1
|
Amador GJ, van Oorschot BK, Liao C, Wu J, Wei D. Functional fibrillar interfaces: Biological hair as inspiration across scales. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:664-677. [PMID: 38887525 PMCID: PMC11181169 DOI: 10.3762/bjnano.15.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Hair, or hair-like fibrillar structures, are ubiquitous in biology, from fur on the bodies of mammals, over trichomes of plants, to the mastigonemes on the flagella of single-celled organisms. While these long and slender protuberances are passive, they are multifunctional and help to mediate interactions with the environment. They provide thermal insulation, sensory information, reversible adhesion, and surface modulation (e.g., superhydrophobicity). This review will present various functions that biological hairs have been discovered to carry out, with the hairs spanning across six orders of magnitude in size, from the millimeter-thick fur of mammals down to the nanometer-thick fibrillar ultrastructures on bateriophages. The hairs are categorized according to their functions, including protection (e.g., thermal regulation and defense), locomotion, feeding, and sensing. By understanding the versatile functions of biological hairs, bio-inspired solutions may be developed across length scales.
Collapse
Affiliation(s)
- Guillermo J Amador
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, Netherlands
| | - Brett Klaassen van Oorschot
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, Netherlands
| | - Caiying Liao
- School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianing Wu
- School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Da Wei
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Litman T, Stein WD. Ancient lineages of the keratin-associated protein (KRTAP) genes and their co-option in the evolution of the hair follicle. BMC Ecol Evol 2023; 23:7. [PMID: 36941546 PMCID: PMC10029157 DOI: 10.1186/s12862-023-02107-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
BLAST searches against the human genome showed that of the 93 keratin-associated proteins (KRTAPs) of Homo sapiens, 53 can be linked by sequence similarity to an H. sapiens metallothionein and 16 others can be linked similarly to occludin, while the remaining KRTAPs can themselves be linked to one or other of those 69 directly-linked proteins. The metallothionein-linked KRTAPs comprise the high-sulphur and ultrahigh-sulphur KRTAPs and are larger than the occludin-linked set, which includes the tyrosine- and glycine-containing KRTAPs. KRTAPs linked to metallothionein appeared in increasing numbers as evolution advanced from the deuterostomia, where KRTAP-like proteins with strong sequence similarity to their mammalian congeners were found in a sea anemone and a starfish. Those linked to occludins arose only with the later-evolved mollusca, where a KRTAP homologous with its mammalian congener was found in snails. The presence of antecedents of the mammalian KRTAPs in a starfish, a sea anemone, snails, fish, amphibia, reptiles and birds, all of them animals that lack hair, suggests that some KRTAPs may have a physiological role beyond that of determining the characteristics of hair fibres. We suggest that homologues of these KRTAPs found in non-hairy animals were co-opted by placodes, formed by the ectodysplasin pathway, to produce the first hair-producing cells, the trichocytes of the hair follicles.
Collapse
Affiliation(s)
- Thomas Litman
- Department of Immunology and Microbiology, University of Copenhagen, Mærsk Tower 07-12-70 Nørre Allé 14, 2200, Copenhagen N, Denmark
| | - Wilfred D Stein
- Silberman Institute of Life Sciences, Hebrew University, 91904, Jerusalem, Israel.
| |
Collapse
|
3
|
Sarko DK, Reep RL. Parcellation in the dorsal column nuclei of Florida manatees (
Trichechus manatus latirostris
) and rock hyraxes (
Procavia capensis
) indicates the presence of body barrelettes. J Comp Neurol 2022; 530:2113-2131. [DOI: 10.1002/cne.25323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Diana K. Sarko
- Department of Anatomy Southern Illinois University School of Medicine Carbondale Illinois USA
| | - Roger L. Reep
- Department of Physiological Sciences University of Florida Gainesville Florida USA
| |
Collapse
|
4
|
Peeks M, Badarnah L. Textured Building Façades: Utilizing Morphological Adaptations Found in Nature for Evaporative Cooling. Biomimetics (Basel) 2021; 6:24. [PMID: 33805505 PMCID: PMC8103249 DOI: 10.3390/biomimetics6020024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The overheating of buildings and their need for mechanical cooling is a growing issue as a result of climate change. The main aim of this paper is to examine the impact of surface texture on heat loss capabilities of concrete panels through evaporative cooling. Organisms maintain their body temperature in very narrow ranges in order to survive, where they employ morphological and behavioral means to complement physiological strategies for adaptation. This research follows a biomimetic approach to develop a design solution. The skin morphology of elephants was identified as a successful example that utilizes evaporative cooling and has, therefore, informed the realization of a textured façade panel. A systematic process has been undertaken to examine the impact of different variables on the cooling ability of the panels, bringing in new morphological considerations for surface texture. The results showed that the morphological variables of assembly and depth of texture have impact on heat loss, and the impact of surface area to volume (SA:V) ratios on heat loss capabilities varies for different surface roughness. This study demonstrates the potential exploitation of morphological adaptation to buildings, that could contribute to them cooling passively and reduce the need for expensive and energy consuming mechanical systems. Furthermore, it suggests areas for further investigation and opens new avenues for novel thermal solutions inspired by nature for the built environment.
Collapse
Affiliation(s)
- Megan Peeks
- The Department of Architecture and the Built Environment, Faculty of Environment and Technology, University of the West of England, Bristol BS16 1QY, UK;
| | | |
Collapse
|
5
|
Pokharel SS, Yoneda H, Yanagi M, Sukumar R, Kinoshita K. The tail-tale of stress: an exploratory analysis of cortisol levels in the tail-hair of captive Asian elephants. PeerJ 2021; 9:e10445. [PMID: 33505782 PMCID: PMC7789861 DOI: 10.7717/peerj.10445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/07/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Assessment of physiological states by measuring biomarkers, such as cortisol, has significantly contributed to the monitoring of health, welfare and management of animals. Immunoreactive cortisol in hair (hC) has been used widely for deciphering 'stressful' past-events in various wild and captive animals. However, no such studies have been done in long-lived mammals. METHODS In this first exploratory study in elephants, we assessed (i) tail-hair growth rate (TGR) and (ii) hC levels in tail-hair samples from six captive Asian elephants from two zoos in Japan for comparing hC levels with zoo-keepers' records of distinct biological events over a c.0.5-2.0-year period. Tail-hair samples were cut into segments (based on monthly growth rate), pulverized or minced and a validated cortisol enzyme-immunoassay employed to measure hC levels. RESULTS When the hC levels of all individuals were compared with the keepers' records, a posteriori, most of the high hC levels were found to be associated with 'stressful' or distinct behavioural events such as pathological (anaemia, colic infection, skin infection, oral sores), psychosocial (reluctance in entering the enclosure, presence of a calf) and husbandry practice-related (contact trials/ space sharing) conditions, indicating that tail-hair indeed can be a potential 'retrospective' calendar of physiological health of an animal. CONCLUSIONS Our observations open up the possibility of using the tail-hair as an alternative matrix to reconstruct the physiological history of elephants.
Collapse
Affiliation(s)
- Sanjeeta Sharma Pokharel
- Wildlife Research Center, Kyoto University, Kyoto, Japan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Moe Yanagi
- Wildlife Research Center, Kyoto University, Kyoto, Japan
| | - Raman Sukumar
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
- Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
6
|
Guibinga Mickala A, Ntie S, Nicolas V. Distinguishing Central African rodents and shrews using their hair morphology. Afr J Ecol 2020. [DOI: 10.1111/aje.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Amour Guibinga Mickala
- Laboratoire de Biologie Moléculaire et Cellulaire (LABMC) Département de Biologie Université des Sciences et Techniques de Masuku (USTM) Franceville Gabon
| | - Stephan Ntie
- Laboratoire de Biologie Moléculaire et Cellulaire (LABMC) Département de Biologie Université des Sciences et Techniques de Masuku (USTM) Franceville Gabon
| | - Violaine Nicolas
- Institut de Systématique Evolution Biodiversité (ISYEB) Muséum national d'Histoire naturelleCNRSSorbonne UniversitéEPHE Paris France
| |
Collapse
|
7
|
Xiang C, Guo J, Sun R, Hinitt A, Helps T, Taghavi M, Rossiter J. Electroactive Textile Actuators for Breathability Control and Thermal Regulation Devices. Polymers (Basel) 2019; 11:E1199. [PMID: 31323744 PMCID: PMC6680543 DOI: 10.3390/polym11071199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/03/2019] [Accepted: 07/16/2019] [Indexed: 11/17/2022] Open
Abstract
Smart fabrics offer the potential for a new generation of soft robotics and wearable technologies through the fusion of smart materials, textiles and electrical circuitries. Conductive and stretchable textiles have inherent compliance and low resistance that are suitable for driving artificial muscle actuators and are potentially safer electrode materials for soft actuation technologies. We demonstrate how soft electroactive actuating structures can be designed and fabricated from conducting textiles. We first quantitatively analyse a range of stretchable conductive textiles for dielectric elastomer actuators (DEAs). We found that conductive-knit textiles are more suitable for unidirectional DEA applications due to the largest difference (150%) in principle strain axes, whereas isotropic textiles are more suited to bidirectional DEA applications due to the smallest (11.1%) principle strain difference. Finally, we demonstrate controllable breathability through a planar e-textile DEA-driven skin and show thermal regulation in a wearable prototype that exploits soft actuation and kirigami.
Collapse
Affiliation(s)
- Chaoqun Xiang
- SoftLab, Bristol Robotics Laboratory, University of Bristol, Bristol BS16 1QY, UK
| | - Jianglong Guo
- SoftLab, Bristol Robotics Laboratory, University of Bristol, Bristol BS16 1QY, UK.
| | - Rujie Sun
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol BS8 1TR, UK
| | - Andrew Hinitt
- SoftLab, Bristol Robotics Laboratory, University of Bristol, Bristol BS16 1QY, UK
| | - Tim Helps
- SoftLab, Bristol Robotics Laboratory, University of Bristol, Bristol BS16 1QY, UK
| | - Majid Taghavi
- SoftLab, Bristol Robotics Laboratory, University of Bristol, Bristol BS16 1QY, UK
| | - Jonathan Rossiter
- SoftLab, Bristol Robotics Laboratory, University of Bristol, Bristol BS16 1QY, UK
| |
Collapse
|
8
|
Thaker M, Gupte PR, Prins HHT, Slotow R, Vanak AT. Fine-Scale Tracking of Ambient Temperature and Movement Reveals Shuttling Behavior of Elephants to Water. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
McCafferty DJ, Pandraud G, Gilles J, Fabra-Puchol M, Henry PY. Animal thermoregulation: a review of insulation, physiology and behaviour relevant to temperature control in buildings. BIOINSPIRATION & BIOMIMETICS 2017; 13:011001. [PMID: 29130885 DOI: 10.1088/1748-3190/aa9a12] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Birds and mammals have evolved many thermal adaptations that are relevant to the bioinspired design of temperature control systems and energy management in buildings. Similar to many buildings, endothermic animals generate internal metabolic heat, are well insulated, regulate their temperature within set limits, modify microclimate and adjust thermal exchange with their environment. We review the major components of animal thermoregulation in endothermic birds and mammals that are pertinent to building engineering, in a world where climate is changing and reduction in energy use is needed. In animals, adjustment of insulation together with physiological and behavioural responses to changing environmental conditions fine-tune spatial and temporal regulation of body temperature, while also minimizing energy expenditure. These biological adaptations are characteristically flexible, allowing animals to alter their body temperatures to hourly, daily, or annual demands for energy. They exemplify how buildings could become more thermally reactive to meteorological fluctuations, capitalising on dynamic thermal materials and system properties. Based on this synthesis, we suggest that heat transfer modelling could be used to simulate these flexible biomimetic features and assess their success in reducing energy costs while maintaining thermal comfort for given building types.
Collapse
Affiliation(s)
- D J McCafferty
- Mécanismes Adaptatifs et Evolution (MECADEV UMR 7179), Sorbonne Universités, Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, 1 avenue du Petit Château, 91800 Brunoy, France
| | | | | | | | | |
Collapse
|
10
|
Nam K, Lee KW, Chung O, Yim HS, Cha SS, Lee SW, Jun J, Cho YS, Bhak J, Magalhães JPD, Lee JH, Jeong JY. Analysis of the FGF gene family provides insights into aquatic adaptation in cetaceans. Sci Rep 2017; 7:40233. [PMID: 28074842 PMCID: PMC5225608 DOI: 10.1038/srep40233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/02/2016] [Indexed: 11/23/2022] Open
Abstract
Cetacean body structure and physiology exhibit dramatic adaptations to their aquatic environment. Fibroblast growth factors (FGFs) are a family of essential factors that regulate animal development and physiology; however, their role in cetacean evolution is not clearly understood. Here, we sequenced the fin whale genome and analysed FGFs from 8 cetaceans. FGF22, a hair follicle-enriched gene, exhibited pseudogenization, indicating that the function of this gene is no longer necessary in cetaceans that have lost most of their body hair. An evolutionary analysis revealed signatures of positive selection for FGF3 and FGF11, genes related to ear and tooth development and hypoxia, respectively. We found a D203G substitution in cetacean FGF9, which was predicted to affect FGF9 homodimerization, suggesting that this gene plays a role in the acquisition of rigid flippers for efficient manoeuvring. Cetaceans utilize low bone density as a buoyancy control mechanism, but the underlying genes are not known. We found that the expression of FGF23, a gene associated with reduced bone density, is greatly increased in the cetacean liver under hypoxic conditions, thus implicating FGF23 in low bone density in cetaceans. Altogether, our results provide novel insights into the roles of FGFs in cetacean adaptation to the aquatic environment.
Collapse
Affiliation(s)
- Kiwoong Nam
- INRA, UMR 1333 Diversité, Génomes &Interactions Microorganismes-Insectes, 2 place E. Bataillon, 34095 Montpellier, France.,Université Montpellier, 2 place E. Bataillon, 34095 Montpellier, France
| | - Kyeong Won Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeanro 787, Ansan 15627, Republic of Korea
| | - Oksung Chung
- Personal Genomics Institute, Genome Research Foundation, Osong 28160, Republic of Korea
| | - Hyung-Soon Yim
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeanro 787, Ansan 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon 306-350, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sae-Won Lee
- Biomedical Research Institute and IRICT, Seoul National University Hospital, Seoul 110-744, Republic of Korea
| | - JeHoon Jun
- Personal Genomics Institute, Genome Research Foundation, Osong 28160, Republic of Korea
| | - Yun Sung Cho
- Personal Genomics Institute, Genome Research Foundation, Osong 28160, Republic of Korea.,The Genomics Institute, Biomedical Engineering Department, UNIST, Ulsan 44919, Republic of Korea
| | - Jong Bhak
- Personal Genomics Institute, Genome Research Foundation, Osong 28160, Republic of Korea.,The Genomics Institute, Biomedical Engineering Department, UNIST, Ulsan 44919, Republic of Korea.,Geromics, Ulsan 44919, Republic of Korea
| | - João Pedro de Magalhães
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeanro 787, Ansan 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon 306-350, Republic of Korea
| | - Jae-Yeon Jeong
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Haeanro 787, Ansan 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon 306-350, Republic of Korea
| |
Collapse
|
11
|
Dunkin RC, Wilson D, Way N, Johnson K, Williams TM. Climate influences thermal balance and water use in African and Asian elephants: physiology can predict drivers of elephant distribution. ACTA ACUST UNITED AC 2014; 216:2939-52. [PMID: 23842629 DOI: 10.1242/jeb.080218] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Elephant movement patterns in relation to surface water demonstrate that they are a water-dependent species. Thus, there has been interest in using surface water management to mitigate problems associated with localized elephant overabundance. However, the physiological mechanisms underlying the elephant's water dependence remain unclear. Although thermoregulation is likely an important driver, the relationship between thermoregulation, water use and climate has not been quantified. We measured skin surface temperature of and cutaneous water loss from 13 elephants (seven African, 3768±642 kg; six Asian, 3834±498 kg) and determined the contribution of evaporative cooling to their thermal and water budgets across a range of air temperatures (8-33°C). We also measured respiratory evaporative water loss and resting metabolic heat production on a subset of elephants (N=7). The rate of cutaneous evaporative water loss ranged between 0.31 and 8.9 g min(-1) m(-2) for Asian elephants and 0.26 and 6.5 g min(-1) m(-2) for African elephants. Simulated thermal and water budgets using climate data from Port Elizabeth, South Africa, and Okaukuejo, Namibia, suggested that the 24-h evaporative cooling water debt incurred in warm climates can be more than 4.5 times that incurred in mesic climates. This study confirms elephants are obligate evaporative coolers but suggests that classification of elephants as water dependent is insufficient given the importance of climate in determining the magnitude of this dependence. These data highlight the potential for a physiological modeling approach to predicting the utility of surface water management for specific populations.
Collapse
Affiliation(s)
- Robin C Dunkin
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | | | | | | |
Collapse
|