1
|
Altas B, Tuffy LP, Patrizi A, Dimova K, Soykan T, Brandenburg C, Romanowski AJ, Whitten JR, Robertson CD, Khim SN, Crutcher GW, Ambrozkiewicz MC, Yagensky O, Krueger-Burg D, Hammer M, Hsiao HH, Laskowski PR, Dyck L, Puche AC, Sassoè-Pognetto M, Chua JJE, Urlaub H, Jahn O, Brose N, Poulopoulos A. Region-Specific Phosphorylation Determines Neuroligin-3 Localization to Excitatory Versus Inhibitory Synapses. Biol Psychiatry 2024; 96:815-828. [PMID: 38154503 PMCID: PMC11209832 DOI: 10.1016/j.biopsych.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Neuroligin-3 is a postsynaptic adhesion molecule involved in synapse development and function. It is implicated in rare, monogenic forms of autism, and its shedding is critical to the tumor microenvironment of gliomas. While other members of the neuroligin family exhibit synapse-type specificity in localization and function through distinct interactions with postsynaptic scaffold proteins, the specificity of neuroligin-3 synaptic localization remains largely unknown. METHODS We investigated the synaptic localization of neuroligin-3 across regions in mouse and human brain samples after validating antibody specificity in knockout animals. We raised a phospho-specific neuroligin antibody and used phosphoproteomics, cell-based assays, and in utero CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) knockout and gene replacement to identify mechanisms that regulate neuroligin-3 localization to distinct synapse types. RESULTS Neuroligin-3 exhibits region-dependent synapse specificity, largely localizing to excitatory synapses in cortical regions and inhibitory synapses in subcortical regions of the brain in both mice and humans. We identified specific phosphorylation of cortical neuroligin-3 at a key binding site for recruitment to inhibitory synapses, while subcortical neuroligin-3 remained unphosphorylated. In vitro, phosphomimetic mutation of that site disrupted neuroligin-3 association with the inhibitory postsynaptic scaffolding protein gephyrin. In vivo, phosphomimetic mutants of neuroligin-3 localized to excitatory postsynapses, while phospho-null mutants localized to inhibitory postsynapses. CONCLUSIONS These data reveal an unexpected region-specific pattern of neuroligin-3 synapse specificity, as well as a phosphorylation-dependent mechanism that regulates its recruitment to either excitatory or inhibitory synapses. These findings add to our understanding of how neuroligin-3 is involved in conditions that may affect the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Bekir Altas
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Liam P Tuffy
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Annarita Patrizi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Kalina Dimova
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tolga Soykan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Cheryl Brandenburg
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea J Romanowski
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Julia R Whitten
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Colin D Robertson
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Saovleak N Khim
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Garrett W Crutcher
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mateusz C Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oleksandr Yagensky
- Research Group Protein Trafficking in Synaptic Development and Function, Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Matthieu Hammer
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - He-Hsuan Hsiao
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Pawel R Laskowski
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lydia Dyck
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Adam C Puche
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - John J E Chua
- Research Group Protein Trafficking in Synaptic Development and Function, Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandros Poulopoulos
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Chen M, Ma S, Liu H, Dong Y, Tang J, Ni Z, Tan Y, Duan C, Li H, Huang H, Li Y, Cao X, Lingle CJ, Yang Y, Hu H. Brain region-specific action of ketamine as a rapid antidepressant. Science 2024; 385:eado7010. [PMID: 39116252 DOI: 10.1126/science.ado7010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/04/2024] [Indexed: 08/10/2024]
Abstract
Ketamine has been found to have rapid and potent antidepressant activity. However, despite the ubiquitous brain expression of its molecular target, the N-methyl-d-aspartate receptor (NMDAR), it was not clear whether there is a selective, primary site for ketamine's antidepressant action. We found that ketamine injection in depressive-like mice specifically blocks NMDARs in lateral habenular (LHb) neurons, but not in hippocampal pyramidal neurons. This regional specificity depended on the use-dependent nature of ketamine as a channel blocker, local neural activity, and the extrasynaptic reservoir pool size of NMDARs. Activating hippocampal or inactivating LHb neurons swapped their ketamine sensitivity. Conditional knockout of NMDARs in the LHb occluded ketamine's antidepressant effects and blocked the systemic ketamine-induced elevation of serotonin and brain-derived neurotrophic factor in the hippocampus. This distinction of the primary versus secondary brain target(s) of ketamine should help with the design of more precise and efficient antidepressant treatments.
Collapse
Affiliation(s)
- Min Chen
- Department of Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Shuangshuang Ma
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Hanxiao Liu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yiyan Dong
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jingxiang Tang
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Zheyi Ni
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yi Tan
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Chenchi Duan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200433, China
| | - Hui Li
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hefeng Huang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, New Cornerstone Science Laboratory, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai 200062, China
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Yan Yang
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Hailan Hu
- Department of Affiliated Mental Health Center & Hangzhou Seventh People's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, New Cornerstone Science Laboratory, Zhejiang University, Hangzhou 311121, China
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University School of Medicine, Zhejiang University, Yiwu 322000, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 311121, China
| |
Collapse
|
3
|
Gioia R, Seri T, Diamanti T, Fimmanò S, Vitale M, Ahlenius H, Kokaia Z, Tirone F, Micheli L, Biagioni S, Lupo G, Rinaldi A, De Jaco A, Cacci E. Adult hippocampal neurogenesis and social behavioural deficits in the R451C Neuroligin3 mouse model of autism are reverted by the antidepressant fluoxetine. J Neurochem 2022; 165:318-333. [PMID: 36583243 DOI: 10.1111/jnc.15753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
Neuron generation persists throughout life in the hippocampus but is altered in animal models of neurological and neuropsychiatric diseases, suggesting that disease-associated decline in cognitive and emotional hippocampal-dependent behaviours might be functionally linked with dysregulation of postnatal neurogenesis. Depletion of the adult neural stem/progenitor cell (NSPCs) pool and neurogenic decline have been recently described in mice expressing synaptic susceptibility genes associated with autism spectrum disorder (ASDs). To gain further insight into mechanisms regulating neurogenesis in mice carrying mutations in synaptic genes related to monogenic ASDs, we used the R451C Neuroligin3 knock-in (Nlgn3 KI) mouse, which is characterized by structural brain abnormalities, deficits in synaptic functions and reduced sociability. We show that the number of adult-born neurons, but not the size of the NSPC pool, was reduced in the ventral dentate gyrus in knock-in mice. Notably, this neurogenic decline was rescued by daily injecting mice with 10 mg/Kg of the antidepressant fluoxetine for 20 consecutive days. Sustained treatment also improved KI mice's sociability and increased the number of c-Fos active adult-born neurons, compared with vehicle-injected KI mice. Our study uncovers neurogenesis-mediated alterations in the brain of R451C KI mouse, showing that the R451C Nlgn3 mutation leads to lasting, albeit pharmacologically reversible, changes in the brain, affecting neuron formation in the adult hippocampus. Our results suggest that fluoxetine can ameliorate social behaviour in KI mice, at least in part, by rescuing adult hippocampal neurogenesis, which may be relevant for the pharmacological treatment of ASDs.
Collapse
Affiliation(s)
- Roberta Gioia
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Tommaso Seri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Stefania Fimmanò
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Marina Vitale
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Henrik Ahlenius
- Faculty of Medicine, Department of Clinical Sciences Lund, Neurology, Stem Cells, Aging and Neurodegeneration, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund, Sweden
| | - Zaal Kokaia
- Lund Stem Cell Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
| | - Arianna Rinaldi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- Centre for Research in Neurobiology "D. Bovet", Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- Centre for Research in Neurobiology "D. Bovet", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "Charles Darwin", Sapienza, University of Rome, Rome, Italy
- Centre for Research in Neurobiology "D. Bovet", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Arginase Inhibition Supports Survival and Differentiation of Neuronal Precursors in Adult Alzheimer's Disease Mice. Int J Mol Sci 2020; 21:ijms21031133. [PMID: 32046281 PMCID: PMC7037054 DOI: 10.3390/ijms21031133] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/23/2023] Open
Abstract
Adult neurogenesis is a complex physiological process, which plays a central role in maintaining cognitive functions, and consists of progenitor cell proliferation, newborn cell migration, and cell maturation. Adult neurogenesis is susceptible to alterations under various physiological and pathological conditions. A substantial decay of neurogenesis has been documented in Alzheimer’s disease (AD) patients and animal AD models; however, several treatment strategies can halt any further decline and even induce neurogenesis. Our previous results indicated a potential effect of arginase inhibition, with norvaline, on various aspects of neurogenesis in triple-transgenic mice. To better evaluate this effect, we chronically administered an arginase inhibitor, norvaline, to triple-transgenic and wild-type mice, and applied an advanced immunohistochemistry approach with several biomarkers and bright-field microscopy. Remarkably, we evidenced a significant reduction in the density of neuronal progenitors, which demonstrate a different phenotype in the hippocampi of triple-transgenic mice as compared to wild-type animals. However, norvaline showed no significant effect upon the progenitor cell number and constitution. We demonstrated that norvaline treatment leads to an escalation of the polysialylated neuronal cell adhesion molecule immunopositivity, which suggests an improvement in the newborn neuron survival rate. Additionally, we identified a significant increase in the hippocampal microtubule-associated protein 2 stain intensity. We also explore the molecular mechanisms underlying the effects of norvaline on adult mice neurogenesis and provide insights into their machinery.
Collapse
|
5
|
Cheng W, Han F, Shi Y. Neonatal isolation modulates glucocorticoid-receptor function and synaptic plasticity of hippocampal and amygdala neurons in a rat model of single prolonged stress. J Affect Disord 2019; 246:682-694. [PMID: 30611912 DOI: 10.1016/j.jad.2018.12.084] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/23/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Early life and stressful experiences affect hippocampal and amygdala structure and function. They also increase the incidence of mental and nervous system disorders in adults. However, prospective studies have yet to show if early-life experiences affect the risk/severity of post-traumatic stress disorder (PTSD). METHODS We applied neonatal isolation (NI) alone, single prolonged stress (SPS) alone and NI + SPS to rats. We evaluated anxiety-like behavior and spatial memory of behavior using open field, elevated plus maze, and Morris water maze tests. Then, we measured expression of glucocorticoid receptors (GRs) and synaptic-related proteins by immunofluorescence, immunohistochemistry and western blotting in the hippocampus and amygdala. RESULTS NI + SPS exacerbated the increased anxiety levels and impaired spatial memory induced by NI alone or SPS alone. NI alone or SPS alone induced varying degrees of change in expression of GRs and synaptic proteins (synapsin I and postsynaptic density protein-95) in the hippocampus and amygdala. There were opposite changes in GR expression in the hippocampal dentate gyrus and basolateral amygdala. The degree of such change was exacerbated considerably by NI + SPS. In addition, neuroligin (NLG)-1 and NLG-2 were distributed in postsynaptic sites of excitatory and inhibitory synapses, respectively. NI, SPS, and NI + SPS altered the patterns of NLG-1 and NLG-2 colocalization as well as their intensity. NI + SPS strengthened the increased ratio of NLG-1/NLG-2 in the hippocampus, but decreased this ratio in the amygdala. CONCLUSIONS NI and SPS together induced greater degrees of change in anxiety and spatial memory, as well as GR and synaptic protein levels, in the hippocampus and amygdala than the changes induced by NI alone or SPS alone.
Collapse
Affiliation(s)
- Wei Cheng
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China; Neonatal Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fan Han
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China
| | - Yuxiu Shi
- PTSD Laboratory, Department of Histology and Embryology, Basic Medical Sciences College, China Medical University, 77, Puhe Road, Shenbei New District, 110001 Shenyang, China.
| |
Collapse
|
6
|
The Adhesion-GPCR BAI1 Promotes Excitatory Synaptogenesis by Coordinating Bidirectional Trans-synaptic Signaling. J Neurosci 2018; 38:8388-8406. [PMID: 30120207 DOI: 10.1523/jneurosci.3461-17.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/13/2018] [Accepted: 07/05/2018] [Indexed: 12/24/2022] Open
Abstract
Excitatory synapses are specialized cell-cell contacts located on actin-rich dendritic spines that mediate information flow and storage in the brain. The postsynaptic adhesion-G protein-coupled receptor (A-GPCR) BAI1 is a critical regulator of excitatory synaptogenesis, which functions in part by recruiting the Par3-Tiam1 polarity complex to spines, inducing local Rac1 GTPase activation and actin cytoskeletal remodeling. However, a detailed mechanistic understanding of how BAI1 controls synapse and spine development remains elusive. Here, we confirm that BAI1 is required in vivo for hippocampal spine development, and we identify three distinct signaling mechanisms mediating BAI1's prosynaptogenic functions. Using in utero electroporation to sparsely knock down BAI1 expression in hippocampal pyramidal neurons, we show that BAI1 cell-autonomously promotes spinogenesis in the developing mouse brain. BAI1 appears to function as a receptor at synapses, as its extracellular N-terminal segment is required for both its prospinogenic and prosynaptogenic functions. Moreover, BAI1 activation with a Stachel-derived peptide, which mimics a tethered agonist motif found in A-GPCRs, drives synaptic Rac1 activation and subsequent spine and synapse development. We also reveal, for the first time, a trans-synaptic function for BAI1, demonstrating in a mixed-culture assay that BAI1 induces the clustering of presynaptic vesicular glutamate transporter 1 (vGluT1) in contacting axons, indicative of presynaptic differentiation. Finally, we show that BAI1 forms a receptor complex with the synaptogenic cell-adhesion molecule Neuroligin-1 (NRLN1) and mediates NRLN1-dependent spine growth and synapse development. Together, these findings establish BAI1 as an essential postsynaptic A-GPCR that regulates excitatory synaptogenesis by coordinating bidirectional trans-synaptic signaling in cooperation with NRLN1.SIGNIFICANCE STATEMENT Adhesion-G protein-coupled receptors are cell-adhesion receptors with important roles in nervous system development, function, and neuropsychiatric disorders. The postsynaptic adhesion-G protein-coupled receptor BAI1 is a critical regulator of dendritic spine and excitatory synapse development. However, the mechanism by which BAI1 controls these functions remains unclear. Our study identifies three distinct signaling paradigms for BAI1, demonstrating that it mediates forward, reverse, and lateral signaling in spines. Activation of BAI1 by a Stachel-dependent mechanism induces local Rac1 activation and subsequent spinogenesis/synaptogenesis. BAI1 also signals trans-synaptically to promote presynaptic differentiation. Furthermore, BAI1 interacts with the postsynaptic cell-adhesion molecule Neuroligin-1 (NRLN1) and facilitates NRLN1-dependent spine growth and excitatory synaptogenesis. Thus, our findings establish BAI1 as a functional synaptogenic receptor that promotes presynaptic and postsynaptic development in cooperation with synaptic organizer NRLN1.
Collapse
|
7
|
Krzisch M, Fülling C, Jabinet L, Armida J, Gebara E, Cassé F, Habbas S, Volterra A, Hornung JP, Toni N. Synaptic Adhesion Molecules Regulate the Integration of New Granule Neurons in the Postnatal Mouse Hippocampus and their Impact on Spatial Memory. Cereb Cortex 2018; 27:4048-4059. [PMID: 27473321 DOI: 10.1093/cercor/bhw217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/21/2016] [Indexed: 11/14/2022] Open
Abstract
Postnatal hippocampal neurogenesis induces network remodeling and may participate to mechanisms of learning. In turn, the maturation and survival of newborn neurons is regulated by their activity. Here, we tested the effect of a cell-autonomous overexpression of synaptic adhesion molecules on the maturation and survival of neurons born postnatally and on hippocampal-dependent memory performances. Families of adhesion molecules are known to induce pre- and post-synaptic assembly. Using viral targeting, we overexpressed three different synaptic adhesion molecules, SynCAM1, Neuroligin-1B and Neuroligin-2A in newborn neurons in the dentate gyrus of 7- to 9-week-old mice. We found that SynCAM1 increased the morphological maturation of dendritic spines and mossy fiber terminals while Neuroligin-1B increased spine density. In contrast, Neuroligin-2A increased both spine density and size as well as GABAergic innervation and resulted in a drastic increase of neuronal survival. Surprisingly, despite increased neurogenesis, mice overexpressing Neuroligin-2A in new neurons showed decreased memory performances in a Morris water maze task. These results indicate that the cell-autonomous overexpression of synaptic adhesion molecules can enhance different aspects of synapse formation on new neurons and increase their survival. Furthermore, they suggest that the mechanisms by which new neurons integrate in the postnatal hippocampus conditions their functional implication in learning and memory.
Collapse
Affiliation(s)
- Marine Krzisch
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Christine Fülling
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Laura Jabinet
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Jan Armida
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Elias Gebara
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Frédéric Cassé
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Samia Habbas
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Andrea Volterra
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Jean-Pierre Hornung
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| | - Nicolas Toni
- Department of Fundamental Neurosciences, University of Lausanne, 9, rue du Bugnon, Lausanne, Switzerland
| |
Collapse
|
8
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
9
|
Altered Cortical Dynamics and Cognitive Function upon Haploinsufficiency of the Autism-Linked Excitatory Synaptic Suppressor MDGA2. Neuron 2016; 91:1052-1068. [DOI: 10.1016/j.neuron.2016.08.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/13/2016] [Accepted: 07/29/2016] [Indexed: 11/17/2022]
|
10
|
Doengi M, Krupp AJ, Körber N, Stein V. SynCAM 1 improves survival of adult-born neurons by accelerating synapse maturation. Hippocampus 2015; 26:319-28. [PMID: 26332750 DOI: 10.1002/hipo.22524] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 01/08/2023]
Abstract
The survival of adult-born dentate gyrus granule cells critically depends on their synaptic integration into the existing neuronal network. Excitatory inputs are thought to increase the survival rate of adult born neurons. Therefore, whether enhancing the stability of newly formed excitatory synapses by overexpressing the synaptic cell adhesion molecule SynCAM 1 improves the survival of adult-born neurons was tested. Here it is shown that overexpression of SynCAM 1 improves survival of adult-born neurons, but has no effect on the proliferation rate of precursor cells. As expected, overexpression of SynCAM 1 increased the synapse density in adult-born granule neurons. While adult-born granule neurons have very few functional synapses 15 days after birth, it was found that at this age adult-born neurons in SynCAM 1 overexpressing mice exhibited around three times more excitatory synapses, which were stronger than synapses of adult-born neurons of control littermates. In summary, the data indicated that additional SynCAM 1 accelerated synapse maturation, which improved the stability of newly formed synapses and in turn increased the likelihood of survival of adult-born neurons.
Collapse
Affiliation(s)
- Michael Doengi
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | | | - Nils Körber
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | - Valentin Stein
- Institute of Physiology II, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Espinosa F, Xuan Z, Liu S, Powell CM. Neuroligin 1 modulates striatal glutamatergic neurotransmission in a pathway and NMDAR subunit-specific manner. Front Synaptic Neurosci 2015; 7:11. [PMID: 26283958 PMCID: PMC4518159 DOI: 10.3389/fnsyn.2015.00011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/18/2015] [Indexed: 12/18/2022] Open
Abstract
Together with its presynaptic partner Neurexin 1 (Nxn1), Neuroligin 1 (NL1) participates in synapse specification and synapse maintenance. We and others have shown that NL1 can also modulate glutamatergic synaptic function in the central nervous system of rodent models. These molecular/cellular changes can translate into altered animal behaviors that are thought to be analogous to symptomatology of neuropsychiatric disorders. For example, in dorsal striatum of NL1 deletion mice, we previously reported that the ratio N-methyl-D-aspartate receptor (NMDAR) mediated synaptic currents to α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) mediated synaptic currents (NMDA/AMPA) is reduced in medium spiny neuron (MSNs). Importantly, this reduction in NMDA/AMPA ratio correlated with increased repetitive grooming. The striatum is the input nucleus of the basal ganglia (BG). Classical models of this circuitry imply that there are two principal pathways that render distinct and somewhat opposite striatal outputs critical to the function of these nuclei in modulating motor behavior. Thus, we set out to better characterize the effects of NL1 deletion on direct and indirect pathways of the dorsal striatum by genetically labeling MSNs participating in the direct and indirect pathways. We demonstrate that a decrease in NMDAR-mediated currents is limited to MSNs of the direct pathway. Furthermore, the decrease in NMDAR-mediated currents is largely due to a reduction in function of NMDARs containing the GluN2A subunit. In contrast, indirect pathway MSNs in NL1 knockout (KO) mice showed a reduction in the frequency of miniature excitatory neurotransmission not observed in the direct pathway. Thus, NL1 deletion differentially affects direct and indirect pathway MSNs in dorsal striatum. These findings have potential implications for striatal function in NL1 KO mice.
Collapse
Affiliation(s)
- Felipe Espinosa
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Zhong Xuan
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Shunan Liu
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Craig M Powell
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center Dallas, TX, USA ; Neuroscience Graduate Program, The University of Texas Southwestern Medical Center Dallas, TX, USA ; Department of Psychiatry, The University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
12
|
Fekete CD, Chiou TT, Miralles CP, Harris RS, Fiondella CG, Loturco JJ, De Blas AL. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: Differential effects on GABAergic synapses and neuronal migration. J Comp Neurol 2015; 523:1359-78. [PMID: 25565602 DOI: 10.1002/cne.23740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/02/2015] [Accepted: 01/02/2015] [Indexed: 01/08/2023]
Abstract
We studied the effect of clonal overexpression of neuroligin 3 (NL3) or neuroligin 2 (NL2) in the adult rat cerebral cortex following in utero electroporation (IUEP) at embryonic stage E14. Overexpression of NL3 leads to a large increase in vesicular gamma-aminobutyric acid (GABA) transporter (vGAT) and glutamic acid decarboxylase (GAD)65 in the GABAergic contacts that the overexpressing neurons receive. Overexpression of NL2 produced a similar effect but to a lesser extent. In contrast, overexpression of NL3 or NL2 after IUEP does not affect vesicular glutamate transporter 1 (vGlut1) in the glutamatergic contacts that the NL3 or NL2-overexpressing neurons receive. The NL3 or NL2-overexpressing neurons do not show increased innervation by parvalbumin-containing GABAergic terminals or increased parvalbumin in the same terminals that show increased vGAT. These results indicate that the observed increase in vGAT and GAD65 is not due to increased GABAergic innervation but to increased expression of vGAT and GAD65 in the GABAergic contacts that NL3 or NL2-overexpressing neurons receive. The majority of bright vGAT puncta contacting the NL3-overexpressing neurons have no gephyrin juxtaposed to them, indicating that many of these contacts are nonsynaptic. This contrasts with the majority of the NL2-overexpressing neurons, which show plenty of synaptic gephyrin clusters juxtaposed to vGAT. Besides having an effect on GABAergic contacts, overexpression of NL3 interferes with the neuronal radial migration, in the cerebral cortex, of the neurons overexpressing NL3.
Collapse
Affiliation(s)
- Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | | | | | | | | | | | | |
Collapse
|
13
|
Duan Y, Wang SH, Song J, Mironova Y, Ming GL, Kolodkin AL, Giger RJ. Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells. eLife 2014; 3. [PMID: 25313870 PMCID: PMC4236683 DOI: 10.7554/elife.04390] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022] Open
Abstract
Human SEMAPHORIN 5A (SEMA5A) is an autism susceptibility gene; however, its function in brain development is unknown. In this study, we show that mouse Sema5A negatively regulates synaptogenesis in early, developmentally born, hippocampal dentate granule cells (GCs). Sema5A is strongly expressed by GCs and regulates dendritic spine density in a cell-autonomous manner. In the adult mouse brain, newly born Sema5A-/- GCs show an increase in dendritic spine density and increased AMPA-type synaptic responses. Sema5A signals through PlexinA2 co-expressed by GCs, and the PlexinA2-RasGAP activity is necessary to suppress spinogenesis. Like Sema5A-/- mutants, PlexinA2-/- mice show an increase in GC glutamatergic synapses, and we show that Sema5A and PlexinA2 genetically interact with respect to GC spine phenotypes. Sema5A-/- mice display deficits in social interaction, a hallmark of autism-spectrum-disorders. These experiments identify novel intra-dendritic Sema5A/PlexinA2 interactions that inhibit excitatory synapse formation in developmentally born and adult-born GCs, and they provide support for SEMA5A contributions to autism-spectrum-disorders.
Collapse
Affiliation(s)
- Yuntao Duan
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Shih-Hsiu Wang
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Juan Song
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Yevgeniya Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Guo-li Ming
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Alex L Kolodkin
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|
14
|
Chen J, Yu S, Fu Y, Li X. Synaptic proteins and receptors defects in autism spectrum disorders. Front Cell Neurosci 2014; 8:276. [PMID: 25309321 PMCID: PMC4161164 DOI: 10.3389/fncel.2014.00276] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/21/2014] [Indexed: 12/27/2022] Open
Abstract
Recent studies have found that hundreds of genetic variants, including common and rare variants, rare and de novo mutations, and common polymorphisms contribute to the occurrence of autism spectrum disorders (ASDs). The mutations in a number of genes such as neurexin, neuroligin, postsynaptic density protein 95, SH3, and multiple ankyrin repeat domains 3 (SHANK3), synapsin, gephyrin, cadherin, and protocadherin, thousand-and-one-amino acid 2 kinase, and contactin, have been shown to play important roles in the development and function of synapses. In addition, synaptic receptors, such as gamma-aminobutyric acid receptors and glutamate receptors, have also been associated with ASDs. This review will primarily focus on the defects of synaptic proteins and receptors associated with ASDs and their roles in the pathogenesis of ASDs via synaptic pathways.
Collapse
Affiliation(s)
- Jianling Chen
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | - Xiaohong Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities Staten Island, NY USA
| |
Collapse
|
15
|
Villasana LE, Westbrook GL, Schnell E. Neurologic impairment following closed head injury predicts post-traumatic neurogenesis. Exp Neurol 2014; 261:156-62. [PMID: 24861442 DOI: 10.1016/j.expneurol.2014.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 01/26/2023]
Abstract
In the mammalian hippocampus, neurogenesis persists into adulthood, and increased generation of newborn neurons could be of clinical benefit following concussive head injuries. Post-traumatic neurogenesis has been well documented using "open" traumatic brain injury (TBI) models in rodents; however, human TBI most commonly involves closed head injury. Here we used a closed head injury (CHI) model to examine post-traumatic hippocampal neurogenesis in mice. All mice were subjected to the same CHI protocol, and a gross-motor based injury severity score was used to characterize neurologic impairment 1h after the injury. When analyzed 2weeks later, post-traumatic neurogenesis was significantly increased only in mice with a high degree of transient neurologic impairment immediately after injury. This increase was associated with an early increase in c-fos activity, and subsequent reactive astrocytosis and microglial activation in the dentate gyrus. Our results demonstrate that the initial degree of neurologic impairment after closed head injury predicts the induction of secondary physiologic and pathophysiologic processes, and that animals with severe neurologic impairment early after injury manifest an increase in post-traumatic neurogenesis in the absence of gross anatomic pathology.
Collapse
Affiliation(s)
- L E Villasana
- Department of Anesthesiology and Perioperative Medicine, OHSU, 3181 S.W. Sam Jackson Park Road, Mail Code UHT, Portland, OR 97239, United States
| | - G L Westbrook
- The Vollum Institute, OHSU, 3181 S.W. Sam Jackson Park Road, Mail Code L474, Portland OR 97239, United States
| | - E Schnell
- Department of Anesthesiology and Perioperative Medicine, OHSU, 3181 S.W. Sam Jackson Park Road, Mail Code UHT, Portland, OR 97239, United States; Portland VA Medical Center, 3710 S.W. U.S. VA Hospital Road, Mail Code P3ANES, Portland, OR 97239, United States.
| |
Collapse
|
16
|
Schnell E, Long TH, Bensen AL, Washburn EK, Westbrook GL. Neuroligin-1 knockdown reduces survival of adult-generated newborn hippocampal neurons. Front Neurosci 2014; 8:71. [PMID: 24782702 PMCID: PMC3989658 DOI: 10.3389/fnins.2014.00071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/24/2014] [Indexed: 01/01/2023] Open
Abstract
Survival of adult-born hippocampal granule cells is modulated by neural activity, and thought to be enhanced by excitatory synaptic signaling. Here, we report that a reduction in the synaptogenic protein neuroligin-1 in adult-born neurons in vivo decreased their survival, but surprisingly, this effect was independent of changes in excitatory synaptic function. Instead, the decreased survival was associated with unexpected changes in dendrite and spine morphology during granule cell maturation, suggesting a link between cell growth and survival.
Collapse
Affiliation(s)
- Eric Schnell
- Portland VA Medical Center Portland, OR, USA ; Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University Portland, OR, USA
| | - Thomas H Long
- School of Medicine, Oregon Health and Science University Portland, OR, USA
| | - Aesoon L Bensen
- The Vollum Institute, Oregon Health and Science University Portland, OR, USA
| | - Eric K Washburn
- The Vollum Institute, Oregon Health and Science University Portland, OR, USA
| | - Gary L Westbrook
- The Vollum Institute, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
17
|
Jedlicka P, Vnencak M, Krueger DD, Jungenitz T, Brose N, Schwarzacher SW. Neuroligin-1 regulates excitatory synaptic transmission, LTP and EPSP-spike coupling in the dentate gyrus in vivo. Brain Struct Funct 2013; 220:47-58. [DOI: 10.1007/s00429-013-0636-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 2013; 154:75-88. [PMID: 23827676 DOI: 10.1016/j.cell.2013.05.060] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 04/26/2013] [Accepted: 05/29/2013] [Indexed: 12/28/2022]
Abstract
Neurexins are essential presynaptic cell adhesion molecules that are linked to schizophrenia and autism and are subject to extensive alternative splicing. Here, we used a genetic approach to test the physiological significance of neurexin alternative splicing. We generated knockin mice in which alternatively spliced sequence #4 (SS4) of neuexin-3 is constitutively included but can be selectively excised by cre-recombination. SS4 of neurexin-3 was chosen because it is highly regulated and controls neurexin binding to neuroligins, LRRTMs, and other ligands. Unexpectedly, constitutive inclusion of SS4 in presynaptic neurexin-3 decreased postsynaptic AMPA, but not NMDA receptor levels, and enhanced postsynaptic AMPA receptor endocytosis. Moreover, constitutive inclusion of SS4 in presynaptic neurexin-3 abrogated postsynaptic AMPA receptor recruitment during NMDA receptor-dependent LTP. These phenotypes were fully rescued by constitutive excision of SS4 in neurexin-3. Thus, alternative splicing of presynaptic neurexin-3 controls postsynaptic AMPA receptor trafficking, revealing an unanticipated alternative splicing mechanism for trans-synaptic regulation of synaptic strength and long-term plasticity.
Collapse
|