1
|
Mills CE. Electrochemical NAD+ regeneration in bacterial organelles. Proc Natl Acad Sci U S A 2025; 122:e2423449122. [PMID: 39793095 PMCID: PMC11725831 DOI: 10.1073/pnas.2423449122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Affiliation(s)
- Carolyn E. Mills
- Department of Bioengineering, University of California, Santa Barbara, CA93106
- Department of Chemical Engineering, University of California, Santa Barbara, CA93106
| |
Collapse
|
2
|
Sutter M, Utschig LM, Niklas J, Paul S, Kahan DN, Gupta S, Poluektov OG, Ferlez BH, Tefft NM, TerAvest MA, Hickey DP, Vermaas JV, Ralston CY, Kerfeld CA. Electrochemical cofactor recycling of bacterial microcompartments. Proc Natl Acad Sci U S A 2024; 121:e2414220121. [PMID: 39585991 PMCID: PMC11626177 DOI: 10.1073/pnas.2414220121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B12) reductase and, curiously, found it in many unrelated BMC types that do not employ B12 cofactors. We propose Nicotinamide adenine dinucleotide (NAD+) regeneration as the function of this enzyme and name it Metabolosome Nicotinamide Adenine Dinucleotide Hydrogen (NADH) dehydrogenase (MNdh). Its partner shell protein BMC-TSE (tandem domain BMC shell protein of the single layer type for electron transfer) assists in passing the generated electrons to the outside. We support this hypothesis with bioinformatic analysis, functional assays, Electron Paramagnetic Resonance spectroscopy, protein voltammetry, and structural modeling verified with X-ray footprinting. This finding represents a paradigm for the BMC field, identifying a new, widely occurring route for cofactor recycling and a new function for the shell as separating redox environments.
Collapse
Affiliation(s)
- Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Lisa M. Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Sathi Paul
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Darren N. Kahan
- Biophysics Graduate Program, University of California, Berkeley, CA94720
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL60439
| | - Bryan H. Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
| | - Nicholas M. Tefft
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - David P. Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI48824
| | - Josh V. Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
3
|
Tefft NM, Wang Y, Jussupow A, Feig M, TerAvest MA. Controlled enzyme cargo loading in engineered bacterial microcompartment shells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619467. [PMID: 39484613 PMCID: PMC11526891 DOI: 10.1101/2024.10.21.619467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bacterial microcompartments (BMCs) are nanometer-scale organelles with a protein-based shell that serve to co-localize and encapsulate metabolic enzymes. They may provide a range of benefits to improve pathway catalysis, including substrate channeling and selective permeability. Several groups are working toward using BMC shells as a platform for enhancing engineered metabolic pathways. The microcompartment shell of Haliangium ochraceum (HO) has emerged as a versatile and modular shell system that can be expressed and assembled outside its native host and with non-native cargo. Further, the HO shell has been modified to use the engineered protein conjugation system SpyCatcher-SpyTag for non-native cargo loading. Here, we used a model enzyme, triose phosphate isomerase (Tpi), to study non-native cargo loading into four HO shell variants and begin to understand maximal shell loading levels. We also measured activity of Tpi encapsulated in the HO shell variants and found that activity was determined by the amount of cargo loaded and was not strongly impacted by the predicted permeability of the shell variant to large molecules. All shell variants tested could be used to generate active, Tpi-loaded versions, but the simplest variants assembled most robustly. We propose that the simple variant is the most promising for continued development as a metabolic engineering platform.
Collapse
|
4
|
Johnson ER, Kennedy NW, Mills CE, Liang S, Chandrasekar S, Nichols TM, Rybnicky GA, Tullman-Ercek D. Signal sequences target enzymes and structural proteins to bacterial microcompartments and are critical for microcompartment formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615066. [PMID: 39386669 PMCID: PMC11463388 DOI: 10.1101/2024.09.25.615066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Spatial organization of pathway enzymes has emerged as a promising tool to address several challenges in metabolic engineering, such as flux imbalances and off-target product formation. Bacterial microcompartments (MCPs) are a spatial organization strategy used natively by many bacteria to encapsulate metabolic pathways that produce toxic, volatile intermediates. Several recent studies have focused on engineering MCPs to encapsulate heterologous pathways of interest, but how this engineering affects MCP assembly and function is poorly understood. In this study, we investigated the role of signal sequences, short domains that target proteins to the MCP core, in the assembly of 1,2-propanediol utilization (Pdu) MCPs. We characterized two novel Pdu signal sequences on the structural proteins PduM and PduB, which constitutes the first report of metabolosome signal sequences on structural proteins rather than enzymes. We then explored the role of enzymatic and structural Pdu signal sequences on MCP assembly by deleting their encoding sequences from the genome alone and in combination. Deleting enzymatic signal sequences decreased MCP formation, but this defect could be recovered in some cases by overexpressing genes encoding the knocked-out signal sequence fused to a heterologous protein. By contrast, deleting structural signal sequences caused similar defects to knocking out the genes encoding the full length PduM and PduB proteins. Our results contribute to a growing understanding of how MCPs form and function in bacteria and provide strategies to mitigate assembly disruption when encapsulating heterologous pathways in MCPs.
Collapse
Affiliation(s)
- Elizabeth R. Johnson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Nolan W. Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Carolyn. E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Shiqi Liang
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
| | - Swetha Chandrasekar
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Taylor M. Nichols
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
| | - Grant A Rybnicky
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
5
|
Dank A, Liu Y, Wen X, Lin F, Wiersma A, Boeren S, Smid EJ, Notebaart RA, Abee T. Ethylene glycol is metabolized to ethanol and acetate and induces expression of bacterial microcompartments in Propionibacterium freudenreichii. Heliyon 2024; 10:e33444. [PMID: 39027605 PMCID: PMC11255663 DOI: 10.1016/j.heliyon.2024.e33444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Ethylene glycol (EG, 1,2-ethanediol) is a two-carbon dihydroxy alcohol that can be derived from fermentation of plant-derived xylose and arabinose and which can be formed during food fermentations. Here we show that Propionibacterium freudenreichii DSM 20271 is able to convert EG in anaerobic conditions to ethanol and acetate in almost equimolar amounts. The metabolism of EG led to a moderate increase of biomass, indicating its metabolism is energetically favourable. A proteomic analysis revealed EG induced expression of the pdu-cluster, which encodes a functional bacterial microcompartment (BMC) involved in the degradation of 1,2-propanediol, with the presence of BMCs confirmed using transmission electron microscopy. Cross-examination of the proteomes of 1,2-propanediol and EG grown cells revealed PDU BMC-expressing cells have elevated levels of DNA repair proteins and cysteine biosynthesis proteins. Cells grown in 1,2-propanediol and EG also showed enhanced resistance against acid and bile salt-induced stresses compared to lactate-grown cells. Our analysis of whole genome sequences of selected genomes of BMC-encoding microorganisms able to metabolize EG with acetaldehyde as intermediate indicate a potentially broad-distributed role of the pdu operon in metabolism of EG. Based on our results we conclude EG is metabolized to acetate and ethanol with acetaldehyde as intermediate within BMCs in P. freudenreichii.
Collapse
Affiliation(s)
- Alexander Dank
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Yue Liu
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Xin Wen
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Fan Lin
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Anne Wiersma
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Eddy J. Smid
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Sutter M, Utschig LM, Niklas J, Paul S, Kahan DN, Gupta S, Poluektov OG, Ferlez BH, Tefft NM, TerAvest MA, Hickey DP, Vermaas JV, Ralston CY, Kerfeld CA. Electrochemical cofactor recycling of bacterial microcompartments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.15.603600. [PMID: 39071365 PMCID: PMC11275729 DOI: 10.1101/2024.07.15.603600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles that consist of a protein shell which sequesters metabolic reactions in its interior. While most of the substrates and products are relatively small and can permeate the shell, many of the encapsulated enzymes require cofactors that must be regenerated inside. We have analyzed the occurrence of an enzyme previously assigned as a cobalamin (vitamin B12) reductase and, curiously, found it in many unrelated BMC types that do not employ B12 cofactors. We propose NAD+ regeneration as a new function of this enzyme and name it MNdh, for Metabolosome NADH dehydrogenase. Its partner shell protein BMC-TSE assists in passing the generated electrons to the outside. We support this hypothesis with bioinformatic analysis, functional assays, EPR spectroscopy, protein voltammetry and structural modeling verified with X-ray footprinting. This discovery represents a new paradigm for the BMC field, identifying a new, widely occurring route for cofactor recycling and a new function for the shell as separating redox environments.
Collapse
Affiliation(s)
- Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Lisa M. Utschig
- Chemical Sciences and Engineering Division, Argonne National Laboratory; Lemont, IL 60439, USA
| | - Jens Niklas
- Chemical Sciences and Engineering Division, Argonne National Laboratory; Lemont, IL 60439, USA
| | - Sathi Paul
- Molecular Foundry Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Darren N. Kahan
- Biophysics Graduate Program, University of California; Berkeley, CA, 94720, USA
| | - Sayan Gupta
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Oleg G. Poluektov
- Chemical Sciences and Engineering Division, Argonne National Laboratory; Lemont, IL 60439, USA
| | - Bryan H. Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
| | - Nicholas M. Tefft
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| | - David P. Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University; East Lansing, MI 48824, USA
| | - Josh V. Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| | - Corie Y. Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Molecular Foundry Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University; East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University; East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Wang R, Su Y, Yang W, Zhang H, Wang J, Gao W. Enhanced precision and efficiency in metabolic regulation: Compartmentalized metabolic engineering. BIORESOURCE TECHNOLOGY 2024; 402:130786. [PMID: 38703958 DOI: 10.1016/j.biortech.2024.130786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Metabolic engineering has witnessed remarkable advancements, enabling successful large-scale, cost-effective and efficient production of numerous compounds. However, the predominant expression of heterologous genes in the cytoplasm poses limitations, such as low substrate concentration, metabolic competition and product toxicity. To overcome these challenges, compartmentalized metabolic engineering allows the spatial separation of metabolic pathways for the efficient and precise production of target compounds. Compartmentalized metabolic engineering and its common strategies are comprehensively described in this study, where various membranous compartments and membraneless compartments have been used for compartmentalization and constructive progress has been made. Additionally, the challenges and future directions are discussed in depth. This review is dedicated to providing compartmentalized, precise and efficient methods for metabolic production, and provides valuable guidance for further development in the field of metabolic engineering.
Collapse
Affiliation(s)
- Rubing Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
8
|
Trettel DS, Pacheco SL, Laskie AK, Gonzalez-Esquer CR. Modeling bacterial microcompartment architectures for enhanced cyanobacterial carbon fixation. FRONTIERS IN PLANT SCIENCE 2024; 15:1346759. [PMID: 38425792 PMCID: PMC10902431 DOI: 10.3389/fpls.2024.1346759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
The carboxysome is a bacterial microcompartment (BMC) which plays a central role in the cyanobacterial CO2-concentrating mechanism. These proteinaceous structures consist of an outer protein shell that partitions Rubisco and carbonic anhydrase from the rest of the cytosol, thereby providing a favorable microenvironment that enhances carbon fixation. The modular nature of carboxysomal architectures makes them attractive for a variety of biotechnological applications such as carbon capture and utilization. In silico approaches, such as molecular dynamics (MD) simulations, can support future carboxysome redesign efforts by providing new spatio-temporal insights on their structure and function beyond in vivo experimental limitations. However, specific computational studies on carboxysomes are limited. Fortunately, all BMC (including the carboxysome) are highly structurally conserved which allows for practical inferences to be made between classes. Here, we review simulations on BMC architectures which shed light on (1) permeation events through the shell and (2) assembly pathways. These models predict the biophysical properties surrounding the central pore in BMC-H shell subunits, which in turn dictate the efficiency of substrate diffusion. Meanwhile, simulations on BMC assembly demonstrate that assembly pathway is largely dictated kinetically by cargo interactions while final morphology is dependent on shell factors. Overall, these findings are contextualized within the wider experimental BMC literature and framed within the opportunities for carboxysome redesign for biomanufacturing and enhanced carbon fixation.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences Group, Los Alamos, NM, United States
| | | | | | | |
Collapse
|
9
|
Ochoa JM, Dershwitz P, Schappert M, Sinha S, Herring TI, Yeates TO, Bobik TA. A single shell protein plays a major role in choline transport across the shell of the choline utilization microcompartment of Escherichia coli 536. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001413. [PMID: 37971493 PMCID: PMC10710832 DOI: 10.1099/mic.0.001413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Bacterial microcompartments (MCPs) are widespread protein-based organelles that play important roles in the global carbon cycle and in the physiology of diverse bacteria, including a number of pathogens. MCPs consist of metabolic enzymes encapsulated within a protein shell. The main roles of MCPs are to concentrate enzymes together with their substrates (to increase reaction rates) and to sequester harmful metabolic intermediates. Prior studies indicate that MCPs have a selectively permeable protein shell, but the mechanisms that allow selective transport across the shell are not fully understood. Here we examine transport across the shell of the choline utilization (Cut) MCP of Escherichia coli 536, which has not been studied before. The shell of the Cut MCP is unusual in consisting of one pentameric and four hexameric bacterial microcompartment (BMC) domain proteins. It lacks trimeric shell proteins, which are thought to be required for the transport of larger substrates and enzymatic cofactors. In addition, its four hexameric BMC domain proteins are very similar in amino acid sequence. This raises questions about how the Cut MCP mediates the selective transport of the substrate, products and cofactors of choline metabolism. In this report, site-directed mutagenesis is used to modify the central pores (the main transport channels) of all four Cut BMC hexamers to assess their transport roles. Our findings indicate that a single shell protein, CmcB, plays the major role in choline transport across the shell of the Cut MCP and that the electrostatic properties of the CmcB pore also impact choline transport. The implications of these findings with regard to the higher-order structure of MCPs are discussed.
Collapse
Affiliation(s)
- Jessica M. Ochoa
- UCLA-Molecular Biology Institute, University of California, Los Angeles, USA
| | - Philip Dershwitz
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Mary Schappert
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sharmistha Sinha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Taylor I. Herring
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Todd O. Yeates
- UCLA-Molecular Biology Institute, University of California, Los Angeles, USA
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Thomas A. Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
10
|
Abrahamson CH, Palmero BJ, Kennedy NW, Tullman-Ercek D. Theoretical and Practical Aspects of Multienzyme Organization and Encapsulation. Annu Rev Biophys 2023; 52:553-572. [PMID: 36854212 DOI: 10.1146/annurev-biophys-092222-020832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The advent of biotechnology has enabled metabolic engineers to assemble heterologous pathways in cells to produce a variety of products of industrial relevance, often in a sustainable way. However, many pathways face challenges of low product yield. These pathways often suffer from issues that are difficult to optimize, such as low pathway flux and off-target pathway consumption of intermediates. These issues are exacerbated by the need to balance pathway flux with the health of the cell, particularly when a toxic intermediate builds up. Nature faces similar challenges and has evolved spatial organization strategies to increase metabolic pathway flux and efficiency. Inspired by these strategies, bioengineers have developed clever strategies to mimic spatial organization in nature. This review explores the use of spatial organization strategies, including protein scaffolding and protein encapsulation inside of proteinaceous shells, toward overcoming bottlenecks in metabolic engineering efforts.
Collapse
Affiliation(s)
- Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
| | - Brett J Palmero
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
11
|
Costa FG, Escalante-Semerena JC. Localization and interaction studies of the Salmonella enterica ethanolamine ammonia-lyase (EutBC), its reactivase (EutA), and the EutT corrinoid adenosyltransferase. Mol Microbiol 2022; 118:191-207. [PMID: 35785499 PMCID: PMC9481676 DOI: 10.1111/mmi.14962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
Some prokaryotes compartmentalize select metabolic capabilities. Salmonella enterica subspecies enterica serovar Typhimurium LT2 (hereafter S. Typhimurium) catabolizes ethanolamine (EA) within a proteinaceous compartment that we refer to as the ethanolamine utilization (Eut) metabolosome. EA catabolism is initiated by the adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL), which deaminates EA via an adenosyl radical mechanism to yield acetaldehyde plus ammonia. This adenosyl radical can be quenched, requiring the replacement of AdoCbl by the ATP-dependent EutA reactivase. During growth on ethanolamine, S. Typhimurium synthesizes AdoCbl from cobalamin (Cbl) using the ATP:Co(I)rrinoid adenosyltransferase (ACAT) EutT. It is known that EAL localizes to the metabolosome, however, prior to this work, it was unclear where EutA and EutT localized, and whether they interacted with EAL. Here, we provide evidence that EAL, EutA, and EutT localize to the Eut metabolosome, and that EutA interacts directly with EAL. We did not observe interactions between EutT and EAL nor between EutT and the EutA/EAL complex. However, growth phenotypes of a ΔeutT mutant strain show that EutT is critical for efficient ethanolamine catabolism. This work provides a preliminary understanding of the dynamics of AdoCbl synthesis and its uses within the Eut metabolosome.
Collapse
Affiliation(s)
- Flavia G. Costa
- Department of Microbiology, University of Georgia, Athens, GA, USA 30602
| | | |
Collapse
|
12
|
Shanbhag AP, Ghatak A, Rajagopal S. Industrial light at the end of the Iron-containing (group III) alcohol dehydrogenase tunnel. Biotechnol Appl Biochem 2022; 70:537-552. [PMID: 35751426 DOI: 10.1002/bab.2376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022]
Abstract
There are three prominent alcohol dehydrogenases superfamilies: Short-chain, Medium-chain, and Iron-containing alcohol dehydrogenases (FeADHs). Many members are valuable catalysts for producing industrially relevant products such as Active pharmaceutical Intermediates, Chiral synthons, Biopolymers, Biofuels and secondary metabolites. However, FeADHs are the least explored enzymes among the superfamilies for commercial tenacities. They portray a conserved structure having a 'tunnel-like' cofactor and substrate binding site with particular functions, despite representing high sequence diversity. Interestingly, phylogenetic analysis demarcates enzymes catalyzing distinct native substrates where closely related clades convert similar molecules. Further, homologs from various mesophilic and thermophilic microbes have been explored for designing a solvent and temperature resistant enzyme for industrial purposes. The review explores different Iron-containing alcohol dehydrogenases potential engineering of the enzymes and substrates helpful in manufacturing commercial products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK Campus, Bangalore, 560065.,Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India
| | - Arindam Ghatak
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Biomoneta Research Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK Campus, Bangalore, 560065
| | - Sreenath Rajagopal
- Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS), UAS GKVK Campus, Bangalore, 560065
| |
Collapse
|
13
|
Yang M, Wenner N, Dykes GF, Li Y, Zhu X, Sun Y, Huang F, Hinton JCD, Liu LN. Biogenesis of a bacterial metabolosome for propanediol utilization. Nat Commun 2022; 13:2920. [PMID: 35614058 PMCID: PMC9132943 DOI: 10.1038/s41467-022-30608-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
Bacterial metabolosomes are a family of protein organelles in bacteria. Elucidating how thousands of proteins self-assemble to form functional metabolosomes is essential for understanding their significance in cellular metabolism and pathogenesis. Here we investigate the de novo biogenesis of propanediol-utilization (Pdu) metabolosomes and characterize the roles of the key constituents in generation and intracellular positioning of functional metabolosomes. Our results demonstrate that the Pdu metabolosome undertakes both "Shell first" and "Cargo first" assembly pathways, unlike the β-carboxysome structural analog which only involves the "Cargo first" strategy. Shell and cargo assemblies occur independently at the cell poles. The internal cargo core is formed through the ordered assembly of multiple enzyme complexes, and exhibits liquid-like properties within the metabolosome architecture. Our findings provide mechanistic insight into the molecular principles driving bacterial metabolosome assembly and expand our understanding of liquid-like organelle biogenesis.
Collapse
Affiliation(s)
- Mengru Yang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Nicolas Wenner
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Gregory F Dykes
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Yan Li
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Xiaojun Zhu
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Yaqi Sun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Fang Huang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Jay C D Hinton
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, United Kingdom.
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
14
|
Linking the Salmonella enterica 1,2-Propanediol Utilization Bacterial Microcompartment Shell to the Enzymatic Core via the Shell Protein PduB. J Bacteriol 2022; 204:e0057621. [PMID: 35575582 DOI: 10.1128/jb.00576-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Bacterial microcompartments (MCPs) are protein-based organelles that house the enzymatic machinery for metabolism of niche carbon sources, allowing enteric pathogens to outcompete native microbiota during host colonization. While much progress has been made toward understanding MCP biogenesis, questions still remain regarding the mechanism by which core MCP enzymes are enveloped within the MCP protein shell. Here, we explore the hypothesis that the shell protein PduB is responsible for linking the shell of the 1,2-propanediol utilization (Pdu) MCP from Salmonella enterica serovar Typhimurium LT2 to its enzymatic core. Using fluorescent reporters, we demonstrate that all members of the Pdu enzymatic core are encapsulated in Pdu MCPs. We also demonstrate that PduB is critical for linking the entire Pdu enzyme core to the MCP shell. Using MCP purifications, transmission electron microscopy, and fluorescence microscopy, we find that shell assembly can be decoupled from the enzymatic core, as apparently empty MCPs are formed in Salmonella strains lacking PduB. Mutagenesis studies reveal that PduB is incorporated into the Pdu MCP shell via a conserved, lysine-mediated hydrogen bonding mechanism. Finally, growth assays and system-level pathway modeling reveal that unencapsulated pathway performance is strongly impacted by enzyme concentration, highlighting the importance of minimizing polar effects when conducting these functional assays. Together, these results provide insight into the mechanism of enzyme encapsulation within Pdu MCPs and demonstrate that the process of enzyme encapsulation and shell assembly are separate processes in this system, a finding that will aid future efforts to understand MCP biogenesis. IMPORTANCE MCPs are unique, genetically encoded organelles used by many bacteria to survive in resource-limited environments. There is significant interest in understanding the biogenesis and function of these organelles, both as potential antibiotic targets in enteric pathogens and also as useful tools for overcoming metabolic engineering bottlenecks. However, the mechanism by which these organelles are formed natively is still not completely understood. Here, we provide evidence of a potential mechanism in S. enterica by which a single protein, PduB, links the MCP shell and metabolic core. This finding is critical for those seeking to disrupt MCPs during pathogenic infections or for those seeking to harness MCPs as nanobioreactors in industrial settings.
Collapse
|
15
|
Trettel DS, Resager W, Ueberheide BM, Jenkins CC, Winkler WC. Chemical probing provides insight into the native assembly state of a bacterial microcompartment. Structure 2022; 30:537-550.e5. [PMID: 35216657 PMCID: PMC8995372 DOI: 10.1016/j.str.2022.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 11/28/2022]
Abstract
Bacterial microcompartments (BMCs) are widespread in bacteria and are used for a variety of metabolic purposes, including catabolism of host metabolites. A suite of proteins self-assembles into the shell and cargo layers of BMCs. However, the native assembly state of these large complexes remains to be elucidated. Herein, chemical probes were used to observe structural features of a native BMC. While the exterior could be demarcated with fluorophores, the interior was unexpectedly permeable, suggesting that the shell layer may be more dynamic than previously thought. This allowed access to cross-linking chemical probes, which were analyzed to uncover the protein interactome. These cross-links revealed a complex multivalent network among cargo proteins that contained encapsulation peptides and demonstrated that the shell layer follows discrete rules in its assembly. These results are consistent overall with a model in which biomolecular condensation drives interactions of cargo proteins before envelopment by shell layer proteins.
Collapse
Affiliation(s)
- Daniel S Trettel
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - William Resager
- New York University Grossman School of Health, NYU Langone Health, New York, NY 10016, USA
| | - Beatrix M Ueberheide
- New York University Grossman School of Health, NYU Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neurology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Conor C Jenkins
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Wade C Winkler
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
16
|
Burrichter AG, Dörr S, Bergmann P, Haiß S, Keller A, Fournier C, Franchini P, Isono E, Schleheck D. Bacterial microcompartments for isethionate desulfonation in the taurine-degrading human-gut bacterium Bilophila wadsworthia. BMC Microbiol 2021; 21:340. [PMID: 34903181 PMCID: PMC8667426 DOI: 10.1186/s12866-021-02386-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 11/15/2022] Open
Abstract
Background Bilophila wadsworthia, a strictly anaerobic, sulfite-reducing bacterium and common member of the human gut microbiota, has been associated with diseases such as appendicitis and colitis. It is specialized on organosulfonate respiration for energy conservation, i.e., utilization of dietary and host-derived organosulfonates, such as taurine (2-aminoethansulfonate), as sulfite donors for sulfite respiration, producing hydrogen sulfide (H2S), an important intestinal metabolite that may have beneficial as well as detrimental effects on the colonic environment. Its taurine desulfonation pathway involves the glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslAB), which cleaves isethionate (2-hydroxyethanesulfonate) into acetaldehyde and sulfite. Results We demonstrate that taurine metabolism in B. wadsworthia 3.1.6 involves bacterial microcompartments (BMCs). First, we confirmed taurine-inducible production of BMCs by proteomic, transcriptomic and ultra-thin sectioning and electron-microscopical analyses. Then, we isolated BMCs from taurine-grown cells by density-gradient ultracentrifugation and analyzed their composition by proteomics as well as by enzyme assays, which suggested that the GRE IslAB and acetaldehyde dehydrogenase are located inside of the BMCs. Finally, we are discussing the recycling of cofactors in the IslAB-BMCs and a potential shuttling of electrons across the BMC shell by a potential iron-sulfur (FeS) cluster-containing shell protein identified by sequence analysis. Conclusions We characterized a novel subclass of BMCs and broadened the spectrum of reactions known to take place enclosed in BMCs, which is of biotechnological interest. We also provided more details on the energy metabolism of the opportunistic pathobiont B. wadsworthia and on microbial H2S production in the human gut. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02386-w.
Collapse
Affiliation(s)
- Anna G Burrichter
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany. .,Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany.
| | - Stefanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paavo Bergmann
- Electron Microscopy Centre, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sebastian Haiß
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anja Keller
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David Schleheck
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
17
|
Bobik TA, Stewart AM. Selective molecular transport across the protein shells of bacterial microcompartments. Curr Opin Microbiol 2021; 62:76-83. [PMID: 34087617 PMCID: PMC8286307 DOI: 10.1016/j.mib.2021.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Bacterial microcompartments are widespread organelles that play important roles in the environment and are associated with a number of human diseases. A key feature of bacterial MCPs is a selectively permeable protein shell that mediates the movement of substrates, products and cofactors in and out. Here we discuss current knowledge of selective transport across the protein shells of bacterial MCPs, including mechanisms, regulation and unanswered questions.
Collapse
Affiliation(s)
- Thomas A Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | - Andrew M Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
18
|
Mohajerani F, Sayer E, Neil C, Inlow K, Hagan MF. Mechanisms of Scaffold-Mediated Microcompartment Assembly and Size Control. ACS NANO 2021; 15:4197-4212. [PMID: 33683101 PMCID: PMC8058603 DOI: 10.1021/acsnano.0c05715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article describes a theoretical and computational study of the dynamical assembly of a protein shell around a complex consisting of many cargo molecules and long, flexible scaffold molecules. Our study is motivated by bacterial microcompartments, which are proteinaceous organelles that assemble around a condensed droplet of enzymes and reactants. As in many examples of cytoplasmic liquid-liquid phase separation, condensation of the microcompartment interior cargo is driven by flexible scaffold proteins that have weak multivalent interactions with the cargo. Our results predict that the shell size, amount of encapsulated cargo, and assembly pathways depend sensitively on properties of the scaffold, including its length and valency of scaffold-cargo interactions. Moreover, the ability of self-assembling protein shells to change their size to accommodate scaffold molecules of different lengths depends crucially on whether the spontaneous curvature radius of the protein shell is smaller or larger than a characteristic elastic length scale of the shell. Beyond natural microcompartments, these results have important implications for synthetic biology efforts to target alternative molecules for encapsulation by microcompartments or viral shells. More broadly, the results elucidate how cells exploit coupling between self-assembly and liquid-liquid phase separation to organize their interiors.
Collapse
Affiliation(s)
- Farzaneh Mohajerani
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Evan Sayer
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Christopher Neil
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Koe Inlow
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
19
|
Chowdhury NP, Moon J, Müller V. Adh4, an alcohol dehydrogenase controls alcohol formation within bacterial microcompartments in the acetogenic bacterium Acetobacterium woodii. Environ Microbiol 2020; 23:499-511. [PMID: 33283462 DOI: 10.1111/1462-2920.15340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 01/23/2023]
Abstract
Acetobacterium woodii utilizes the Wood-Ljungdahl pathway for reductive synthesis of acetate from carbon dioxide. However, A. woodii can also perform non-acetogenic growth on 1,2-propanediol (1,2-PD) where instead of acetate, equal amounts of propionate and propanol are produced as metabolic end products. Metabolism of 1,2-PD occurs via encapsulated metabolic enzymes within large proteinaceous bodies called bacterial microcompartments. While the genome of A. woodii harbours 11 genes encoding putative alcohol dehydrogenases, the BMC-encapsulated propanol-generating alcohol dehydrogenase remains unidentified. Here, we show that Adh4 of A. woodii is the alcohol dehydrogenase required for propanol/ethanol formation within these microcompartments. It catalyses the NADH-dependent reduction of propionaldehyde or acetaldehyde to propanol or ethanol and primarily functions to recycle NADH within the BMC. Removal of adh4 gene from the A. woodii genome resulted in slow growth on 1,2-PD and the mutant displayed reduced propanol and enhanced propionate formation as a metabolic end product. In sum, the data suggest that Adh4 is responsible for propanol formation within the BMC and is involved in redox balancing in the acetogen, A. woodii.
Collapse
Affiliation(s)
- Nilanjan Pal Chowdhury
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Frankfurt, Germany
| | - Jimyung Moon
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Frankfurt, Germany
| |
Collapse
|
20
|
Kennedy NW, Ikonomova SP, Slininger Lee M, Raeder HW, Tullman-Ercek D. Self-assembling Shell Proteins PduA and PduJ have Essential and Redundant Roles in Bacterial Microcompartment Assembly. J Mol Biol 2020; 433:166721. [PMID: 33227310 DOI: 10.1016/j.jmb.2020.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023]
Abstract
Protein self-assembly is a common and essential biological phenomenon, and bacterial microcompartments present a promising model system to study this process. Bacterial microcompartments are large, protein-based organelles which natively carry out processes important for carbon fixation in cyanobacteria and the survival of enteric bacteria. These structures are increasingly popular with biological engineers due to their potential utility as nanobioreactors or drug delivery vehicles. However, the limited understanding of the assembly mechanism of these bacterial microcompartments hinders efforts to repurpose them for non-native functions. Here, we comprehensively investigate proteins involved in the assembly of the 1,2-propanediol utilization bacterial microcompartment from Salmonella enterica serovar Typhimurium LT2, one of the most widely studied microcompartment systems. We first demonstrate that two shell proteins, PduA and PduJ, have a high propensity for self-assembly upon overexpression, and we provide a novel method for self-assembly quantification. Using genomic knock-outs and knock-ins, we systematically show that these two proteins play an essential and redundant role in bacterial microcompartment assembly that cannot be compensated by other shell proteins. At least one of the two proteins PduA and PduJ must be present for the bacterial microcompartment shell to assemble. We also demonstrate that assembly-deficient variants of these proteins are unable to rescue microcompartment formation, highlighting the importance of this assembly property. Our work provides insight into the assembly mechanism of these bacterial organelles and will aid downstream engineering efforts.
Collapse
Affiliation(s)
- Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, United States
| | - Svetlana P Ikonomova
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Marilyn Slininger Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States; US Army Combat Capabilities Development Command Chemical Biological Center, Edgewood, MD, United States
| | - Henry W Raeder
- Molecular Biosciences Program, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States; Center for Synthetic Biology, Northwestern University, Evanston, IL, United States.
| |
Collapse
|
21
|
Stewart KL, Stewart AM, Bobik TA. Prokaryotic Organelles: Bacterial Microcompartments in E. coli and Salmonella. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0025-2019. [PMID: 33030141 PMCID: PMC7552817 DOI: 10.1128/ecosalplus.esp-0025-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in Escherichia coli and Salmonella: the propanediol utilization (pdu), ethanolamine utilization (eut), choline utilization (cut), and glycyl radical propanediol (grp) MCPs. Although the great majority of work done on catabolic MCPs has been carried out with Salmonella and E. coli, research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Katie L. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Andrew M. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Thomas A. Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| |
Collapse
|
22
|
A Pan-Genome Guided Metabolic Network Reconstruction of Five Propionibacterium Species Reveals Extensive Metabolic Diversity. Genes (Basel) 2020; 11:genes11101115. [PMID: 32977700 PMCID: PMC7650540 DOI: 10.3390/genes11101115] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
Propionibacteria have been studied extensively since the early 1930s due to their relevance to industry and importance as human pathogens. Still, their unique metabolism is far from fully understood. This is partly due to their signature high GC content, which has previously hampered the acquisition of quality sequence data, the accurate annotation of the available genomes, and the functional characterization of genes. The recent completion of the genome sequences for several species has led researchers to reassess the taxonomical classification of the genus Propionibacterium, which has been divided into several new genres. Such data also enable a comparative genomic approach to annotation and provide a new opportunity to revisit our understanding of their metabolism. Using pan-genome analysis combined with the reconstruction of the first high-quality Propionibacterium genome-scale metabolic model and a pan-metabolic model of current and former members of the genus Propionibacterium, we demonstrate that despite sharing unique metabolic traits, these organisms have an unexpected diversity in central carbon metabolism and a hidden layer of metabolic complexity. This combined approach gave us new insights into the evolution of Propionibacterium metabolism and led us to propose a novel, putative ferredoxin-linked energy conservation strategy. The pan-genomic approach highlighted key differences in Propionibacterium metabolism that reflect adaptation to their environment. Results were mathematically captured in genome-scale metabolic reconstructions that can be used to further explore metabolism using metabolic modeling techniques. Overall, the data provide a platform to explore Propionibacterium metabolism and a tool for the rational design of strains.
Collapse
|
23
|
Decoding the stoichiometric composition and organisation of bacterial metabolosomes. Nat Commun 2020; 11:1976. [PMID: 32332738 PMCID: PMC7181861 DOI: 10.1038/s41467-020-15888-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/31/2020] [Indexed: 01/08/2023] Open
Abstract
Some enteric bacteria including Salmonella have evolved the propanediol-utilising microcompartment (Pdu MCP), a specialised proteinaceous organelle that is essential for 1,2-propanediol degradation and enteric pathogenesis. Pdu MCPs are a family of bacterial microcompartments that are self-assembled from hundreds of proteins within the bacterial cytosol. Here, we seek a comprehensive understanding of the stoichiometric composition and organisation of Pdu MCPs. We obtain accurate stoichiometry of shell proteins and internal enzymes of the natural Pdu MCP by QconCAT-driven quantitative mass spectrometry. Genetic deletion of the major shell protein and absolute quantification reveal the stoichiometric and structural remodelling of metabolically functional Pdu MCPs. Decoding the precise protein stoichiometry allows us to develop an organisational model of the Pdu metabolosome. The structural insights into the Pdu MCP are critical for both delineating the general principles underlying bacterial organelle formation, structural robustness and function, and repurposing natural microcompartments using synthetic biology for biotechnological applications. Enteric pathogens such as Salmonella depend on propanediol-utilising microcompartments (Pdu MCP), which self-assemble from cytosolic proteins. Using mass spectrometry-based absolute quantification, the authors here define the protein stoichiometry and propose an organizational model of a Salmonella Pdu MCP.
Collapse
|
24
|
Genetic Characterization of a Glycyl Radical Microcompartment Used for 1,2-Propanediol Fermentation by Uropathogenic Escherichia coli CFT073. J Bacteriol 2020; 202:JB.00017-20. [PMID: 32071097 DOI: 10.1128/jb.00017-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 12/29/2022] Open
Abstract
Bacterial microcompartments (MCPs) are widespread protein-based organelles composed of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by confining toxic and/or volatile pathway intermediates. A major class of MCPs known as glycyl radical MCPs has only been partially characterized. Here, we show that uropathogenic Escherichia coli CFT073 uses a glycyl radical MCP for 1,2-propanediol (1,2-PD) fermentation. Bioinformatic analyses identified a large gene cluster (named grp for glycyl radical propanediol) that encodes homologs of a glycyl radical diol dehydratase, other 1,2-PD catabolic enzymes, and MCP shell proteins. Growth studies showed that E. coli CFT073 grows on 1,2-PD under anaerobic conditions but not under aerobic conditions. All 19 grp genes were individually deleted, and 8/19 were required for 1,2-PD fermentation. Electron microscopy and genetic studies showed that a bacterial MCP is involved. Bioinformatics combined with genetic analyses support a proposed pathway of 1,2-PD degradation and suggest that enzymatic cofactors are recycled internally within the Grp MCP. A two-component system (grpP and grpQ) is shown to mediate induction of the grp locus by 1,2-PD. Tests of the E. coli Reference (ECOR) collection indicate that >10% of E. coli strains ferment 1,2-PD using a glycyl radical MCP. In contrast to other MCP systems, individual deletions of MCP shell genes (grpE, grpH, and grpI) eliminated 1,2-PD catabolism, suggesting significant functional differences with known MCPs. Overall, the studies presented here are the first comprehensive genetic analysis of a Grp-type MCP.IMPORTANCE Bacterial MCPs have a number of potential biotechnology applications and have been linked to bacterial pathogenesis, cancer, and heart disease. Glycyl radical MCPs are a large but understudied class of bacterial MCPs. Here, we show that uropathogenic E. coli CFT073 uses a glycyl radical MCP for 1,2-PD fermentation, and we conduct a comprehensive genetic analysis of the genes involved. Studies suggest significant functional differences between the glycyl radical MCP of E. coli CFT073 and better-studied MCPs. They also provide a foundation for building a deeper general understanding of glycyl radical MCPs in an organism where sophisticated genetic methods are available.
Collapse
|
25
|
Nichols TM, Kennedy NW, Tullman-Ercek D. A genomic integration platform for heterologous cargo encapsulation in 1,2-propanediol utilization bacterial microcompartments. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Apparent size and morphology of bacterial microcompartments varies with technique. PLoS One 2020; 15:e0226395. [PMID: 32150579 PMCID: PMC7062276 DOI: 10.1371/journal.pone.0226395] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/25/2020] [Indexed: 12/30/2022] Open
Abstract
Bacterial microcompartments (MCPs) are protein-based organelles that encapsulate metabolic pathways. Metabolic engineers have recently sought to repurpose MCPs to encapsulate heterologous pathways to increase flux through pathways of interest. As MCP engineering becomes more common, standardized methods for analyzing changes to MCPs and interpreting results across studies will become increasingly important. In this study, we demonstrate that different imaging techniques yield variations in the apparent size of purified MCPs from Salmonella enterica serovar Typhimurium LT2, likely due to variations in sample preparation methods. We provide guidelines for preparing samples for MCP imaging and outline expected variations in apparent size and morphology between methods. With this report we aim to establish an aid for comparing results across studies.
Collapse
|
27
|
Chowdhury C, Bobik TA. Engineering the PduT shell protein to modify the permeability of the 1,2-propanediol microcompartment of Salmonella. MICROBIOLOGY-SGM 2020; 165:1355-1364. [PMID: 31674899 DOI: 10.1099/mic.0.000872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacterial microcompartments (MCPs) are protein-based organelles that consist of metabolic enzymes encapsulated within a protein shell. The function of MCPs is to optimize metabolic pathways by increasing reaction rates and sequestering toxic pathway intermediates. A substantial amount of effort has been directed toward engineering synthetic MCPs as intracellular nanoreactors for the improved production of renewable chemicals. A key challenge in this area is engineering protein shells that allow the entry of desired substrates. In this study, we used site-directed mutagenesis of the PduT shell protein to remove its central iron-sulfur cluster and create openings (pores) in the shell of the Pdu MCP that have varied chemical properties. Subsequently, in vivo and in vitro studies were used to show that PduT-C38S and PduT-C38A variants increased the diffusion of 1,2-propanediol, propionaldehyde, NAD+ and NADH across the shell of the MCP. In contrast, PduT-C38I and PduT-C38W eliminated the iron-sulfur cluster without altering the permeability of the Pdu MCP, suggesting that the side-chains of C38I and C38W occluded the opening formed by removal of the iron-sulfur cluster. Thus, genetic modification offers an approach to engineering the movement of larger molecules (such as NAD/H) across MCP shells, as well as a method for blocking transport through trimeric bacterial microcompartment (BMC) domain shell proteins.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Present address: Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Campus, Sector-125, Noida, UP-201313, India.,Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
28
|
Zeng Z, Smid EJ, Boeren S, Notebaart RA, Abee T. Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization Stimulates Anaerobic Growth of Listeria monocytogenes EGDe. Front Microbiol 2019; 10:2660. [PMID: 31803170 PMCID: PMC6873790 DOI: 10.3389/fmicb.2019.02660] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles that optimize specific metabolic pathways referred to as metabolosomes involving transient production of toxic volatile metabolites such as aldehydes. Previous bioinformatics analysis predicted the presence of BMCs in 23 bacterial phyla including foodborne pathogens and a link with gene clusters for the utilization of host-derived substrates such as 1,2-propanediol utilization, i.e., the Pdu cluster. Although, transcriptional regulation of the Pdu cluster and its role in Listeria monocytogenes virulence in animal models have recently been reported, the experimental identification and the physiological role of BMCs in L. monocytogenes is still unexplored. Here, we ask whether BMCs could enable utilization of 1,2-propanediol (Pd) in L. monocytogenes under anaerobic conditions. Using L. monocytogenes EGDe as a model strain, we could demonstrate efficient utilization of Pd with concomitant production of 1-propanol and propionate after 24 h of anaerobic growth, while the utilization was significantly reduced in aerobic conditions. In line with this, expression of genes encoding predicted shell proteins and the signature enzyme propanediol dehydratase is upregulated more than 20-fold in cells anaerobically grown in Pdu-induced versus non-induced control conditions. Additional proteomics analysis confirmed the presence of BMC shell proteins and Pdu enzymes in cells that show active degradation of Pd. Furthermore, using transmission electron microscopy, BMC structures have been detected in these cells linking gene expression, protein composition, and BMCs to activation of the Pdu cluster in anaerobic growth of L. monocytogenes. Studies in defined minimal medium with Pd as an energy source showed a significant increase in cell numbers, indicating that Pdu and the predicted generation of ATP in the conversion of propionyl-phosphate to the end product propionate can support anaerobic growth of L. monocytogenes. Our findings may suggest a role for BMC-dependent utilization of Pd in L. monocytogenes growth, transmission, and interaction with the human host.
Collapse
Affiliation(s)
- Zhe Zeng
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Eddy J Smid
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Richard A Notebaart
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Tjakko Abee
- Laboratory of Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
29
|
Wu Q, Lan Y, Cao X, Yao H, Qiao D, Xu H, Cao Y. Characterization and diverse evolution patterns of glycerol-3-phosphate dehydrogenase family genes in Dunaliella salina. Gene 2019; 710:161-169. [DOI: 10.1016/j.gene.2019.05.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022]
|
30
|
Bio-engineering of bacterial microcompartments: a mini review. Biochem Soc Trans 2019; 47:765-777. [DOI: 10.1042/bst20170564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/09/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
AbstractBacterial microcompartments (BMCs) are protein-bound prokaryotic organelles, discovered in cyanobacteria more than 60 years ago. Functionally similar to eukaryotic cellular organelles, BMCs compartment metabolic activities in the cytoplasm, foremost to increase local enzyme concentration and prevent toxic intermediates from damaging the cytosolic content. Advanced knowledge of the functional and structural properties of multiple types of BMCs, particularly over the last 10 years, have highlighted design principles of microcompartments. This has prompted new research into their potential to function as programmable synthetic nano-bioreactors and novel bio-materials with biotechnological and medical applications. Moreover, due to the involvement of microcompartments in bacterial pathogenesis and human health, BMCs have begun to gain attention as potential novel drug targets. This mini-review gives an overview of important synthetic biology developments in the bioengineering of BMCs and a perspective on future directions in the field.
Collapse
|
31
|
Nichols TM, Kennedy NW, Tullman-Ercek D. Cargo encapsulation in bacterial microcompartments: Methods and analysis. Methods Enzymol 2019; 617:155-186. [PMID: 30784401 PMCID: PMC6590060 DOI: 10.1016/bs.mie.2018.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic engineers seek to produce high-value products from inexpensive starting materials in a sustainable and cost-effective manner by using microbes as cellular factories. However, pathway development and optimization can be arduous tasks, complicated by pathway bottlenecks and toxicity. Pathway organization has emerged as a potential solution to these issues, and the use of protein- or DNA-based scaffolds has successfully increased the production of several industrially relevant compounds. These efforts demonstrate the usefulness of pathway colocalization and spatial organization for metabolic engineering applications. In particular, scaffolding within an enclosed, subcellular compartment shows great promise for pathway optimization, offering benefits such as increased local enzyme and substrate concentrations, sequestration of toxic or volatile intermediates, and alleviation of cofactor and resource competition with the host. Here, we describe the 1,2-propanediol utilization (Pdu) bacterial microcompartment (MCP) as an enclosed scaffold for pathway sequestration and organization. We first describe methods for controlling Pdu MCP formation, expressing and encapsulating heterologous cargo, and tuning cargo loading levels. We further describe assays for analyzing Pdu MCPs and assessing encapsulation levels. These methods will enable the repurposing of MCPs as tunable nanobioreactors for heterologous pathway encapsulation.
Collapse
Affiliation(s)
- Taylor M Nichols
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute, Evanston, IL, United States
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute, Evanston, IL, United States; Center for Synthetic Biology, Northwestern University, Technological Institute, Evanston, IL, United States.
| |
Collapse
|
32
|
Ferlez B, Sutter M, Kerfeld CA. Glycyl Radical Enzyme-Associated Microcompartments: Redox-Replete Bacterial Organelles. mBio 2019; 10:e02327-18. [PMID: 30622187 PMCID: PMC6325248 DOI: 10.1128/mbio.02327-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 12/31/2022] Open
Abstract
An increasing number of microbes are being identified that organize catabolic pathways within self-assembling proteinaceous structures known as bacterial microcompartments (BMCs). Most BMCs are characterized by their singular substrate specificity and commonly employ B12-dependent radical mechanisms. In contrast, a less-well-known BMC type utilizes the B12-independent radical chemistry of glycyl radical enzymes (GREs). Unlike B12-dependent enzymes, GREs require an activating enzyme (AE) as well as an external source of electrons to generate an adenosyl radical and form their catalytic glycyl radical. Organisms encoding these glycyl radical enzyme-associated microcompartments (GRMs) confront the challenge of coordinating the activation and maintenance of their GREs with the assembly of a multienzyme core that is encapsulated in a protein shell. The GRMs appear to enlist redox proteins to either generate reductants internally or facilitate the transfer of electrons from the cytosol across the shell. Despite this relative complexity, GRMs are one of the most widespread types of BMC, with distinct subtypes to catabolize different substrates. Moreover, they are encoded by many prominent gut-associated and pathogenic bacteria. In this review, we will focus on the diversity, function, and physiological importance of GRMs, with particular attention given to their associated and enigmatic redox proteins.
Collapse
Affiliation(s)
- Bryan Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
33
|
Plegaria JS, Kerfeld CA. Engineering nanoreactors using bacterial microcompartment architectures. Curr Opin Biotechnol 2018; 51:1-7. [PMID: 29035760 PMCID: PMC5899066 DOI: 10.1016/j.copbio.2017.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
Bacterial microcompartments (BMCs) are organelles that encapsulate enzymes involved in CO2 fixation or carbon catabolism in a selectively permeable protein shell. Here, we highlight recent advances in the bioengineering of these protein-based nanoreactors in heterologous systems, including transfer and expression of BMC gene clusters, the production of template empty shells, and the encapsulation of non-native enzymes.
Collapse
Affiliation(s)
- Jefferson S Plegaria
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Berkeley Synthetic Biology Institute, Berkeley, CA 94720, USA.
| |
Collapse
|
34
|
Jakobson CM, Tullman-Ercek D, Mangan NM. Spatially organizing biochemistry: choosing a strategy to translate synthetic biology to the factory. Sci Rep 2018; 8:8196. [PMID: 29844460 PMCID: PMC5974357 DOI: 10.1038/s41598-018-26399-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Natural biochemical systems are ubiquitously organized both in space and time. Engineering the spatial organization of biochemistry has emerged as a key theme of synthetic biology, with numerous technologies promising improved biosynthetic pathway performance. One strategy, however, may produce disparate results for different biosynthetic pathways. We use a spatially resolved kinetic model to explore this fundamental design choice in systems and synthetic biology. We predict that two example biosynthetic pathways have distinct optimal organization strategies that vary based on pathway-dependent and cell-extrinsic factors. Moreover, we demonstrate that the optimal design varies as a function of kinetic and biophysical properties, as well as culture conditions. Our results suggest that organizing biosynthesis has the potential to substantially improve performance, but that choosing the appropriate strategy is key. The flexible design-space analysis we propose can be adapted to diverse biosynthetic pathways, and lays a foundation to rationally choose organization strategies for biosynthesis.
Collapse
Affiliation(s)
- Christopher M Jakobson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Niall M Mangan
- Department of Engineering Science and Applied Mathematics, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
35
|
Abstract
Bacterial microcompartments (BMCs) are self-assembling organelles that consist of an enzymatic core that is encapsulated by a selectively permeable protein shell. The potential to form BMCs is widespread and found across the kingdom Bacteria. BMCs have crucial roles in carbon dioxide fixation in autotrophs and the catabolism of organic substrates in heterotrophs. They contribute to the metabolic versatility of bacteria, providing a competitive advantage in specific environmental niches. Although BMCs were first visualized more than 60 years ago, it is mainly in the past decade that progress has been made in understanding their metabolic diversity and the structural basis of their assembly and function. This progress has not only heightened our understanding of their role in microbial metabolism but is also beginning to enable their use in a variety of applications in synthetic biology. In this Review, we focus on recent insights into the structure, assembly, diversity and function of BMCs.
Collapse
Affiliation(s)
- Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Clement Aussignargues
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jan Zarzycki
- Max-Planck-Institute for Terrestrial Microbiology, D-35043, Marburg, Germany
| | - Fei Cai
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
36
|
Slininger Lee MF, Jakobson CM, Tullman-Ercek D. Evidence for Improved Encapsulated Pathway Behavior in a Bacterial Microcompartment through Shell Protein Engineering. ACS Synth Biol 2017; 6:1880-1891. [PMID: 28585808 DOI: 10.1021/acssynbio.7b00042] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial microcompartments are a class of proteinaceous organelles comprising a characteristic protein shell enclosing a set of enzymes. Compartmentalization can prevent escape of volatile or toxic intermediates, prevent off-pathway reactions, and create private cofactor pools. Encapsulation in synthetic microcompartment organelles will enhance the function of heterologous pathways, but to do so, it is critical to understand how to control diffusion in and out of the microcompartment organelle. To this end, we explored how small differences in the shell protein structure result in changes in the diffusion of metabolites through the shell. We found that the ethanolamine utilization (Eut) protein EutM properly incorporates into the 1,2-propanediol utilization (Pdu) microcompartment, altering native metabolite accumulation and the resulting growth on 1,2-propanediol as the sole carbon source. Further, we identified a single pore-lining residue mutation that confers the same phenotype as substitution of the full EutM protein, indicating that small molecule diffusion through the shell is the cause of growth enhancement. Finally, we show that the hydropathy index and charge of pore amino acids are important indicators to predict how pore mutations will affect growth on 1,2-propanediol, likely by controlling diffusion of one or more metabolites. This study highlights the use of two strategies to engineer microcompartments to control metabolite transport: altering the existing shell protein pore via mutation of the pore-lining residues, and generating chimeras using shell proteins with the desired pores.
Collapse
Affiliation(s)
- Marilyn F. Slininger Lee
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Christopher M. Jakobson
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department
of Chemical and Systems Biology, Stanford University, Stanford, California, 94305, United States
| | - Danielle Tullman-Ercek
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
- Chemistry
of Life Processes Institute, Northwestern University, 2170 Campus
Drive, Evanston, Illinois 60208-3120, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute B486, Evanston, Illinois 60208-3120, United States
| |
Collapse
|
37
|
Plegaria JS, Sutter M, Ferlez B, Aussignargues C, Niklas J, Poluektov OG, Fromwiller C, TerAvest M, Utschig LM, Tiede DM, Kerfeld CA. Structural and Functional Characterization of a Short-Chain Flavodoxin Associated with a Noncanonical 1,2-Propanediol Utilization Bacterial Microcompartment. Biochemistry 2017; 56:5679-5690. [PMID: 28956602 DOI: 10.1021/acs.biochem.7b00682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles that encapsulate enzymes involved in CO2 fixation (carboxysomes) or carbon catabolism (metabolosomes). Metabolosomes share a common core of enzymes and a distinct signature enzyme for substrate degradation that defines the function of the BMC (e.g., propanediol or ethanolamine utilization BMCs, or glycyl-radical enzyme microcompartments). Loci encoding metabolosomes also typically contain genes for proteins that support organelle function, such as regulation, transport of substrate, and cofactor (e.g., vitamin B12) synthesis and recycling. Flavoproteins are frequently among these ancillary gene products, suggesting that these redox active proteins play an undetermined function in many metabolosomes. Here, we report the first characterization of a BMC-associated flavodoxin (Fld1C), a small flavoprotein, derived from the noncanonical 1,2-propanediol utilization BMC locus (PDU1C) of Lactobacillus reuteri. The 2.0 Å X-ray structure of Fld1C displays the α/β flavodoxin fold, which noncovalently binds a single flavin mononucleotide molecule. Fld1C is a short-chain flavodoxin with redox potentials of -240 ± 3 mV oxidized/semiquinone and -344 ± 1 mV semiquinone/hydroquinone versus the standard hydrogen electrode at pH 7.5. It can participate in an electron transfer reaction with a photoreductant to form a stable semiquinone species. Collectively, our structural and functional results suggest that PDU1C BMCs encapsulate Fld1C to store and transfer electrons for the reactivation and/or recycling of the B12 cofactor utilized by the signature enzyme.
Collapse
Affiliation(s)
- Jefferson S Plegaria
- MSU-DOE Plant Research Laboratory, Michigan State University , East Lansing, Michigan 48824, United States
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University , East Lansing, Michigan 48824, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Bryan Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University , East Lansing, Michigan 48824, United States
| | - Clément Aussignargues
- MSU-DOE Plant Research Laboratory, Michigan State University , East Lansing, Michigan 48824, United States
| | - Jens Niklas
- Solar Energy Conversion Group, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Oleg G Poluektov
- Solar Energy Conversion Group, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Ciara Fromwiller
- MSU-DOE Plant Research Laboratory, Michigan State University , East Lansing, Michigan 48824, United States
| | - Michaela TerAvest
- Department of Biochemistry & Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Lisa M Utschig
- Solar Energy Conversion Group, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - David M Tiede
- Solar Energy Conversion Group, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University , East Lansing, Michigan 48824, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.,Department of Biochemistry & Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Berkeley Synthetic Biology Institute , Berkeley, California 94720, United States
| |
Collapse
|
38
|
Slininger Lee M, Tullman-Ercek D. Practical considerations for the encapsulation of multi-enzyme cargos within the bacterial microcompartment for metabolic engineering. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Baumgart M, Huber I, Abdollahzadeh I, Gensch T, Frunzke J. Heterologous expression of the Halothiobacillus neapolitanus carboxysomal gene cluster in Corynebacterium glutamicum. J Biotechnol 2017; 258:126-135. [DOI: 10.1016/j.jbiotec.2017.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/20/2022]
|
40
|
Larsson AM, Hasse D, Valegård K, Andersson I. Crystal structures of β-carboxysome shell protein CcmP: ligand binding correlates with the closed or open central pore. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3857-3867. [PMID: 28369612 PMCID: PMC5853799 DOI: 10.1093/jxb/erx070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/15/2017] [Indexed: 05/21/2023]
Abstract
Cyanobacterial CO2 fixation is promoted by encapsulating and co-localizing the CO2-fixing enzymes within a protein shell, the carboxysome. A key feature of the carboxysome is its ability to control selectively the flux of metabolites in and out of the shell. The β-carboxysome shell protein CcmP has been shown to form a double layer of pseudohexamers with a relatively large central pore (~13 Å diameter), which may allow passage of larger metabolites such as the substrate for CO2 fixation, ribulose 1,5-bisphosphate, through the shell. Here we describe two crystal structures, at 1.45 Å and 1.65 Å resolution, of CcmP from Synechococcus elongatus PCC7942 (SeCcmP). The central pore of CcmP is open or closed at its ends, depending on the conformation of two conserved residues, Glu69 and Arg70. The presence of glycerol resulted in a pore that is open at one end and closed at the opposite end. When glycerol was omitted, both ends of the barrel became closed. A binding pocket at the interior of the barrel featured residual density with distinct differences in size and shape depending on the conformation, open or closed, of the central pore of SeCcmP, suggestive of a metabolite-driven mechanism for the gating of the pore.
Collapse
Affiliation(s)
- Anna M Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan, Uppsala, Sweden
- Correspondence:
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan, Uppsala, Sweden
| | - Karin Valegård
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan, Uppsala, Sweden
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan, Uppsala, Sweden
| |
Collapse
|
41
|
Jakobson CM, Tullman-Ercek D, Slininger MF, Mangan NM. A systems-level model reveals that 1,2-Propanediol utilization microcompartments enhance pathway flux through intermediate sequestration. PLoS Comput Biol 2017; 13:e1005525. [PMID: 28475631 PMCID: PMC5438192 DOI: 10.1371/journal.pcbi.1005525] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 05/19/2017] [Accepted: 04/20/2017] [Indexed: 11/29/2022] Open
Abstract
The spatial organization of metabolism is common to all domains of life. Enteric and other bacteria use subcellular organelles known as bacterial microcompartments to spatially organize the metabolism of pathogenicity-relevant carbon sources, such as 1,2-propanediol. The organelles are thought to sequester a private cofactor pool, minimize the effects of toxic intermediates, and enhance flux through the encapsulated metabolic pathways. We develop a mathematical model of the function of the 1,2-propanediol utilization microcompartment of Salmonella enterica and use it to analyze the function of the microcompartment organelles in detail. Our model makes accurate estimates of doubling times based on an optimized compartment shell permeability determined by maximizing metabolic flux in the model. The compartments function primarily to decouple cytosolic intermediate concentrations from the concentrations in the microcompartment, allowing significant enhancement in pathway flux by the generation of large concentration gradients across the microcompartment shell. We find that selective permeability of the microcompartment shell is not absolutely necessary, but is often beneficial in establishing this intermediate-trapping function. Our findings also implicate active transport of the 1,2-propanediol substrate under conditions of low external substrate concentration, and we present a mathematical bound, in terms of external 1,2-propanediol substrate concentration and diffusive rates, on when active transport of the substrate is advantageous. By allowing us to predict experimentally inaccessible aspects of microcompartment function, such as intra-microcompartment metabolite concentrations, our model presents avenues for future research and underscores the importance of carefully considering changes in external metabolite concentrations and other conditions during batch cultures. Our results also suggest that the encapsulation of heterologous pathways in bacterial microcompartments might yield significant benefits for pathway flux, as well as for toxicity mitigation. Many bacterial species, such as Salmonella enterica (responsible for over 1 million illnesses per year in the United States) and Yersinia pestis (the causative agent of bubonic plague), have a suite of unique metabolic capabilities allowing them to proliferate in the hostile environment of the host gut. Bacterial microcompartments are the subcellular organelles that contain the enzymes responsible for these special metabolic pathways. In this study, we use a mathematical model to explore the possible reasons why Salmonella enclose the 1,2-propanediol utilization metabolic pathway within these sophisticated organelle structures. Using our model, we can examine experimentally inaccessible aspects of the system and make predictions to be tested in future experiments. The metabolic benefits that bacteria gain from the microcompartment system may also prove helpful in enhancing bacterial production of fuels, pharmaceuticals, and specialty chemicals.
Collapse
Affiliation(s)
- Christopher M. Jakobson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Marilyn F. Slininger
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Niall M. Mangan
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
- * E-mail:
| |
Collapse
|
42
|
Jakobson CM, Slininger Lee MF, Tullman‐Ercek D. De novo design of signal sequences to localize cargo to the 1,2-propanediol utilization microcompartment. Protein Sci 2017; 26:1086-1092. [PMID: 28241402 PMCID: PMC5405430 DOI: 10.1002/pro.3144] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/24/2022]
Abstract
Organizing heterologous biosyntheses inside bacterial cells can alleviate common problems owing to toxicity, poor kinetic performance, and cofactor imbalances. A subcellular organelle known as a bacterial microcompartment, such as the 1,2-propanediol utilization microcompartment of Salmonella, is a promising chassis for this strategy. Here we demonstrate de novo design of the N-terminal signal sequences used to direct cargo to these microcompartment organelles. We expand the native repertoire of signal sequences using rational and library-based approaches and show that a canonical leucine-zipper motif can function as a signal sequence for microcompartment localization. Our strategy can be applied to generate new signal sequences localizing arbitrary cargo proteins to the 1,2-propanediol utilization microcompartments.
Collapse
Affiliation(s)
- Christopher M. Jakobson
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinois60208
- Present address: Department of Chemical and Systems BiologyStanford UniversityStanfordCA94305
| | - Marilyn F. Slininger Lee
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinois60208
- Department of Chemical and Biomolecular EngineeringUniversity of California BerkeleyBerkeleyCalifornia94720
| | - Danielle Tullman‐Ercek
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIllinois60208
| |
Collapse
|
43
|
The N Terminus of the PduB Protein Binds the Protein Shell of the Pdu Microcompartment to Its Enzymatic Core. J Bacteriol 2017; 199:JB.00785-16. [PMID: 28138097 DOI: 10.1128/jb.00785-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/20/2017] [Indexed: 12/12/2022] Open
Abstract
Bacterial microcompartments (MCPs) are extremely large proteinaceous organelles that consist of an enzymatic core encapsulated within a complex protein shell. A key question in MCP biology is the nature of the interactions that guide the assembly of thousands of protein subunits into a well-ordered metabolic compartment. In this report, we show that the N-terminal 37 amino acids of the PduB protein have a critical role in binding the shell of the 1,2-propanediol utilization (Pdu) microcompartment to its enzymatic core. Several mutations were constructed that deleted short regions of the N terminus of PduB. Growth tests indicated that three of these deletions were impaired MCP assembly. Attempts to purify MCPs from these mutants, followed by gel electrophoresis and enzyme assays, indicated that the protein complexes isolated consisted of MCP shells depleted of core enzymes. Electron microscopy substantiated these findings by identifying apparently empty MCP shells but not intact MCPs. Analyses of 13 site-directed mutants indicated that the key region of the N terminus of PduB required for MCP assembly is a putative helix spanning residues 6 to 18. Considering the findings presented here together with prior work, we propose a new model for MCP assembly.IMPORTANCE Bacterial microcompartments consist of metabolic enzymes encapsulated within a protein shell and are widely used to optimize metabolic process. Here, we show that the N-terminal 37 amino acids of the PduB shell protein are essential for assembly of the 1,2-propanediol utilization microcompartment. The results indicate that it plays a key role in binding the outer shell to the enzymatic core. We propose that this interaction might be used to define the relative orientation of the shell with respect to the core. This finding is of fundamental importance to our understanding of microcompartment assembly and may have application to engineering microcompartments as nanobioreactors for chemical production.
Collapse
|
44
|
Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism. PLoS One 2016; 11:e0168107. [PMID: 28030590 PMCID: PMC5193401 DOI: 10.1371/journal.pone.0168107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/24/2016] [Indexed: 11/19/2022] Open
Abstract
Lactobacillus reuteri, a heterofermentative bacterium, metabolizes glycerol via a Pdu (propanediol-utilization) pathway involving dehydration to 3-hydroxypropionaldehyde (3-HPA) followed by reduction to 1,3-propandiol (1,3-PDO) with concomitant generation of an oxidized cofactor, NAD+ that is utilized to maintain cofactor balance required for glucose metabolism and even for oxidation of 3-HPA by a Pdu oxidative branch to 3-hydroxypropionic acid (3-HP). The Pdu pathway is operative inside Pdu microcompartment that encapsulates different enzymes and cofactors involved in metabolizing glycerol or 1,2-propanediol, and protects the cells from the toxic effect of the aldehyde intermediate. Since L. reuteri excretes high amounts of 3-HPA outside the microcompartment, the organism is likely to have alternative alcohol dehydrogenase(s) in the cytoplasm for transformation of the aldehyde. In this study, diversity of alcohol dehydrogenases in Lactobacillus species was investigated with a focus on L. reuteri. Nine ADH enzymes were found in L. reuteri DSM20016, out of which 3 (PduQ, ADH6 and ADH7) belong to the group of iron-dependent enzymes that are known to transform aldehydes/ketones to alcohols. L. reuteri mutants were generated in which the three ADHs were deleted individually. The lagging growth phenotype of these deletion mutants revealed that limited NAD+/NADH recycling could be restricting their growth in the absence of ADHs. Notably, it was demonstrated that PduQ is more active in generating NAD+ during glycerol metabolism within the microcompartment by resting cells, while ADH7 functions to balance NAD+/NADH by converting 3-HPA to 1,3-PDO outside the microcompartment in the growing cells. Moreover, evaluation of ADH6 deletion mutant showed strong decrease in ethanol level, supporting the role of this bifuctional alcohol/aldehyde dehydrogenase in ethanol production. To the best of our knowledge, this is the first report revealing both internal and external recycling for cofactor homeostasis during 3-HPA conversion in L. reuteri.
Collapse
|
45
|
Gaona-López C, Julián-Sánchez A, Riveros-Rosas H. Diversity and Evolutionary Analysis of Iron-Containing (Type-III) Alcohol Dehydrogenases in Eukaryotes. PLoS One 2016; 11:e0166851. [PMID: 27893862 PMCID: PMC5125639 DOI: 10.1371/journal.pone.0166851] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alcohol dehydrogenase (ADH) activity is widely distributed in the three domains of life. Currently, there are three non-homologous NAD(P)+-dependent ADH families reported: Type I ADH comprises Zn-dependent ADHs; type II ADH comprises short-chain ADHs described first in Drosophila; and, type III ADH comprises iron-containing ADHs (FeADHs). These three families arose independently throughout evolution and possess different structures and mechanisms of reaction. While types I and II ADHs have been extensively studied, analyses about the evolution and diversity of (type III) FeADHs have not been published yet. Therefore in this work, a phylogenetic analysis of FeADHs was performed to get insights into the evolution of this protein family, as well as explore the diversity of FeADHs in eukaryotes. PRINCIPAL FINDINGS Results showed that FeADHs from eukaryotes are distributed in thirteen protein subfamilies, eight of them possessing protein sequences distributed in the three domains of life. Interestingly, none of these protein subfamilies possess protein sequences found simultaneously in animals, plants and fungi. Many FeADHs are activated by or contain Fe2+, but many others bind to a variety of metals, or even lack of metal cofactor. Animal FeADHs are found in just one protein subfamily, the hydroxyacid-oxoacid transhydrogenase (HOT) subfamily, which includes protein sequences widely distributed in fungi, but not in plants), and in several taxa from lower eukaryotes, bacteria and archaea. Fungi FeADHs are found mainly in two subfamilies: HOT and maleylacetate reductase (MAR), but some can be found also in other three different protein subfamilies. Plant FeADHs are found only in chlorophyta but not in higher plants, and are distributed in three different protein subfamilies. CONCLUSIONS/SIGNIFICANCE FeADHs are a diverse and ancient protein family that shares a common 3D scaffold with a patchy distribution in eukaryotes. The majority of sequenced FeADHs from eukaryotes are distributed in just two subfamilies, HOT and MAR (found mainly in animals and fungi). These two subfamilies comprise almost 85% of all sequenced FeADHs in eukaryotes.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
| | - Adriana Julián-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
- * E-mail:
| |
Collapse
|
46
|
Matsubara M, Urano N, Yamada S, Narutaki A, Fujii M, Kataoka M. Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli. J Biosci Bioeng 2016; 122:421-6. [DOI: 10.1016/j.jbiosc.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
47
|
Jakobson CM, Chen Y, Slininger MF, Valdivia E, Kim EY, Tullman-Ercek D. Tuning the Catalytic Activity of Subcellular Nanoreactors. J Mol Biol 2016; 428:2989-96. [PMID: 27427532 DOI: 10.1016/j.jmb.2016.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022]
Abstract
Bacterial microcompartments are naturally occurring subcellular organelles of bacteria and serve as a promising scaffold for the organization of heterologous biosynthetic pathways. A critical element in the design of custom biosynthetic organelles is quantitative control over the loading of heterologous enzymes to the interior of the organelles. We demonstrate that the loading of heterologous proteins to the 1,2-propanediol utilization microcompartment of Salmonella enterica can be controlled using two strategies: by modulating the transcriptional activation of the microcompartment container and by coordinating the expression of the microcompartment container and the heterologous cargo. These strategies allow general control over the loading of heterologous proteins localized by two different N-terminal targeting peptides and represent an important step toward tuning the catalytic activity of bacterial microcompartments for increased biosynthetic productivity.
Collapse
Affiliation(s)
- Christopher M Jakobson
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yiqun Chen
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marilyn F Slininger
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Elias Valdivia
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Edward Y Kim
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
48
|
The Structural Basis of Coenzyme A Recycling in a Bacterial Organelle. PLoS Biol 2016; 14:e1002399. [PMID: 26959993 PMCID: PMC4784909 DOI: 10.1371/journal.pbio.1002399] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 02/03/2016] [Indexed: 12/29/2022] Open
Abstract
Bacterial Microcompartments (BMCs) are proteinaceous organelles that encapsulate critical segments of autotrophic and heterotrophic metabolic pathways; they are functionally diverse and are found across 23 different phyla. The majority of catabolic BMCs (metabolosomes) compartmentalize a common core of enzymes to metabolize compounds via a toxic and/or volatile aldehyde intermediate. The core enzyme phosphotransacylase (PTAC) recycles Coenzyme A and generates an acyl phosphate that can serve as an energy source. The PTAC predominantly associated with metabolosomes (PduL) has no sequence homology to the PTAC ubiquitous among fermentative bacteria (Pta). Here, we report two high-resolution PduL crystal structures with bound substrates. The PduL fold is unrelated to that of Pta; it contains a dimetal active site involved in a catalytic mechanism distinct from that of the housekeeping PTAC. Accordingly, PduL and Pta exemplify functional, but not structural, convergent evolution. The PduL structure, in the context of the catalytic core, completes our understanding of the structural basis of cofactor recycling in the metabolosome lumen. This study describes the structure of a novel phosphotransacylase enzyme that facilitates the recycling of the essential cofactor acetyl-CoA within a bacterial organelle and discusses the properties of the enzyme's active site and how it is packaged into the organelle. In metabolism, molecules with “high-energy” bonds (e.g., ATP and Acetyl~CoA) are critical for both catabolic and anabolic processes. Accordingly, the retention of these bonds during biochemical transformations is incredibly important. The phosphotransacylase (Pta) enzyme catalyzes the conversion between acyl-CoA and acyl-phosphate. This reaction directly links an acyl-CoA with ATP generation via substrate-level phosphorylation, producing short-chain fatty acids (e.g., acetate), and also provides a path for short-chain fatty acids to enter central metabolism. Due to this key function, Pta is conserved across the bacterial kingdom. Recently, a new type of phosphotransacylase was described that shares no evolutionary relation to Pta. This enzyme, PduL, is exclusively associated with organelles called bacterial microcompartments, which are used to catabolize various compounds. Not only does PduL facilitate substrate level phosphorylation, but it also is critical for cofactor recycling within, and product efflux from, the organelle. We solved the structure of this convergent phosphotransacylase and show that it is completely structurally different from Pta, including its active site architecture. We also discuss features of the protein important to its packaging in the organelle.
Collapse
|
49
|
Insight into Coenzyme A cofactor binding and the mechanism of acyl-transfer in an acylating aldehyde dehydrogenase from Clostridium phytofermentans. Sci Rep 2016; 6:22108. [PMID: 26899032 PMCID: PMC4762007 DOI: 10.1038/srep22108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 12/03/2022] Open
Abstract
The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.
Collapse
|
50
|
Moore TC, Escalante-Semerena JC. The EutQ and EutP proteins are novel acetate kinases involved in ethanolamine catabolism: physiological implications for the function of the ethanolamine metabolosome in Salmonella enterica. Mol Microbiol 2015; 99:497-511. [PMID: 26448059 DOI: 10.1111/mmi.13243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 11/29/2022]
Abstract
Salmonella enterica catabolizes ethanolamine inside a compartment known as the metabolosome. The ethanolamine utilization (eut) operon of this bacterium encodes all functions needed for the assembly and function of this structure. To date, the roles of EutQ and EutP were not known. Herein we show that both proteins have acetate kinase activity and that EutQ is required during anoxic growth of S. enterica on ethanolamine and tetrathionate. EutP and EutQ-dependent ATP synthesis occurred when enzymes were incubated with ADP, Mg(II) ions and acetyl-phosphate. EutQ and EutP also synthesized acetyl-phosphate from ATP and acetate. Although EutP had acetate kinase activity, ΔeutP strains lacked discernible phenotypes under the conditions where ΔeutQ strains displayed clear phenotypes. The kinetic parameters indicate that EutP is a faster enzyme than EutQ. Our evidence supports the conclusion that EutQ and EutP represent novel classes of acetate kinases. We propose that EutQ is necessary to drive flux through the pathway under physiological conditions, preventing a buildup of acetaldehyde. We also suggest that ATP generated by these enzymes may be used as a substrate for EutT, the ATP-dependent corrinoid adenosyltransferase and for the EutA ethanolamine ammonia-lyase reactivase.
Collapse
Affiliation(s)
- Theodore C Moore
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA
| | | |
Collapse
|