1
|
Zheng S, Tang Y, Huang W, Zhang W, Zhang Y, Yang M, Lu H, Li Z, He Y, Qiu X, Liu Y, Gou Z, Qiu Z, Bin Y, Zhang Z, Gao H, Wang W, Peng J, Huang Y, Liang Y. Supplementing pigeon grit with acidifier improves metabolism and the reproductive performance of breeding pigeons as well as the development of growth performance of squabs. Br Poult Sci 2024:1-11. [PMID: 39345106 DOI: 10.1080/00071668.2024.2400692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
1. This study evaluated the effectiveness of different types of acidifiers on reproductive performance, body weight loss and plasma biochemical indices of breeding pigeons as well as on growth performance, carcass characteristics, meat quality and plasma biochemical indices of squabs.2. In a 45 d trial, 144 pairs of European white Mimas pigeons were selected and randomly divided into three experimental groups. Three groups of pigeons were fed plain pigeon grit (NC), pigeon grit supplemented with 5% single acidifier (SAG) and pigeon grit supplemented with 5% combined acidifiers (CAG).3. Supplementing with SAG and CAG significantly increased the weight gain in male pigeons from 1-12 d of incubation. However, SAG and CAG had no significant effect on the feed intake of breeding pigeons during incubation, but significantly increased total feed intake of breeding pigeons during the lactation period. Breeder pigeons fed SAG and CAG had significantly higher egg-laying rate at 40 d. In addition, feeding SAG and CAG significantly increased growth rate and slaughter weight of squabs, but SAG reduced the diameter of pectoral muscle fibres. Biochemical indices showed that feeding SAG and CAG improved metabolism and increased the liver function of breeder pigeons and squabs.4. In conclusion, supplementing pigeon grit with acidifiers increased feed intake of breeding pigeons during lactation, protected liver function, enhanced reproductive performance and promoted the growth and development of squabs.
Collapse
Affiliation(s)
- S Zheng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - Y Tang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - W Huang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - W Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - Y Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - M Yang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - H Lu
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - Z Li
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - Y He
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - X Qiu
- Guangdong Poultry Science Institute, Guangzhou, Guangdong, P. R. China
| | - Y Liu
- Guangdong Poultry Science Institute, Guangzhou, Guangdong, P. R. China
| | - Z Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, Guangdong, P. R. China
| | - Z Qiu
- Yingde Dehui Agricultural Development Co, Ltd, Yingde, Guangdong, P. R. China
| | - Y Bin
- Guangdong Acid Power Biotechnology Co, Ltd, Qingyuan, Guangdong, P. R. China
| | - Z Zhang
- Shanxi Gezhiyuan Biotechnology Co, Ltd, Xian, Shanxi, P. R. China
| | - H Gao
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - W Wang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P. R. China
| | - J Peng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| | - Y Huang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P. R. China
| | - Y Liang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
2
|
Wang R, Li T, Pan Z, Chen H, Xu S, Lu X, Shi K, Bian B, Wu G. Effect of Dietary Puerarin Supplementation on Growth Performance, Immune Response, Antioxidant Capacity, and Intestinal Morphology in Domestic Pigeons ( Columba livia). J Poult Sci 2024; 61:2024003. [PMID: 38283163 PMCID: PMC10805655 DOI: 10.2141/jpsa.2024003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
Puerarin is an isoflavone extracted from Gegen (Pueraria lobata) and has been widely utilized to treat various human diseases; however, information regarding its benefits in animal production is limited. In this study, we aimed to investigate the influence of dietary puerarin supplementation on growth performance, immune organ index, immunoglobulin profile, antioxidant capacity, and intestinal morphology in pigeons. In total, 375 healthy 28-day-old White King pigeons were randomly divided into five groups, each consisting of five replicates and 15 pigeons per replicate. Each group was administered one of five dietary treatments: the basal diet, or the basal diet supplemented with 40, 80, 120, or 160 mg/kg puerarin. Treatment duration was 30 days following a 7-day acclimation period. Puerarin treatment did not significantly alter the growth performance of pigeons but afforded a significant linear enhancement in the thymus index (P < 0.05). Additionally, puerarin supplementation significantly increased serum immunoglobulin A and immunoglobulin M levels in pigeons in a linear manner (P < 0.05). Similarly, puerarin significantly and linearly increased the activities of total antioxidant capacity, superoxide dismutase, glutathione, and catalase in the serum and liver, and decreased the malondialdehyde content (P < 0.05). Moreover, the villus height (VH), crypt depth (CD), and VH/CD ratio of the small intestine (including the duodenum, jejunum, and ileum) increased linearly upon puerarin supplementation (P < 0.05). Collectively, these results indicate that puerarin supplementation could improve the immune response, antioxidant capacity, and intestinal morphology of pigeons.
Collapse
Affiliation(s)
- Runzhi Wang
- Nanjing Institute of Animal Husbandry and Poultry Science,
Nanjing 210036, China
| | - Tingting Li
- Wenzhou Institute, University of Chinese Academy of Sciences,
Wenzhou 325011, China
| | - Zaixu Pan
- Nanjing Dongchen Pigeon Industry Co., Ltd., Nanjing 210000,
China
| | - Hui Chen
- Nanjing Dongchen Pigeon Industry Co., Ltd., Nanjing 210000,
China
| | - Shanjin Xu
- Nanjing Dongchen Pigeon Industry Co., Ltd., Nanjing 210000,
China
| | - Xixue Lu
- College of Animal Science and Technology, Nanjing
Agricultural University, Nanjing 210095, China
| | - Kai Shi
- College of Animal Science and Technology, Nanjing
Agricultural University, Nanjing 210095, China
| | - Bang Bian
- Nanjing Institute of Animal Husbandry and Poultry Science,
Nanjing 210036, China
| | - Guansuo Wu
- Nanjing Institute of Animal Husbandry and Poultry Science,
Nanjing 210036, China
| |
Collapse
|
3
|
Ma H, Li Y, Han P, Zhang R, Yuan J, Sun Y, Li J, Chen J. Effects of Supplementing Drinking Water of Parental Pigeons with Enterococcus faecium and Bacillus subtilis on Antibody Levels and Microbiomes in Squabs. Animals (Basel) 2024; 14:178. [PMID: 38254347 PMCID: PMC10812638 DOI: 10.3390/ani14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Enterococcus faecium (E. faecium) and Bacillus subtilis (B. subtilis) are widely used as probiotics to improve performance in animal production, but there have been few reports of their impacts on pigeon milk. In this study, twenty-four pairs of parental pigeons were randomly divided into four groups, with six replicates, and each pair feeding three squabs. The control group drank normal water. The E. faecium group, B. subtilis group, and mixed group drank water supplemented with 3 × 106 CFU/mL E. faecium, 2 × 107 CFU/mL B. subtilis, and a mixture of these two probiotics, respectively. The experiment lasted 19 days. The results demonstrated that the IgA and IgG levels were significantly higher in the milk of Group D pigeons than in the other groups. At the phylum level, Fimicutes, Actinobacteria, and Bacteroidetes were the three main phyla identified. At the genus level, Lactobacillus, Bifidobacterium, Veillonella, and Enterococcus were the four main genera identified. In conclusion, drinking water supplemented with E. faecium and B. subtilis could improve immunoglobulin levels in pigeon milk, and this could increase the ability of squabs to resist disease. E. faecium and B. subtilis could be used as probiotics in the pigeon industry.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Yunlei Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Pengmin Han
- Ningxia Xiaoming Agriculture and Animal Husbandry Limited Company, Yinchuan 750000, China;
| | - Ran Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Jingwei Yuan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Yanyan Sun
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jilan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.M.); (Y.L.); (R.Z.); (J.Y.); (Y.S.)
| |
Collapse
|
4
|
Cai Y, Xiao C, Tian B, Dorthe S, Meuter A, Song B, Song Z. Dietary probiotic based on a dual-strain Bacillus subtilis improves immunity, intestinal health, and growth performance of broiler chickens. J Anim Sci 2024; 102:skae183. [PMID: 39022917 PMCID: PMC11416885 DOI: 10.1093/jas/skae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
The study investigated the effects of dietary probiotic of dual-strain Bacillus subtilis on production performance, intestinal barrier parameters, and microbiota in broiler chickens. In a randomized trial, male broiler chickens were allocated into 3 groups, a control group (basal diet), BS300 group (basal diet with 300 mg/kg of B. subtilis), and BS500 group (basal diet with 500 mg/kg of B. subtilis). The inclusion of 500 mg/kg of B. subtilis significantly reduced the feed conversion ratio by 4.55% during the starting phase. Both 300 and 500 mg/kg of B. subtilis supplementation increased jejunal villus height (by 17.89% and 24.8%, respectively) significantly and decreased jejunal crypt depth (by 27.2% and 31.9%, respectively) on day 21. The addition of 500 mg/kg of B. subtilis significantly elevated the gene expression of occludin on day 35. Moreover, of B. subtilis supplementation enhanced cytokine levels and immunoglobulins in both serum and jejunal mucosa. Microbial analysis indicated that B. subtilis increased the abundance of potential probiotics (Sutterella) and butyrate-producing bacteria (Lachnoclostridium, Tyzzerella, Anaerostipes, Clostridium_sensu_stricto_13, Prevotellaceae_NK3B31_group, and Lachnospiraceae_UCG-010). The abundances of Anaerostipes and Sutterella, are significantly correlated with growth performance and immune function. In conclusion, dietary supplementation with B. subtilis improved the growth performance, potentially through the regulation of immunity, intestinal barrier function, and microbiota in broilers. Notably, 500 mg/kg of B. subtilis exhibited more benefits for broilers compared to the 300 mg/kg.
Collapse
Affiliation(s)
- Yuanli Cai
- College of Life Science, Qilu Normal University, Jinan, Shandong 250200, China
| | - Chuanpi Xiao
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Bo Tian
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Sandvang Dorthe
- Animal and Plant Health & Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Antoine Meuter
- Animal and Plant Health & Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Bochen Song
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhigang Song
- Department of Animal Science and Medicine, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
5
|
Fu Y, Song Y, Jiang D, Pan J, Li W, Zhang X, Chen W, Tian Y, Shen X, Huang Y. Comprehensive Transcriptomic and Metabolomic Analysis Revealed the Functional Differences in Pigeon Lactation between Male and Female during the Reproductive Cycle. Animals (Basel) 2023; 14:75. [PMID: 38200806 PMCID: PMC10778231 DOI: 10.3390/ani14010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Lactation is a unique reproductive behavior in pigeons, with the crop serving as the organ responsible for secreting pigeon milk. Both male and female pigeons can produce crop milk and rear their offspring through a division of labor. Since the time of the secretion of pigeon crop milk is different in the process of feeding the young, whether the metabolism and formation of pigeon milk use the same mechanism is a very interesting scientific question. However, the metabolic dynamics and underlying genetic mechanisms involved in the formation of pigeon crop milk remain unclear, particularly during the incubation-feeding reproductive cycle. In this study, we integrated lactation-associated metabolism and transcriptome data from the crop tissues of both male and female pigeons during the brooding and feeding stages. We mapped the changes in metabolites related to milk formation in the crop tissues during these stages. Through metabolome profiling, we identified 1413 metabolites among 18 crop tissues. During the breeding cycles, the concentrations of estrone, L-ergothioneine, and L-histidine exhibited the most dynamic changes in females. In contrast, estrone, L-anserine, 1-methylhistidine, homovanillate, oxidized glutathione, and reducing glutathione showed the most dynamic changes in males. Gender-specific differences were observed in the metabolome, with several metabolites significantly differing between males and females, many of which were correlated with cytokine binding, immunity, and cytochrome P450 activity. Using this dataset, we constructed complex regulatory networks, enabling us to identify important metabolites and key genes involved in regulating the formation of pigeon milk in male and female pigeons, respectively. Additionally, we investigated gender-associated differences in the crop metabolites of pigeons. Our study revealed differences in the modulation of pigeon crop milk metabolism between males and females and shed light on the potential functions of male and female pigeon milk in the growth, development, and immunity of young pigeons, an area that has not been previously explored. In conclusion, our results provide new insights into the metabolic regulation of pigeon crop milk formation during the brooding and breeding stages. Furthermore, our findings lay the foundation for the accurate development of artificial pigeon milk.
Collapse
Affiliation(s)
- Yuting Fu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (Y.F.); (Y.S.); (D.J.); (J.P.); (W.L.); (X.Z.); (W.C.); (Y.T.)
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institute, Guangzhou 510225, China
| | - Yan Song
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (Y.F.); (Y.S.); (D.J.); (J.P.); (W.L.); (X.Z.); (W.C.); (Y.T.)
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institute, Guangzhou 510225, China
| | - Danli Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (Y.F.); (Y.S.); (D.J.); (J.P.); (W.L.); (X.Z.); (W.C.); (Y.T.)
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institute, Guangzhou 510225, China
| | - Jianqiu Pan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (Y.F.); (Y.S.); (D.J.); (J.P.); (W.L.); (X.Z.); (W.C.); (Y.T.)
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institute, Guangzhou 510225, China
| | - Wanyan Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (Y.F.); (Y.S.); (D.J.); (J.P.); (W.L.); (X.Z.); (W.C.); (Y.T.)
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institute, Guangzhou 510225, China
| | - Xumeng Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (Y.F.); (Y.S.); (D.J.); (J.P.); (W.L.); (X.Z.); (W.C.); (Y.T.)
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institute, Guangzhou 510225, China
| | - Wenbin Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (Y.F.); (Y.S.); (D.J.); (J.P.); (W.L.); (X.Z.); (W.C.); (Y.T.)
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunbo Tian
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (Y.F.); (Y.S.); (D.J.); (J.P.); (W.L.); (X.Z.); (W.C.); (Y.T.)
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institute, Guangzhou 510225, China
| | - Xu Shen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (Y.F.); (Y.S.); (D.J.); (J.P.); (W.L.); (X.Z.); (W.C.); (Y.T.)
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institute, Guangzhou 510225, China
| | - Yunmao Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510225, China; (Y.F.); (Y.S.); (D.J.); (J.P.); (W.L.); (X.Z.); (W.C.); (Y.T.)
- College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institute, Guangzhou 510225, China
| |
Collapse
|
6
|
Booth AM, Viernes R, Farrar VS, Flores L, Austin SH, Calisi RM. Sex-specific behavioral and physiological changes during single parenting in a biparental species, Columba livia. Horm Behav 2023; 156:105428. [PMID: 37748275 DOI: 10.1016/j.yhbeh.2023.105428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Many species exhibit biparental care to maximize fitness. When a partner is lost, the surviving partner may alter their behavior to compensate offspring. Whether both sexes use the same physiological mechanisms to manifest their change in behavior remains elusive. We investigated behaviors and mechanisms associated with the alteration of parental care post-partner removal in a biparental avian species, the rock dove (Columba livia). We hypothesized that rock dove single parents experience sex-biased changes in neural genomic transcription and reproductive behaviors, and these changes are related to chick development. We manipulated parental partner presence and measured parental attendance, offspring growth, gene expression of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) in the pituitary, and GR, MR, and estrogen receptor beta (ER-β) in the hypothalamus. We also measured circulating plasma concentrations of the stress-associated hormone corticosterone and the parental care-associated hormone prolactin. We also quantified prolactin gene (PRL) expression changes in the pituitary, as well as prolactin receptor (PRLR) expression in the hypothalamus and pituitary. We found that single mothers and fathers maintained similar provisioning levels as paired parents, but spent less cumulative time brooding chicks. Chicks of single parents were smaller than paired-parented chicks after three days post-hatch. Mothers in both treatment groups experienced higher expression of hypothalamic GR as compared to fathers. Single parents experienced lower PRL gene expression in the pituitary as compared to paired parents. No significant differences were found for the circulating hormones or other genes listed.
Collapse
Affiliation(s)
- April M Booth
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States of America.
| | - Rechelle Viernes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States of America
| | - Victoria S Farrar
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States of America
| | - Laura Flores
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States of America
| | - Suzanne H Austin
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States of America
| | - Rebecca M Calisi
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, United States of America
| |
Collapse
|
7
|
Peng J, Huang W, Liang Y, Zhang W, Zhang Y, Yang M, Zheng S, Lv Y, Gou Z, Cheng C, Gao H, Wang W, Peng J, Huang Y. Optimal dietary energy and protein levels for breeding pigeons in the winter "2 + 3" lactation pattern. Poult Sci 2023; 102:102964. [PMID: 37573846 PMCID: PMC10428047 DOI: 10.1016/j.psj.2023.102964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
The nutritional requirements of breeding pigeons depend on their physiological period, breeding pattern, and environmental conditions. Despite works on reduced litter size in winter production to combat high mortality and the poor welfare of squabs, there are few studies on the related nutritional requirements of these pigeons. A total of 432 pairs of European Mimas pigeons were randomly divided into 9 groups in which 3 crude protein (CP) levels (15, 16.5, and 18%) and 3 metabolizable energy (ME) levels (12.2 MJ/kg, 12.4 MJ/kg, and 12.6 MJ/kg) were tested to determine the optimal energy and protein requirements of breeding pigeons in the winter "2 + 3" breeding pattern. The results showed that ME and CP levels had little effect on the body weight, feed intake, and egg quality of breeding pigeons during the lactation period. An 18% CP diet significantly increased the laying rate and hatchability (P < 0.05), but there was no difference in the laying rate with 18% CP and 16.5% CP during the whole reproductive cycle (P > 0.05). There was a significant interaction between ME and CP levels, and the laying interval of breeding pigeons in group 9 (18% CP; 12.6 MJ/kg) was significantly shortened (P < 0.05). For squabs, the ME level had no effect on growth performance, slaughter performance, or meat quality. The body weight of 21-day-old squabs in the 18% CP group increased by 3.16% compared with that of the 15% CP group, but there was no difference between the 18% CP and 16.5% CP groups. Compared with other experimental groups, group 7 (18% CP; 12.2 MJ/kg) had the fastest growth rate in squabs (P < 0.05), and the corresponding slaughter weight was also the heaviest (P < 0.05). We further found that the height of the squab intestinal epithelium was significantly increased in both the 16.5% CP and 18% CP groups of squabs (P < 0.01), but male breeding pigeons showed a certain degree of oxidative stress with an increase in CP level. In conclusion, the effects of 15 to 18% CP levels and 12.2 to 12.6 MJ/kg ME levels on the reproductive metabolism of breeding pigeons and the growth and development of squabs in the "2 + 3" breeding pattern during winter are small. For economic efficiency, we suggest that the CP level can be reduced to 16.5% while the ME level should not be less than 12.2 MJ/kg in practical production.
Collapse
Affiliation(s)
- Jie Peng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Weiying Huang
- College of Animal Science and Technology and Animal Medicine, Huazhong Agricultural University, Wuchang, Wuhan 430000, China
| | - Yayan Liang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wei Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yanlin Zhang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Menglin Yang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Shiqi Zheng
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yantao Lv
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou, Guangdong 510640, China
| | - Chuanshang Cheng
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, WENS Research Institute (Technology center), Yunfu 527300, China
| | - Hongyan Gao
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Wei Wang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Jian Peng
- College of Animal Science and Technology and Animal Medicine, Huazhong Agricultural University, Wuchang, Wuhan 430000, China
| | - Yanhua Huang
- Innovative Institute of Animal Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Laboratory for Lingnan Modern Agricultural, Guangzhou 510642, China.
| |
Collapse
|
8
|
Wang L, Zhu J, Xie P, Gong D. Pigeon during the Breeding Cycle: Behaviors, Composition and Formation of Crop Milk, and Physiological Adaptation. Life (Basel) 2023; 13:1866. [PMID: 37763270 PMCID: PMC10533064 DOI: 10.3390/life13091866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Pigeon is an important economic poultry species in many countries. As an altricial bird, its growth and development are largely reliant on pigeon milk produced by the crop tissue in the first week. During the breeding cycle, pigeons undergo a series of behavioral changes. Pigeon milk is generally characterized by having high concentrations of proteins and lipids, and a complicated regulatory network is involved in the milk formation. Hormones, especially prolactin, could promote the proliferation of crop epidermal cells and nutrient accumulation. The expression of target genes associated with these important biological processes in the crop epidermis is affected by non-coding RNAs. Meanwhile, signaling pathways, such as target of rapamycin (TOR), Janus kinase/signal transducer and activator of transcription proteins (JAK/STAT), protein kinase B (Akt), etc., influence the production of crop milk by either enhancing protein synthesis in crop cells or inducing apoptosis of crop epidermal cells. In order to adapt to the different breeding periods, pigeons are physiologically changed in their intestinal morphology and function and liver metabolism. This paper reviews the behaviors and physiological adaptations of pigeon during the breeding cycle, the composition of pigeon crop milk, and the mechanism of its formation, which is important for a better understanding of the physiology of altricial birds and the development of artificial crop milk.
Collapse
Affiliation(s)
- Liuxiong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Jianguo Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
| |
Collapse
|
9
|
Jin CL, He YA, Jiang SG, Wang XQ, Yan HC, Tan HZ, Gao CQ. Chemical Composition of Pigeon Crop Milk and Factors Affecting Its Production: A Review. Poult Sci 2023; 102:102681. [PMID: 37098298 PMCID: PMC10149254 DOI: 10.1016/j.psj.2023.102681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Pigeons are important commercial poultry in addition to being ornamental birds. In 2021, more than 111 million pairs of breeding pigeons were kept in stock and 1.6 billion squabs were slaughtered for meat in China. However, in many countries, pigeons are not domestic birds; thus, it is necessary to elucidate the factors involved in their growth and feeding strategy due to their economic importance. Pigeons are altricial birds, so feedstuffs cannot be digested by squabs, which instead are fed a mediator named pigeon crop milk. During lactation, breeding pigeons (both female and male) ingest diets and generate crop milk to feed squabs. Thus, research on squab growth is more complex than that on chicken and other poultry. To date, research on the measurement of crop milk composition and estimation of the factors affecting its production has not ceased, and these results are worth reviewing to guide production. Moreover, some studies have focused on the formation mechanism of crop milk, reporting that the synthesis of crop milk is controlled by prolactin and insulin-activated pathways. Furthermore, the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5 (STAT5) pathway, target of rapamycin (TOR) pathway and AMP-activated protein kinase (AMPK) pathway were also reported to be involved in crop milk synthesis. Therefore, this review focuses on the chemical composition of pigeon crop milk and factors affecting its production during lactation. This work explores novel mechanisms and provides a theoretical reference for improving production in the pigeon industry, including for racing, ornamental purposes, and production of meat products.
Collapse
|
10
|
Effect of different dietary energy/protein ratios on growth performance, reproductive performance of breeding pigeons and slaughter performance, meat quality of squabs in summer. Poult Sci 2023; 102:102577. [DOI: 10.1016/j.psj.2023.102577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
|
11
|
Ma H, Bian S, Li Y, Ni A, Zhang R, Ge P, Han P, Wang Y, Zhao J, Zong Y, Yuan J, Sun Y, Chen J. Analyses of circRNAs profiles of the lactating and nonlactating crops in pigeon (Columba livia). Poult Sci 2022; 102:102464. [PMID: 36680859 PMCID: PMC9871334 DOI: 10.1016/j.psj.2022.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Pigeon has the specific biological ability to produce pigeon milk (also known as crop milk) by its crop. Circular RNAs (circRNAs) are important noncoding RNAs acting as the sponges of miRNAs, but the molecular mechanism of circRNAs regulating crop milk production has not been reported in pigeon. We compared expression profiles of crops during lactating and nonlactating crops, and networks of competing endogenous RNAs (ceRNAs) were constructed. The results showed a total of 8,723 circRNAs were identified, and there were 770 differentially expressed circRNAs (DECs) between these two different periods of crops. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that the host genes of DECs were enriched in GnRH, MAPK, Insulin, Wnt, and AMPK signaling pathways. Furthermore, gga_circ_0000300 interacted with miR-92-2-5p, which targeted genes participating in lactation and milk composition synthesis. Gga_circ_0003018, gga_circ_0003019 and gga_circ_0003020 could bind with let-7c-5p regulating SOCS3 in crop milk production. These findings provide the circRNAs expression profiles and facilitate the analysis of molecular mechanism of crop milk production in pigeon.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shixiong Bian
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunlei Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Aixin Ni
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pingzhuang Ge
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pengmin Han
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030800, China
| | - Yuanmei Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinmeng Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunhe Zong
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingwei Yuan
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanyan Sun
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jilan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
12
|
Luo Y, Hu S, Yan P, Wu J, Guo H, Zhao L, Tang Q, Ma J, Long K, Jin L, Jiang A, Li M, Li X, Wang X. Analysis of mRNA and lncRNA Expression Profiles of Breast Muscle during Pigeon ( Columbalivia) Development. Genes (Basel) 2022; 13:genes13122314. [PMID: 36553580 PMCID: PMC9777807 DOI: 10.3390/genes13122314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The breast muscle is essential for flight and determines the meat yield and quality of the meat type in pigeons. At present, studies about long non-coding RNA (lncRNA) expression profiles in skeletal muscles across the postnatal development of pigeons have not been reported. Here, we used transcriptome sequencing to examine the White-King pigeon breast muscle at four different ages (1 day, 14 days, 28 days, and 2 years old). We identified 12,918 mRNAs and 9158 lncRNAs (5492 known lncRNAs and 3666 novel lncRNAs) in the breast muscle, and 7352 mRNAs and 4494 lncRNAs were differentially expressed in the process of development. We found that highly expressed mRNAs were mainly related to cell-basic and muscle-specific functions. Differential expression and time-series analysis showed that differentially expressed genes were primarily associated with muscle development and functions, blood vessel development, cell cycle, and energy metabolism. To further predict the possible role of lncRNAs, we also conducted the WGCNA and trans/cis analyses. We found that differentially expressed lncRNAs such as lncRNA-LOC102093252, lncRNA-G12653, lncRNA-LOC110357465, lncRNA-G14790, and lncRNA-LOC110360188 might respectively target UBE2B, Pax7, AGTR2, HDAC1, Sox8 and participate in the development of the muscle. Our study provides a valuable resource for studying the lncRNAs and mRNAs of pigeon muscles and for improving the understanding of molecular mechanisms in muscle development.
Collapse
Affiliation(s)
- Yi Luo
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Silu Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Peiqi Yan
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Wu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Jideng Ma
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Keren Long
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Anan Jiang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.L.); (X.W.)
| | - Xun Wang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (X.L.); (X.W.)
| |
Collapse
|
13
|
Liao W, Li W, Liu S, Tang D, Chen Y, Wang Y, Xie Z, Huang J. Potential prebiotic effects of nonabsorptive components of Keemun and Dianhong black tea: an in vitro study. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
15
|
Comizzoli P, Power ML, Bornbusch SL, Muletz-Wolz CR. Interactions between reproductive biology and microbiomes in wild animal species. Anim Microbiome 2021; 3:87. [PMID: 34949226 PMCID: PMC8697499 DOI: 10.1186/s42523-021-00156-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022] Open
Abstract
Many parts of the animal body harbor microbial communities, known as animal-associated microbiomes, that affect the regulation of physiological functions. Studies in human and animal models have demonstrated that the reproductive biology and such microbiomes also interact. However, this concept is poorly studied in wild animal species and little is known about the implications to fertility, parental/offspring health, and survival in natural habitats. The objective of this review is to (1) specify the interactions between animals' reproductive biology, including reproductive signaling, pregnancy, and offspring development, and their microbiomes, with an emphasis on wild species and (2) identify important research gaps as well as areas for further studies. While microbiomes present in the reproductive tract play the most direct role, other bodily microbiomes may also contribute to facilitating reproduction. In fish, amphibians, reptiles, birds, and mammals, endogenous processes related to the host physiology and behavior (visual and olfactory reproductive signals, copulation) can both influence and be influenced by the structure and function of microbial communities. In addition, exposures to maternal microbiomes in mammals (through vagina, skin, and milk) shape the offspring microbiomes, which, in turn, affects health later in life. Importantly, for all wild animal species, host-associated microbiomes are also influenced by environmental variations. There is still limited literature on wild animals compared to the large body of research on model species and humans. However, the few studies in wild species clearly highlight the necessity of increased research in rare and endangered animals to optimize conservation efforts in situ and ex situ. Thus, the link between microbiomes and reproduction is an emerging and critical component in wild animal conservation.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Michael L. Power
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Sally L. Bornbusch
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| | - Carly R. Muletz-Wolz
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital MRC5502, PO Box 37012, Washington, DC 20013 USA
| |
Collapse
|
16
|
Horn AJ, Carter CS. Love and longevity: A Social Dependency Hypothesis. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 8:100088. [PMID: 35757670 PMCID: PMC9216627 DOI: 10.1016/j.cpnec.2021.100088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022] Open
Abstract
Mammals, including humans, are reliant for survival and reproduction on adaptations associated with sociality and physiological investment, which can be linked to interactions with their parents or other bonded adult conspecifics. A wide range of evidence in human and non-human mammal species links social behaviors and relationships - including those characterized by what humans call "love" - to positive health and longevity. In light of this evidence, we propose a Social Dependency Hypothesis of Longevity, suggesting that natural selection has favored longer and healthier adult lives in species or in individuals exhibiting enhanced caregiver responsibilities contributing to the success of the next generation. In highlighting cellular, physiological, and behavioral effects of mammalian reproductive hormones, we examine the specific hypothesis that the neuropeptide oxytocin links longevity to the benefits of parental investment and associated relationships. Oxytocin is a pleiotropic molecule with anti-oxidant and anti-inflammatory properties, capable of regulating the hypothalamic-pituitary-adrenal axis, the parasympathetic nervous system and other systems associated with the management of various challenges, including chronic diseases and therefore may be crucial to establishing the maximum longevity potential of a species or an individual.
Collapse
Affiliation(s)
| | - C. Sue Carter
- University of Virginia and Indiana University, United States
| |
Collapse
|
17
|
Shao Y, Ma W, Ji F, Sun X, Du S, Li X, Li Q, Wang Z. Exploration of Proteomics Analysis of Crop Milk in Pigeons ( Columba livia) during the Lactation Period. ACS OMEGA 2021; 6:27726-27736. [PMID: 34722973 PMCID: PMC8552352 DOI: 10.1021/acsomega.1c02977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Pigeon milk is a curdlike substance separated from the mature crop epithelium of breeders, associated with the rapid growth and development of squabs. The aim of this study was to investigate in detail the variations in the content of several important ingredients in crop milk. In this study, we utilized proteomic techniques to investigate the composition and changing pattern of crop milk protein of squabs on days 1 (D1), 3 (D3), and 7 (D7). Our results indicated that the crude protein contents in crop milk decreased with age, and they were up to 50% during the first 3 days. The proteomic data showed that a total of 2558 proteins were identified in all samples from three stages, and the top 15% crop milk proteins were ribosomal protein, keratin, peroxiredoxin, annexin, heat shock protein, and eukaryotic translation protein based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and normalized spectral abundance factors (NSAFs) calculation. Furthermore, the compositions of crop milk protein between D1 and D3 were quite similar [51 differentially expressed proteins (DEPs)], while great proteomic differences were observed between D1/D3 and D7 (more than 240 DEPs). Additionally, gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that up-regulated DEPs mainly participate in immune response, while down-regulated DEPs were involved in cell differentiation and development as well as tRNA aminoacylation biosynthesis. In conclusion, DEPs were mainly related to protein synthesis, immunity, and antioxidation, which provided effective information for the development of artificial squab milk products in the future.
Collapse
Affiliation(s)
- Yuxin Shao
- Institute
of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Weihong Ma
- Beijing
Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Feng Ji
- Institute
of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoshan Sun
- Institute
of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaohua Du
- Institute
of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xing Li
- Institute
of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qifeng Li
- Beijing
Research Center for Information Technology in Agriculture, Beijing 100097, China
| | - Zheng Wang
- Institute
of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
18
|
Ji F, Zhang D, Shao Y, Yu X, Liu X, Shan D, Wang Z. Changes in the diversity and composition of gut microbiota in pigeon squabs infected with Trichomonas gallinae. Sci Rep 2020; 10:19978. [PMID: 33203893 PMCID: PMC7673032 DOI: 10.1038/s41598-020-76821-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 10/05/2020] [Indexed: 11/14/2022] Open
Abstract
Pigeons, as the only altricial birds in poultry, are the primary Trichomonas gallinae (T. gallinae) host. To study the effects of T. gallinae infection on gut microbiota, we compared the microbiota diversity and composition in gastrointestinal (GI) tracts of pigeons at the age of 14 and 21 day with different degrees of T. gallinae infection. Thirty-six nestling pigeons were divided into three groups: the healthy group, low-grade and high-grade trichomonosis group. Then, the crop, small intestine and rectum contents were obtained for sequencing of the 16S rRNA gene V3–V4 hypervariable region. The results showed that the microbiota diversity was higher in crop than in small intestine and rectum, and the abundance of Lactobacillus genus was dominant in small intestine and rectum of healthy pigeons at 21 days. T. gallinae infection decreased the microbiota richness in crop at 14 days. The abundance of the Firmicutes phylum and Lactobacillus genus in small intestine of birds at 21 days were decreased by infection, however the abundances of Proteobacteria phylum and Enterococcus, Atopobium, Roseburia, Aeriscardovia and Peptostreptococcus genus increased. The above results indicated that crop had the highest microbiota diversity among GI tract of pigeons, and the gut microbiota diversity and composition of pigeon squabs were altered by T. gallinae infection.
Collapse
Affiliation(s)
- Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dongyan Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaohan Yu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoyong Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Dacong Shan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
19
|
Ding J, Liao N, Zheng Y, Yang L, Zhou H, Xu K, Han C, Luo H, Qin C, Tang C, Wei L, Meng H. The Composition and Function of Pigeon Milk Microbiota Transmitted From Parent Pigeons to Squabs. Front Microbiol 2020; 11:1789. [PMID: 32849405 PMCID: PMC7417789 DOI: 10.3389/fmicb.2020.01789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian neonates obtain antibodies, nutrients, and microbiota from breast milk that help them resist the complex growth environment. Similar to mammals' lactation behavior for their offspring, parent pigeons regurgitate pigeon milk (PM) from their crops to feed the squabs. Whether pigeon milk is as valuable as mammalian milk is not clear, especially in terms of microbiota. This study adopted 16S rRNA gene sequencing to investigate the microbial composition and function in pigeon milk. We found abundant microbiota in pigeon milk. The dominant genera in parent pigeons' milk were Lactobacillus, Enterococcus, Veillonella, and Bifidobacterium. An analysis of squab milk (SM) showed that Lactobacillus also accounted for a considerable proportion, followed by Bifidobacterium. Most of the squab milk microbial genera were also detected in parent pigeons. Microbial functional analysis showed that the squab milk microbes were more involved in the pathways of carbohydrate metabolism, amino acid metabolism, and energy metabolism. These findings indicated that microbiota play an important role in squabs and can be transmitted from parent pigeons to squabs by pigeon milk. The presence of plentiful probiotics in squabs also suggests that adding probiotics in artificial pigeon milk may promote the growth and development of squabs and improve the production performance of pigeons.
Collapse
Affiliation(s)
- Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Liao
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuming Zheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingyu Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chengxiao Han
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Huaixi Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Qin
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chunhong Tang
- Shanghai Xinrong Big Emperor Pigeon Breeding Professional Cooperation, Shanghai, China
| | - Longxing Wei
- Fengxian District Animal Disease Prevention and Control Center, Shanghai, China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Ma H, Ni A, Ge P, Li Y, Shi L, Wang P, Fan J, Isa AM, Sun Y, Chen J. Analysis of Long Non-Coding RNAs and mRNAs Associated with Lactation in the Crop of Pigeons ( Columba livia). Genes (Basel) 2020; 11:genes11020201. [PMID: 32079139 PMCID: PMC7073620 DOI: 10.3390/genes11020201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Pigeons have the ability to produce milk and feed their squabs. The genetic mechanisms underlying milk production in the crops of 'lactating' pigeons are not fully understood. In this study, RNA sequencing was employed to profile the transcriptome of lncRNA and mRNA in lactating and non-'lactating' pigeon crops. We identified 7066 known and 17,085 novel lncRNAs. Of these lncRNAs, 6166 were differentially expressed. Among the 15,138 mRNAs detected, 6483 were differentially expressed, including many predominant genes with known functions in the milk production of mammals. A GO annotation analysis revealed that these genes were significantly enriched in 55, 65, and 30 pathways of biological processes, cellular components, and molecular functions, respectively. A KEGG pathway enrichment analysis revealed that 12 pathways (involving 544 genes), including the biosynthesis of amino acids, the propanoate metabolism, the carbon metabolism and the cell cycle, were significantly enriched. The results provide fundamental evidence for the better understanding of lncRNAs' and differentially expressed genes' (DEGs) regulatory role in the molecular pathways governing milk production in pigeon crops. To our knowledge, this is the first genome-wide investigation of the lncRNAs in pigeon crop associated with milk production. This study provided valuable resources for differentially expressed lncRNAs and mRNAs, improving our understanding of the molecular mechanism of pigeon milk production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jilan Chen
- Correspondence: ; Tel.: +86-10-6281-6005
| |
Collapse
|
21
|
Xie WY, Fu Z, Pan NX, Yan HC, Wang XQ, Gao CQ. Leucine promotes the growth of squabs by increasing crop milk protein synthesis through the TOR signaling pathway in the domestic pigeon (Columba livia). Poult Sci 2020; 98:5514-5524. [PMID: 31172174 DOI: 10.3382/ps/pez296] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Leucine (Leu) plays a critical regulatory role in protein synthesis, however, the effects and molecular mechanisms of Leu on crop milk protein in the domestic pigeons (Columba livia) are still unknown. Therefore, the study aimed to investigate the effects of dietary Leu supplementation on crop milk protein synthesis and the growth performance of squabs and the possible underlying mechanism. A total of 240 pairs of breeding pigeons (1102.3 ± 9.5 g/pair) were randomly assigned to 1 of 5 treatments, including a positive control (PC) diet that had adequate crude protein (crude protein, CP = 18%; Leu = 1.30%), a negative control (NC) diet that was low in CP (CP = 16%, Leu = 1.30%), and NC diets supplemented with Leu at 0.15%, 0.45%, or 1.05%. Compared with the NC diet, 0.15 to 0.45% Leu supplementation decreased BW loss and increased relative crop weight, crop thickness, and protein levels in the crop tissue and milk of breeding pigeons. However, dietary supplementation with 1.05% Leu inhibited ADFI in breeding pigeons. Dietary supplementation with 0.15 to 0.45% Leu decreased the mortality rate and increased the BW, eviscerated yield, and breast muscle yield of young squabs. The protein expression levels of the target of rapamycin (TOR), ribosomal protein S6 kinase 1 (S6K1), ribosomal protein S6 kinase (S6), eukaryotic initiation factor 4E binding protein 1 (4EBP1), and eukaryotic translation initiation factor 4E (eIF4E) were upregulated in the crop tissue of breeding pigeons in PC, 0.15% and 0.45% Leu-supplemented groups. Collectively, these results indicated that 0.15 to 0.45% Leu supplementation could decrease BW loss, increase milk protein synthesis in the crop of breeding pigeons, and enhance the survival rate and growth performance of young squabs through the TOR signaling pathway.
Collapse
Affiliation(s)
- W Y Xie
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - Z Fu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - N X Pan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - H C Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - X Q Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| | - C Q Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, China
| |
Collapse
|
22
|
Chen MJ, Fu Z, Jiang SG, Wang XQ, Yan HC, Gao CQ. Targeted disruption of TORC1 retards young squab growth by inhibiting the synthesis of crop milk protein in breeding pigeon (Columba livia). Poult Sci 2020; 99:416-422. [PMID: 32416826 PMCID: PMC7587900 DOI: 10.3382/ps/pez513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
This study was conducted to explore the regulatory role of the target of rapamycin complex 1 (TORC1) signaling pathway in crop milk synthesis in breeding pigeons (Columba livia). Three groups of breeding pigeons in the lactation period (n = 30 pairs/group) were respectively injected with rapamycin (RAPA, a specific inhibitor of the target of rapamycin complex) at doses of 0 (vehicle, control), 0.6, or 1.2 mg/kg body weight (BW)/day via the wing vein for 7 days. The average daily feed intake (ADFI) and BW of the breeding pigeons and the BW of young squabs were respectively recorded throughout the experimental period. The breeding pigeons were sacrificed to collect their crop tissues, crop milk, and serum on the eighth day of the experiment. The results showed that neither 0.6 nor 1.2 mg/kg BW RAPA injection affected BW loss or ADFI in breeding pigeons (P > 0.05), while crop thickness and crop relative weight were significantly decreased (P < 0.05) in the 1.2 mg/kg BW rapamycin-injected group. Simultaneously, RAPA (especially at 1.2 mg/kg BW) decreased the crude protein, αs1-casein, αs2-casein, β-casein, and amino acid contents (Asp, Thr, Ser, Glu, Gly, Ala, Cys, Val, Met, Ile, Leu, Tyr, Lys, His, Arg, and Pro) of crop milk (P < 0.05) and the concentrations of albumin, total protein, and uric acid in the serum of breeding pigeons (P < 0.05). Additionally, the expression of TORC1 pathway-related proteins (TORC1, S6K1, S6, 4EBP1, and eIF4E) was downregulated in the crop tissues of breeding pigeons by 0.6 or 1.2 mg/kg BW/day RAPA injection (P < 0.05). Accordingly, the average daily gain (ADG) of young squabs declined, and the mortality rate increased significantly (P < 0.05). Together, the results showed that RAPA reduced protein and amino acid levels in the crop milk of breeding pigeons and retarded young squab growth, suggesting a crucial role of TORC1 in crop milk synthesis in breeding pigeons.
Collapse
Affiliation(s)
- M J Chen
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - Z Fu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - S G Jiang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - X Q Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - H C Yan
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China
| | - C Q Gao
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
23
|
Biasato I, Ferrocino I, Grego E, Dabbou S, Gai F, Gasco L, Cocolin L, Capucchio MT, Schiavone A. Gut Microbiota and Mucin Composition in Female Broiler Chickens Fed Diets including Yellow Mealworm ( Tenebrio molitor, L.). Animals (Basel) 2019; 9:ani9050213. [PMID: 31058804 PMCID: PMC6562683 DOI: 10.3390/ani9050213] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
A total of 160 female broiler chickens were divided into four dietary treatments (control feed [C] and 5, 10 and 15% TM meal inclusion, respectively, with five replicate pens/treatment and eight birds/pen) to investigate the effects of Tenebrio molitor (TM) meal utilization on poultry gut microbiota and mucin composition. The cecal microbiota assessment displayed a shift in the beta diversity in chickens fed TM-based diets. The TM10 and TM15 birds showed a significant decrease in the relative abundance of Firmicutes phylum and lower Firmicutes:Bacteroidetes ratios (False Discovery Rate [FDR] < 0.05), respectively, than the TM5 group. The relative abundance of Clostridium, Alistipes and Sutterella genera significantly increased in TM chickens (FDR < 0.05), while birds fed TM-based diets displayed a significant decrease in the relative abundance of Ruminococcus genus in comparison with the C group (FDR < 0.05). Gut mucin composition evaluation revealed higher mucin staining intensity in the intestinal villi of TM5 birds than the other TM groups, as well as mucin reduction in the intestinal villi of TM10 birds when compared to the C group (p < 0.05). In conclusion, dietary TM meal utilization (especially the 10-15% inclusion levels) may negatively influence either the cecal microbiota or the intestinal mucin dynamics of broiler chickens.
Collapse
Affiliation(s)
- Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Elena Grego
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Sihem Dabbou
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
- Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
- Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| |
Collapse
|
24
|
Wan XP, Xie P, Bu Z, Zou XT, Gong DQ. Prolactin induces lipid synthesis of organ-cultured pigeon crops. Poult Sci 2019; 98:1842-1853. [PMID: 30590797 DOI: 10.3382/ps/pey540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/01/2018] [Indexed: 12/29/2022] Open
Abstract
The objective of this research was to examine the effects of prolactin (PRL) on the lipid synthesis of organ-cultured pigeon crops in vitro. In experiment 1, the histology, activities of enzymes, and expression of genes involved in metabolism and apoptosis of organ-cultured pigeon crops were analyzed over a 7-d culture period. The results showed that cultured crops maintained their structural integrity for up to 3 d in vitro. Beyond 3 d, caspase-3 activity and Bak1 gene expression increased with day of culture, whereas the activities of succinate dehydrogenase, Na+-K+-ATPase, Ca2+-Mg2+-ATPase, total ATPase, and gene expression of Bcl-2 and CK-19 diminished (P < 0.05). In experiment 2, the crops were cultured for 24, 36, and 48 h in medium containing 0, 25, or 50 ng/mL PRL, respectively, and the accumulation of lipid droplets, lipid content, and expression of fatty acid transportation- and lipogenesis-related genes were analyzed. The results showed that the crops with PRL supplements showed higher amounts of lipid droplets than those of the controls, and the droplets were mainly located in the basal nutritive layer in response to PRL. The efficacy of inducing lipid accumulation increased as the concentration of PRL increased. Crops with 50 ng/mL PRL incubated for 36 h displayed the maximal lipid content. Increasing the concentration of PRL from 0 to 50 ng/mL resulted in a dose-dependent increase in the expression of acetyl-CoA carboxylase, fatty acid synthase, fatty acid translocase, fatty acid binding protein 5, acyl-CoA binding protein, and peroxisome proliferator-activated receptor γ genes after incubation for 36 h (P < 0.05). Therefore, our results indicated that the organ-cultured pigeon crops maintained good viability for up to 3 d in vitro. Furthermore, PRL induced the lipid synthesis of organ-cultured pigeon crops in a dose- and time-dependent manner, which was related to the increased expression of genes involved in fatty acid transportation and lipogenesis.
Collapse
Affiliation(s)
- X P Wan
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.,Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Z Bu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - X T Zou
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
25
|
Biasato I, Ferrocino I, Biasibetti E, Grego E, Dabbou S, Sereno A, Gai F, Gasco L, Schiavone A, Cocolin L, Capucchio MT. Modulation of intestinal microbiota, morphology and mucin composition by dietary insect meal inclusion in free-range chickens. BMC Vet Res 2018; 14:383. [PMID: 30514391 PMCID: PMC6278000 DOI: 10.1186/s12917-018-1690-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022] Open
Abstract
Background Gut health in poultry depends on the balance between the host, intestinal microbiota, intestinal microscopic features and diet. The effects of insect meal (a promising alternative protein source for poultry feed) on chicken gut morphology have recently been reported, but no data about intestinal microbiota and mucin composition modulation are available. The present study evaluated the effects of dietary Tenebrio molitor (TM) meal inclusion on gut health of free-range chickens by intestinal microbiota, morphology and mucin composition characterization. Results One hundred forty female medium-growing hybrids were divided into 2 dietary treatments (control feed [C] and 7.5% TM inclusion, with 5 replicate pens/treatment and 14 birds/pen) and slaughtered at 97 days of age (2 birds/pen for a total of 10 chickens/diet). The gut microbiota assessment on cecal content samples by 16S rRNA amplicon based sequencing showed higher alpha (Shannon, P < 0.05) and beta (Adonis and ANOSIM, P < 0.001) diversity in birds fed TM diet than C. In comparison with C group, TM birds displayed significant increase and decrease, respectively, of the relative abundances of Firmicutes and Bacteroidetes phyla, with higher Firmicutes:Bacteroidetes ratios (False Discovery Rate [FDR] < 0.05). The relative abundance of Clostridium, Oscillospira, Ruminococcus, Coprococcus and Sutterella genera was higher in TM chickens than C (FDR < 0.05). On the contrary, TM birds displayed significant decrease of the relative abundance of Bacteroides genus compared to the C group (FDR < 0.05). Gut morphology evaluation by morphometric analysis on small intestine revealed similar villus height, crypt depth and villus height to crypt depth ratio between C and TM birds. Characterization of gut mucin composition by periodic-acid Schiff, Alcian Blue pH 2.5 and high iron diamine staining on small and large intestine showed unaffected mucin staining intensity in TM chickens when compared to C group. Conclusions Dietary TM meal inclusion may positively modulate the gut microbiota of the free-range chickens without influencing the intestinal morphology and mucin composition. Since the rapid growth of chickens directly depends on morphological and functional integrity of the digestive tract, the gut health assessment by a post mortem multidisciplinary approach appears to be fundamental. Electronic supplementary material The online version of this article (10.1186/s12917-018-1690-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ilaria Biasato
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Elena Biasibetti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Elena Grego
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Sihem Dabbou
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Alessandra Sereno
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Francesco Gai
- Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy.,Institute of Science of Food Production, National Research Council, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy. .,Institute of Multidisciplinary Research on Sustainability, University of Turin, Via Accademia Albertina 13, 10100, Turin, Italy.
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy
| |
Collapse
|
26
|
Ma Y, Feng S, Wang X, Qazi IH, Long K, Luo Y, Li G, Ning C, Wang Y, Hu S, Xiao J, Li X, Lan D, Hu Y, Tang Q, Ma J, Jin L, Jiang A, Li M. Exploration of exosomal microRNA expression profiles in pigeon 'Milk' during the lactation period. BMC Genomics 2018; 19:828. [PMID: 30458711 PMCID: PMC6245878 DOI: 10.1186/s12864-018-5201-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 10/25/2018] [Indexed: 11/10/2022] Open
Abstract
Background Pigeon crop has the unique ability to produce a nutrient rich substance termed pigeon ‘milk’ (PM), which has functional resemblance with the mammalian milk. Previous researches have demonstrated that a large number of exosomes and exosomal miRNAs exist in mammalian milk, and many of them are associated with immunity, growth and development. However, to date, little is known about the exosomes and exosomal miRNAs in PM. Results In this study, we isolated the exosomes from PM and used small RNA sequencing to investigate the distribution and expression profiles of exosomal miRNAs. A total of 301 mature miRNAs including 248 conserved and 53 novel miRNAs were identified in five lactation stages i.e. 1d, 5d, 10d, 15d, and 20d. From these, four top 10 conserved miRNAs (cli-miR-21-5p, cli-miR-148a-3p, cli-miR-10a-5p and cli-miR-26a-5p) were co-expressed in all five stages. We speculate that these miRNAs may have important role in the biosynthesis and metabolism of PM. Moreover, similar to the mammalian milk, a significant proportion of immune and growth-related miRNAs were also present and enriched in PM exosomes. Furthermore, we also identified 41 orthologous miRNAs group (giving rise to 81 mature miRNA) commonly shared with PM, human, bovine and porcine breast milk. Additionally, functional enrichment analysis revealed the role of exosomal miRNAs in organ development and in growth-related pathways including the MAPK, Wnt and insulin pathways. Conclusions To sum-up, this comprehensive analysis will contribute to a better understanding of the underlying functions and regulatory mechanisms of PM in squabs. Electronic supplementary material The online version of this article (10.1186/s12864-018-5201-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Siyuan Feng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Izhar Hyder Qazi
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Department of Veterinary Anatomy and Histology, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary & Animal Sciences, Sakrand, Sindh, 67210, Pakistan
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Luo
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guojun Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Chunyou Ning
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yixin Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Juan Xiao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaokai Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dan Lan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yaodong Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Anan Jiang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
27
|
Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation. PLoS One 2017; 12:e0182426. [PMID: 28771569 PMCID: PMC5542615 DOI: 10.1371/journal.pone.0182426] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 07/18/2017] [Indexed: 02/02/2023] Open
Abstract
Clostridium perfringens can induce necrotic enteritis of chickens, which causes large economic losses every year. Bacillus licheniformis, a probiotic, can inhibit the growth of pathogenic bacteria such as Clostridium perfringens, thereby improving the health status of chickens. However, from a microbial ecology perspective, the mechanisms by which alterations to the gut microbiota improve health remain unknown. In this study, we used Illumina MiSeq sequencing to investigate the cecal microbiota of a negative control group (NC), a C. perfringens and Eimeria challenge group with fishmeal supplementation (PC), a group supplemented with fishmeal and infected with coccidia (FC), and group PC with B. licheniformis supplementation (BL). We found that the health status of C. perfringens-challenged chickens was compromised, and that B. licheniformis improved the growth of the chickens challenged with pathogens. Microbial diversity analysis and taxonomic profiling of groups NC, PC, and FC revealed a disturbed cecal microflora of the birds with C. perfringens. We also characterized the microbiota of the chickens in the BL group using several methods. Principal coordinate analysis demonstrated that, compared with group PC, the bacterial community structure of group BL was more similar to that of group NC. Linear discriminant analysis with effect size revealed less differentially represented bacterial taxa between groups BL and NC than between groups PC and NC. In addition, groups BL and NC appeared to have similar overrepresented microbial taxa (such as Bacteroides, Helicobacter, Megamonas, and Akkermansia) compared with group PC. Finally, a phylogenetic investigation of communities by reconstruction of unobserved states analysis indicated that large differences existed between group PC and groups NC and BL. In conclusion, pre-treatment with B. licheniformis reduced the disturbance of the cecal microbiome induced by challenge with C. perfringens and other factors in broiler chickens.
Collapse
|
28
|
Gangestad SW, Grebe NM. Hormonal systems, human social bonding, and affiliation. Horm Behav 2017; 91:122-135. [PMID: 27530218 DOI: 10.1016/j.yhbeh.2016.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/04/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022]
Abstract
Which hormones are implicated in human social bonding and affiliation? And how does field research speak to this issue? We begin by laying out a broad view of how endocrine hormones in general modulate life history allocations of energy and other resources, and the ways in which their neuromodulatory functions must be understood within a broader conceptualization of how they have been shaped to affect allocations. We then turn to four specific hormones or hormone families that have received much attention: oxytocin, opioids, prolactin, and progesterone. Each plays a role in regulating psychological capacities and propensities that underlie individuals' interactions with important social targets. Yet in no case is it clear exactly what regulatory roles these hormones play. We suggest several directions for future research.
Collapse
Affiliation(s)
- Steven W Gangestad
- Department of Psychology, University of New, Albuquerque, NM 87111, Mexico.
| | - Nicholas M Grebe
- Department of Psychology, University of New, Albuquerque, NM 87111, Mexico
| |
Collapse
|
29
|
Hu XC, Gao CQ, Wang XH, Yan HC, Chen ZS, Wang XQ. Crop milk protein is synthesised following activation of the IRS1/Akt/TOR signalling pathway in the domestic pigeon (Columba livia). Br Poult Sci 2016; 57:855-862. [DOI: 10.1080/00071668.2016.1219694] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- X.-C. Hu
- College of Animal Science, South China Agricultural University/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture/ South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - C.-Q Gao
- College of Animal Science, South China Agricultural University/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture/ South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - X.-H. Wang
- College of Animal Science, South China Agricultural University/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture/ South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - H.-C. Yan
- College of Animal Science, South China Agricultural University/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture/ South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Z.-S. Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA
| | - X.-Q. Wang
- College of Animal Science, South China Agricultural University/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture/ South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| |
Collapse
|
30
|
Alteration of the Microbiota and Virulence Gene Expression in E. coli O157:H7 in Pig Ligated Intestine with and without AE Lesions. PLoS One 2015; 10:e0130272. [PMID: 26090813 PMCID: PMC4474639 DOI: 10.1371/journal.pone.0130272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Previously we found that E. coli O157:H7 inoculated into ligated pig intestine formed attaching and effacing (AE) lesions in some pigs but not in others. The present study evaluated changes in the microbial community and in virulence gene expression in E. coli O157:H7 in ligated pig intestine in which the bacteria formed AE lesions or failed to form AE lesions. METHODOLOGY/PRINCIPAL FINDINGS The intestinal microbiota was assessed by RNA-based denaturing gradient gel electrophoresis (DGGE) analysis. The DGGE banding patterns showed distinct differences involving two bands which had increased intensity specifically in AE-negative pigs (AE- bands) and several bands which were more abundant in AE-positive pigs. Sequence analysis revealed that the two AE- bands belonged to Veillonella caviae, a species with probiotic properties, and Bacteroides sp. Concurrent with the differences in microbiota, gene expression analysis by quantitative PCR showed that, compared with AE negative pigs, E. coli O157:H7 in AE positive pigs had upregulated genes for putative adhesins, non-LEE encoded nleA and quorum sensing qseF, acid resistance gene ureD, and genes from the locus of enterocyte effacement (LEE). CONCLUSIONS/SIGNIFICANCE The present study demonstrated that AE-positive pigs had reduced activities or populations of Veillonella caviae and Bacterioides sp. compared with AE-negative pigs. Further studies are required to understand how the microbiota was changed and the role of these organisms in the control of E. coli O157:H7.
Collapse
|
31
|
Zheng X, O'Connor JK, Huchzermeyer F, Wang X, Wang Y, Zhang X, Zhou Z. New specimens of Yanornis indicate a piscivorous diet and modern alimentary canal. PLoS One 2014; 9:e95036. [PMID: 24733485 PMCID: PMC3986254 DOI: 10.1371/journal.pone.0095036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 03/23/2014] [Indexed: 11/19/2022] Open
Abstract
A crop adapted for an herbivorous diet of seeds has previously been documented in the Early Cretaceous birds Sapeornis and Hongshanornis. Here we report on several specimens of Yanornis that preserve a crop containing fish. One specimen preserves two whole fish in the oesophagus, indicating that Early Cretaceous birds shared trophic specializations with Neornithes for the increased energetic demands of flight – namely the storing of food for later consumption when the stomach is full. Whole fish also indicate that despite their presence, teeth were not used to orally process food, suggesting the hypertrophied dentition in this taxon were utilized in prey capture. The presence of macerated fish bones in the crop of other specimens indicates the highly efficient advanced muscular system of peristalsis responsible for moving ingested items between different segments of the alimentary canal was also in place. Despite the fact many features of the modern avian alimentary canal are inferred to compensate for the absence of teeth in birds (expandable oesophagus, grinding gizzard), the derived alimentary canal was apparently present in toothed Cretaceous birds. Although Yanornis was considered to have switched their diet from piscivorous to herbivorous, based on position and morphology we reinterpret the gastroliths reported in one specimen as sand impacted in the intestines, and reconstruct the taxon as primarily piscivorous. This is a novel interpretation for fossilized gastroliths, and the first documentation of this condition in the fossil record.
Collapse
Affiliation(s)
- Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong, China
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong, China
| | - Jingmai K. O'Connor
- Key Laboratory of Vertebrate Evolution and Human Origin of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- * E-mail:
| | - Fritz Huchzermeyer
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong, China
| | - Yan Wang
- Institute of Geology and Paleontology, Linyi University, Linyi, Shandong, China
| | - Xiaomei Zhang
- Tianyu Natural History Museum of Shandong, Pingyi, Shandong, China
| | - Zhonghe Zhou
- Key Laboratory of Vertebrate Evolution and Human Origin of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
| |
Collapse
|
32
|
Neonatal immune adaptation of the gut and its role during infections. Clin Dev Immunol 2013; 2013:270301. [PMID: 23737810 PMCID: PMC3659470 DOI: 10.1155/2013/270301] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022]
Abstract
The intestinal tract is engaged in a relationship with a dense and complex microbial ecosystem, the microbiota. The establishment of this symbiosis is essential for host physiology, metabolism, and immune homeostasis. Because newborns are essentially sterile, the first exposure to microorganisms and environmental endotoxins during the neonatal period is followed by a crucial sequence of active events leading to immune tolerance and homeostasis. Contact with potent immunostimulatory molecules starts immediately at birth, and the discrimination between commensal bacteria and invading pathogens is essential to avoid an inappropriate immune stimulation and/or host infection. The dysregulation of these tight interactions between host and microbiota can be responsible for important health disorders, including inflammation and sepsis. This review summarizes the molecular events leading to the establishment of postnatal immune tolerance and how pathogens can avoid host immunity and induce neonatal infections and sepsis.
Collapse
|