related to omega-3 fatty acids, previously associated with depression.
Collapse
Affiliation(s)
- Adrian E Boström
- Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden..
| | - Diana-Maria Ciuculete
- Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Misty Attwood
- Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Regina Krattinger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland
| | - Lamia Nikontovic
- Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Olga E Titova
- Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Switzerland
| | - Jessica Mwinyi
- Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Division of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Ma X, Tang Z, Qin J, Meng Y. The use of high-throughput sequencing methods for plant microRNA research. RNA Biol 2016; 12:709-19. [PMID: 26016494 DOI: 10.1080/15476286.2015.1053686] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
MicroRNA (miRNA) acts as a critical regulator of gene expression at post-transcriptional and occasionally transcriptional levels in plants. Identification of reliable miRNA genes, monitoring the procedures of transcription, processing and maturation of the miRNAs, quantification of the accumulation levels of the miRNAs in specific biological samples, and validation of miRNA-target interactions become the basis for thoroughly understanding of the miRNA-mediated regulatory networks and the underlying mechanisms. Great progresses have been achieved for sequencing technology. Based on the high degree of sequencing depth and coverage, the high-throughput sequencing (HTS, also called next-generation sequencing) technology provides unprecedentedly efficient way for genome-wide or transcriptome-wide studies. In this review, we will introduce several HTS platform-based methods useful for plant miRNA research, including RNA-seq (RNA sequencing), RNA-PET-seq (paired end tag sequencing of RNAs), sRNA-seq (small RNA sequencing), dsRNA-seq (double-stranded RNA sequencing), ssRNA-seq (single-stranded RNA sequencing) and degradome-seq (degradome sequencing). In particular, we will provide some special cases to illustrate the novel use of HTS methods for investigation of the processing modes of the miRNA precursors, identification of the RNA editing sites on miRNA precursors, mature miRNAs and target transcripts, re-examination of the current miRNA registries, and discovery of novel miRNA species and novel miRNA-target interactions. Summarily, we opinioned that integrative use of the above mentioned HTS methods could make the studies on miRNAs more efficient.
Collapse
Affiliation(s)
- Xiaoxia Ma
- a College of Life and Environmental Sciences; Hangzhou Normal University ; Hangzhou , PR China
| | | | | | | |
Collapse
|
8
|
Belli Kullan J, Lopes Paim Pinto D, Bertolini E, Fasoli M, Zenoni S, Tornielli GB, Pezzotti M, Meyers BC, Farina L, Pè ME, Mica E. miRVine: a microRNA expression atlas of grapevine based on small RNA sequencing. BMC Genomics 2015; 16:393. [PMID: 25981679 PMCID: PMC4434875 DOI: 10.1186/s12864-015-1610-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background miRNAs are the most abundant class of small non-coding RNAs, and they are involved in post-transcriptional regulations, playing a crucial role in the refinement of genetic programming during plant development. Here we present a comprehensive picture of miRNA regulation in Vitis vinifera L. plant during its complete life cycle. Furthering our knowledge about the post-transcriptional regulation of plant development is fundamental to understand the biology of such an important crop. Results We analyzed 70 small RNA libraries, prepared from berries, inflorescences, tendrils, buds, carpels, stamens and other samples at different developmental stages. One-hundred and ten known and 175 novel miRNAs have been identified and a wide grapevine expression atlas has been described. The distribution of miRNA abundance reveals that 22 novel miRNAs are specific to stamen, and two of them are, interestingly, involved in ethylene biosynthesis, while only few miRNAs are highly specific to other organs. Thirty-eight miRNAs are present in all our samples, suggesting a role in key regulatory circuit. On the basis of miRNAs abundance and distribution across samples and on the estimated correlation, we suggest that miRNA expression define organ identity. We performed target prediction analysis and focused on miRNA expression analysis in berries and inflorescence during their development, providing an initial functional description of the identified miRNAs. Conclusions Our findings represent a very extensive miRNA expression atlas in grapevine, allowing the definition of how the spatio-temporal distribution of miRNAs defines organ identity. We describe miRNAs abundance in specific tissues not previously described in grapevine and contribute to future targeted functional analyses. Finally, we present a deep characterization of miRNA involvement in berry and inflorescence development, suggesting a role for miRNA-driven hormonal regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1610-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jayakumar Belli Kullan
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Daniela Lopes Paim Pinto
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Marianna Fasoli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | | | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Blake C Meyers
- Department of Plant and Soil Sciences, University of Delaware, 15 Innovation Way, 19711, Newark, DE, USA.
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, University of Rome "La Sapienza", Via Ariosto 25, 00185, Rome, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Erica Mica
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy. .,Genomics Research Centre, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Via S. Protaso 302, 29017, Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
9
|
Identification of conserved microRNAs and their targets in the model legume Lotus japonicus. J Biotechnol 2013; 164:520-4. [DOI: 10.1016/j.jbiotec.2013.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 11/19/2022]
|