1
|
Sadikan MZ, Lambuk L, Reshidan NH, Abdul Ghani NA, Ahmad AI, Ahmad Kamal MS, Lazaldin MAM, Ahmad Hairi H, Mohamud R, Abdul Nasir NA. Age-Related Macular Degeneration Pathophysiology and Therapeutic Potential of Tocotrienols: An Update. J Ocul Pharmacol Ther 2025. [PMID: 39895321 DOI: 10.1089/jop.2024.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Age-related macular degeneration (AMD) poses a significant threat to visual health among the elderly, necessitating urgent preventive measures as the global population ages. Extensive research has implicated oxidative stress (OS)-induced retinal damage as a primary contributor to AMD pathogenesis, prompting investigations into potential therapeutic interventions. Among the various nutrients studied for their potential in AMD risk reduction, antioxidants have shown promise, with initial findings from the Age-Related Eye Disease Study suggesting a correlation between antioxidant supplementation and decreased AMD progression. This article explores the scientific foundation supporting the therapeutic efficacy of tocotrienol-rich fraction (TRF) as a viable candidate for slowing AMD progression, based on interventional studies. AMD is characterized by OS, inflammation, dysregulated lipid metabolism, and angiogenesis, all of which TRF purportedly addresses through its potent anti-inflammatory, lipid-lowering, antiangiogenic, and antioxidant properties. The review underscores TRF's promising attributes, aiming to deepen understanding of AMD pathogenesis and advocate for TRF-based pharmacological interventions to enhance therapeutic outcomes. Given the pressing need for effective AMD treatments, TRF represents a promising avenue for intervention, offering hope for improved vision outcomes and enhanced quality of life for individuals affected by this debilitating condition.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Faculty of Medicine, Department of Pharmacology, Manipal University College Malaysia (MUCM), Melaka, Malaysia
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nur Hidayah Reshidan
- Faculty of Applied Sciences, School of Biology, Universiti Teknologi MARA, Selangor, Malaysia
| | - Nurliyana Ain Abdul Ghani
- Faculty of Medicine, Department of Ophthalmology, Universiti Teknologi MARA Malaysia, Selangor, Malaysia
| | - Azral Ismawy Ahmad
- International Medical School, Management & Science University, Selangor, Malaysia
| | | | | | - Haryati Ahmad Hairi
- Faculty of Medicine, Department of Biochemistry, Manipal University College Malaysia (MUCM), Melaka, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurul Alimah Abdul Nasir
- Faculty of Medicine, Department of Medical Education, Universiti Teknologi MARA Malaysia, Selangor, Malaysia
- Faculty of Medicine, Centre for Neuroscience Research (NeuRon), Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
2
|
Zhu R, Wang XH, Wang BW, Ouyang X, You YY, Xie HT, Zhang MC, Jiang FG. Prostaglandin F2α Regulates Adipogenesis by Modulating Extracellular Signal-Regulated Kinase Signaling in Graves' Ophthalmopathy. Int J Mol Sci 2023; 24:ijms24087012. [PMID: 37108173 PMCID: PMC10138945 DOI: 10.3390/ijms24087012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Prostaglandin F2α (PGF2α), the first-line anti-glaucoma medication, can cause the deepening of the upper eyelid sulcus due to orbital lipoatrophy. However, the pathogenesis of Graves' ophthalmopathy (GO) involves the excessive adipogenesis of the orbital tissues. The present study aimed to determine the therapeutic effects and underlying mechanisms of PGF2α on adipocyte differentiation. In this study primary cultures of orbital fibroblasts (OFs) from six patients with GO were established. Immunohistochemistry, immunofluorescence, and Western blotting (WB) were used to evaluated the expression of the F-prostanoid receptor (FPR) in the orbital adipose tissues and the OFs of GO patients. The OFs were induced to differentiate into adipocytes and treated with different incubation times and concentrations of PGF2α. The results of Oil red O staining showed that the number and size of the lipid droplets decreased with increasing concentrations of PGF2α and the reverse transcription-polymerase chain reaction (RT-PCR) and WB of the peroxisome proliferator-activated receptor γ (PPARγ) and fatty-acid-binding protein 4 (FABP4), both adipogenic markers, were significantly downregulated via PGF2α treatment. Additionally, we found the adipogenesis induction of OFs promoted ERK phosphorylation, whereas PGF2α further induced ERK phosphorylation. We used Ebopiprant (FPR antagonist) to interfere with PGF2α binding to the FPR and U0126, an Extracellular Signal-Regulated Kinase (ERK) inhibitor, to inhibit ERK phosphorylation. The results of Oil red O staining and expression of adipogenic markers showed that blocking the receptor binding or decreasing the phosphorylation state of the ERK both alleviate the inhibitory effect of PGF2a on the OFs adipogenesis. Overall, PGF2α mediated the inhibitory effect of the OFs adipogenesis through the hyperactivation of ERK phosphorylation via coupling with the FPR. Our study provides a further theoretical reference for the potential application of PGF2α in patients with GO.
Collapse
Affiliation(s)
- Ru Zhu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xing-Hua Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo-Wen Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuan Ouyang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ya-Yan You
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fa-Gang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Wang Z, Liu J, Huang Y, Liu Q, Chen M, Ji C, Feng J, Ma Y. Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) -derived Peptide MPAPO Stimulates Adipogenic Differentiation by Regulating the Early Stage of Adipogenesis and ERK Signaling Pathway. Stem Cell Rev Rep 2023; 19:516-530. [PMID: 36112309 DOI: 10.1007/s12015-022-10415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Regenerative medicine and tissue engineering have delivered new healing possibilities to the treatment of soft tissue defects, but the selection of seed cells is critical for treatment. Adipose-derived stem cells have perpetually been a preferred candidate for seed cells due to their wealthy sources, simple access, high plasticity, and powerful value-added capabilities. How to improve the efficiency of adipogenic differentiation is the key to the treatment. Pituitary adenylate cyclase-activating peptide, as a biologically active peptide secreted by the pituitary, is widely involved in regulating the body's sugar metabolism and lipid metabolism. However, the effects of MPAPO in ADSCs adipogenic differentiation remain unknown. Our results reveal that MPAPO treatment improves the adipogenic differentiation efficiency of ADSCs, including promoting the accumulation of lipid droplets and triglycerides, and the expression of adipocyte protein biomarkers PPARγ and C/EBPa. Additionally, the mechanism studies showed that the effective window of MPAPO-induced adipogenesis was the first 3 days during ADSCs differentiation. MPAPO selectively binds to the PAC1 receptor and promotes adipogenic differentiation of ADSCs by activating the ERK signaling pathway and elevating cell proliferation during postconfluent mitosis stage. Altogether, we demonstrate that MPAPO plays a crucial role in ADSCs adipogenesis, providing experimental basis and data for exploring therapeutic options in tissue defect repair.
Collapse
Affiliation(s)
- Zixian Wang
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jianmin Liu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yongmei Huang
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Qian Liu
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Meng Chen
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Chunyan Ji
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Jia Feng
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.
- Department of Cellular Biology, Institute of Biomedicine, Jinan University, 601 Huangpu Avenue West, 510632, Guangzhou, China.
| |
Collapse
|
4
|
Qian Y, Chen H, Pan T, Li T, Zhang Z, Lv X, Wang J, Ji Z, He Y, Li L, Lin M. Autologous decellularized extracellular matrix promotes adipogenic differentiation of adipose derived stem cells in low serum culture system by regulating the ERK1/2-PPARγ pathway. Adipocyte 2021; 10:174-188. [PMID: 33825675 PMCID: PMC8032248 DOI: 10.1080/21623945.2021.1906509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
High viability and further adipogenic differentiation of adipose-derived stem cells (ADSCs) are fundamental for engraftment and growth of the transplanted adipose tissue. It has been demonstrated that extracellular matrix (ECM) regulates cell proliferation and differentiation by interacting with ERK1/2 signalling pathway. In this study, we prepared autologous decellularized extracellular matrix (d-ECM) and explored its effect on the proliferation and adipogenic ability of ADSCs in low serum culture. We found that 2% foetal bovine serum (FBS) in growth medium inhibited cell viability and DNA replication, and decreased mRNA and protein levels of PPARγ and C/EPBα compared with 10% FBS. Correspondingly, after 14-days adipogenic induction, cells cultured in 2% FBS possessed lower efficiency of adipogenesis and expressed less adipocyte differentiation markers ADIPOQ and aP2. On the contrary, the d-ECM-coated substrate continuously promoted the expression of PPARγ, and regulated the phosphorylation of ERK1/2 in different manners during differentiation. Pretreatment with ERK1/2 inhibitor PD98059 neutralized the effects of d-ECM, which suggested d-ECM might regulate the adipogenesis of ADSCs through ERK1/2-PPARγ pathway. In addition, d-ECM was revealed to regulate the transcription and expression of stemness-associated genes, such as OCT4, NANOG and SOX2, in the undifferentiated ADSCs, which might be related to the initiation of differentiation.
Collapse
Affiliation(s)
- Yao Qian
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou City, China
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Hao Chen
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Tianyun Pan
- Department of Pathology, Huzhou Hospital of Traditional Chinese Medicine, Huzhou City, China
| | - Tian Li
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Zikai Zhang
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Xuling Lv
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Jingping Wang
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Ziwan Ji
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Yucang He
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Liqun Li
- Deprtment of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Ming Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou City, China
| |
Collapse
|
5
|
Pan S, Chen Y, Zhang L, Liu Z, Xu X, Xing H. Curcumin represses lipid accumulation through inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis in porcine subcutaneous preadipocytes. Anim Biosci 2021; 35:763-777. [PMID: 34727633 PMCID: PMC9065776 DOI: 10.5713/ab.21.0371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Objective Excessive lipid accumulation in adipocytes results in prevalence of obesity and metabolic syndrome. Curcumin (CUR), a naturally phenolic active ingredient, has been shown to have lipid-lowering effects. However, its underlying mechanisms have remained largely unknown. Therefore, the study aims to determine the effect of CUR on cellular lipid accumulation in porcine subcutaneous preadipocytes (PSPA) and to clarify novel mechanisms. Methods The PSPA were cultured and treated with or without CUR. Both cell counting Kit-8 and lactate dehydrogenase release assays were used to examine cytotoxicity. Intracellular lipid contents were measured by oil-red-o staining extraction and triglyceride quantification. Apoptosis was determined by flow cytometry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-nick end labelling assay. Adipogenic and apoptosis genes were analyzed by quantitative polymerase chain reaction and Western blot. Results The CUR dose-dependently reduced the proliferation and lipid accumulation of PSPA. Noncytotoxic doses of CUR (10 to 20 μM) significantly inhibited extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and expression of adipogenic genes peroxisome proliferation-activity receptor-γ (PPAR-γ), CCAAT/enhancer binding protein-α, sterol regulatory element-binding protein-1c, adipocyte protein-2, glucose transporter-4 as well as key lipogenic enzymes fatty acid synthase and acetyl-CoA carboxylase, while ERK1/2 activation significantly reversed CUR-reduced lipid accumulation by increasing PPAR-γ. Furthermore, compared with differentiation induced media treated cells, higher dose of CUR (30 μM) significantly decreased the expression of AKT and B-cell lymphoma-2 (BCL-2), while increased the expression of BCL-2-associated X (BAX) and the BAX/BCL-2 expression ratio, suggesting triggered apoptosis by inactivating AKT and increasing BAX/BCL-2 ratio and Caspase-3 expression. Moreover, AKT activation significantly rescued CUR inhibiting lipid accumulation via repressing apoptosis. Conclusion These results demonstrate that CUR is capable of suppressing differentiation by inhibiting ERK1/2-PPAR-γ signaling pathway and triggering apoptosis via decreasing AKT and subsequently increasing BAX/BCL-2 ratio and Caspase-3, suggesting that CUR provides an important method for the reduction of porcine body fat, as well as the prevention and treatment of human obesity.
Collapse
Affiliation(s)
- Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China.,Department of Animal Science, Washington State University, Pullman, 99163, WA, USA
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Lin Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhuang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
6
|
Lactosylceramide induced by elastin-derived peptides decreases adipocyte differentiation. J Physiol Biochem 2020; 76:457-467. [PMID: 32592089 DOI: 10.1007/s13105-020-00755-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Elastin, the major protein of the extracellular matrix, is specially found in cardiovascular tissues and contributing to 30-50% of the dry weight of blood vessels. Elastin regulates cell signalling pathways involved in morphogenesis, injury response and inflammation. The function of elastin is frequently compromised in damaged or aged elastic tissues. Indeed, elastin degradation, observed during ageing, and the resulting production of elastin-derived peptides (EDPs), have crucial impacts on cardiovascular disease (atherosclerosis, thrombosis) or on metabolism disease progressions (type 2 diabetes or non-alcoholic steatohepatitis). In the present study, we analysed the EDP effects on 3T3 preadipocyte cell differentiation. In a first part, we treated 3T3-L1 cells with EDP and visualized the lipid droplet accumulation by the oil red O staining and measured the expression of various transcription factors and adipocyte-specific mRNAs by real-time RT-PCR. We demonstrated that the elastin receptor complex, ERC, is activated by EDPs and decreased adipocyte differentiation by a modulation of crucial adipogenesis transcriptional factor particularly PPARγ. In a second part, we identified the signalling pathway implicated in EDP-reduced cell differentiation. The flow cytometry and immunocytochemistry approaches showed that ERC activated by EDP produced a second messenger, lactosylceramide (Lac-Cer). Moreover, this Lac-Cer production favoured the phosphorylation of ERK1-2 (p-ERK1-2), to decrease adipocyte differentiation by a modulation of adipogenesis transcriptional factor PPARγ. To conclude, the EDP/Lac-Cer/p-ERK1-2 signalling pathway may be studied further as a critical target for treating complications associated with adipocyte dedifferentiation such as obesity and diabetes insulin resistance.
Collapse
|
7
|
Rosiglitazone Enhances Browning Adipocytes in Association with MAPK and PI3-K Pathways During the Differentiation of Telomerase-Transformed Mesenchymal Stromal Cells into Adipocytes. Int J Mol Sci 2019; 20:ijms20071618. [PMID: 30939750 PMCID: PMC6480475 DOI: 10.3390/ijms20071618] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity is a major risk for diabetes. Brown adipose tissue (BAT) mediates production of heat while white adipose tissue (WAT) function in the storage of fat. Roles of BAT in the treatment of obesity and related disorders warrants more investigation. Peroxisome proliferator activator receptor gamma (PPAR-γ) is the master regulator of both BAT and WAT adipogenesis and has roles in glucose and fatty acid metabolism. Adipose tissue is the major expression site for PPAR-γ. In this study, the effects of rosiglitazone on the brown adipogenesis and the association of MAPK and PI3K pathways was investigated during the in vitro adipogenic differentiation of telomerase transformed mesenchymal stromal cells (iMSCs). Our data indicate that 2 µM rosiglitazone enhanced adipogenesis by over-expression of PPAR-γ and C/EBP-α. More specifically, brown adipogenesis was enhanced by the upregulation of EBF2 and UCP-1 and evidenced by multilocular fatty droplets morphology of the differentiated adipocytes. We also found that rosiglitazone significantly activated MAPK and PI3K pathways at the maturation stage of differentiation. Overall, the results indicate that rosiglitazone induced overexpression of PPAR-γ that in turn enhanced adipogenesis, particularly browning adipogenesis. This study reports the browning effects of rosiglitazone during the differentiation of iMSCs into adipocytes in association with the activation of MAPK and PI3K signaling pathways.
Collapse
|
8
|
Wang L, Ding X, Li C, Zhao Y, Yu C, Yi Y, Zhang Y, Gao Y, Pan C, Liu S, Han J, Tian J, Liu J, Deng N, Li G, Liang A. Oral administration of Aristolochia manshuriensis Kom in rats induces tumors in multiple organs. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:81-89. [PMID: 30008395 DOI: 10.1016/j.jep.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/28/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aristolochia manshuriensis Kom (AMK), belonging to the Aristolochia family, is traditionally used in China to remove heart fire, promote dieresis, restore menstruation, and enhance milk secretion. The active constitutes of AMK are aristolochic acids (AAs, I and II) that are reported to cause serious side effects including nephrotoxicity and carcinogenicity. AIM OF THE STUDY The tumorigenic role of AMK is far to be understood. We analyzed the toxicity reactions after long-term exposure of AMK in rats. MATERIALS AND METHODS Sprague-Dawley rats underwent gavage with AMK doses of 51 mg/kg (AMK-1), 253 mg/kg (AMK-2), 508 mg/kg (AMK-3), 1029 mg/kg (AMK-4) or AAs of 15 mg/kg (AAs), and then sacrificed at the 6th, 10th, 14th, 18th, 22th, 26th and 30th weeks. Endpoint measurements included clinical observations, body weights, blood biochemistry, haematology and histomorphological observations. RESULTS Body weight decreased after AMK or AAs treatment in rats. AMK destroyed renal function, and induced anemia in rats. AMK caused kidney, stomach, bladder and subcutaneous tumors in rats. In addition, primary hepatic carcinoma was not observed in rats. CONCLUSIONS AMK had significant toxic effects in rats with regard to decreased body weight, diminished renal function, increased anemia and tumor incidence. Kidney, stomach, bladder and subcutaneous tissue are carcinogenic target organs of AMK or AAs, however liver is no- carcinogenic target organ of AMK or AAs in rats. AMK is carcinogenic in rats, and not be safe for humans.
Collapse
Affiliation(s)
- Lianmei Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoshuang Ding
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunying Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Zhao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Changan Yu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yushi Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Chen Pan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Suyan Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayin Han
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingzhuo Tian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nuo Deng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guiqin Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
9
|
Lee JH, Go Y, Lee B, Hwang YH, Park KI, Cho WK, Ma JY. The fruits of Gleditsia sinensis Lam. inhibits adipogenesis through modulation of mitotic clonal expansion and STAT3 activation in 3T3-L1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:61-70. [PMID: 29689351 DOI: 10.1016/j.jep.2018.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 04/05/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gleditsia sinensis Lam. (G. sinensis) has been used in Oriental medicine for tumor, thrombosis, inflammation-related disease, and obesity. AIM OF THE STUDY The pharmacological inhibitory effects of fruits of G. sinensis (GFE) on hyperlipidemia have been reported, but its inhibitory effects on adipogenesis and underlying mechanisms have not been elucidated. Herein we evaluated the anti-adipogenic effects of GFE and described the underlying mechanisms. MATERIALS AND METHODS The effects of ethanol extracts of GFE on adipocyte differentiation were examined in 3T3-L1 cells using biochemical and molecular analyses. RESULTS During the differentiation of 3T3-L1 cells, GFE significantly reduced lipid accumulation and downregulated master adipogenic transcription factors, including CCAAT/enhancer-binding protein-α and peroxisome proliferator-activated receptor-γ, at mRNA and protein levels. These changes led to the suppression of several adipogenic-specific genes and proteins, including fatty acid synthase, sterol regulatory element-binding protein 1, stearoyl-CoA desaturase-1, and acetyl CoA carboxylase. However, the inhibitory effects of GFE on lipogenesis were only shown when GFE is treated in the early stage of adipogenesis within the first two days of differentiation. As a potential mechanism, during the early stages of differentiation, GFE inhibited cell proliferation by a decrease in the expression of DNA synthesis-related proteins and increased p27 expression and suppressed signal transducer and activator of transcription 3 (STAT3) activation induced in a differentiation medium. CONCLUSIONS GFE inhibits lipogenesis by negative regulation of adipogenic transcription factors, which is associated with GFE-mediated cell cycle arrest and STAT3 inhibition.
Collapse
Affiliation(s)
- Ji-Hye Lee
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Younghoon Go
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Bonggi Lee
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Youn-Hwan Hwang
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Kwang Il Park
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea
| | - Won-Kyung Cho
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea.
| | - Jin Yeul Ma
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, South Korea.
| |
Collapse
|
10
|
Kwak DH, Kim JS, Chang KT, Choo YK. Aristolochia manshuriensis Kom ethyl acetate extract protects against high-fat diet-induced non-alcoholic steatohepatitis by regulating kinase phosphorylation in mouse. J Vet Sci 2017; 17:279-87. [PMID: 26726030 PMCID: PMC5037294 DOI: 10.4142/jvs.2016.17.3.279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/11/2015] [Accepted: 12/30/2015] [Indexed: 12/26/2022] Open
Abstract
Aristolochia manshuriensis Kom (AMK) is an herb used as a traditional medicine; however, it causes side effects such as nephrotoxicity and carcinogenicity. Nevertheless, AMK can be applied in specific ways medicinally, including via ingestion of low doses for short periods of time. Non-alcoholic steatohepatitis (NASH) induced the hepatocyte injury and inflammation. The protective effects of AMK against NASH are unclear; therefore, in this study, the protective effects of AMK ethyl acetate extract were investigated in a high-fat diet (HFD)-induced NASH model. We found decreased hepatic steatosis and inflammation, as well as increased levels of lipoproteins during AMK extract treatment. We also observed decreased hepatic lipid peroxidation and triglycerides, as well as suppressed hepatic expression of lipogenic genes in extract-treated livers. Treatment with extract decreased the activation of c-jun N-terminal kinase 1/2 (JNK1/2) and increased the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). These results demonstrate that the protective effect of the extract against HFD-induced NASH occurred via reductions in reactive oxygen species production, inflammation suppression, and apoptosis related to the suppression of JNK1/2 activation and increased ERK1/2 phosphorylation. Taken together, these results indicate that that ethyl acetate extract of AMK has potential therapeutic effects in the HFD-induced NASH mouse model.
Collapse
Affiliation(s)
- Dong Hoon Kwak
- Institute for Glycoscience College of Natural Sciences, Wonkwang University, Iksan 54538, Korea
| | - Ji-Su Kim
- National Primate Research Center, Korea Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea
| | - Kyu-Tae Chang
- National Primate Research Center, Korea Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea
| | - Young-Kug Choo
- Institute for Glycoscience College of Natural Sciences, Wonkwang University, Iksan 54538, Korea.,Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea
| |
Collapse
|
11
|
Lim H, Park J, Kim HL, Kang J, Jeong MY, Youn DH, Jung Y, Kim YI, Kim HJ, Ahn KS, Kim SJ, Choe SK, Hong SH, Um JY. Chrysophanic Acid Suppresses Adipogenesis and Induces Thermogenesis by Activating AMP-Activated Protein Kinase Alpha In vivo and In vitro. Front Pharmacol 2016; 7:476. [PMID: 28008317 PMCID: PMC5143616 DOI: 10.3389/fphar.2016.00476] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022] Open
Abstract
Chrysophanic acid (CA) is a member of the anthraquinone family abundant in rhubarb, a widely used herb for obesity treatment in Traditional Korean Medicine. Though several studies have indicated numerous features of CA, no study has yet reported the effect of CA on obesity. In this study, we tried to identify the anti-obesity effects of CA. By using 3T3-L1 adipocytes and primary cultured brown adipocytes as in vitro models, high-fat diet (HFD)-induced obese mice, and zebrafish as in vivo models, we determined the anti-obesity effects of CA. CA reduced weight gain in HFD-induced obese mice. They also decreased lipid accumulation and the expressions of adipogenesis factors including peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in 3T3-L1 adipocytes. In addition, uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), the brown fat specific thermogenic genes, were up-regulated in brown adipocytes by CA treatment. Furthermore, when co-treated with Compound C, the AMP-activated protein kinase (AMPK) inhibitor, the action of CA on AMPKα was nullified in both types of adipocytes, indicating the multi-controlling effect of CA was partially via the AMPKα pathway. Given all together, these results indicate that CA can ameliorate obesity by controlling the adipogenic and thermogenic pathway at the same time. On these bases, we suggest the new potential of CA as an anti-obese pharmacotherapy.
Collapse
Affiliation(s)
- Hara Lim
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Jinbong Park
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Hye-Lin Kim
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - JongWook Kang
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Mi-Young Jeong
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Dong-Hyun Youn
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Yunu Jung
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Yong-Il Kim
- Department of Microbiology and Center for Metabolic Function Regulation, School of Medicine, Wonkwang University Iksan, South Korea
| | - Hyun-Ju Kim
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Kwang Seok Ahn
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| | - Su-Jin Kim
- Department of Cosmeceutical Science, Daegu Haany University Kyungsan, South Korea
| | - Seong-Kyu Choe
- Department of Microbiology and Center for Metabolic Function Regulation, School of Medicine, Wonkwang University Iksan, South Korea
| | - Seung-Heon Hong
- Department of Pharmacology, College of Pharmacy, Wonkwang University Iksan, South Korea
| | - Jae-Young Um
- College of Korean Medicine, Basic Research Laboratory for Comorbidity Regulation Kyung Hee University, Seoul, South Korea
| |
Collapse
|
12
|
Lee JH, Lee JJ, Cho WK, Yim NH, Kim HK, Yun B, Ma JY. KBH-1, an herbal composition, improves hepatic steatosis and leptin resistance in high-fat diet-induced obese rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:355. [PMID: 27618865 PMCID: PMC5020448 DOI: 10.1186/s12906-016-1265-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Background KBH-1 is an herbal mixture of Saururus chinensis, Curcuma longa and Polygala tenuifolia. Each herb has been reported to have various pharmaceutical activities; however, the synergistic effect of this herbal composition on obesity has not yet been determined. We investigated the alleviation effect of KBH-1 and its possible molecular mechanism in obesity-induced hepatic steatosis and leptin resistance in the hypothalamus. Methods We used HepG2 cells, primary neuronal cells and a high-fat diet (HFD)-induced obesity rat model to determine the effect of KBH-1 in vitro and in vivo on hepatic steatosis and leptin resistance accompanied by obesity. To identify the alleviation effect on lipid accumulation, HepG2 cells stimulated by FFA were stained with Oil Red O; in addition, immunoblotting and qPCR were performed to determine the effect of KBH-1 on the activation of proteins and nuclear enzymes in HepG2 cells and the steatotic liver of HFD-induced obesity rats. To examine the effect of KBH-1 on the leptin resistance of the hypothalamus and its possible molecular mechanism, we examined the effect of KBH-1 on the activation of the leptin resistance-related protein in primary cultured cortical neuron cells and the hypothalamus of an HFD-induced obesity rat model. In addition, we used HPLC analysis to identify the standard compound of KBH-1. Results KBH-1 not only suppressed the lipid deposition in HepG2 cells exposed to free fatty acids (FFA) but also significantly down-regulated major factors in lipogenesis and up-regulated major factors in lipolysis. Similarly, in a HFD-induced obesity model, KBH-1 improved hepatic steatosis by alleviating the effects on lipogenic genes and kinases. In addition, KBH-1 significantly improved the leptin-mediated signals impaired by obesity or FFA in the obesity model and primary cultured cortical neuron cells. In addition, KBH-1 was analyzed to include six standard compounds using HPLC analysis, among these compounds, onji-saponin B and curcumin were potently suppressed the level of triglycerides. Conclusions KBH-1 exhibits alleviating effects by improving hepatic steatosis and leptin resistance by up-regulating the activation of AMPK and suppressing the expression of PPARγ. These findings show the potential of KBH-1 as a functional food supplement or preventive agent in the treatment of obesity. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1265-z) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Lee JH, Kim T, Lee JJ, Lee KJ, Kim HK, Yun B, Jeon J, Kim SK, Ma JY. The Herbal Medicine KBH-1 Inhibits Fat Accumulation in 3T3-L1 Adipocytes and Reduces High Fat Diet-Induced Obesity through Regulation of the AMPK Pathway. PLoS One 2015; 10:e0142041. [PMID: 26649747 PMCID: PMC4674115 DOI: 10.1371/journal.pone.0142041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to investigate whether a novel formulation of an herbal extract, KBH-1, has an inhibitory effect on obesity. To determine its anti-obesity effects and its underlying mechanism, we performed anti-obesity-related experiments in vitro and in vivo. 3T3-L1 preadipocytes were analyzed for lipid accumulation as well as the protein and gene expression of molecular targets involved in fatty acid synthesis. To determine whether KBH-1 oral administration results in a reduction in high-fat diet (HFD)-induced obesity, we examined five groups (n = 9) of C57BL/6 mice as follows: 10% kcal fat diet-fed mice (ND), 60% kcal fat diet-fed mice (HFD), HFD-fed mice treated with orlistat (tetrahydrolipstatin, marketed under the trade name Xenical), HFD-fed mice treated with 150 mg/kg KBH-1 (KBH-1 150) and HFD-fed mice treated with 300 mg/kg KBH-1 (KBH-1 300). During adipogenesis of 3T3-L1 cells in vitro, KBH-1 significantly reduced lipid accumulation and down-regulated the expression of master adipogenic transcription factors, including CCAAT/enhancer binding protein (C/EBP) β, C/EBP α and peroxisome proliferation-activity receptor (PPAR) γ, which led to the suppression of the expression of several adipocyte-specific genes and proteins. KBH-1 also markedly phosphorylated the adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC). In addition, KBH-1-induced the inhibition effect on lipid accumulation and AMPK-mediated signal activation were decreased by blocking AMPK phosphorylation using AMPK siRNA. Furthermore, daily oral administration of KBH-1 resulted in dose-dependent decreases in body weight, fat pad mass and fat tissue size without systemic toxicity. These results suggest that KBH-1 inhibits lipid accumulation by down-regulating the major transcription factors of the adipogenesis pathway by regulating the AMPK pathway in 3T3-L1 adipocytes and in mice with HFD-induced obesity. These results implicate KBH-1, a safe herbal extract, as a potential anti-obesity therapeutic agent.
Collapse
Affiliation(s)
- Ji-Hye Lee
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, 305–764, Republic of Korea
| | - Taesoo Kim
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
| | - Jung-Jin Lee
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
| | - Kwang Jin Lee
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
| | - Hyun-Kyu Kim
- Nutraceutical Food R&D center, Kolmar BNH, 22–15 Sandan-gil, Jeonui-myeon, Sejong, 339–851, Republic of Korea
| | - Bora Yun
- Nutraceutical Food R&D center, Kolmar BNH, 22–15 Sandan-gil, Jeonui-myeon, Sejong, 339–851, Republic of Korea
| | - Jongwook Jeon
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 305–764, Republic of Korea
- * E-mail: (SKK); (JYM)
| | - Jin Yeul Ma
- KM Application Center, Korea Institute of Oriental Medicine, Daejeon, 305–811, Republic of Korea
- * E-mail: (SKK); (JYM)
| |
Collapse
|
14
|
Prediction and Characterisation of the System Effects of Aristolochic Acid: A Novel Joint Network Analysis towards Therapeutic and Toxicological Mechanisms. Sci Rep 2015; 5:17646. [PMID: 26620132 PMCID: PMC4664954 DOI: 10.1038/srep17646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 11/03/2015] [Indexed: 12/26/2022] Open
Abstract
Aristolochic acid (AA) is the major active component of medicinal plants from the Aristolochiaceae family of flowering plants widely utilized for medicinal purposes. However, the molecular mechanisms of AA systems effects remain poorly understood. Here, we employed a joint network analysis that combines network pharmacology, a protein–protein interaction (PPI) database, biological processes analysis and functional annotation analysis to explore system effects. Firstly, we selected 15 protein targets (14 genes) in the PubChem database as the potential target genes and used PPI knowledge to incorporate these genes into an AA-specific gene network that contains 129 genes. Secondly, we performed biological processes analysis for these AA-related targets using ClueGO, some of new targeted genes were randomly selected and experimentally verified by employing the Quantitative Real-Time PCR assay for targeting the systems effects of AA in HK-2 cells with observed dependency of concentration. Thirdly, the pathway-based functional enrichment analysis was manipulated using WebGestalt to identify the mostly significant pathways associated with AA. At last, we built an AA target pathway network of significant pathways to predict the system effects. Taken together, this joint network analysis revealed that the systematic regulatory effects of AA on multidimensional pathways involving both therapeutic action and toxicity.
Collapse
|
15
|
Traditional Korean Herbal Formula Samsoeum Attenuates Adipogenesis by Regulating the Phosphorylation of ERK1/2 in 3T3-L1 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:893934. [PMID: 26483846 PMCID: PMC4592915 DOI: 10.1155/2015/893934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/13/2015] [Accepted: 08/10/2015] [Indexed: 11/29/2022]
Abstract
Adipogenesis is the cell differentiation process from preadipocytes into adipocytes and the critical action in the development of obesity. In the present study, we conducted in vitro analyses to investigate the inhibitory effects of Samsoeum (SSE), a traditional herbal decoction. SSE had no significant cytotoxic effect against either the undifferentiated or differentiated 3T3-L1 cells. Oil Red O staining results showed that SSE significantly inhibited fat accumulation in adipocytes. SSE treatment consistently reduced the intracellular triglyceride content in the cells. SSE significantly inactivated glycerol-3-phosphate dehydrogenase (GPDH), a major link between carbohydrate and lipid metabolisms in 3T3-L1 adipocytes, and markedly inhibited the production of leptin, an important adipokine, in differentiated cells. SSE markedly suppressed the mRNA expression of the adipogenesis-related genes peroxisome proliferator-activated receptor-gamma (PPAR-γ), CCAAT/enhancer binding protein-alpha (C/EBP-α), fatty acid synthase (FAS), lipoprotein lipase (LPL), and fatty acid binding protein 4 (FABP4). Importantly, SSE increased the phosphorylation of ERK1/2, but not p38 MAPK and JNK, in adipose cells. Overall, our results indicate that SSE exerts antiadipogenic activity and modulates expressions of adipogenesis-related genes and ERK1/2 activation in adipocytes.
Collapse
|
16
|
Influence of late-stage chronic kidney disease on overall survival in patients with upper tract urothelial carcinoma following radical nephroureterectomy. UROLOGICAL SCIENCE 2015. [DOI: 10.1016/j.urols.2015.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Kwak DH, Park JH, Lee HS, Moon JS, Lee S. Aristolochic Acid I Induces Ovarian Toxicity by Inhibition of Akt Phosphorylation. Chem Res Toxicol 2014; 27:2128-35. [DOI: 10.1021/tx5003854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dong Hoon Kwak
- Institute
for Glycoscience, Wonkwang University, Iksan 570-749, Republic of Korea
| | - Ji-Hye Park
- Department
of Pharmacology, Wonkwang University School of Medicine and Wonkwang Brain Research Institute, Iksan 570-749, Republic of Korea
| | - Hak-Seung Lee
- Department
of Pharmacology, Wonkwang University School of Medicine and Wonkwang Brain Research Institute, Iksan 570-749, Republic of Korea
| | - Ji-Sook Moon
- Department
of Pharmacology, Wonkwang University School of Medicine and Wonkwang Brain Research Institute, Iksan 570-749, Republic of Korea
| | - Seoul Lee
- Department
of Pharmacology, Wonkwang University School of Medicine and Wonkwang Brain Research Institute, Iksan 570-749, Republic of Korea
| |
Collapse
|
18
|
Hu S, Xu H, Chen R, Wang J, Li Z, Xu J. Activation of PKB and ERK, but not PI3K, is involved in fucosylated chondroitin sulphate from Acaudina molpadioides induced glucose uptake. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Park M, Choi YA, Lee HG, Kim KI, Lim JS, Lee MS, Oh KS, Yang Y. Dephosphorylation of CCAAT/enhancer-binding protein β by protein phosphatase 2A containing B56δ is required at the early time of adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1608-18. [PMID: 25152162 DOI: 10.1016/j.bbalip.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/26/2014] [Accepted: 08/12/2014] [Indexed: 12/11/2022]
Abstract
It is known that protein phosphatase 2A (PP2A) expression is increased in high-fat diet (HFD)-induced obese mice, but the role of PP2A in adipogenesis as well as obesity remains to be addressed. In this study, the role of PP2A in adipogenesis was explored. Preadipocytes were treated with okadaic acid (OA) during adipogenesis and the degree of adipogenesis was determined. The OA treatment blocked adipogenesis at the early time of adipogenesis, but not at the late time. In the early time of adipogenesis, CCAAT/enhancer-binding protein β (C/EBPβ) activation is preceded by the expression of key adipogenic transcription factors including PPARγ and C/EBPα, which function at the late time of adipogenesis, and then C/EBPβ is degraded. However, the inhibition of PP2A by OA treatment sustained phosphorylation of C/EBPβ and delayed its degradation. In turn, PPARγ and C/EBPα activation was altered. Among the various regulatory B56 subunits consisting of PP2A holoenzyme, B56δ was directly bound to C/EBPβ and was responsible for the dephosphorylation of C/EBPβ by PP2A. Taken together, these findings suggest that the phosphorylation of C/EBPβ after hormonal induction has to be inactivated by PP2A containing B56δ at the early time of adipogenesis to allow the completion of adipogenesis.
Collapse
Affiliation(s)
- Miyoung Park
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Yeon A Choi
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Hee Gu Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejon 305-333, Republic of Korea
| | - Keun Il Kim
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Jong-Seok Lim
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Myeong-Sok Lee
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Ki-Sook Oh
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | - Young Yang
- Department of Life Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea.
| |
Collapse
|
20
|
Romanov V, Whyard TC, Waltzer WC, Grollman AP, Rosenquist T. Aristolochic acid-induced apoptosis and G2 cell cycle arrest depends on ROS generation and MAP kinases activation. Arch Toxicol 2014; 89:47-56. [DOI: 10.1007/s00204-014-1249-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/15/2014] [Indexed: 12/13/2022]
|
21
|
Wong CP, Kaneda T, Morita H. Plant natural products as an anti-lipid droplets accumulation agent. J Nat Med 2014; 68:253-66. [PMID: 24550097 PMCID: PMC3948524 DOI: 10.1007/s11418-014-0822-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 01/22/2014] [Indexed: 12/14/2022]
Abstract
Recently people often suffer from unhealthy energy metabolism balance as they tend to take more energy than required. Normally, excess energy taken in is converted into triglyceride and stored in adipocyte as lipid droplets. Recent studies have suggested that irregular accumulation of triglyceride in adipocyte might be a cause of many metabolic diseases. Thus, the awareness of the detrimental effects on health of excessive lipid droplets accumulation (LDA) has urged the development or finding of drugs to counter this effect, including those from botanical origins. This review summarized recent progress in this field from the viewpoint of crude drug studies with references to their anti-LDA activity. Possible mechanisms involved in their anti-LDA effect and isolations of the relevant bioactive compounds were also discussed.
Collapse
Affiliation(s)
- Chin Piow Wong
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Toshio Kaneda
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Hiroshi Morita
- Faculty of Pharmaceutical Sciences, Hoshi University, Ebara 2-4-41 Shinagawa-ku, Tokyo, 142-8501 Japan
| |
Collapse
|
22
|
Zhang YY, Yue J, Che H, Sun HY, Tse HF, Li GR. BKCaand hEag1 Channels Regulate Cell Proliferation and Differentiation in Human Bone Marrow-Derived Mesenchymal Stem Cells. J Cell Physiol 2013; 229:202-12. [DOI: 10.1002/jcp.24435] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 07/15/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Ying-Ying Zhang
- Department of Medicine; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| | - Jianbo Yue
- Department of Physiology; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| | - Hui Che
- Department of Medicine; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| | - Hai-Ying Sun
- Department of Medicine; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
- Department of Physiology; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| | - Hung-Fat Tse
- Department of Medicine; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| | - Gui-Rong Li
- Department of Medicine; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
- Department of Physiology; Li Ka Shing Faculty of Medicine; University of Hong Kong; Hong Kong China
| |
Collapse
|
23
|
Corni Fructus Containing Formulation Attenuates Weight Gain in Mice with Diet-Induced Obesity and Regulates Adipogenesis through AMPK. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:423741. [PMID: 24171041 PMCID: PMC3792538 DOI: 10.1155/2013/423741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/09/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
Obesity is a metabolic disorder characterized by chronic inflammation and dyslipidemia and is a strong predictor for the development of hypertension, diabetes mellitus, and cardiovascular disease. This study examined the antiobesity effect of an ethanol extract of Corni Fructus containing formulation (CDAP), which is a combination of four natural components: Corni Fructus, Dioscoreae Rhizoma, Aurantii Fructus Immaturus, and Platycodonis Radix. The cellular lipid content in 3T3-L1 adipocytes was assessed by Oil Red O staining. Expressions of peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), and lipin-1 were determined by real-time RT-PCR. Western blot was used to determine the protein levels of PPAR-γ, C/EBP-α, and AMP-activated protein kinase-α (AMPK-α). The CDAP extract suppressed the differentiation of 3T3-L1 adipocytes by downregulating cellular induction of PPAR-γ, C/EBP-α, and lipin-1. The CDAP extract also significantly upregulated phosphorylation of AMPK-α. An in vivo study showed that CDAP induced weight loss in mice with high-fat-diet-induced obesity. These results indicate that CDAP has a potent anti-obesity effect due to the inhibition of adipocyte differentiation and adipogenesis.
Collapse
|
24
|
Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P, Weng WH, Siew EY, Liu Y, Heng HL, Chong SC, Gan A, Tay ST, Lim WK, Cutcutache I, Huang D, Ler LD, Nairismagi ML, Lee MH, Chang YH, Yu KJ, Chan-on W, Li BK, Yuan YF, Qian CN, Ng KF, Wu CF, Hsu CL, Bunte RM, Stratton MR, Futreal PA, Sung WK, Chuang CK, Ong CK, Rozen SG, Tan P, Teh BT. Genome-Wide Mutational Signatures of Aristolochic Acid and Its Application as a Screening Tool. Sci Transl Med 2013; 5:197ra101. [DOI: 10.1126/scitranslmed.3006086] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Inhibitory Effects of Hwangryunhaedok-Tang in 3T3-L1 Adipogenesis by Regulation of Raf/MEK1/ERK1/2 Pathway and PDK1/Akt Phosphorylation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:413906. [PMID: 23762131 PMCID: PMC3676921 DOI: 10.1155/2013/413906] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/07/2013] [Indexed: 01/31/2023]
Abstract
Hwangryunhaedok-tang (HRT) has been long used as traditional medicine in Asia. However, inhibitory role of HRT is unclear in early stage of 3T3-L1 adipocyte differentiation related to signaling. In the present study, we investigated the inhibitory effects of HRT on upstream signaling of peroxisome proliferation-activity receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-β (C/EBP-β) expression in differentiation of 3T3-L1 preadipocytes. We found that HRT significantly inhibited the adipocyte differentiation by downregulating several adipocyte-specific transcription factors including PPAR-γ, C/EBP-α, and C/EBP-β in 3T3-L1 preadipocytes. Furthermore, we observed that HRT markedly inhibited the differentiation media-mediated phosphorylation of Raf/extracellular mitogen-activated protein kinase 1 (MEK1)/signal-regulated protein kinase 1/2 (ERK1/2) and phosphorylation of phosphoinositide-dependent kinase 1 (PDK1)/Akt. These results indicate that anti-adipogenesis mechanism involves the downregulation of the major transcription factors of adipogenesis including PPAR-γ and C/EBP-α through inhibition of Raf/MEK1/ERK1/2 phosphorylation and PDK1/Akt phosphorylation by HRT. Furthermore, high performance liquid chromatography (HPLC) analysis showed HRT contains active antiobesity constituents such as palmatine, berberine, geniposide, baicalin, baicalein, and wogonin. Taken together, this study suggested that anti-adipogenesis effects of HRT were accounted by downregulation of Raf/MEK1/ERK1/2 pathway and PDK1/Akt pathway during 3T3-L1 adipocyte differentiation.
Collapse
|
26
|
Cao Y, Tu Y, Mei J, Li Z, Jie Z, Xu S, Xu L, Wang S, Xiong Y. RNAi‑mediated knockdown of PRL‑3 inhibits cell invasion and downregulates ERK 1/2 expression in the human gastric cancer cell line, SGC‑7901. Mol Med Rep 2013; 7:1805-11. [PMID: 23589069 DOI: 10.3892/mmr.2013.1420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/26/2013] [Indexed: 12/14/2022] Open
Abstract
The deregulated expression of members of the phophatase of regenerating liver (PRL) family is important in the metastatic progression of multiple human cancers; however, the underlying mechanisms are not well understood. Previous studies have demonstrated that PRLs are able to enhance the activation of extracellular signal‑regulated kinase 1/2 (ERK 1/2) in cancer cells, which may contribute to tumor metastasis. However, the effect of PRL‑3 activation in gastric cancer (GC) remains unclear. The present study aimed to investigate whether the downregulation of PRL‑3 by small interfering RNA (siRNA) was able to inhibit cell motility and affect ERK 1/2 expression in human GC. The results demonstrated that the downregulation of PRL‑3 expression by siRNA in human GC cells significantly inhibited cell invasion and migration in vitro; accordingly, inhibition of PRL‑3 also prevented ERK1/2 protein and mRNA expression, and reduced the mRNA level of matrix metalloproteinase‑7 (MMP‑7), the downstream target of ERK 1/2 signaling. Our data demonstrated that RNAi‑mediated downregulation of PRL‑3 expression leads to potent antitumor activity in human GC. Furthermore, ERK 1/2 and MMP‑7 may contribute to the carcinogenesis and development of human GC in combination with PRL‑3.
Collapse
Affiliation(s)
- Yi Cao
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|