1
|
Zhang C, Wang K, Tao J, Zheng C, Zhai L. MYC-dependent MiR-7-5p regulated apoptosis and autophagy in diffuse large B cell lymphoma by targeting AMBRA1. Mol Cell Biochem 2025; 480:191-202. [PMID: 38393538 PMCID: PMC11695457 DOI: 10.1007/s11010-024-04946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the leading cause of mortality from invasive hematological malignancies worldwide. MicroRNA-7-5p (miR-7-5p) has been shown to be a tumor suppressor in several types of tumors. However, its role in DLBCL is not fully understood. This study explored the role of miR-7-5p in the progression of DLBCL and pursued the underlying mechanism. Quantitative real-time PCR and transfection of miRNA mimic and inhibitors were used to assess the effects of miR-7-5p on autophagy and apoptosis in SU-DHL-4 and SU-DHL-10 cells. Dual-luciferase reporter assay was used to identify target genes of miR-7-5p. Immunofluorescence, flow cytometry, and western blotting (WB) were performed to explore the underlying mechanism and downstream pathways of miR-7-5p and AMBRA1 in DLBCL cells. MiR-7-5p was upregulated in DLBCL cells. Luciferase reporter assays implicated AMBRA1 as a downstream target of miR-7-5p in DLBCL. WB and flow cytometry showed that an increase in miR-7-5p level and a decrease in AMBRA1 expression led to a decrease in autophagy and apoptosis-related protein expression. Furthermore, miR-7-5p prevented c-MYC dephosphorylation through AMBRA1 downregulation. On the contrary, c-MYC increased the expression of miR-7-5p, thereby establishing positive feedback on miR-7-5p transcription. The addition of hydroxychloroquine, an autophagy inhibitor, reduced autophagy and increased apoptosis in DLBCL cells. In vivo experiments further proved that the increase of miR-7-5p played a regulatory role in the expression of downstream AMBRA1 and c-MYC. These results demonstrate that c-MYC-dependent MiR-7-5p suppressed autophagy and apoptosis by targeting AMBRA1 in DLBCL cells. MiR-7-5p also suppressed autophagy and apoptosis by targeting AMBRA1 in DLBCL cells. Therefore, these data suggest that targeting miR-7-5p may be a promising strategy in DLBCL therapy.
Collapse
MESH Headings
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Humans
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/genetics
- Apoptosis
- Autophagy
- Cell Line, Tumor
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Gene Expression Regulation, Neoplastic
- Mice
- Animals
- RNA, Neoplasm/metabolism
- RNA, Neoplasm/genetics
Collapse
Affiliation(s)
- Cuifen Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Ke Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Jiahao Tao
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Chuangjie Zheng
- Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Linzhu Zhai
- Cancer Center, Departments of Radiation Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 16 Jichang Road, Baiyun District, Guangzhou, 510405, People's Republic of China.
| |
Collapse
|
2
|
Alves HPDM, Duarte GBS, Souza Junior ACD, Pereira Batista LDS, Rogero MM, Barbosa F, Cozzolino SMF, Dantas-Komatsu RCS, Marinho Costa KZS, Reis BZ. Selenium biomarkers and miR-7-5p in overweight/obese women. J Trace Elem Med Biol 2024; 86:127499. [PMID: 39084121 DOI: 10.1016/j.jtemb.2024.127499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Chronic low-grade inflammation and oxidative stress are pivotal contributors to the metabolic complications associated with obesity. Selenoprotein P (SELENOP) and glutathione peroxidase 1 (GPx1) are selenoproteins involved in the reduction of reactive oxygen species and pro-inflammatory cytokines levels. Nutritional epigenomics revealed the interaction of microRNAs and nutrients with an important impact on metabolic pathways involved in obesity. However, the knowledge regarding the influence of microRNA on selenium biomarkers and its impact on metabolic pathways related to obesity remains scarce. Thus, the aim of this study was to investigate the association of plasma miR-7-5p expression with selenium and inflammatory biomarkers in women with overweight/obesity. MATERIAL AND METHODS Anthropometric evaluations were performed and blood samples were collected for the analysis of fasting glucose, insulin, inflammatory and selenium biomarkers, and miR-7-5p expression in 54 women with overweight/obesity. Gene expression of SELENOP and GPX1 were evaluated in peripheral mononuclear blood cells. RESULTS This study observed a negative correlation between SELENOP levels and miR-7-5p (rho = -0.350; p = 0.018). Additionally, it was observed that body fat (OR = 0.737; p = 0.011), age (OR = 1.214; p = 0.007), and miR-7-5p (OR = 0.990; p = 0.015) emerged as significant predictors of SELENOP levels. CONCLUSIONS In conclusion, we observed a significant inverse association between miR-7-5p expression and SELENOP concentration in overweight/obese women, suggesting that age and percentage of body fat are also associated. TRIAL REGISTRATION NUMBER Brazilian Registry of Clinical Trials (ReBEC) number RBR-2nfy5q.
Collapse
Affiliation(s)
- Higor Paiva de Mendonça Alves
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Graziela Biude Silva Duarte
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Bloco 14 - Butantã, São Paulo, SP 05508-000, Brazil.
| | - Adriano Carlos de Souza Junior
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Leonam da Silva Pereira Batista
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| | - Marcelo Macedo Rogero
- Department of Nutrition, School of Public Health, University of São Paulo, Avenida Dr. Arnaldo, 715 - Cerqueira César, São Paulo, SP 01246-904, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Centers São Paulo Research Foundation, Laboratory of Food Engineering, Semi Industrial Ed. - R. do Lago, 250 - Bloco C, São Paulo, SP 05468-140, Brazil.
| | - Fernando Barbosa
- Department of Clinical, Toxicological and Bromatological Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/nº - Vila Monte Alegre, Ribeirão Preto, SP 14040903, Brazil.
| | - Silvia Maria Franciscato Cozzolino
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Science, University of São Paulo, Avenida Prof. Lineu Prestes, 580, Bloco 14 - Butantã, São Paulo, SP 05508-000, Brazil.
| | - Raquel Costa Silva Dantas-Komatsu
- Postgraduate Program in Pharmaceutical Sciences, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Rua General Gustavo Cordeiro de Faria, s/nº - Petrópolis, Natal, RN 59012-570, Brazil.
| | - Karina Zaira Silva Marinho Costa
- Brazilian Company of Hospital Services (EBSERH), Onofre Lopes University Hospital, Av. Nilo Peçanha, 620 - Petrópolis, Natal, RN 59012-300, Brazil.
| | - Bruna Zavarize Reis
- Postgraduate Program in Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000. University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil; Department of Nutrition, Federal University of Rio Grande do Norte, Rio Grande do Norte, Avenida Senador Salgado Filho, 3000, University Campus - Lagoa Nova, Natal, RN 59078-970, Brazil.
| |
Collapse
|
3
|
Doghish AS, Elshaer SS, Fathi D, Rizk NI, Elrebehy MA, Al-Noshokaty TM, Elballal MS, Abdelmaksoud NM, Abdel-Reheim MA, Abdel Mageed SS, Zaki MB, Mohammed OA, Tabaa MME, Elballal AS, Saber S, El-Husseiny HM, Abulsoud AI. Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of oral cancer. Pathol Res Pract 2024; 253:155027. [PMID: 38101159 DOI: 10.1016/j.prp.2023.155027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ahmed S Elballal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Cairo University, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| |
Collapse
|
4
|
Anees FF, Preethi KA, Selvakumar SC, Murthykumar K, Ganapathy D, Sekar D. Prospective study: expression levels of microRNA-7-3p and its target STAT3 in head and neck cancer. Minerva Dent Oral Sci 2023; 72:326-331. [PMID: 37326506 DOI: 10.23736/s2724-6329.23.04824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND Head and neck cancer (HNC) is the seventh most prevalent type of cancer in the globe, and it encompasses a wide range of tumors that affect the oral, facial and neck region. Despite breakthroughs in treatment strategies, patients survival has not increased substantially in the last few decades. Therefore, there is need for quick and reliable biomarkers and therapeutic targets for the treatment of HNC. Interestingly, microRNAs (miRNAs) are a small non-coding RNAs (ncRNAs) that have a role in the post-transcriptional regulation of gene expression. Thus, the aim of the study is to evaluate the role of miR-7-3p in the HNC and normal tissues. METHODS A total of 25 HNC and normal tissues were collected from the Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals. Bioinformatic tool (TargetScan) was used to predict the target for miR-7-3p. The tissue samples were processed for Hematoxylin and Eosin staining and following that total RNA was extracted and analyzed for expression studies using RT-qPCR. RESULTS The bioinformatic analysis of the current study have revealed that STAT3 is a direct target for miR-7-3p. The histopathological examination showed damaged epithelial cells and keratin pool formation was observed in HNC tissue. Our results have also revealed that the miR-7-3p levels were significantly reduced and STAT3 levels were significantly higher in the HNC tissues when compared to the normal tissues. CONCLUSIONS MiR-7-3p can be used as a prognostic, diagnostic biomarker and therapeutic target for the treatment of HNC.
Collapse
Affiliation(s)
- Fharreeha F Anees
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - K Auxzilia Preethi
- RNA Biology Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Sushmaa C Selvakumar
- RNA Biology Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Karthikeyan Murthykumar
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Durairaj Sekar
- RNA Biology Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
5
|
Freis B, Ramirez MDLA, Kiefer C, Harlepp S, Iacovita C, Henoumont C, Affolter-Zbaraszczuk C, Meyer F, Mertz D, Boos A, Tasso M, Furgiuele S, Journe F, Saussez S, Bégin-Colin S, Laurent S. Effect of the Size and Shape of Dendronized Iron Oxide Nanoparticles Bearing a Targeting Ligand on MRI, Magnetic Hyperthermia, and Photothermia Properties—From Suspension to In Vitro Studies. Pharmaceutics 2023; 15:pharmaceutics15041104. [PMID: 37111590 PMCID: PMC10143744 DOI: 10.3390/pharmaceutics15041104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Functionalized iron oxide nanoparticles (IONPs) are increasingly being designed as a theranostic nanoplatform combining specific targeting, diagnosis by magnetic resonance imaging (MRI), and multimodal therapy by hyperthermia. The effect of the size and the shape of IONPs is of tremendous importance to develop theranostic nanoobjects displaying efficient MRI contrast agents and hyperthermia agent via the combination of magnetic hyperthermia (MH) and/or photothermia (PTT). Another key parameter is that the amount of accumulation of IONPs in cancerous cells is sufficiently high, which often requires the grafting of specific targeting ligands (TLs). Herein, IONPs with nanoplate and nanocube shapes, which are promising to combine magnetic hyperthermia (MH) and photothermia (PTT), were synthesized by the thermal decomposition method and coated with a designed dendron molecule to ensure their biocompatibility and colloidal stability in suspension. Then, the efficiency of these dendronized IONPs as contrast agents (CAs) for MRI and their ability to heat via MH or PTT were investigated. The 22 nm nanospheres and the 19 nm nanocubes presented the most promising theranostic properties (respectively, r2 = 416 s−1·mM−1, SARMH = 580 W·g−1, SARPTT = 800 W·g−1; and r2 = 407 s−1·mM−1, SARMH = 899 W·g−1, SARPTT = 300 W·g−1). MH experiments have proven that the heating power mainly originates from Brownian relaxation and that SAR values can remain high if IONPs are prealigned with a magnet. This raises hope that heating will maintain efficient even in a confined environment, such as in cells or in tumors. Preliminary in vitro MH and PTT experiments have shown the promising effect of the cubic shaped IONPs, even though the experiments should be repeated with an improved set-up. Finally, the grafting of a specific peptide (P22) as a TL for head and neck cancers (HNCs) has shown the positive impact of the TL to enhance IONP accumulation in cells.
Collapse
|
6
|
Extracellular Vesicles Derived from Acidified Metastatic Melanoma Cells Stimulate Growth, Migration, and Stemness of Normal Keratinocytes. Biomedicines 2022; 10:biomedicines10030660. [PMID: 35327461 PMCID: PMC8945455 DOI: 10.3390/biomedicines10030660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is a highly malignant tumor. Melanoma cells release extracellular vesicles (EVs), which contribute to the growth, metastasis, and malignancy of neighboring cells by transfer of tumor-promoting miRNAs, mRNA, and proteins. Melanoma microenvironment acidification promotes tumor progression and determines EVs’ properties. We studied the influence of EVs derived from metastatic melanoma cells cultivated at acidic (6.5) and normal (7.4) pH on the morphology and homeostasis of normal keratinocytes. Acidification of metastatic melanoma environment made EVs more prooncogenic with increased expression of prooncogenic mi221 RNA, stemless factor CD133, and pro-migration factor SNAI1, as well as with downregulated antitumor mir7 RNA. Incubation with EVs stimulated growth and migration both of metastatic melanoma cells and keratinocytes and changed the morphology of keratinocytes to stem-like phenotype, which was confirmed by increased expression of the stemness factors KLF and CD133. Activation of the AKT/mTOR and ERK signaling pathways and increased expression of epidermal growth factor receptor EGFR and SNAI1 were detected in keratinocytes upon incubation with EVs. Moreover, EVs reduced the production of different cytokines (IL6, IL10, and IL12) and adhesion factors (sICAM-1, sICAM-3, sPecam-1, and sCD40L) usually secreted by keratinocytes to control melanoma progression. Bioinformatic analysis revealed the correlation between decreased expression of these secreted factors and worse survival prognosis for patients with metastatic melanoma. Altogether, our data mean that metastatic melanoma EVs are important players in the transformation of normal keratinocytes.
Collapse
|
7
|
Combining structure-based and 3D QSAR pharmacophore models to discover diverse ligands against EGFR in oral cancer. Future Med Chem 2022; 14:463-478. [PMID: 35167330 DOI: 10.4155/fmc-2021-0205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Epidermal growth factor receptor-tyrosine kinase (EGFR-TK) is a well-known hallmark of oral and oropharyngeal cancers, as its overexpression leads to poor prognosis and malignancy. The activating EGFR mutations (particularly T790M and L858R double mutant) are a major challenge causing drug resistance, especially in the treatment of oral cancers. Methodology: This paper is an effort to exploit both structure-based and ligand-based pharmacophore modeling to discover EGFR-TK inhibitors, which show inhibition of proliferation of erlotinib-resistant FaDu and Cal27 oral cancer cells. Interestingly, the hit compound H2 also showed an effect on the downstream glucose and lactate metabolism pathways. Conclusion: The results indicate the potential of H2 to be developed as an EGFR-based metabolic inhibitor for oral cancer treatment.
Collapse
|
8
|
Manzano-Moreno FJ, Costela-Ruiz VJ, García-Recio E, Olmedo-Gaya MV, Ruiz C, Reyes-Botella C. Role of Salivary MicroRNA and Cytokines in the Diagnosis and Prognosis of Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:12215. [PMID: 34830096 PMCID: PMC8624198 DOI: 10.3390/ijms222212215] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent oral malignant tumor worldwide. An early diagnosis can have a major positive impact on its prognosis. Human saliva contains cytokines, DNA and RNA molecules, circulating cells, and derivatives of tissues and extracellular vesicles, among other factors that can serve as biomarkers. Hence, the analysis of saliva may provide useful information for the early diagnosis of OSCC for its prognosis. The objective of this review was to determine the potential usefulness of salivary biomarkers (cytokines and microRNA) to diagnose OSCC and improve its prognosis. A combination of salivary miRNA and proteomic data could allow a definitive and early diagnosis to be obtained. However, there remains a need to optimize and standardize the protocols used to quantify miRNAs.
Collapse
Affiliation(s)
- Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, 18071 Granada, Spain; (F.J.M.-M.); (C.R.-B.)
- Instituto Investigación Biosanitaria, ibs.Granada, 18071 Granada, Spain; (V.J.C.-R.); (E.G.-R.)
| | - Victor J. Costela-Ruiz
- Instituto Investigación Biosanitaria, ibs.Granada, 18071 Granada, Spain; (V.J.C.-R.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, Campus de Ceuta, University of Granada, 51001 Ceuta, Spain
| | - Enrique García-Recio
- Instituto Investigación Biosanitaria, ibs.Granada, 18071 Granada, Spain; (V.J.C.-R.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, Campus de Melilla, University of Granada, 52005 Melilla, Spain
| | | | - Concepción Ruiz
- Instituto Investigación Biosanitaria, ibs.Granada, 18071 Granada, Spain; (V.J.C.-R.); (E.G.-R.)
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, 18016 Granada, Spain
- Institute of Neuroscience, University of Granada, 18071 Granada, Spain
| | - Candelaria Reyes-Botella
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, 18071 Granada, Spain; (F.J.M.-M.); (C.R.-B.)
- Instituto Investigación Biosanitaria, ibs.Granada, 18071 Granada, Spain; (V.J.C.-R.); (E.G.-R.)
| |
Collapse
|
9
|
Kaczmarek E, Pyman B, Nanayakkara J, Tuschl T, Tyryshkin K, Renwick N, Mousavi P. Discriminating Neoplastic from Nonneoplastic Tissues Using an miRNA-Based Deep Cancer Classifier. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 192:344-352. [PMID: 34774515 DOI: 10.1016/j.ajpath.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022]
Abstract
Next-generation sequencing has enabled the collection of large biological data sets, allowing novel molecular-based classification methods to be developed for increased understanding of disease. miRNAs are small regulatory RNA molecules that can be quantified using next-generation sequencing and are excellent classificatory markers. Herein, we adapt a deep cancer classifier (DCC) to differentiate neoplastic from nonneoplastic samples using comprehensive miRNA expression profiles from 1031 human breast and skin tissue samples. The classifier was fine-tuned and evaluated using 750 neoplastic and 281 nonneoplastic breast and skin tissue samples. Performance of the DCC was compared with two machine-learning classifiers: support vector machine and random forests. In addition, performance of feature extraction through the DCC was also compared with a developed feature selection algorithm, cancer specificity. The DCC had the highest performance of area under the receiver operating curve and high performance in both sensitivity and specificity, unlike machine-learning and feature selection models, which often performed well in one metric compared with the other. In particular, deep learning was shown to have noticeable advantages with highly heterogeneous data sets. In addition, our cancer specificity algorithm identified candidate biomarkers for differentiating neoplastic and nonneoplastic tissue samples (eg, miR-144 and miR-375 in breast cancer and miR-375 and miR-451 in skin cancer).
Collapse
Affiliation(s)
- Emily Kaczmarek
- Medical Informatics Laboratory, School of Computing, Queen's University, Kingston, Ontario, Canada.
| | - Blake Pyman
- Medical Informatics Laboratory, School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Jina Nanayakkara
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, New York
| | - Kathrin Tyryshkin
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Neil Renwick
- Laboratory of Translational RNA Biology, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| | - Parvin Mousavi
- Medical Informatics Laboratory, School of Computing, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
10
|
Beveridge DJ, Richardson KL, Epis MR, Brown RAM, Stuart LM, Woo AJ, Leedman PJ. The tumor suppressor miR-642a-5p targets Wilms Tumor 1 gene and cell-cycle progression in prostate cancer. Sci Rep 2021; 11:18003. [PMID: 34504167 PMCID: PMC8429423 DOI: 10.1038/s41598-021-97190-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
RNA-based therapeutics are emerging as innovative options for cancer treatment, with microRNAs being attractive targets for therapy development. We previously implicated microRNA-642a-5p (miR-642a-5p) as a tumor suppressor in prostate cancer (PCa), and here we characterize its mode of action, using 22Rv1 PCa cells. In an in vivo xenograft tumor model, miR-642a-5p induced a significant decrease in tumor growth, compared to negative control. Using RNA-Sequencing, we identified gene targets of miR-642a-5p which were enriched for gene sets controlling cell cycle; downregulated genes included Wilms Tumor 1 gene (WT1), NUAK1, RASSF3 and SKP2; and upregulated genes included IGFBP3 and GPS2. Analysis of PCa patient datasets showed a higher expression of WT1, NUAK1, RASSF3 and SKP2; and a lower expression of GPS2 and IGFBP3 in PCa tissue compared to non-malignant prostate tissue. We confirmed the prostatic oncogene WT1, as a direct target of miR-642a-5p, and treatment of 22Rv1 and LNCaP PCa cells with WT1 siRNA or a small molecule inhibitor of WT1 reduced cell proliferation. Taken together, these data provide insight into the molecular mechanisms by which miR-642a-5p acts as a tumor suppressor in PCa, an effect partially mediated by regulating genes involved in cell cycle control; and restoration of miR-642-5p in PCa could represent a novel therapeutic approach.
Collapse
Affiliation(s)
- Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Kirsty L Richardson
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Michael R Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Rikki A M Brown
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Lisa M Stuart
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Andrew J Woo
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, 6027, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, Australia.
- Centre for Medical Research, The University of Western Australia, Crawley, WA, 6009, Australia.
- School of Medicine and Pharmacology, The University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
11
|
Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers (Basel) 2021; 13:cancers13112680. [PMID: 34072348 PMCID: PMC8198729 DOI: 10.3390/cancers13112680] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer is a complex disease associated with deregulation of numerous genes. In addition, redundant cellular pathways limit efficiency of monotarget drugs in cancer therapy. MicroRNAs are a class of gene expression regulators, which often function by targeting multiple genes. This feature makes them a double-edged sword (a) as attractive targets for anti-tumor therapy and concomitantly (b) as risky targets due to their potential side effects on healthy tissues. As for conventional antitumor drugs, nanocarriers have been developed to circumvent the problems associated with miRNA delivery to tumors. In this review, we highlight studies that have established the pre-clinical proof-of concept of miRNAs as relevant therapeutic targets in oncology. Particular attention was brought to new strategies based on nanovectorization of miRNAs as well as to the perspectives for their applications. Abstract The discovery of microRNAs (miRNAs) in 1993 has challenged the dogma of gene expression regulation. MiRNAs affect most of cellular processes from metabolism, through cell proliferation and differentiation, to cell death. In cancer, deregulated miRNA expression leads to tumor development and progression by promoting acquisition of cancer hallmark traits. The multi-target action of miRNAs, which enable regulation of entire signaling networks, makes them attractive tools for the development of anti-cancer therapies. Hence, supplementing downregulated miRNA by synthetic oligonucleotides or silencing overexpressed miRNAs through artificial antagonists became a common strategy in cancer research. However, the ultimate success of miRNA therapeutics will depend on solving pharmacokinetic and targeted delivery issues. The development of a number of nanocarrier-based platforms holds significant promises to enhance the cell specific controlled delivery and safety profile of miRNA-based therapies. In this review, we provide among the most comprehensive assessments to date of promising nanomedicine platforms that have been tested preclinically, pertaining to the treatment of selected solid tumors including lung, liver, breast, and glioblastoma tumors as well as endocrine malignancies. The future challenges and potential applications in clinical oncology are discussed.
Collapse
Affiliation(s)
- Soha Reda El Sayed
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Justine Cristante
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Laurent Guyon
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Josiane Denis
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
| | - Olivier Chabre
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Centre Hospitalier Universitaire Grenoble Alpes, Service d’Endocrinologie, F-38000 Grenoble, France
| | - Nadia Cherradi
- University Grenoble Alpes, INSERM, CEA, Interdisciplinary Research Institute of Grenoble (IRIG), Biology and Biotechnologies for Health UMR_1292, F-38000 Grenoble, France; (S.R.E.S.); (J.C.); (L.G.); (J.D.); (O.C.)
- Correspondence: ; Tel.: +33-(0)4-38783501; Fax: +33-(0)4-38785058
| |
Collapse
|
12
|
Gu W, Chen P, Ren P, Wang Y, Li X, Gong M. Downregulation of TAF9B by miR-7-5p Inhibits the Progression of Osteosarcoma. Onco Targets Ther 2021; 14:2917-2927. [PMID: 33958878 PMCID: PMC8096444 DOI: 10.2147/ott.s264786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/02/2021] [Indexed: 01/31/2023] Open
Abstract
Background Osteosarcoma (OS) is a malignant bone tumor with high metastatic potential. As a regulatory factor of apoptosis, TATA-box binding protein (TBP) associated factor 9B (TAF9B) is rarely studied in tumors. Methods We investigated the role and mechanism of TAF9B in OS cells by overexpression and knockdown. CCK8, colony formation, transwell, and flow cytometry analysis were performed to detect proliferation, migration, invasion, and apoptosis. Results TAF9B overexpression promotes the proliferation, migration, and invasion of OS cells, while TAF9B knockdown gives the opposite result. TAF9B inhibits apoptosis by upregulating Bcl-2 and downregulating Bax and Cleaved-caspase-3. Through starBase analysis, it was found that miR-7-5p can bind to the 3ʹUTR region of TAF9B, which is further confirmed by the dual luciferase reporter system assay. MiR-7-5p downregulates the expression of TAF9B in MG63 and U2OS cells. The proliferation and invasion of OS cells are inhibited after miR-7-5p mimics transfection and are promoted after miR-7-5p inhibitor transfection. TAF9B rescues the inhibitory effect of miR-7-5p on OS cells. TAF9B also activates the AKT/mTOR signaling pathway. Conclusion According to our results, miR-7-5p inhibits the translation of TAF9B and then suppresses growth and metastasis through the AKT/mTOR signaling pathway in OS cells, thereby indicating the potential value of miR-7-5p and TAF9B as therapeutic targets for human OS.
Collapse
Affiliation(s)
- Wanli Gu
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Peng Chen
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Peng Ren
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Yanhai Wang
- Obstetrical Department, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiaobing Li
- Institute of Basic Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, People's Republic of China
| | - Mingzhi Gong
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
13
|
Liu B, Li H, Liu X, Li F, Chen W, Kuang Y, Zhao X, Li L, Yu B, Jin X, Li Q. CircZNF208 enhances the sensitivity to X-rays instead of carbon-ions through the miR-7-5p /SNCA signal axis in non-small-cell lung cancer cells. Cell Signal 2021; 84:110012. [PMID: 33892093 DOI: 10.1016/j.cellsig.2021.110012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mounting evidence suggests that circular RNAs (circRNAs) are closely related to the regulation of gene expression during tumour development. However, the role of circRNAs in modulating the radiosensitivity of non-small cell lung cancer (NSCLC) cells has not been explored. METHODS Transcriptome sequencing was used to explore the expression profiles of circRNAs in NSCLC. The expression level of circRNAs was changed by inducing instantaneous knockdown or overexpression. Changes in proliferation and radiosensitivity of NSCLC cells were investigated using CCK-8, EDU, and clonal survivals. RESULTS By analysing the circRNA expression profile of NSCLC cells, we found that circRNA ZNF208 (circZNF208) was significantly upregulated in a radioresistant NSCLC cell line (A549-R11), which was acquired from the parental NSCLC cell line A549. Knockout experiments indicated that circZNF208 enhanced the radiosensitivity of A549 and A549-R11 cells to X-rays. Mechanistically, circZNF208 upregulated SNCA expression by acting as a sponge of miR-7-5p and subsequently promoted the resistance of NSCLC cells to low linear energy transfer (LET) X-rays. However, this effect was not observed in NSCLC cells exposed to high-LET carbon ions. CONCLUSIONS Knockdown of circZNF208 altered the radiosensitivity of patients with NSCLC to X-rays but did not significantly change the sensitivity to carbon ions. Therefore, circZNF208 might serve as a potential biomarker and therapeutic target for NSCLC treatment with radiotherapy of different modalities.
Collapse
Affiliation(s)
- Bingtao Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Li
- Northwest Normal University, Lanzhou, Gansu, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbei Kuang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Linying Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Genetic Drivers of Head and Neck Squamous Cell Carcinoma: Aberrant Splicing Events, Mutational Burden, HPV Infection and Future Targets. Genes (Basel) 2021; 12:genes12030422. [PMID: 33804181 PMCID: PMC7998272 DOI: 10.3390/genes12030422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Head and neck cancers include cancers that originate from a variety of locations. These include the mouth, nasal cavity, throat, sinuses, and salivary glands. These cancers are the sixth most diagnosed cancers worldwide. Due to the tissues they arise from, they are collectively named head and neck squamous cell carcinomas (HNSCC). The most important risk factors for head and neck cancers are infection with human papillomavirus (HPV), tobacco use and alcohol consumption. The genetic basis behind the development and progression of HNSCC includes aberrant non-coding RNA levels. However, one of the most important differences between healthy tissue and HNSCC tissue is changes in the alternative splicing of genes that play a vital role in processes that can be described as the hallmarks of cancer. These changes in the expression profile of alternately spliced mRNA give rise to various protein isoforms. These protein isoforms, alternate methylation of proteins, and changes in the transcription of non-coding RNAs (ncRNA) can be used as diagnostic or prognostic markers and as targets for the development of new therapeutic agents. This review aims to describe changes in alternative splicing and ncRNA patterns that contribute to the development and progression of HNSCC. It will also review the use of the changes in gene expression as biomarkers or as the basis for the development of new therapies.
Collapse
|
15
|
Abstract
Background Biological evidence has shown that microRNAs(miRNAs) are greatly implicated in various biological progresses involved in human diseases. The identification of miRNA-disease associations(MDAs) is beneficial to disease diagnosis as well as treatment. Due to the high costs of biological experiments, it attracts more and more attention to predict MDAs by computational approaches. Results In this work, we propose a novel model MTFMDA for miRNA-disease association prediction by matrix tri-factorization, based on the known miRNA-disease associations, two types of miRNA similarities, and two types of disease similarities. The main idea of MTFMDA is to factorize the miRNA-disease association matrix to three matrices, a feature matrix for miRNAs, a feature matrix for diseases, and a low-rank relationship matrix. Our model incorporates the Laplacian regularizers which force the feature matrices to preserve the similarities of miRNAs or diseases. A novel algorithm is proposed to solve the optimization problem. Conclusions We evaluate our model by 5-fold cross validation by using known MDAs from HMDD V2.0 and show that our model could obtain the significantly highest AUCs among all the state-of-art methods. We further validate our method by applying it on colon and breast neoplasms in two different types of experiment settings. The new identified associated miRNAs for the two diseases could be verified by two other databases including dbDEMC and HMDD V3.0, which further shows the power of our proposed method.
Collapse
Affiliation(s)
- Huiran Li
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xianning West 28, Xi'an, China
| | - Yin Guo
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xianning West 28, Xi'an, China
| | - Menglan Cai
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xianning West 28, Xi'an, China
| | - Limin Li
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xianning West 28, Xi'an, China.
| |
Collapse
|
16
|
Ibrahimovic M, Franzmann E, Mondul AM, Weh KM, Howard C, Hu JJ, Goodwin WJ, Kresty LA. Disparities in Head and Neck Cancer: A Case for Chemoprevention with Vitamin D. Nutrients 2020; 12:E2638. [PMID: 32872541 PMCID: PMC7551909 DOI: 10.3390/nu12092638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Blacks experience disproportionate head and neck cancer (HNC) recurrence and mortality compared to Whites. Overall, vitamin D status is inversely associated to HNC pointing to a potential protective linkage. Although hypovitaminosis D in Blacks is well documented it has not been investigated in Black HNC patients. Thus, we conducted a prospective pilot study accessing vitamin D status in newly diagnosed HNC patients stratified by race and conducted in vitro studies to investigate mechanisms associated with potential cancer inhibitory effects of vitamin D. Outcome measures included circulating levels of vitamin D, related nutrients, and risk factor characterization as well as dietary and supplemental estimates. Vitamin D-based in vitro assays utilized proteome and microRNA (miR) profiling. Nineteen patients were enrolled, mean circulating vitamin D levels were significantly reduced in Black compared to White HNC patients, 27.3 and 20.0 ng/mL, respectively. Whites also supplemented vitamin D more frequently than Blacks who had non-significantly higher vitamin D from dietary sources. Vitamin D treatment of HNC cell lines revealed five significantly altered miRs regulating genes targeting multiple pathways in cancer based on enrichment analysis (i.e., negative regulation of cell proliferation, angiogenesis, chemokine, MAPK, and WNT signaling). Vitamin D further altered proteins involved in cancer progression, metastasis and survival supporting a potential role for vitamin D in targeted cancer prevention.
Collapse
Affiliation(s)
- Mirela Ibrahimovic
- The Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (M.I.); (A.M.M.); (K.M.W.); (C.H.)
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Franzmann
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL 33136, USA; (E.F.); (J.J.H.); (W.J.G.)
- Department of Otolaryngology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Alison M. Mondul
- The Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (M.I.); (A.M.M.); (K.M.W.); (C.H.)
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine M. Weh
- The Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (M.I.); (A.M.M.); (K.M.W.); (C.H.)
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
| | - Connor Howard
- The Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (M.I.); (A.M.M.); (K.M.W.); (C.H.)
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer J. Hu
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL 33136, USA; (E.F.); (J.J.H.); (W.J.G.)
- Department of Public Health Sciences, University of Miami School of Medicine, Miami, FL 33136, USA
| | - W. Jarrard Goodwin
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL 33136, USA; (E.F.); (J.J.H.); (W.J.G.)
- Department of Public Health Sciences, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Laura A. Kresty
- The Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; (M.I.); (A.M.M.); (K.M.W.); (C.H.)
- Department of Surgery, Thoracic Surgery Section, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
microRNAs in oral cancer: Moving from bench to bed as next generation medicine. Oral Oncol 2020; 111:104916. [PMID: 32711289 DOI: 10.1016/j.oraloncology.2020.104916] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/04/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022]
Abstract
Oral cancer is the thirteenth most common cancer in the world, with India contributing to 33% of the global burden. Lack of specific non-invasive markers, non-improvement in patient survival and tumor recurrence remain a major clinical challenge in oral cancer. Epigenetic regulation in the form of microRNAs (miRs) that act as tumor suppressor miRs or oncomiRs has gained significant momentum with the advancement in the field, suggesting the potential for clinical application of miRs in oral cancer. The current review of literature identified miR-21, miR-27a(-3p), miR-31, miR-93, miR-134, miR-146, miR-155, miR-196a, miR-196b, miR-211, miR-218, miR-222, miR-372 and miR-373 to be up-regulated and let-7a, let-7b, let-7c, let-7d, let-7e, let-7f, let-7g, let-7i, miR-26a, miR-99a-5p, miR-137, miR-139-5p, miR-143-3p, miR-184 and miR-375 to be down-regulated in oral cancer. Mechanistic studies have uncovered several miRs that are deregulated at varying levels and in different stages of oral cancer progression, thus providing clinical utility in better diagnosis as well as usefulness in prognosis by identifying patients with poor prognosis or stratifying patients based on responsiveness to chemo- and radio-therapy. Lastly, exogenous modulation of miR expression using miRNA-based drugs in combination with first-line agents may be adopted as a new therapeutic modality to treat oral cancer. Knowledge of miRs and their involvement in key molecular processes, clinical association, responsiveness to therapy and clinical advancement may highlight additional avenues in order to improve patient morbidity and mortality. Furthermore, combinatorial approaches with miR-therapy may be efficacious in oral cancer.
Collapse
|
18
|
Shah K, Rawal RM. Genetic and Epigenetic Modulation of Drug Resistance in Cancer: Challenges and Opportunities. Curr Drug Metab 2020; 20:1114-1131. [PMID: 31902353 DOI: 10.2174/1389200221666200103111539] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 02/08/2023]
Abstract
Cancer is a complex disease that has the ability to develop resistance to traditional therapies. The current chemotherapeutic treatment has become increasingly sophisticated, yet it is not 100% effective against disseminated tumours. Anticancer drugs resistance is an intricate process that ascends from modifications in the drug targets suggesting the need for better targeted therapies in the therapeutic arsenal. Advances in the modern techniques such as DNA microarray, proteomics along with the development of newer targeted drug therapies might provide better strategies to overcome drug resistance. This drug resistance in tumours can be attributed to an individual's genetic differences, especially in tumoral somatic cells but acquired drug resistance is due to different mechanisms, such as cell death inhibition (apoptosis suppression) altered expression of drug transporters, alteration in drug metabolism epigenetic and drug targets, enhancing DNA repair and gene amplification. This review also focusses on the epigenetic modifications and microRNAs, which induce drug resistance and contributes to the formation of tumour progenitor cells that are not destroyed by conventional cancer therapies. Lastly, this review highlights different means to prevent the formation of drug resistant tumours and provides future directions for better treatment of these resistant tumours.
Collapse
Affiliation(s)
- Kanisha Shah
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
19
|
Abstract
Non-communicable diseases contribute to 71% of the deaths worldwide, of which cancers rank second after cardiovascular diseases. Among all the cancers, head and neck cancers (HNC) are consequential in augmenting the global cancer incidence as well as mortality. Receptor tyrosine kinases (RTKs) are emphatic for the matter that they serve as biomarkers aiding the analysis of tumor progression and metastasis as well as diagnosis, prognosis and therapeutic progression in the patients. The extensive researches on HNC have made significant furtherance in numerous targeted therapies, but for the escalating therapeutic resistance. This review explicates RTKs in HNC, their signaling pathways involved in tumorigenesis, metastasis and stemness induction, the association of non-coding RNAs with RTKs, an overview of RTK based therapy and associated resistance in HNC, as well as a sneak peek into the HPV positive HNC and its therapy. The review extrapolates the cardinal role of RTKs and RTK based therapy as superior to other existing therapeutic interventions for HNC.
Collapse
Affiliation(s)
- Revathy Nadhan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| | - Priya Srinivas
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India.
| | - M Radhakrishna Pillai
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
20
|
Chen X, Xie D, Wang L, Zhao Q, You ZH, Liu H. BNPMDA: Bipartite Network Projection for MiRNA-Disease Association prediction. Bioinformatics 2019; 34:3178-3186. [PMID: 29701758 DOI: 10.1093/bioinformatics/bty333] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/24/2018] [Indexed: 12/16/2022] Open
Abstract
Motivation A large number of resources have been devoted to exploring the associations between microRNAs (miRNAs) and diseases in the recent years. However, the experimental methods are expensive and time-consuming. Therefore, the computational methods to predict potential miRNA-disease associations have been paid increasing attention. Results In this paper, we proposed a novel computational model of Bipartite Network Projection for MiRNA-Disease Association prediction (BNPMDA) based on the known miRNA-disease associations, integrated miRNA similarity and integrated disease similarity. We firstly described the preference degree of a miRNA for its related disease and the preference degree of a disease for its related miRNA with the bias ratings. We constructed bias ratings for miRNAs and diseases by using agglomerative hierarchical clustering according to the three types of networks. Then, we implemented the bipartite network recommendation algorithm to predict the potential miRNA-disease associations by assigning transfer weights to resource allocation links between miRNAs and diseases based on the bias ratings. BNPMDA had been shown to improve the prediction accuracy in comparison with previous models according to the area under the receiver operating characteristics (ROC) curve (AUC) results of three typical cross validations. As a result, the AUCs of Global LOOCV, Local LOOCV and 5-fold cross validation obtained by implementing BNPMDA were 0.9028, 0.8380 and 0.8980 ± 0.0013, respectively. We further implemented two types of case studies on several important human complex diseases to confirm the effectiveness of BNPMDA. In conclusion, BNPMDA could effectively predict the potential miRNA-disease associations at a high accuracy level. Availability and implementation BNPMDA is available via http://www.escience.cn/system/file?fileId=99559. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Di Xie
- School of Mathematics, Liaoning University, Shenyang, China
| | - Lei Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Qi Zhao
- School of Mathematics, Liaoning University, Shenyang, China.,Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning Province, Shenyang, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Ürümqi, China
| | - Hongsheng Liu
- Research Center for Computer Simulating and Information Processing of Bio-Macromolecules of Liaoning Province, Shenyang, China.,School of Life Science, Liaoning University, Shenyang, China
| |
Collapse
|
21
|
Foj L, Filella X. Identification of Potential miRNAs Biomarkers for High-Grade Prostate Cancer by Integrated Bioinformatics Analysis. Pathol Oncol Res 2019; 25:1445-1456. [PMID: 30367364 DOI: 10.1007/s12253-018-0508-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
The increasing number of datasets available in the GEO database offers a new approach to identify new miRNAs related to PCa. The aim of our study was to suggest a miRNA signature for the detection of high-grade PCa (Gleason score ≥ 7) using bioinformatics tools. Three mRNA datasets (GSE26022, GSE30521, GSE46602) were selected to identify the differentially expressed genes (DEGs) in high-grade PCa. Furthermore, two miRNA datasets (GSE45604, GSE46738) were analyzed to select the differentially expressed miRNAs (DEMs). Functional and pathway enrichment analysis was performed using DAVID and a protein-protein interaction network (PPI) was constructed through STRING. Besides, miRNAs which regulate hub genes were predicted using microRNA.org . A total of 973 DEGs were identified after the analyses of the mRNA datasets, enriched in key mechanisms underlying PCa development. Furthermore, we identified 10 hub genes (EGFR, VEGFA, IGF1, PIK3R1, CD44, ITGB4, ANXA1, BCL2, LPAR3, LPAR1). The most significant KEGG Pathway was PI3K-Akt signaling pathway, involved in cell proliferation and survival. Moreover, we identified 30 common miRNAs between significant DEMs and the predicted hub gene regulators. Twelve of these miRNAs (miR-1, -365, -132, -195, -133a, -133b, -200c, -339, -222, -21, -221, -708) regulate two or more hub genes identified in our study. We suggested a signature including these 12 miRNAs for high-grade PCa detection. These miRNAs have been associated with aggressive PCa, poor survival and resistance to treatment in the last years.
Collapse
Affiliation(s)
- Laura Foj
- Labco Diagnostics, SYNLAB Group, Barcelona, Catalonia, Spain
| | - Xavier Filella
- Department of Biochemistry and Molecular Genetics (CDB), Hospital Clínic, IDIBAPS, C/ Villarroel, 170, 08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
22
|
Xin L, Liu L, Liu C, Zhou LQ, Zhou Q, Yuan YW, Li SH, Zhang HT. DNA-methylation-mediated silencing of miR-7-5p promotes gastric cancer stem cell invasion via increasing Smo and Hes1. J Cell Physiol 2019; 235:2643-2654. [PMID: 31517391 DOI: 10.1002/jcp.29168] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/26/2019] [Indexed: 01/30/2023]
Abstract
Cancer stem cells are undifferentiated cancer cells that have self-renewal ability, a high tumorigenic activity, and a multilineage differentiation potential. MicroRNAs play a critical role in regulating gene expression during carcinogenesis. Here, we investigated the role of miR-7 and the mechanism by which it is dysregulated in gastric cancer stem cells (GCSCs). The stem cell marker, CD44, was used to sort GCSCs by fluorescence-activated cell sorting. We found that CD44 (+) cells have higher invasiveness and form more number of sphere colonies than CD44 (-) cells. Quantitative real-time polymerase chain reaction (PCR) revealed that the miR-7-5p expression was remarkably downregulated in GCSCs but was significantly increased in the methionine-deprived medium. The downregulation of miR-7-5p results from the increased DNA methylation in the promoter region using the methylation-specific PCR. Overexpression of miR-7-5p reduced the formation of colony and decreased the invasion of GCSCs through targeting Smo and Hes1 and subsequent repressing Notch and Hedgehog signaling pathways in vitro. Notably, upregulating miR-7-5p inhibited the growth of tumor in the xenograft model. Hence, these data demonstrated that miR-7-5p represses GCSC invasion through inhibition of Smo and Hes1, which provides a potential therapeutic target of gastric cancer treatment.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li-Qiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shi-Hao Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hou-Ting Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
23
|
Shan C, Zhang Y, Hao X, Gao J, Chen X, Wang K. Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol Cancer 2019; 18:136. [PMID: 31519189 PMCID: PMC6743094 DOI: 10.1186/s12943-019-1069-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumours in the world and has high morbidity and mortality. Circular RNAs (circRNAs) are a class of non-coding RNAs with covalently linked circular structures. In recent years, plentiful circRNAs have been discovered that participate in many biological processes, including the initiation and development of tumours. Increasing evidences suggest important biological functions of circRNAs, implying that circRNAs may serve as vital new biomarkers and targets for disease diagnosis and prognosis. Among these, circRNAs are tend to aberrantly expressed and are regarded as potential biomarkers in the carcinogenesis and progression of GC. This review systematically summarised the biogenesis, biological properties and functions of circRNAs, with a focus on their relationship with GC, as well as their probable clinical implications on GC. As our cognition of the relation between circRNAs and GC deepens, more molecular mechanisms of GC progression will be discovered, and new therapeutic strategies will be used for the prevention and treatment of GC.
Collapse
Affiliation(s)
- Chan Shan
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Yinfeng Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xiaodan Hao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jinning Gao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
24
|
Xiao Q, Dai J, Luo J, Fujita H. Multi-view manifold regularized learning-based method for prioritizing candidate disease miRNAs. Knowl Based Syst 2019. [DOI: 10.1016/j.knosys.2019.03.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Yang W, Yang X, Wang X, Gu J, Zhou D, Wang Y, Yin B, Guo J, Zhou M. Silencing CDR1as enhances the sensitivity of breast cancer cells to drug resistance by acting as a miR-7 sponge to down-regulate REGγ. J Cell Mol Med 2019; 23:4921-4932. [PMID: 31245927 PMCID: PMC6652952 DOI: 10.1111/jcmm.14305] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/10/2018] [Accepted: 03/25/2019] [Indexed: 12/18/2022] Open
Abstract
In our study, we aimed to investigate the role of CDR1as during competitive inhibition of miR‐7 in the regulation of cisplatin chemosensitivity in breast cancer via regulating REGγ. RT‐qPCR was applied to detect the expression of CDR1as and miR‐7 in breast cancer tissues, breast cancer cell lines and corresponding drug‐resistant cell lines. The correlation between CDR1as and miR‐7 and between miR‐7 and REGγ was evaluated. MCF‐7‐R and MDA‐MB‐231‐R cells were selected followed by transfection of a series of mimics, inhibitors or siRNA. The effect of CDR1as on the half maximal inhibitor concentration (IC50), cisplatin sensitivity and cell apoptosis was also analysed. Furthermore, a subcutaneous xenograft nude mouse model was established to further confirm the effect of CDR1as on the chemosensitivity of breast cancer to cisplatin in vivo. Immunohistochemical staining was conducted to test the Ki‐67 expression in nude mice. A positive correlation was found between the drug resistance and CDR1as expression in breast cancer. CDR1as could increase the resistance of breast cancer cells to cisplatin. miR‐7 expression was low, while REGγ was highly expressed in MCF‐7‐R and MDA‐MB‐231‐R cells. CDR1as competitively inhibited miR‐7 and up‐regulated REGγ. Overexpression of miR‐7 could reverse the enhanced sensitivity of silenced CDR1as to drug‐resistant breast cancer cells. Additionally, in vivo experiments demonstrated that CDR1as mediated breast cancer occurrence and its sensitivity to cisplatin. Silencing CDR1as decreased Ki‐67 expression. Silencing CDR1as may inhibit the expression of REGγ by removing the competitive inhibitory effect on miR‐7 and thus enhancing the sensitivity of drug‐resistant breast cancer cells.
Collapse
Affiliation(s)
- Wei Yang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China.,Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Xiaojuan Yang
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Xuedong Wang
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Juan Gu
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Daoping Zhou
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Oncology, The Second People's Hospital of Anhui Province, Hefei, China
| | - Yueping Wang
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Oncology, The Second People's Hospital of Anhui Province, Hefei, China.,Department of Biology, College of Arts & Science, Massachusetts University, Boston, MA
| | - Bin Yin
- Department of Medical Laboratory Science, The Fifth People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China
| | - Jianmin Guo
- Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Guangdong Lewwin Pharmaceutical Research Institute Co. Ltd, Guangzhou, China
| | - Ming Zhou
- Department of Pathology, The Second People's Hospital of Wuxi, Nanjing Medical University, Wuxi, China.,Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
26
|
Bhatia S, Sharma J, Bukkapatnam S, Oweida A, Lennon S, Phan A, Milner D, Uyanga N, Jimeno A, Raben D, Somerset H, Heasley L, Karam SD. Inhibition of EphB4-Ephrin-B2 Signaling Enhances Response to Cetuximab-Radiation Therapy in Head and Neck Cancers. Clin Cancer Res 2018; 24:4539-4550. [PMID: 29848571 DOI: 10.1158/1078-0432.ccr-18-0327] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/23/2018] [Accepted: 05/25/2018] [Indexed: 01/30/2023]
Abstract
Purpose: The clinical success of targeted therapies such as cetuximab and radiotherapy (RT) is hampered by the low response rates and development of therapeutic resistance. In the current study, we investigated the involvement of EphB4-ephrin-B2 protumorigenic signaling in mediating resistance to EGFR inhibition and RT in head and neck cancers.Experimental Design: We used patient-derived xenograft (PDX) models of head and neck squamous cell carcinoma (HNSCC) and HNSCC cell lines to test our hypothesis. Tumor tissues were subjected to PhosphoRTK array, and Western blotting to detect changes in EphB4-ephrin-B2 targets. mRNA sequencing and microarray data analysis were performed on PDX tumors and HNSCC cell lines, respectively, to determine differences in gene expression of molecules involved in tumor cell growth, proliferation, and survival pathways. Effects on cell growth were determined by MTT assay on HNSCC cells downregulated for EphB4/ephrin-B2 expression, with and without EGFR inhibitor and radiation.Results: Our data from locally advanced HNSCC patients treated with standard-of-care definitive chemo-RT show elevated EphB4 and ephrin-B2 levels after failure of treatment. We observed significant response toward cetuximab and RT following EphB4-ephrin-B2 inhibition, resulting in improved survival in tumor-bearing mice. Tumor growth inhibition was accompanied by a decrease in the levels of proliferation and prosurvival molecules and increased apoptosis.Conclusions: Our findings underscore the importance of adopting rational drug combinations to enhance therapeutic effect. Our study documenting enhanced response of HNSCC to cetuximab-RT with EphB4-ephrin-B2 blockade has the potential to translate into the clinic to benefit this patient population. Clin Cancer Res; 24(18); 4539-50. ©2018 AACR.
Collapse
Affiliation(s)
- Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Jaspreet Sharma
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Sanjana Bukkapatnam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Ayman Oweida
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Shelby Lennon
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Andy Phan
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Dallin Milner
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Nomin Uyanga
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Lynn Heasley
- Department of Craniofacial Biology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
27
|
Duan M, Du X, Ren G, Zhang Y, Zheng Y, Sun S, Zhang J. Obovatol inhibits the growth and aggressiveness of tongue squamous cell carcinoma through regulation of the EGF‑mediated JAK‑STAT signaling pathway. Mol Med Rep 2018; 18:1651-1659. [PMID: 29845251 DOI: 10.3892/mmr.2018.9078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/18/2017] [Indexed: 11/06/2022] Open
Abstract
Migration and invasion are the most important characteristics of human malignancies which limit cancer drug therapies in the clinic. Tongue squamous cell carcinoma (TSCC) is one of the rarest types of cancer, although it is characterized by a higher incidence, rapid growth and greater potential for metastasis compared with other oral neoplasms worldwide. Studies have demonstrated that the phenolic compound obovatol exhibits anti‑tumor effects. However, the potential mechanisms underlying obovatol‑mediated signaling pathways have not been completely elucidated in TSCC. The present study investigated the anti‑tumor effects and potential molecular mechanisms mediated by obovatol in TSCC cells and tissues. The results of the present study demonstrated that obovatol exerted cytotoxicity in SCC9 TSCC cells, and inhibited their migration and invasion. In addition, obovatol induced apoptosis in SCC9 TSCC cells by increasing caspase 9/3 and apoptotic protease enhancing factor 1 expression levels. Western blot analysis demonstrated that obovatol inhibited the expression of pro‑epidermal growth factor (EGF), Janus kinase (JAK), and signal transducer and activator of transcription (STAT) in SCC9 TSCC cells. A study of the molecular mechanisms demonstrated that depletion of EGF reversed the obovatol‑mediated inhibition of SCC9 TSCC cell growth and aggressiveness. Animal experiments indicated that obovatol significantly inhibited TSCC tumor growth and increased the number of apoptotic cells in tumor tissues. In conclusion, the results of the present study provided scientific evidence that obovatol inhibited TSCC cell growth and aggressiveness through the EGF‑mediated JAK‑STAT signaling pathway, suggesting that obovatol may be a potential anti‑TSCC agent.
Collapse
Affiliation(s)
- Mingli Duan
- Department of Stomatology, Tianjin First Center Hospital Dental, Tianjin, Hebei 300192, P.R. China
| | - Xiaoming Du
- Department of Maxillofacial Surgery, Tianjin Stomatological Hospital and Maxillofacial Surgery, Tianjin, Hebei 300041, P.R. China
| | - Gang Ren
- Department of Stomatology, Tianjin First Center Hospital Dental, Tianjin, Hebei 300192, P.R. China
| | - Yongdong Zhang
- Department of Stomatology, Tianjin First Center Hospital Dental, Tianjin, Hebei 300192, P.R. China
| | - Yu Zheng
- Department of Stomatology, Tianjin First Center Hospital Dental, Tianjin, Hebei 300192, P.R. China
| | - Shuping Sun
- Department of Maxillofacial Surgery, Tianjin Stomatological Hospital and Maxillofacial Surgery, Tianjin, Hebei 300041, P.R. China
| | - Jun Zhang
- Department of Maxillofacial Surgery, Tianjin Stomatological Hospital and Maxillofacial Surgery, Tianjin, Hebei 300041, P.R. China
| |
Collapse
|
28
|
Liu ML, Zhang Q, Yuan X, Jin L, Wang LL, Fang TT, Wang WB. Long noncoding RNA RP4 functions as a competing endogenous RNA through miR-7-5p sponge activity in colorectal cancer. World J Gastroenterol 2018; 24:1004-1012. [PMID: 29531464 PMCID: PMC5840465 DOI: 10.3748/wjg.v24.i9.1004] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/26/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the role of long noncoding RNA (lncRNA) RP4 in colorectal cancer.
METHODS Lentivirus-mediated lncRNA RP4 overexpression and knockdown were performed in the colorectal cancer cell line SW480. Cell proliferation, tumor growth, and early apoptosis were evaluated by a cell counting kit-8 assay, an in vivo xenograft tumor model, and annexin V/propidium iodide staining, respectively. Analysis of the lncRNA RP4 mechanism involved assessment of the association of its expression with miR-7-5p and the SH3GLB1 gene. Western blot analysis was also performed to assess the effect of lncRNA RP4 on the autophagy-mediated cell death pathway and phosphatidylinositol-3-kinase (PI3K)/Akt signaling.
RESULTS Cell proliferation, tumor growth, and early apoptosis in SW480 cells were negatively regulated by lncRNA RP4. Functional experiments indicated that lncRNA RP4 directly upregulated SH3GLB1 expression by acting as a competing endogenous RNA (ceRNA) for miR-7-5p. This interaction led to activation of the autophagy-mediated cell death pathway and de-repression of PI3K and Akt phosphorylation in colorectal cancer cells in vivo.
CONCLUSION Our results demonstrated that lncRNA RP4 is a ceRNA that plays an important role in the pathogenesis of colorectal cancer, and could be a potential therapeutic target for colorectal cancer treatment.
Collapse
Affiliation(s)
- Mu-Lin Liu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Qiao Zhang
- Department of General Surgery, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, Henan Province, China
| | - Xiao Yuan
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Long Jin
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Li-Li Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Tao-Tao Fang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui Province, China
| | - Wen-Bin Wang
- Department of General Surgery, the Fourth Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
29
|
Luo H, Liang H, Chen Y, Chen S, Xu Y, Xu L, Liu J, Zhou K, Peng J, Guo G, Lai B, Song L, Yang H, Liu L, Peng J, Liu Z, Tang L, Chen W, Tang H. miR-7-5p overexpression suppresses cell proliferation and promotes apoptosis through inhibiting the ability of DNA damage repair of PARP-1 and BRCA1 in TK6 cells exposed to hydroquinone. Chem Biol Interact 2018; 283:84-90. [PMID: 29421518 DOI: 10.1016/j.cbi.2018.01.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/19/2017] [Accepted: 01/22/2018] [Indexed: 02/05/2023]
Abstract
Hydroquinone (HQ), one of the major metabolic products of benzene, is a carcinogen, which induces apoptosis and inhibit proliferation in lymphoma cells. microRNA-7-5p (miR-7-5p), a tumor suppressor, participates in various biological processes including cell proliferation and apoptosis regulation by repressing expression of specific oncogenic target genes. To explore whether miR-7-5p is involved in HQ-induced cell proliferation and apoptosis, we assessed the effect of miR-7-5p overexpression on induction of apoptosis analyzed by FACSCalibur flow cytometer in transfection of TK6 cells with miR-7-5p mimic (TK6- miR-7-5p). We observed an increased apoptosis by 25.43% and decreased proliferation by 28.30% in TK6-miR-7-5p cells compared to those negative control cells (TK6-shNC) in response to HQ treatment. Furthermore, HQ might active the apoptotic pathway via partly downregulation the expression of BRCA1 and PARP-1, followed by p53 activation, in TK6-miR-7-5p cells. In contrast, attenuated p53 and BRCA1 expression was observed in shPARP-1 cells than in NC cells after HQ treatment. Therefore, we conclude that HQ may activate apoptotic signals via inhibiting the tumor suppressive effects of miR-7-5p, which may be mediated partly by upregulating the expression of PARP-1 and BRCA1 in control cells. The increase of miR-7-5p expression further intensified downregulation of PARP-1 and BRCA1 in TK6-miR-7-5p cells, resulting in an increase of apoptosis and proliferation inhibited.
Collapse
Affiliation(s)
- Hao Luo
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuting Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shaoyun Chen
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yongchun Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Longmei Xu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jiaxian Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Kairu Zhou
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jucheng Peng
- Xixiang Prevention and Health Care of Baoan, Shenzhen, China
| | - Guoqiang Guo
- Xixiang Prevention and Health Care of Baoan, Shenzhen, China
| | - Bei Lai
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Li Song
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Linhua Liu
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jianming Peng
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, China
| | - Zhidong Liu
- Huizhou Prevention and Treatment Centre for Occupational Disease, Huizhou, China
| | - Lin Tang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huanwen Tang
- Department of Environmental and Occupational Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
30
|
miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget 2018; 7:53558-53570. [PMID: 27448964 PMCID: PMC5288205 DOI: 10.18632/oncotarget.10669] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are attractive therapeutic targets for various therapy-resistant tumors. However, the association between miRNA and BRAF inhibitor resistance in melanoma remains to be elucidated. We used microarray analysis to comprehensively study the miRNA expression profiling of vemurafenib resistant (VemR) A375 melanoma cells in relation to parental A375 melanoma cells. MicroRNA-7 (miR-7) was identified to be the most significantly down-regulated miRNA in VemR A375 melanoma cells. We also found that miR-7 was down-regulated in Mel-CVR cells (vemurafenib resistant Mel-CV melanoma cells). Reestablishment of miR-7 expression could reverse the resistance of both cells to vemurafenib. We showed that epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R) and CRAF were over-expressed in VemR A375 melanoma cells. Introduction of miR-7 mimics could markedly decrease the expressions of EGFR, IGF-1R and CRAF and further suppressed the activation of MAPK and PI3K/AKT pathway in VemR A375 melanoma cells. Furthermore, tumor growth was inhibited in an in vivo murine VemR A375 melanoma tumor model transfected with miR-7 mimics. Collectively, our study demonstrated that miR-7 could reverse the resistance to BRAF inhibitors in certain vemurafenib resistant melanoma cell lines. It could advance the field and provide the basis for further studies in BRAF inhibitor resistance in melanoma.
Collapse
|
31
|
Kabir TD, Ganda C, Brown RM, Beveridge DJ, Richardson KL, Chaturvedi V, Candy P, Epis M, Wintle L, Kalinowski F, Kopp C, Stuart LM, Yeoh GC, George J, Leedman PJ. A microRNA-7/growth arrest specific 6/TYRO3 axis regulates the growth and invasiveness of sorafenib-resistant cells in human hepatocellular carcinoma. Hepatology 2018; 67:216-231. [PMID: 28833396 DOI: 10.1002/hep.29478] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/18/2017] [Accepted: 08/14/2017] [Indexed: 12/27/2022]
Abstract
UNLABELLED Sorafenib remains the only approved drug for treating patients with advanced hepatocellular carcinoma (HCC). However, the therapeutic effect of sorafenib is transient, and patients invariably develop sorafenib resistance (SR). Recently, TYRO3, a member of the TYRO3-AXL-MER family of receptor tyrosine kinases, was identified as being aberrantly expressed in a significant proportion of HCC; however, its role in SR is unknown. In this study, we generated two functionally distinct sorafenib-resistant human Huh-7 HCC cell lines in order to identify new mechanisms to abrogate acquired SR as well as new potential therapeutic targets in HCC. Initially, we investigated the effects of a microRNA (miR), miR-7-5p (miR-7), in both in vitro and in vivo preclinical models of human HCC and identified miR-7 as a potent tumor suppressor of human HCC. We identified TYRO3 as a new functional target of miR-7, which regulates proliferation, migration, and invasion of Huh-7 cells through the phosphoinositide 3-kinase/protein kinase B pathway and is markedly elevated with acquisition of SR. Furthermore, miR-7 effectively silenced TYRO3 expression in both sorafenib-sensitive and sorafenib-resistant Huh-7 cells, inhibiting TYRO3/growth arrest specific 6-mediated cancer cell migration and invasion. CONCLUSION We identified a mechanism for acquiring SR in HCC that is through the aberrant expression of the TYRO3/phosphoinositide 3-kinase/protein kinase B signal transduction pathway, and that can be overcome by miR-7 overexpression. Taken together, these data suggest a potential role for miR-7 as an RNA-based therapeutic to treat refractory and drug-resistant HCC. (Hepatology 2018;67:216-231).
Collapse
Affiliation(s)
- Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - Clarissa Ganda
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - Rikki M Brown
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - Kirsty L Richardson
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - Vishal Chaturvedi
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - Patrick Candy
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - Michael Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - Larissa Wintle
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - Felicity Kalinowski
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - Christina Kopp
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia.,Institute of Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
| | - Lisa M Stuart
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - George C Yeoh
- Liver Disease and Carcinogenesis Laboratory, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and the University of Western Australia Centre for Medical Research, Nedlands, Australia.,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| |
Collapse
|
32
|
Brown RAM, Richardson KL, Kalinowski FC, Epis MR, Horsham JL, Kabir TD, De Pinho MH, Beveridge DJ, Stuart LM, Wintle LC, Leedman PJ. Evaluation of MicroRNA Delivery In Vivo. Methods Mol Biol 2018; 1699:155-178. [PMID: 29086376 DOI: 10.1007/978-1-4939-7435-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are a family of short noncoding RNA molecules that fine-tune expression of mRNAs. Often their altered expression is associated with a number of diseases, including cancer. Given that miRNAs target multiple genes and "difficult to drug" oncogenes, they present attractive candidates to manipulate as an anti-cancer strategy. MicroRNA-7 (miR-7) is a tumor suppressor miRNA that has been shown to target oncogenes overexpressed in cancers, such as the epidermal growth factor receptor (EGFR) and the nuclear factor-κ B subunit, RelA. Here, we describe methods for evaluating systemic delivery of miR-7 using a lipid nanoparticle formulation in an animal model. The microRNA is delivered three times, over 1 week and tissues collected 24 h after the last injection. RNA and protein are extracted from snap frozen tissues and processed to detect miRNA distribution and subsequent assessment of downstream targets and signaling mediators, respectively. Importantly, variability in efficiency of miRNA delivery will be observed between organs of the same animal and also between animals. Additionally, delivering the microRNA to organs other than the liver, particularly the brain, remains challenging. Furthermore, large variation in miRNA targets is seen both within tissues and across tissues depending on the lysis buffer used for protein extraction. Therefore, analyzing protein expression is dependent upon the method used for isolation and requires optimization for each individual application. Together, these methods will provide a foundation for those planning on assessing the efficacy of delivery of a miRNA in vivo.
Collapse
Affiliation(s)
- Rikki A M Brown
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Kirsty L Richardson
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Felicity C Kalinowski
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Michael R Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Jessica L Horsham
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Marisa H De Pinho
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Lisa M Stuart
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Larissa C Wintle
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, University of Western Australia Centre for Medical Research, Nedlands, WA, 6009, Australia. .,School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, 6009, Australia.
| |
Collapse
|
33
|
Giles KM, Brown RAM, Ganda C, Podgorny MJ, Candy PA, Wintle LC, Richardson KL, Kalinowski FC, Stuart LM, Epis MR, Haass NK, Herlyn M, Leedman PJ. microRNA-7-5p inhibits melanoma cell proliferation and metastasis by suppressing RelA/NF-κB. Oncotarget 2017; 7:31663-80. [PMID: 27203220 PMCID: PMC5077967 DOI: 10.18632/oncotarget.9421] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
microRNA-7-5p (miR-7-5p) is a tumor suppressor in multiple cancer types and inhibits growth and invasion by suppressing expression and activity of the epidermal growth factor receptor (EGFR) signaling pathway. While melanoma is not typically EGFR-driven, expression of miR-7-5p is reduced in metastatic tumors compared to primary melanoma. Here, we investigated the biological and clinical significance of miR-7-5p in melanoma. We found that augmenting miR-7-5p expression in vitro markedly reduced tumor cell viability, colony formation and induced cell cycle arrest. Furthermore, ectopic expression of miR-7-5p reduced migration and invasion of melanoma cells in vitro and reduced metastasis in vivo. We used cDNA microarray analysis to identify a subset of putative miR-7-5p target genes associated with melanoma and metastasis. Of these, we confirmed nuclear factor kappa B (NF-κB) subunit RelA, as a novel direct target of miR-7-5p in melanoma cells, such that miR-7-5p suppresses NF-κB activity to decrease expression of canonical NF-κB target genes, including IL-1β, IL-6 and IL-8. Importantly, the effects of miR-7-5p on melanoma cell growth, cell cycle, migration and invasion were recapitulated by RelA knockdown. Finally, analysis of gene array datasets from multiple melanoma patient cohorts revealed an association between elevated RelA expression and poor survival, further emphasizing the clinical significance of RelA and its downstream signaling effectors. Taken together, our data show that miR-7-5p is a potent inhibitor of melanoma growth and metastasis, in part through its inactivation of RelA/NF-κB signaling. Furthermore, miR-7-5p replacement therapy could have a role in the treatment of this disease.
Collapse
Affiliation(s)
- Keith M Giles
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia.,Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, United States of America
| | - Rikki A M Brown
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Clarissa Ganda
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Melissa J Podgorny
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Patrick A Candy
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Larissa C Wintle
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Kirsty L Richardson
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Felicity C Kalinowski
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Lisa M Stuart
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Michael R Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, United States of America
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research and University of Western Australia Centre for Medical Research, Nedlands, WA, Australia.,School of Medicine and Pharmacology, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
34
|
Yang X, Xiong Q, Wu Y, Li S, Ge F. Quantitative Proteomics Reveals the Regulatory Networks of Circular RNA CDR1as in Hepatocellular Carcinoma Cells. J Proteome Res 2017; 16:3891-3902. [PMID: 28892615 DOI: 10.1021/acs.jproteome.7b00519] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs), a class of widespread endogenous RNAs, play crucial roles in diverse biological processes and are potential biomarkers in diverse human diseases and cancers. Cerebellar-degeneration-related protein 1 antisense RNA (CDR1as), an oncogenic circRNA, is involved in human tumorigenesis and is dysregulated in hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying CDR1as functions in HCC remain unclear. Here we explored the functions of CDR1as and searched for CDR1as-regulated proteins in HCC cells. A quantitative proteomics strategy was employed to globally identify CDR1as-regulated proteins in HCC cells. In total, we identified 330 differentially expressed proteins (DEPs) upon enhanced CDR1as expression in HepG2 cells, indicating that they could be proteins regulated by CDR1as. Bioinformatic analysis revealed that many DEPs were involved in cell proliferation and the cell cycle. Further functional studies of epidermal growth factor receptor (EGFR) found that CDR1as exerts its effects on cell proliferation at least in part through the regulation of EGFR expression. We further confirmed that CDR1as could inhibit the expression of microRNA-7 (miR-7). EGFR is a validated target of miR-7; therefore, CDR1as may exert its function by regulating EGFR expression via targeting miR-7 in HCC cells. Taken together, we revealed novel functions and underlying mechanisms of CDR1as in HCC cells. This study serves as the first proteome-wide analysis of a circRNA-regulated protein in cells and provides a reliable and highly efficient method for globally identifying circRNA-regulated proteins.
Collapse
Affiliation(s)
- Xue Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Qian Xiong
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| | - Ying Wu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Siting Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072, China
| |
Collapse
|
35
|
miR-331-3p and Aurora Kinase inhibitor II co-treatment suppresses prostate cancer tumorigenesis and progression. Oncotarget 2017; 8:55116-55134. [PMID: 28903407 PMCID: PMC5589646 DOI: 10.18632/oncotarget.18664] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/22/2017] [Indexed: 01/10/2023] Open
Abstract
RNA-based therapeutics could represent a new avenue of cancer treatment. miRNA 331-3p (miR-331-3p) is implicated in prostate cancer (PCa) as a putative tumor suppressor, but its functional activity and synergy with other anti-tumor agents is largely unknown. We found miR-331-3p expression in PCa tumors was significantly decreased compared to non-malignant matched tissue. Analysis of publicly available PCa gene expression data sets showed miR-331-3p expression negatively correlated with Gleason Score, tumor stage, lymph node involvement and PSA value, and was significantly down regulated in tumor tissue relative to normal prostate tissue. Overexpression of miR-331-3p reduced PCa cell growth, migration and colony formation, as well as xenograft tumor initiation, proliferation and survival of mice. Microarray analysis identified seven novel targets of miR-331-3p in PCa. The 3’-untranslated regions of PLCγ1 and RALA were confirmed as targets of miR-331-3p, with mutation analyses confirming RALA as a direct target. Expression of miR-331-3p or RALA siRNA in PCa cells reduced RALA expression, proliferation, migration and colony formation in vitro. RALA expression positively correlated with Gleason grade in two separate studies, as well as in a PCa tissue microarray. Co-treatment using siRALA with an Aurora Kinase inhibitor (AKi-II) decreased colony formation of PCa cells while the combination of AKi-II with miR-331-3p resulted in significant reduction of PCa cell proliferation in vitro and PCa xenograft growth in vivo. Thus, miR-331-3p directly targets the RALA pathway and the addition of the AKi-II has a synergistic effect on tumor growth inhibition, suggesting a potential role as combination therapy in PCa.
Collapse
|
36
|
Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R, Finn SP. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front Mol Biosci 2017. [PMID: 28634583 PMCID: PMC5459888 DOI: 10.3389/fmolb.2017.00038] [Citation(s) in RCA: 417] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Circular RNAs (circRNAs) are currently classed as non-coding RNA (ncRNA) that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3' and 5' ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i) errors in the back-splice machinery in malignant tissues, (ii) degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii) increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as potential disease biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- John Greene
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Department of Medical Oncology, Tallaght HospitalDublin, Ireland
| | - Anne-Marie Baird
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,Cancer and Ageing Research Program, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Lauren Brady
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland
| | - Marvin Lim
- Department of Medical Oncology, St. Vincent's University HospitalDublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,HOPE Directorate, St. James's HospitalDublin, Ireland.,Labmed Directorate, St. James's HospitalDublin, Ireland
| | - Raymond McDermott
- Department of Medical Oncology, Tallaght HospitalDublin, Ireland.,Department of Medical Oncology, St. Vincent's University HospitalDublin, Ireland
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, School of Medicine, Trinity College DublinDublin, Ireland.,Thoracic Oncology Research Group, Trinity Translational Medical Institute, St. James's HospitalDublin, Ireland.,Department of Clinical Medicine, Trinity College DublinDublin, Ireland.,Department of Histopathology, St. James's HospitalDublin, Ireland
| |
Collapse
|
37
|
Glover AR, Zhao JT, Gill AJ, Weiss J, Mugridge N, Kim E, Feeney AL, Ip JC, Reid G, Clarke S, Soon PSH, Robinson BG, Brahmbhatt H, MacDiarmid JA, Sidhu SB. MicroRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma. Oncotarget 2017; 6:36675-88. [PMID: 26452132 PMCID: PMC4742203 DOI: 10.18632/oncotarget.5383] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/18/2015] [Indexed: 12/03/2022] Open
Abstract
Adrenocortical carcinoma (ACC) has a poor prognosis with significant unmet clinical need due to late diagnosis, high rates of recurrence/metastasis and poor response to conventional treatment. Replacing tumor suppressor microRNAs (miRNAs) offer a novel therapy, however systemic delivery remains challenging. A number of miRNAs have been described to be under-expressed in ACC however it is not known if they form a part of ACC pathogenesis. Here we report that microRNA-7–5p (miR-7) reduces cell proliferation in vitro and induces G1 cell cycle arrest. Systemic miR-7 administration in a targeted, clinically safe delivery vesicle (EGFREDVTM nanocells) reduces ACC xenograft growth originating from both ACC cell lines and primary ACC cells. Mechanistically, miR-7 targets Raf-1 proto-oncogene serine/threonine kinase (RAF1) and mechanistic target of rapamycin (MTOR). Additionally, miR-7 therapy in vivo leads to inhibition of cyclin dependent kinase 1 (CDK1). In patient ACC samples, CDK1 is overexpressed and miR-7 expression inversely related. In summary, miR-7 inhibits multiple oncogenic pathways and reduces ACC growth when systemically delivered using EDVTM nanoparticles. This data is the first study in ACC investigating the possibility of miRNAs replacement as a novel therapy.
Collapse
Affiliation(s)
- Anthony R Glover
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, Australia.,University of Sydney Endocrine Surgery Unit, Royal North Shore Hospital, Sydney, St Leonards, Sydney, NSW, Australia
| | - Jing Ting Zhao
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, Australia
| | - Anthony J Gill
- Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, Australia.,Department of Anatomical Pathology, Royal North Shore Hospital and University of Sydney, St Leonards, Sydney, NSW, Australia
| | - Jocelyn Weiss
- EnGeneIC Ltd, Lane Cove West, Sydney, NSW, Australia
| | | | - Edward Kim
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, Australia
| | - Alex L Feeney
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, Australia
| | - Julian C Ip
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute, University of Sydney, Concord, Sydney, NSW, Australia
| | - Stephen Clarke
- Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, Australia.,Department of Oncology, Royal North Shore Hospital and University of Sydney, St Leonards, Sydney, NSW, Australia
| | - Patsy S H Soon
- Ingham Institute for Applied Medical Research, University of New South Wales, Liverpool, NSW, Australia
| | - Bruce G Robinson
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, Australia.,Department of Endocrinology, Royal North Shore Hospital and University of Sydney, St Leonards, Sydney, NSW, Australia
| | | | | | - Stan B Sidhu
- Cancer Genetics Laboratory, Kolling Institute, Northern Sydney Local Health District, St Leonards, NSW, Australia.,Sydney Medical School Northern, Royal North Shore Hospital, University of Sydney, St Leonards, Sydney, NSW, Australia.,University of Sydney Endocrine Surgery Unit, Royal North Shore Hospital, Sydney, St Leonards, Sydney, NSW, Australia
| |
Collapse
|
38
|
Wu K, Zhao Z, Xiao Y, Peng J, Chen J, He Y. Roles of mitochondrial transcription factor A and microRNA‑590‑3p in the development of colon cancer. Mol Med Rep 2016; 14:5475-5480. [PMID: 27878255 PMCID: PMC5355708 DOI: 10.3892/mmr.2016.5955] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/07/2016] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) participates in the process of mitochondrial DNA replication and transcription. microRNAs (miRNAs) serve an important role in the regulation of gene expression. However, the roles of TFAM and certain miRNAs and their associations in the development of numerous cancer types remain unclear. The current study demonstrated that the expression of TFAM was significantly upregulated in colon cancer compared with the normal tissue, while the expression of miRNA-590-3p (miR-590-3p) was predicted with a high score using miRWalk software, and the luciferase assay demonstrated that TFAM was the direct target of miRNA-590-3p. miR-590-3p exhibited high expression levels in both colon cancer tissue and the SW480 cell line. Furthermore, downregulated expression of miR-590-3p significantly inhibited the growth of SW480 cells, which was consistent with results indicating downregulated expression of TFAM in SW480 cells from a previous study. In summary, the results of the current study concluded that miR-590-3p, via direct targeting of TFAM, may serve an important role in the tumorigenesis of colon cancer, and may be a promising target for colon cancer therapeutics.
Collapse
Affiliation(s)
- Kaiming Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenxian Zhao
- Department of Pancreato‑Biliary Surgery, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| | - Yinglian Xiao
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| | - Jianjun Peng
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| | - Jianhui Chen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| | - Yulong He
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Sun Yat‑Sen Univesity, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
39
|
Liu W, Zhang Y, Xia P, Li S, Feng X, Gao Y, Wang K, Song Y, Duan Z, Yang S, Shao Z, Yang C. MicroRNA-7 regulates IL-1β-induced extracellular matrix degeneration by targeting GDF5 in human nucleus pulposus cells. Biomed Pharmacother 2016; 83:1414-1421. [DOI: 10.1016/j.biopha.2016.08.062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/01/2016] [Accepted: 08/25/2016] [Indexed: 11/30/2022] Open
|
40
|
Abstract
Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.
Collapse
Affiliation(s)
- Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Graham Carpenter
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Veterans Health Administration, Tennessee Valley Healthcare System, Nashville, TN, 37212, USA
| |
Collapse
|
41
|
Higuchi T, Todaka H, Sugiyama Y, Ono M, Tamaki N, Hatano E, Takezaki Y, Hanazaki K, Miwa T, Lai S, Morisawa K, Tsuda M, Taniguchi T, Sakamoto S. Suppression of MicroRNA-7 (miR-7) Biogenesis by Nuclear Factor 90-Nuclear Factor 45 Complex (NF90-NF45) Controls Cell Proliferation in Hepatocellular Carcinoma. J Biol Chem 2016; 291:21074-21084. [PMID: 27519414 DOI: 10.1074/jbc.m116.748210] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-7 (miR-7)has been characterized as an anti-oncogenic microRNA (miRNA) in several cancers, including hepatocellular carcinoma (HCC). However, the mechanism for the regulation of miR-7 production in tumors remains unclear. Here, we identified nuclear factor 90 (NF90) and NF45 complex (NF90-NF45) as negative regulators of miR-7 processing in HCC. Expression of NF90 and NF45 was significantly elevated in primary HCC tissues compared with adjacent non-tumor tissues. To examine which miRNAs are controlled by NF90-NF45, we performed an miRNA microarray and quantitative RT-PCR analyses of HCC cell lines. Depletion of NF90 resulted in elevated levels of mature miR-7, whereas the expression of primary miR-7-1 (pri-miR-7-1) was decreased in cells following knockdown of NF90. Conversely, the levels of mature miR-7 were reduced in cells overexpressing NF90 and NF45, although pri-miR-7-1 was accumulated in the same cells. Furthermore, NF90-NF45 was found to bind pri-miR-7-1 in vitro These results suggest that NF90-NF45 inhibits the pri-miR-7-1 processing step through the binding of NF90-NF45 to pri-miR-7-1. We also found that levels of the EGF receptor, an oncogenic factor that is a direct target of miR-7, and phosphorylation of AKT were significantly decreased in HCC cell lines depleted of NF90 or NF45. Of note, knockdown of NF90 or NF45 caused a reduction in the proliferation rate of HCC cells. Taken together, NF90-NF45 stimulates an elevation of EGF receptor levels via the suppression of miR-7 biogenesis, resulting in the promotion of cell proliferation in HCC.
Collapse
Affiliation(s)
- Takuma Higuchi
- From the Laboratory of Molecular Biology, Science Research Center
| | - Hiroshi Todaka
- From the Laboratory of Molecular Biology, Science Research Center
| | | | - Masafumi Ono
- Departments of Gastroenterology and Hepatology and
| | - Nobuyuki Tamaki
- the Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Etsuro Hatano
- the Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | - Takeshi Miwa
- From the Laboratory of Molecular Biology, Science Research Center
| | - Sylvia Lai
- From the Laboratory of Molecular Biology, Science Research Center
| | - Keiko Morisawa
- From the Laboratory of Molecular Biology, Science Research Center
| | - Masayuki Tsuda
- Division of Laboratory Animal Science, Science Research Center,Kochi Medical School, Kochi 783-8505 and
| | | | - Shuji Sakamoto
- From the Laboratory of Molecular Biology, Science Research Center,
| |
Collapse
|
42
|
DONG WEI, LI BAOSHENG, WANG JUAN, SONG YIPENG, ZHANG ZICHENG, FU CHENGRUI, ZHANG PEILIANG. Diagnostic and predictive significance of serum microRNA-7 in esophageal squamous cell carcinoma. Oncol Rep 2015; 35:1449-56. [DOI: 10.3892/or.2015.4499] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 11/05/2015] [Indexed: 11/06/2022] Open
|
43
|
Horsham JL, Ganda C, Kalinowski FC, Brown RAM, Epis MR, Leedman PJ. MicroRNA-7: A miRNA with expanding roles in development and disease. Int J Biochem Cell Biol 2015; 69:215-24. [PMID: 26546742 DOI: 10.1016/j.biocel.2015.11.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a family of short, non-coding RNA molecules (∼22nt) involved in post-transcriptional control of gene expression. They act via base-pairing with mRNA transcripts that harbour target sequences, resulting in accelerated mRNA decay and/or translational attenuation. Given miRNAs mediate the expression of molecules involved in many aspects of normal cell development and functioning, it is not surprising that aberrant miRNA expression is closely associated with many human diseases. Their pivotal role in driving a range of normal cellular physiology as well as pathological processes has established miRNAs as potential therapeutics, as well as potential diagnostic and prognostic tools in human health. MicroRNA-7 (miR-7) is a highly conserved miRNA which displays restricted spatiotemporal expression during development and in maturity. In humans and mice, mature miR-7 is generated from three different genes, illustrating unexpected redundancy and also the importance of this miRNA in regulating key cellular processes. In this review we examine the expanding role of miR-7 in the context of health, with emphasis on organ differentiation and development, as well as in various mammalian diseases, particularly of the brain, heart, endocrine pancreas and skin, as well as in cancer. The more we learn about miR-7, the more we realise the complexity of its regulation and potential functional application both from a biomarker and therapeutic perspective.
Collapse
Affiliation(s)
- Jessica L Horsham
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia; School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA 6009, Australia
| | - Clarissa Ganda
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia
| | - Felicity C Kalinowski
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia
| | - Rikki A M Brown
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia
| | - Michael R Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia; School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA 6009, Australia.
| |
Collapse
|
44
|
Horsham JL, Kalinowski FC, Epis MR, Ganda C, Brown RAM, Leedman PJ. Clinical Potential of microRNA-7 in Cancer. J Clin Med 2015; 4:1668-87. [PMID: 26308064 PMCID: PMC4600152 DOI: 10.3390/jcm4091668] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNAs) are a family of short, non-coding RNA molecules that drive a complex network of post-transcriptional gene regulation by enhancing target mRNA decay and/or inhibiting protein synthesis from mRNA transcripts. They regulate genes involved in key aspects of normal cell growth, development and the maintenance of body homeostasis and have been closely linked to the development and progression of human disease, in particular cancer. Over recent years there has been much interest regarding their potential as biomarkers and as therapeutic agents or targets. microRNA-7 (miR-7) is a 23 nucleotide (nt) miRNA known primarily to act as a tumour suppressor. miR-7 directly inhibits a number of oncogenic targets and impedes various aspects of cancer progression in vitro and in vivo, however, some studies have also implicated miR-7 in oncogenic roles. This review summarises the role of miR-7 in cancer, its potential in miRNA-based replacement therapy and its capacity as both a diagnostic and prognostic biomarker.
Collapse
Affiliation(s)
- Jessica L Horsham
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Felicity C Kalinowski
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
| | - Michael R Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
| | - Clarissa Ganda
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
| | - Rikki A M Brown
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA 6000, Australia.
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, WA 6009, Australia.
| |
Collapse
|
45
|
MicroRNAs and Growth Factors: An Alliance Propelling Tumor Progression. J Clin Med 2015; 4:1578-99. [PMID: 26287249 PMCID: PMC4555078 DOI: 10.3390/jcm4081578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 02/06/2023] Open
Abstract
Tumor progression requires cancer cell proliferation, migration, invasion, and attraction of blood and lymph vessels. These processes are tightly regulated by growth factors and their intracellular signaling pathways, which culminate in transcriptional programs. Hence, oncogenic mutations often capture growth factor signaling, and drugs able to intercept the underlying biochemical routes might retard cancer spread. Along with messenger RNAs, microRNAs play regulatory roles in growth factor signaling and in tumor progression. Because growth factors regulate abundance of certain microRNAs and the latter modulate the abundance of proteins necessary for growth factor signaling, the two classes of molecules form a dense web of interactions, which are dominated by a few recurring modules. We review specific examples of the alliance formed by growth factors and microRNAs and refer primarily to the epidermal growth factor (EGF) pathway. Clinical applications of the crosstalk between microRNAs and growth factors are described, including relevance to cancer therapy and to emergence of resistance to specific drugs.
Collapse
|
46
|
Arriola E, Taus &A, Casadevall D. Is there a role for epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor wild-type non-small cell lung cancer? World J Clin Oncol 2015; 6:45-56. [PMID: 26266101 PMCID: PMC4530378 DOI: 10.5306/wjco.v6.i4.45] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/08/2015] [Accepted: 06/04/2015] [Indexed: 02/06/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer with a world-wide annual incidence of around 1.3 million. The majority of patients are diagnosed with advanced disease and survival remains poor. However, relevant advances have occurred in recent years through the identification of biomarkers that predict for benefit of therapeutic agents. This is exemplified by the efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors for the treatment of EGFR mutant patients. These drugs have also shown efficacy in unselected populations but this point remains controversial. Here we have reviewed the clinical data that demonstrate a small but consistent subgroup of EGFR wild-type patients with NSCLC that obtain a clinical benefit from these drugs. Moreover, we review the biological rationale that may explain this benefit observed in the clinical setting.
Collapse
|
47
|
Zhao XD, Lu YY, Guo H, Xie HH, He LJ, Shen GF, Zhou JF, Li T, Hu SJ, Zhou L, Han YN, Liang SL, Wang X, Wu KC, Shi YQ, Nie YZ, Fan DM. MicroRNA-7/NF-κB signaling regulatory feedback circuit regulates gastric carcinogenesis. J Cell Biol 2015; 210:613-27. [PMID: 26261179 PMCID: PMC4539989 DOI: 10.1083/jcb.201501073] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/30/2015] [Indexed: 01/27/2023] Open
Abstract
RELA and FOS are targets of miR-7 in gastric cancer cells and the miR-7/IKKε/RELA reciprocal feedback loop is important for gastric cancer induced by H. pylori infection. MicroRNAs play essential roles in gene expression regulation during carcinogenesis. Here, we investigated the role of miR-7 and the mechanism by which it is dysregulated in gastric cancer (GC). We used genome-wide screenings and identified RELA and FOS as novel targets of miR-7. Overexpression of miR-7 repressed RELA and FOS expression and prevented GC cell proliferation and tumorigenesis. These effects were clinically relevant, as low miR-7 expression was correlated with high RELA and FOS expression and poor survival in GC patients. Intriguingly, we found that miR-7 indirectly regulated RELA activation by targeting the IκB kinase IKKε. Furthermore, IKKε and RELA can repress miR-7 transcription, which forms a feedback circuit between miR-7 and nuclear factor κB (NF-κB) signaling. Additionally, we demonstrate that down-regulation of miR-7 may occur as a result of the aberrant activation of NF-κB signaling by Helicobacter pylori infection. These findings suggest that miR-7 may serve as an important regulator in GC development and progression.
Collapse
Affiliation(s)
- Xiao-Di Zhao
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuan-Yuan Lu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hao Guo
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hua-Hong Xie
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Li-Jie He
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Gao-Fei Shen
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jin-Feng Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ting Li
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Si-Jun Hu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lin Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ya-Nan Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shu-Li Liang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kai-Chun Wu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yong-Quan Shi
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yong-Zhan Nie
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Dai-Ming Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
48
|
Babae N, Bourajjaj M, Liu Y, Van Beijnum JR, Cerisoli F, Scaria PV, Verheul M, Van Berkel MP, Pieters EHE, Van Haastert RJ, Yousefi A, Mastrobattista E, Storm G, Berezikov E, Cuppen E, Woodle M, Schaapveld RQJ, Prevost GP, Griffioen AW, Van Noort PI, Schiffelers RM. Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma. Oncotarget 2015; 5:6687-700. [PMID: 25149532 PMCID: PMC4196156 DOI: 10.18632/oncotarget.2235] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumor-angiogenesis is the multi-factorial process of sprouting of endothelial cells (EC) into micro-vessels to provide tumor cells with nutrients and oxygen. To explore miRNAs as therapeutic angiogenesis-inhibitors, we performed a functional screen to identify miRNAs that are able to decrease EC viability. We identified miRNA-7 (miR-7) as a potent negative regulator of angiogenesis. Introduction of miR-7 in EC resulted in strongly reduced cell viability, tube formation, sprouting and migration. Application of miR-7 in the chick chorioallantoic membrane assay led to a profound reduction of vascularization, similar to anti-angiogenic drug sunitinib. Local administration of miR-7 in an in vivo murine neuroblastoma tumor model significantly inhibited angiogenesis and tumor growth. Finally, systemic administration of miR-7 using a novel integrin-targeted biodegradable polymeric nanoparticles that targets both EC and tumor cells, strongly reduced angiogenesis and tumor proliferation in mice with human glioblastoma xenografts. Transcriptome analysis of miR-7 transfected EC in combination with in silico target prediction resulted in the identification of OGT as novel target gene of miR-7. Our study provides a comprehensive validation of miR-7 as novel anti-angiogenic therapeutic miRNA that can be systemically delivered to both EC and tumor cells and offers promise for miR-7 as novel anti-tumor therapeutic.
Collapse
Affiliation(s)
- Negar Babae
- Utrecht Institute for Pharmaceutical Sciences, University Utrecht, Utrecht, the Netherlands. These authors contributed equally to this work
| | - Meriem Bourajjaj
- InteRNA Technologies B.V., Utrecht, the Netherlands. These authors contributed equally to this work
| | - Yijia Liu
- Aparna Biosciences Corporation, Rockville MD, USA. These authors contributed equally to this work
| | | | | | | | - Mark Verheul
- InteRNA Technologies B.V., Utrecht, the Netherlands
| | | | - Ebel H E Pieters
- Utrecht Institute for Pharmaceutical Sciences, University Utrecht, Utrecht, the Netherlands.
| | | | - Afrouz Yousefi
- Utrecht Institute for Pharmaceutical Sciences, University Utrecht, Utrecht, the Netherlands.
| | - Enrico Mastrobattista
- Utrecht Institute for Pharmaceutical Sciences, University Utrecht, Utrecht, the Netherlands.
| | - Gert Storm
- MIRA Institute for Biomedical Technology & Technical Medicine, Faculty of Science & Technology, University of Twente, AE Enschede, the Netherlands
| | - Eugene Berezikov
- Hubrecht Institute, Cancer Genomics Center and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, Cancer Genomics Center and University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | - Raymond M Schiffelers
- Laboratory Clinical Chemistry & Haematology, University Medical Center Utrecht (UMCU), Utrecht, the Netherlands
| |
Collapse
|
49
|
Gu DN, Huang Q, Tian L. The molecular mechanisms and therapeutic potential of microRNA-7 in cancer. Expert Opin Ther Targets 2014; 19:415-26. [PMID: 25434362 DOI: 10.1517/14728222.2014.988708] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Increasing evidence supports that microRNAs (miRNAs) play crucial roles in cancer through post-transcriptional gene silencing of their target genes, therefore, more and more effort has been devoted to develop miRNA-targeting therapeutics in cancer. MicroRNA-7 (miR-7) has been characterized as a potential tumor suppressor and regulates diverse fundamental biological processes of cancer cells including initiation, proliferation, migration, invasion, survival and death by targeting a number of oncogenic signaling pathways. AREAS COVERED This review examines evidence of the biological responses of miR-7 in cancer, with an emphasis on its regulation of the vital oncogenic signaling pathways. It also discusses the rationale, strategies and challenges of miR-7 as a potential therapeutic target for cancer. EXPERT OPINION With the increasing understanding of molecular mechanisms of miR-7-mediated regulatory networks and the advancement of miRNA-based therapeutics, targeting miR-7 may be a potential and promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Dian-Na Gu
- Shanghai Jiao Tong University School of Medicine, Shanghai First People's Hospital, Experimental Research Center , Shanghai 201620 , PR China +86 21 37798755 ; +86 21 37798276 ;
| | | | | |
Collapse
|
50
|
Li J, Zheng Y, Sun G, Xiong S. Restoration of miR-7 expression suppresses the growth of Lewis lung cancer cells by modulating epidermal growth factor receptor signaling. Oncol Rep 2014; 32:2511-6. [PMID: 25334070 DOI: 10.3892/or.2014.3519] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/09/2014] [Indexed: 01/08/2023] Open
Abstract
microRNAs are an abundant class of short endogenous non-coding RNAs that function as important regulators of multiple target genes and participate in diverse biological roles in carcinogenesis. However, the role of miR-7 in lung cancer remains unclear and requires further elucidation. In the present study, we found a reduction of miR-7 expression in Lewis lung cancer (3LL) cells originating from mice by real-time RT-PCR. Restoration of miR-7 inhibited 3LL cell proliferation, induced cell apoptosis in vitro and reduced tumorigenicity in vivo. We further confirmed that miR-7 downregulated the expression of both epidermal growth factor receptor (EGFR) and murine leukemia viral oncogene homologue-1 (RAF-1) oncogenes by real-time PCR and western blot analysis. Furthermore, inhibition of EGFR showed similar effects to miR-7 enforcement in 3LL cells. Taken together, these findings revealed that miR-7 acts as an antitumor miRNA in 3LL by targeting and suppressing the expression of both EGFR and RAF-1 oncogenes. This study may provide a rationale for the use of miR-7 in lung cancer target therapy.
Collapse
Affiliation(s)
- Jingrong Li
- Department of Emergency, The Second Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| | - Yijie Zheng
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Gengyun Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Shudao Xiong
- Department of Hematology/Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, P.R. China
| |
Collapse
|