1
|
Conley J, Genenger B, Ashford B, Ranson M. Micro RNA Dysregulation in Keratinocyte Carcinomas: Clinical Evidence, Functional Impact, and Future Directions. Int J Mol Sci 2024; 25:8493. [PMID: 39126067 PMCID: PMC11313315 DOI: 10.3390/ijms25158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The keratinocyte carcinomas, basal cell carcinoma (BCC), and cutaneous squamous cell carcinoma (cSCC), are the most common cancers in humans. Recently, an increasing body of literature has investigated the role of miRNAs in keratinocyte carcinoma pathogenesis, progression and their use as therapeutic agents and targets, or biomarkers. However, there is very little consistency in the literature regarding the identity of and/or role of individual miRNAs in cSCC (and to a lesser extent BCC) biology. miRNA analyses that combine clinical evidence with experimental elucidation of targets and functional impact provide far more compelling evidence than studies purely based on clinical findings or bioinformatic analyses. In this study, we review the clinical evidence associated with miRNA dysregulation in KCs, assessing the quality of validation evidence provided, identify gaps, and provide recommendations for future studies based on relevant studies that investigated miRNA levels in human cSCC and BCC. Furthermore, we demonstrate how miRNAs contribute to the regulation of a diverse network of cellular functions, and that large-scale changes in tumor cell biology can be attributed to miRNA dysregulation. We highlight the need for further studies investigating the role of miRNAs as communicators between different cell types in the tumor microenvironment. Finally, we explore the clinical benefits of miRNAs as biomarkers of keratinocyte carcinoma prognosis and treatment.
Collapse
Affiliation(s)
- Jessica Conley
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Benjamin Genenger
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| | - Bruce Ashford
- Illawarra Shoalhaven Local Health District (ISLHD), NSW Health, Wollongong, NSW 2500, Australia;
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2500, Australia
| | - Marie Ranson
- Molecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2500, Australia; (J.C.); (B.G.)
| |
Collapse
|
2
|
Ota S, Yokoyama K, Kanamori F, Mamiya T, Uda K, Araki Y, Wakabayashi T, Yoshikawa K, Saito R. Moyamoya disease-specific extracellular vesicle-derived microRNAs in the cerebrospinal fluid revealed by comprehensive expression analysis through microRNA sequencing. Acta Neurochir (Wien) 2023; 165:2045-2055. [PMID: 37079107 DOI: 10.1007/s00701-023-05579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE To examine the specific changes that occur in the expression levels of extracellular vesicle-derived microRNAs (miRNAs) in intracranial cerebrospinal fluid (CSF) in moyamoya disease. METHODS Patients with arteriosclerotic cerebral ischemia were used as controls to eliminate the effects of cerebral ischemia. Intracranial CSF was collected from moyamoya disease and control patients during bypass surgery. Extracellular vesicles (EVs) were extracted from the CSF. Comprehensive expression analysis of miRNAs extracted from EVs by next-generation sequencing (NGS) and validation by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed. RESULTS Experiments were conducted on eight cases of moyamoya disease and four control cases. In the comprehensive miRNA expression analysis, 153 miRNAs were upregulated, and 98 miRNAs were downregulated in moyamoya disease compared to the control cases (q-value < 0.05 and |log2 fold change|> 1). qRT-PCR performed on the four most variable miRNAs (hsa-miR-421, hsa-miR-361-5p, hsa-miR-320a, and hsa-miR-29b-3p) associated with vascular lesions among the differentially expressed miRNAs gave the same results as miRNA sequencing. On gene ontology (GO) analysis for the target genes, cytoplasmic stress granule was the most significant GO term. CONCLUSIONS This study is the first comprehensive expression analysis of EV-derived miRNAs in the CSF of moyamoya disease patients using NGS. The miRNAs identified here may be related to the etiology and pathophysiology of moyamoya disease.
Collapse
Affiliation(s)
- Shinji Ota
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Kinya Yokoyama
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan.
| | - Fumiaki Kanamori
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Takashi Mamiya
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Kenji Uda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Yoshio Araki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Kazuhiro Yoshikawa
- Division of Research Creation and Biobank, Research Creation Support Center, Aichi Medical University, Nagakute, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| |
Collapse
|
3
|
Fontemaggi G. Non-coding RNA regulatory networks in post-transcriptional regulation of VEGFA in cancer. IUBMB Life 2023; 75:30-39. [PMID: 35467790 PMCID: PMC10084289 DOI: 10.1002/iub.2620] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/10/2022] [Indexed: 12/29/2022]
Abstract
The switch from the normal quiescent vasculature to angiogenesis in tumors is induced by a variety of growth factors, released from cancer and stromal cells upon oxygen and nutrients deprivation. Vascular endothelial growth factor A (VEGF-A) is a potent-secreted mitogen and the only growth factor specific to endothelial cells that is observed almost ubiquitously at sites of angiogenesis. Expression of VEGF-A in cancer cells is controlled through transcriptional and post-transcriptional mechanisms. Post-transcriptional regulation of VEGF-A occurs at multiple levels, through the control of splicing, mRNA stability and translation rate, enabling a fine-tuned expression and release of VEGF-A. Mounting evidence is highlighting the important role played by microRNAs (miRNAs) in the control of VEGF-A mRNA stability and translation in cancer. Moreover, non-coding RNAs, as long non-coding RNAs and circular RNAs, are emerging as crucial modulators of VEGF-A-targeting miRNAs, with consequent ability to modulate VEGF-A expression. This review discusses the recent progress on the ncRNA-related networks controlling VEGF-A expression in cancer cells and provides insights into the complexity of VEGF-A post-transcriptional regulation.
Collapse
Affiliation(s)
- Giulia Fontemaggi
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
4
|
Liu F, Li S. Non-coding RNAs in skin cancers:Biological roles and molecular mechanisms. Front Pharmacol 2022; 13:934396. [PMID: 36034860 PMCID: PMC9399465 DOI: 10.3389/fphar.2022.934396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous malignancies, including basal cell carcinoma, cutaneous squamous cell carcinoma, and cutaneous melanoma, are common human tumors. The incidence of cutaneous malignancies is increasing worldwide, and the leading cause of death is malignant invasion and metastasis. The molecular biology of oncogenes has drawn researchers’ attention because of the potential for targeted therapies. Noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, have been studied extensively in recent years. This review summarizes the aspects of noncoding RNAs related to the metastasis mechanism of skin malignancies. Continuous research may facilitate the identification of new therapeutic targets and help elucidate the mechanism of tumor metastasis, thus providing new opportunities to improve the survival rate of patients with skin malignancies.
Collapse
|
5
|
Daneluzzi C, Seyed Jafari SM, Hunger R, Bossart S. The Immunohistochemical Assessment of Neoangiogenesis Factors in Squamous Cell Carcinomas and Their Precursors in the Skin. J Clin Med 2022; 11:4494. [PMID: 35956111 PMCID: PMC9370013 DOI: 10.3390/jcm11154494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer. Well-limited forms can be easily treated with excision, but locally advanced cancers can, unfortunately, progress to metastasis. However, it is difficult to establish the prognosis for cutaneous squamous cell carcinoma and its potential to metastasize. Therefore, this study aimed to evaluate neoangiogenesis in cSCC, as it plays a major role in the dissemination of neoplasia. A literature review was performed on selected neoangiogenic factors (VEGF, ANG1/2, Notch1, CD31/34/105, EGF, etc.). Most of them, including VEGF, EGFR, and CD105, had more elevated levels in the advanced stages of the lesion. The same is true for Notch1, p53, and TGFβ, which are the most frequently mutated tumor suppressors in this type of skin cancer. In addition, the inhibition of some of these markers, using Ang1 analogs, inhibitors of EGFR, TRAF6, or combined inhibitors of EGFR and IGF-IR, may lead to a decrease in tumor size. In conclusion, this literature review identified diagnostic and prognostic markers, as well as possible factors that can be used for the targeted therapy of spinaliomas.
Collapse
Affiliation(s)
| | | | | | - Simon Bossart
- Department of Dermatology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland; (C.D.); (S.M.S.J.); (R.H.)
| |
Collapse
|
6
|
Is miRNA Regulation the Key to Controlling Non-Melanoma Skin Cancer Evolution? Genes (Basel) 2021; 12:genes12121929. [PMID: 34946878 PMCID: PMC8701953 DOI: 10.3390/genes12121929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Non melanoma skin cancer (NMSC) is one of the most common types of skin cancer. It has a number of subtypes, which include basal cell carcinoma, cutaneous squamous cell carcinoma and Merkel cell carcinoma. MicroRNAs are short, non-coding RNA (ribonucleic acid) molecules, capable of regulating gene expression at a post transcriptional level. They play a pivotal role in a variety of physiologic cellular functions and pathologies, including malignant diseases. The development of miRNAs represents an important study field, which has been extensively exploited in melanoma for almost a decade with promising results, therefore we consider it a stepstone for further research projects also in non-melanoma skin cancers. The aim of our study was to explore the current literature in order to present the role of the different miRNAs in some of the most frequent types of NMSC pertaining to oncogenesis, evolution and therapy. The most relevant and accurate available data from the literature were evaluated. Our study concluded that there are almost 100 miRNAs which can be upregulated or downregulated and can play a role in oncogenesis. They can be easily identified in circulation, are stable and they can be important diagnosis/prognosis and therapy monitoring markers.
Collapse
|
7
|
Wang J, Xie Z, Liu Y, Zhang W, Ji T. MicroRNA-361 reduces the viability and migratory ability of pancreatic cancer cells via mediation of the MAPK/JNK pathway. Exp Ther Med 2021; 22:1365. [PMID: 34659511 PMCID: PMC8515516 DOI: 10.3892/etm.2021.10799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Previous research has revealed that microRNA-361 (miR-361) functions as a fundamental modulator in non-small-cell lung cancer and esophageal carcinoma. However, its involvement in pancreatic cancer (PC) is yet to be elucidated. Therefore, the present study aimed to examine the mechanism and function of miR-361 during the regulation of PC cell migration and viability. It was demonstrated that miR-361 expression decreased in PC cell lines and tissues, and the overexpression of miR-361 suppressed in vivo PC cell proliferation in mice. Moreover, flow cytometry and MTT assays indicated that the miR-361 mimic decreased the viability and increased the apoptosis of PC cells. Both Transwell migration and wound healing assays identified that miR-361 ameliorated the migratory ability of PC cells. Using dual-luciferase reporter assays, it was found that miR-361 targeted mitogen-activated protein kinase (MAPK)/JNK 3'-untranslated regions, inducing the downregulation of this gene. In PC cells, overexpression of MAPK/JNK diminished the pro-apoptotic effect of the miR-361 mimic, while restoring the migratory activity of PC cells. Collectively, the present results suggested novel molecular mechanisms underlying PC progression and development.
Collapse
Affiliation(s)
- Juan Wang
- Department of Gastroenterology, People's Hospital of Leling City, Dezhou, Shandong 253600, P.R. China
| | - Zongjing Xie
- Department of General Surgery, Zhucheng People's Hospital, Weifang, Shandong 262200, P.R. China
| | - Yan Liu
- Department of Gastroenterology, Qiqihar Jianhua Hospital, Qiqihar, Heilongjiang 161000, P.R. China
| | - Weiguo Zhang
- Second Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Tingting Ji
- Department of Gastroenterology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi 712000, P.R. China
| |
Collapse
|
8
|
Jiang S, Liu H, Zhang J, Zhang F, Fan J, Liu Y. MMP1 regulated by NEAT1/miR-361-5p axis facilitates the proliferation and migration of cutaneous squamous cell carcinoma via the activation of Wnt pathway. Cancer Biol Ther 2021; 22:381-391. [PMID: 34369270 DOI: 10.1080/15384047.2021.1941583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is one of the most malignant tumors worldwide. It has been validated that matrix metallopeptidase 1 (MMP1) expression was obviously up-regulated in CSCC tissues. However, its specific role in CSCC is still unclear. RT-qPCR analysis and western blot assays were used to measure the mRNA and protein expressions, respectively. MTT and colony formation assays were conducted to assess proliferative ability. Transwell assays were adopted to evaluate migratory and invasive abilities. Flow cytometry and caspase-3/8/9 activity assays were carried out to evaluate cell apoptosis. Relevant mechanism experiments were finally performed to delineate molecular relationship among genes. We found that the expression of MMP1 was up-regulated in CSCC cells, and knockdown of MMP1 suppressed cell proliferation and invasion in CSCC. Subsequently, miR-361-5p was validated to target MMP1. Moreover, miR-361-5p was proved to be sponged by nuclear paraspeckle assembly transcript 1 (NEAT1) in CSCC. We further demonstrated that NEAT1 could activate Wnt pathway to affect cell proliferation and invasion. Finally, miR-361-5p inhibition rescued the suppressing effects of NEAT1 depletion on cell proliferation, invasion as well as Wnt pathway in CSCC. In summary, MMP1 regulated by NEAT1/miR-361-5p axis facilitated CSCC malignant behaviors via Wnt pathway activation.
Collapse
Affiliation(s)
- Shiqiu Jiang
- Department of Cosmetic Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hairong Liu
- Department of Research Center, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jie Zhang
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fang Zhang
- Department of Cosmetic Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jiawei Fan
- Department of Basic Medical College, Chengdu Medical College, Chengdu, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, No. 187 Guanlan Avenue, Longhua District, Shenzhen, 518110, Guangdong, China
| |
Collapse
|
9
|
Yu G, Mu H, Zhou H, Fang F, Cui Y, Wu Q, Xiong Q, Li H. MicroRNA-361 suppresses the biological processes of hepatic stellate cells in HBV-relative hepatic fibrosis by NF-kappaB p65. Cells Dev 2021; 167:203711. [PMID: 34216805 DOI: 10.1016/j.cdev.2021.203711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/22/2020] [Accepted: 06/17/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND This research study explores the effect of miR-361 on the activation of immortalized human and mice hepatic stallate cells (HSCs). METHODS 10 liver specimens from healthy volunteers and 20 HBV-relevant HCC tissues from patients. The expressions of miR-361 in HCC patients, HBx transgenic mice, HCC cell lines expressing HBx, and human and mouse HSCs were detected. The influences of miR-361 on the biological processes of HSCs were explored. The target of miR-361 and the effects of p65 on miR-361 were also verified and analyzed. RESULTS Microarray analysis and quantitative real-time PCR (Q-PCR) indicated that miR-361 was decreased in HBV-relevant HCC tissues, HBx transgenic mice, HBx-transfected HepG2 cells, human and mice HSCs. Bio-informatics prediction and dual-luciferase reporter assay (DLRA) suggested that nuclear factor kappa B subunit p65 gene was a target of miR-361. Furthermore, this study showed that p65 expression was upregulated in the HBV-relevant HCC tissues, HBx transgenic mice, HBx-transfected HepG2 cells. MiR-361 upregulation also caused a reduction in p65 expression in both human and mice HSCs. In addition, p65 overexpression counteracted the effect of miR-361 in human and mice HSCs' biological processes. These findings reveal a latent mechanism underlying p65 modulation by miR-361 which is capable of initiating HSC growth and migration. CONCLUSION miR-361 is potentially functioning as a potent marker for HBV-relevant HCC development or liver fibrosis (LF) progression.
Collapse
Affiliation(s)
- Ge Yu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Han Mu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Hongyuan Zhou
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Feng Fang
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Yunlong Cui
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Qiang Wu
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China
| | - Qingqing Xiong
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China.
| | - Huikai Li
- Department of Hepatobiliary Cancer, Tianjin Cancer Institute & Hospital, Tianjin Medical University, Tianjin 300202, China.
| |
Collapse
|
10
|
Cen L, Liu R, Liu W, Li Q, Cui H. Competing Endogenous RNA Networks in Glioma. Front Genet 2021; 12:675498. [PMID: 33995499 PMCID: PMC8117106 DOI: 10.3389/fgene.2021.675498] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common and malignant primary brain tumors. Various hallmarks of glioma, including sustained proliferation, migration, invasion, heterogeneity, radio- and chemo-resistance, contribute to the dismal prognosis of patients with high-grade glioma. Dysregulation of cancer driver genes is a leading cause for these glioma hallmarks. In recent years, a new mechanism of post-transcriptional gene regulation was proposed, i.e., "competing endogenous RNA (ceRNA)." Long non-coding RNAs, circular RNAs, and transcribed pseudogenes act as ceRNAs to regulate the expression of related genes by sponging the shared microRNAs. Moreover, coding RNA can also exert a regulatory role, independent of its protein coding function, through the ceRNA mechanism. In the latest glioma research, various studies have reported that dysregulation of certain ceRNA regulatory networks (ceRNETs) accounts for the abnormal expression of cancer driver genes and the establishment of glioma hallmarks. These achievements open up new avenues to better understand the hidden aspects of gliomas and provide new biomarkers and potential efficient targets for glioma treatment. In this review, we summarize the existing knowledge about the concept and logic of ceRNET and highlight the emerging roles of some recently found ceRNETs in glioma progression.
Collapse
Affiliation(s)
- Liang Cen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Qianqian Li
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Serum Extracellular Vesicle-Derived miRNAs in Patients with Non-Small Cell Lung Cancer-Search for Non-Invasive Diagnostic Biomarkers. Diagnostics (Basel) 2021; 11:diagnostics11030425. [PMID: 33802346 PMCID: PMC7998231 DOI: 10.3390/diagnostics11030425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
The aim of the study was a search for diagnostic and/or prognostic biomarkers in patients with non-small cell lung cancer (NSCLC) patients, based on circulating microRNAs (miRs: miR-23a, miR-361, miR-1228 and miR-let7i) in extracellular vesicles (EVs). Serum EVs were isolated from NSCLC patients (n = 31) and control subjects (n = 21). RNA was isolated from EVs and reverse transcription reaction was performed. Relative levels of miR-23a, miR-361, miR-1228 and miR-let7i were assessed in real-time qPCR using TaqMan probes. Analysis was based on the 2-ΔΔCT method. Statistically significant lower levels of miR-23a and miR-let7i were observed among NSCLC patients vs. control group: miR-23a, 0.054 vs. 0.107; miR-let7i, 0.193 vs. 0.369 (p = 0.003, p = 0.005, respectively). A receiver operating characteristic (ROC) curve analysis demonstrated the diagnostic potential of each individual serum EV-derived miRNA with an area under the curve AUC = 0.744 for miR-23a (p = 0.0003), 0.733 for miR-let7i (p = 0.0007). The decreased level of miR-23a in patients correlated with metastasis to lymph nodes and with AJCC tumor staging system. The results demonstrate that miR-23a and miR-let7i may prove clinically useful as significant, non-invasive markers in NSCLC diagnosis. Additionally, changing profile level of miR-23a that correlates with cancer development may be considered as an NSCLC progression marker.
Collapse
|
12
|
Martinez B, Peplow PV. MicroRNAs as diagnostic and prognostic biomarkers of age-related macular degeneration: advances and limitations. Neural Regen Res 2021; 16:440-447. [PMID: 32985463 PMCID: PMC7996036 DOI: 10.4103/1673-5374.293131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 01/10/2023] Open
Abstract
A main cause of vision loss in the elderly is age-related macular degeneration (AMD). Among the cellular, biochemical, and molecular changes linked to this disease, inflammation and angiogenesis appear as being crucial in AMD pathogenesis and progression. There are two forms of the disease: dry AMD, accounting for 80-90% of cases, and wet AMD. The disease usually begins as dry AMD associated with retinal pigment epithelium and photoreceptor degeneration, whereas wet AMD is associated with choroidal neovascularization resulting in severe vision impairment. The new vessels are largely malformed, leading to blood and fluid leakage within the disrupted tissue, which provokes inflammation and scar formation and results in retinal damage and detachment. MicroRNAs are dysregulated in AMD and may facilitate the early detection of the disease and monitoring disease progression. Two recent reviews of microRNAs in AMD had indicated weaknesses or limitations in four earlier investigations. Studies in the last three years have shown considerable progress in overcoming some of these concerns and identifying specific microRNAs as biomarkers for AMD. Further large-scale studies are warranted using appropriate statistical methods to take into account gender and age disparity in the study populations and confounding factors such as smoking status.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Medicine, St. George's University School of Medicine, Grenada
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Wang Z, Zhao Y, Zhao Y, Zhang Y, Yao X, Hang R. Exosomes secreted by macrophages upon copper ion stimulation can promote angiogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111981. [PMID: 33812609 DOI: 10.1016/j.msec.2021.111981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/05/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023]
Abstract
Copper, a frequently used additive of implant materials, can alter macrophage phenotype thus directing the fate of the implants. Exosomes, secreted by mammalian cells, can target to recipient cells and mediate their functions. However, whether exosomes derived from macrophages upon copper ion stimulation can modulate angiogenesis, a key index for implant osseointegration, is still unclear. Herein, the influence of copper ions on macrophage-derived exosome secretion, ingestion behavior by endothelial cells, and angiogenic-induction ability is investigated. The results show copper ions (0-100 μM) have little influence on the secretion of macrophage-derived exosomes. Endothelial cells can uptake the exosomes from all the groups in a time-dependent manner. The exosomes have little influence on endothelial adhesion and proliferation, but can upregulate angiogenic ability of endothelial cells in vitro and in vivo, which may be related to trafficking of integrin β1. The results provide insight into the effect of copper ions on immunomodulatory mechanism of macrophages, which is important for implant design from the perspective of material compositions.
Collapse
Affiliation(s)
- Zhong Wang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ya Zhao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuyu Zhao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yi Zhang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Yao
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruiqiang Hang
- Laboratory of Biomaterial Surfaces & Interfaces, Institute of New Carbon Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
14
|
Ling J, He P. miR-361-5p regulates ovarian cancer cell proliferation and apoptosis by targeting TRAF3. Exp Ther Med 2021; 21:199. [PMID: 33500694 PMCID: PMC7818538 DOI: 10.3892/etm.2021.9632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
An increasing body of evidence has demonstrated that the abnormal expression of microRNAs (miRNAs) participate in the development and progression of ovarian cancer. miR-361-5p has been reported to serve as a tumor suppressor or oncogene in a number of different human cancer types. In the current study, it was indicated that miR-361-5p was highly expressed in ovarian cancer tissues. Compared with human ovarian epithelial cells HOSEpiC, miR-361-5p was upregulated in ovarian cancer cell lines, including in ES-2 and SKOV3 cells. The binding sites between TNF receptor-associated factor 3 (TRAF3; a member of the TRAF family of cytoplasmic adaptor proteins) and miR-361-5p were predicted using TargetScan, and a dual luciferase reporter gene assay verified the result. Subsequently, a reverse transcription-quantitative PCR assay and western blot assay indicated that TRAF3 was downregulated in ovarian cancer tissues and cell lines. It was demonstrated that miR-361-5p inhibitor significantly reduced the viability of SKOV3 cells and induced apoptosis. However, all changes were reversed by TRAF3 silencing. Furthermore, it was demonstrated that miR-361-5p inhibitor decreased the expression of p-p65 in SKOV3 cells, indicating the inhibition of the NF-kB signaling pathway. In conclusion, miR-361-5p may regulate the proliferation and apoptosis of ovarian cancer cells by targeting TRAF3. Therefore, targeting miR-361-5p may exhibit therapeutic potential in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jianmei Ling
- Department of Obstetrics and Gynecology, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu 226000, P.R. China
| | - Panwen He
- Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| |
Collapse
|
15
|
Garofoli M, Volpicella M, Guida M, Porcelli L, Azzariti A. The Role of Non-Coding RNAs as Prognostic Factor, Predictor of Drug Response or Resistance and Pharmacological Targets, in the Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12092552. [PMID: 32911687 PMCID: PMC7565940 DOI: 10.3390/cancers12092552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the most common keratinocyte-derived skin cancer in the Caucasian population. Exposure to UV radiations (UVRs) represents the main risk carcinogenesis, causing a considerable accumulation of DNA damage in epidermal keratinocytes with an uncontrolled hyperproliferation and tumor development. The limited and rarely durable response of CSCC to the current therapeutic options has led researchers to look for new therapeutic strategies. Recently, the multi-omics approaches have contributed to the identification and prediction of the key role of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circularRNAs (circRNAs) and long non-coding RNAs (lncRNAs) in the regulation of several cellular processes in different tumor types, including CSCC. ncRNAs can modulate transcriptional and post-transcriptional events by interacting either with each other or with DNA and proteins, such as transcription factors and RNA-binding proteins. In this review, the implication of ncRNAs in tumorigenesis and their potential role as diagnostic biomarkers and therapeutic targets in human CSCC are reported.
Collapse
Affiliation(s)
- Marianna Garofoli
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy;
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Letizia Porcelli
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
| | - Amalia Azzariti
- Experimental Pharmacology Laboratory, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; (M.G.); (L.P.)
- Correspondence: ; Tel.: +39-080-555-5986
| |
Collapse
|
16
|
Ma M, Zhang J, Gao X, Yao W, Li Q, Pan Z. miR-361-5p Mediates SMAD4 to Promote Porcine Granulosa Cell Apoptosis through VEGFA. Biomolecules 2020; 10:biom10091281. [PMID: 32899767 PMCID: PMC7563248 DOI: 10.3390/biom10091281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022] Open
Abstract
Follicular atresia is an inevitable degenerative process that occurs in mammalian ovarian follicles. The molecular events involved in atresia, particularly granulosa cell apoptosis, have long attracted researchers’ attention. Vascular endothelial growth factor A (VEGFA) is downregulated during follicular atresia in porcine ovaries and serves as an inhibitor of apoptosis in granulosa cells. In addition, transforming growth factor (TGF)-βsignaling has been considered a central trigger in granulosa cell apoptosis. However, the link between TGF-β signaling and VEGFA is unknown. We proved that miR-361-5p is significantly upregulated during the atresia process and that it promotes GC apoptosis by directly targeting the VEGFA 3′UTR. In addition, we revealed that the miR-361-5p coding gene MIR361 was significantly downregulated by SMAD4, the central intracellular mediator of TGF-β signaling, that bound to the MIR361 promoter. In conclusion, our findings expanded what is known about VEGFA posttranscriptional regulation and revealed a complete SMAD4/miR-361-5p/VEGFA regulatory network in ovarian granulosa cell apoptosis. These data provide useful references for follicular atresia and ovarian physiological function studies.
Collapse
|
17
|
Long N, Chu L, Jia J, Peng S, Gao Y, Yang H, Yang Y, Zhao Y, Liu J. CircPOSTN/miR-361-5p/TPX2 axis regulates cell growth, apoptosis and aerobic glycolysis in glioma cells. Cancer Cell Int 2020; 20:374. [PMID: 32774168 PMCID: PMC7409503 DOI: 10.1186/s12935-020-01454-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/25/2020] [Indexed: 01/17/2023] Open
Abstract
Background Glioma is the most primary central nervous system tumor in adults. The 5 year survival rate for glioma patients remains poor, although treatment strategies had improved in the past few decades. The cumulative studies have shown that circular RNA (circRNA) is associated with glioma process, so the purpose of this study is to clarify the function of circPOSTN in glioma. Methods The expression levels of circPOSTN, miR-361-5p, and targeting protein for Xenopus kinesin-like protein 2 (TPX2) were assessed with real-time quantitative polymerase chain reaction (RT-qPCR). The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT) and flow cytometry assays were executed to examine proliferation and apoptosis of glioma cells, respectively. Western blot was applied to assess protein expression. The glucose metabolism of glioma cells was analyzed by testing the glucose consumption, lactate production, ATP level, reactive oxygen species (ROS) accumulation and performing Seahorse XF assay. The interaction relationship between miR-361-5p and circPOSTN or TPX2 was analyzed by bioinformatics database and dual-luciferase reporter assay. The influences of circPOSTN silencing in vivo were observed by a xenograft experiment. Results CircPOSTN was overexpressed in glioma tissues and cells. Absence of circPOSTN in glioma cells promoted apoptosis while impeded proliferation and aerobic glycolysis, which were mitigated by silencing miR-361-5p. What’s more, loss-of-functional experiment suggested that knockdown of TPX2 repressed proliferation and aerobic glycolysis, while induced apoptosis in glioma cells. In addition, circPOSTN targetedly regulated TPX2 expression in glioma cells via sponging miR-361-5p. In vivo study revealed that deficiency of circPOSTN restrained tumor growth. Conclusion Mechanistically, circPOSTN regulated cell growth, apoptosis, and aerobic glycolysis in glioma through miR-361-5p/TPX2 axis.
Collapse
Affiliation(s)
- Niya Long
- Department of Pathology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) Ministry of Education, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004 China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Liangzhao Chu
- Department of Pathology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Jun Jia
- Department of Pathology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Shuo Peng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Yuan Gao
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Hua Yang
- Department of Pathology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Yaoming Yang
- Department of Biology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) Ministry of Education, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004 China
| | - Jian Liu
- Department of Pathology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) Ministry of Education, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004 China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| |
Collapse
|
18
|
Zhang Z, Jia M, Wen C, He A, Ma Z. Long non-coding RNA SCARNA2 induces cutaneous squamous cell carcinoma progression via modulating miR-342-3p expression. J Gene Med 2020; 22:e3242. [PMID: 32558970 DOI: 10.1002/jgm.3242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play important roles in the progression of tumors. However, the function and expression of SCARNA2 in cutaneous squamous cell carcinoma (cSCC) is still unreported. METHODS A quantitative polymerase chain reaction was applied to study the expression of SCARNA2 and miR-342-3p. Cell counting kit-8, flow cytometry and transwell assays were performed to study cell growth, cycle and cell invasion. RESULTS We found that SCARNA2 expression is up-regulated in cSCC cell lines and SCARNA2 expression is higher in cSCC tissues than in adjacent non-tumor specimens. Ectopic expression of SCARNA2 promoted cell growth, cell cycle and invasion in SCC13 cells. In addition, the data indicate that miR-342-3p expression is down-regulated in cSCC cell lines and miR-342-3p is down-regulated in cSCC tissues compared to adjacent non-tumor specimens. We showed that the SCARNA2 expression is negatively associated with miR-342-3p in cSCC. Moreover, we noted that SCARNA2 sponges miR-342-3p expression in cSCC cells. Overexpression of SCARNA2 suppressed the miR-342-3p expressed in SCC13 cells. We found that elevated expression of SCARNA2 promotes cell growth, cell cycle and invasion via regulating miR-342-3p expression in SCC13 cells. CONCLUSIONS These data suggest that SCARNA2 acts in an oncogenic role and may be a potential target for cSCC.
Collapse
Affiliation(s)
- Zhongzhao Zhang
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, 550001, China
| | - Min Jia
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, 550001, China
| | - Changhui Wen
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, 550001, China
| | - Aijuan He
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, 550001, China
| | - Zunfeng Ma
- Department of Dermatology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guizhou, 550001, China
| |
Collapse
|
19
|
Bhattacharya S, Ghosh A, Maiti S, Ahir M, Debnath GH, Gupta P, Bhattacharjee M, Ghosh S, Chattopadhyay S, Mukherjee P, Adhikary A. Delivery of thymoquinone through hyaluronic acid-decorated mixed Pluronic® nanoparticles to attenuate angiogenesis and metastasis of triple-negative breast cancer. J Control Release 2020; 322:357-374. [DOI: 10.1016/j.jconrel.2020.03.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/06/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
|
20
|
Huang K, Yu X, Yu Y, Zhang L, Cen Y, Chu J. Long noncoding RNA MALAT1 promotes high glucose-induced inflammation and apoptosis of vascular endothelial cells by regulating miR-361-3p/SOCS3 axis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1243-1252. [PMID: 32509100 PMCID: PMC7270668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Vascular complications are the important pathophysiologic manifestations of patients with diabetes mellitus (DM) and many long non-coding RNAs (LncRNAs) are involved in this process. In this study, we aimed to investigate the relationships among LncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), microRNA-361-3p (miR-361-3p), and suppressor of cytokine signaling 3 (SOCS3) in high glucose (HG)-induced human umbilical vein endothelial cell (HUVEC) injury and its underlying mechanism. We found that HG treatment significantly promotes MALAT1 and SOCS3 expressions, but inhibits miR-361-3p expression in HUVECs. Furthermore, through bioinformatics analysis and dual luciferase assay, we found that MALAT1 directly sponges miR-361-3p to counteract its suppression on SOCS3 expression. Moreover, knockdown of MALAT1 evidently inhibits HG-induced inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6 expressions in HUVECs (and HUVEC apoptosis) by regulating the miR-361-3p/SOCS3 axis. In conclusion, our results indicate that knockdown of MALAT1 inhibits HG-induced vascular endothelial injury through regulating miR-361-3p/SOCS3 axis, suggesting that inhibition of MALAT1 as a potential target for endothelial injury therapy for DM.
Collapse
Affiliation(s)
- Kai Huang
- Department of General Practice, Ningbo First Hospital Ningbo, P. R. China
| | - Xuxia Yu
- Department of General Practice, Ningbo First Hospital Ningbo, P. R. China
| | - Yushan Yu
- Department of General Practice, Ningbo First Hospital Ningbo, P. R. China
| | - Lu Zhang
- Department of General Practice, Ningbo First Hospital Ningbo, P. R. China
| | - Yin Cen
- Department of General Practice, Ningbo First Hospital Ningbo, P. R. China
| | - Jinguo Chu
- Department of General Practice, Ningbo First Hospital Ningbo, P. R. China
| |
Collapse
|
21
|
Xu D, Dong P, Xiong Y, Yue J, Konno Y, Ihira K, Kobayashi N, Todo Y, Watari H. MicroRNA-361-Mediated Inhibition of HSP90 Expression and EMT in Cervical Cancer Is Counteracted by Oncogenic lncRNA NEAT1. Cells 2020; 9:cells9030632. [PMID: 32151082 PMCID: PMC7140536 DOI: 10.3390/cells9030632] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key process contributing to cervical cancer (CC) metastasis, and microRNAs (miRNAs) modulate the expression of genes implicated in EMT. However, the accurate role of miR-361 in CC-associated EMT and the mechanisms underlying its function in CC remains largely unknown. The functional roles of miR-361 in CC cells were explored by a series of cell functional assays. Luciferase reporter assays were used to demonstrate the potential interaction between miR-361, HSP90, and long non-coding RNA (lncRNA) NEAT1. We detected a reduction of miR-361 expression in CC tissues compared with normal tissues, and miR-361 overexpression inhibited invasion and EMT phenotypes of CC cells by directly targeting a key EMT activator HSP90. Additionally, we detected significantly higher levels of HSP90 in CC tissues compared with normal tissues, and high expression of HSP90 predicted a poorer prognosis. We further identified NEAT1 as a significantly upregulated lncRNA in CC tissues and high expression of NEAT1 was associated with worse survival in CC patients. NEAT1 directly repressed miR-361 expression and played an oncogenic role in CC cell invasion and sphere formation. Conclusions: These results demonstrated that miR-361 directly targets HSP90 to inhibit the invasion and EMT features, and NEAT1 functions as an oncogenic lncRNA that suppresses miR-361 expression and induces EMT and sphere formation in CC cells, thus providing critical insights into the molecular pathways operating in this malignancy.
Collapse
Affiliation(s)
- Daozhi Xu
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
- Correspondence: (P.D.); (H.W.); Tel.: +81-11-706-5941 (P.D.)
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510275, China;
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
| | - Yukiharu Todo
- Division of Gynecologic Oncology, National Hospital Organization, Hokkaido Cancer Center, Sapporo 060-0042, Japan;
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-0817, Japan; (D.X.); (Y.K.); (K.I.); (N.K.)
- Correspondence: (P.D.); (H.W.); Tel.: +81-11-706-5941 (P.D.)
| |
Collapse
|
22
|
Ma X, Wu D, Zhang X, Shao X, Hu G. microRNA-214 Prevents Traits of Cutaneous Squamous Cell Carcinoma via VEGFA and Bcl-2. Technol Cancer Res Treat 2020; 19:1533033820980098. [PMID: 33280526 PMCID: PMC7724270 DOI: 10.1177/1533033820980098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dysregulation of microRNA-214 (miR-214) has been indicated in different tumors. The function of miR-214 in cutaneous squamous cell carcinoma (CSCC) is yet to be deciphered. The current study aimed to investigate the specific mechanism underpinning CSCC development with the involvement of miR-214 and its putative targets. METHODS Microarray analysis of CSCC and adjacent tissues was carried out to filter the most significant downregulated miRNA. Survival analysis of patients was subsequently implemented, followed by miRNA expression determination in CSCC cells. Gain-of-function assays were performed to evaluate its function on cellular level. The targets of the determined miRNA were predicted and their expression in CSCC and adjacent tissues was evaluated. The targeting relationship was analyzed by dual-luciferase assays. Finally, rescue experiments were conducted. RESULTS miR-214 was reduced in CSCC tissues and cells, and the survival of patients harboring overexpression of miR-214 was higher. miR-214 restoration increased CSCC cell apoptosis, while decreased proliferative, invasive and migratory activities. miR-214 interacted with vascular endothelial growth factor A (VEGFA) and B-cell CLL/lymphoma 2 (Bcl-2). VEGFA and Bcl-2, overexpressed in CSCC tissues and cells, were negatively correlated with miR-214. Moreover, VEGFA and Bcl-2 overexpression reversed the anti-tumor phenotypes of miR-214 on CSCC cells. miR-214 disrupted the Wnt/β-catenin pathway through VEGFA and Bcl-2 in the CSCC cells. CONCLUSION Our data demonstrates that miR-214 exerts a suppressing role in CSCC. The discovery of novel targets such as miR-214 and VEGFA/Bcl-2 may facilitate the development of therapeutic options.
Collapse
Affiliation(s)
- Xianpeng Ma
- Department of Dermatology and STD, Affiliated Hospital of Beihua
University, Jilin, People’s Republic of China
| | - Di Wu
- Department of Dermatology, Jilin City Central Hospital, Jilin,
People’s Republic of China
| | - Xiaodong Zhang
- Department of Dermatology and STD, Affiliated Hospital of Beihua
University, Jilin, People’s Republic of China
| | - Xiao Shao
- College of Biological and Pharmaceutical Engineering, Jilin
Agricultural Science and Technology University, Jilin, People’s Republic of
China
| | - Guangyao Hu
- Department of Stomatology, Affiliated Hospital of Beihua University,
Jilin, People’s Republic of China
| |
Collapse
|
23
|
Sørensen AE, Udesen PB, Maciag G, Geiger J, Saliani N, Januszewski AS, Jiang G, Ma RC, Hardikar AA, Wissing MLM, Englund ALM, Dalgaard LT. Hyperandrogenism and Metabolic Syndrome Are Associated With Changes in Serum-Derived microRNAs in Women With Polycystic Ovary Syndrome. Front Med (Lausanne) 2019; 6:242. [PMID: 31737638 PMCID: PMC6839444 DOI: 10.3389/fmed.2019.00242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) remains one of the most common endocrine disorder in premenopausal women with an unfavorable metabolic risk profile. Here, we investigate whether biochemical hyperandrogenism, represented by elevated serum free testosterone, resulted in an aberrant circulating microRNA (miRNAs) expression profile and whether miRNAs can identify those PCOS women with metabolic syndrome (MetS). Accordingly, we measured serum levels of miRNAs as well as biochemical markers related to MetS in a case-control study of 42 PCOS patients and 20 Controls. Patients were diagnosed based on the Rotterdam consensus criteria and stratified based on serum free testosterone levels (≥0.034 nmol/l) into either a normoandrogenic (n = 23) or hyperandrogenic (n = 19) PCOS group. Overall, hyperandrogenic PCOS women were more insulin resistant compared to normoandrogenic PCOS women and had a higher prevalence of MetS. A total of 750 different miRNAs were analyzed using TaqMan Low-Density Arrays. Altered levels of seven miRNAs (miR-485-3p, -1290, -21-3p, -139-3p, -361-5p, -572, and -143-3p) were observed in PCOS patients when compared with healthy Controls. Stratification of PCOS women revealed that 20 miRNAs were differentially expressed between the three groups. Elevated serum free testosterone levels, adjusted for age and BMI, were significantly associated with five miRNAs (miR-1290, -20a-5p, -139-3p, -433-3p, and -361-5p). Using binary logistic regression and receiver operating characteristic curves (ROC), a combination panel of three miRNAs (miR-361-5p, -1225-3p, and -34-3p) could correctly identify all of the MetS cases within the PCOS group. This study is the first to report comprehensive miRNA profiling in different subgroups of PCOS women with respect to MetS and suggests that circulating miRNAs might be useful as diagnostic biomarkers of MetS for a different subset of PCOS.
Collapse
Affiliation(s)
- Anja E Sørensen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Odense University Hospital, The Danish Diabetes Academy, Odense, Denmark
| | - Pernille B Udesen
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.,Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Grzegorz Maciag
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Julian Geiger
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Negar Saliani
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Andrzej S Januszewski
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Guozhi Jiang
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ronald C Ma
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anandwardhan A Hardikar
- Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, University of Sydney, Camperdown, NSW, Australia
| | - Marie Louise M Wissing
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Anne Lis M Englund
- Fertility Clinic, Department of Gynecology and Obstetrics, Zealand University Hospital, Køge, Denmark
| | - Louise T Dalgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
24
|
El-Shal AS, Matboli M, Abdelaziz AM, Morsy AA, Abdelbary EH. Role of a novel circulatory RNA-based biomarker panel expression in ovarian cancer. IUBMB Life 2019; 71:2031-2047. [PMID: 31520466 DOI: 10.1002/iub.2153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Ovarian cancer (OC) is considered the sixth commonest cancer affecting women globally. We choose novel integrated specific ovarian cancer RNA biomarker panel; pellino E3 ubiquitin protein ligase family member 3 (PELI3) gene expressions along with its selected epigenetic regulators (microRNA (miR-361-3p) and long noncoding RNA (lncRNA RP5-837J1.2) by bioinformatic methods. Then, differential expressions of the selected panel in the sera of 50 OC patients, 42 cases with benign ovarian lesions, and among 45 controls were determined using real-time polymerase chain reaction quantitative (qRT-PCR). Furthermore, their expression was measured also in malignant ovarian tissues and adjacent nontumor tissues in 23 of 50 OC patients by quantitative qRT-PCR. The current study reported, for the first time, upregulation of serum lncRNA RP5-837J1.2 with concomitant downregulation of miR-361-3p and PELI3 mRNA in malignant group compared with benign and controls groups. There were associations of serum lncRNA RP5-837J1.2 with the affected ovary and worse International Federation of Gynecology and Obstetrics staging; associations of miR-361-3p with tumor size, grade, stage, and presence of metastasis; as well as associations among PELI3 mRNA expression and tumor size, grade, stage, and presence of metastasis among the OC group. In tumor tissues, miR-361-3p and PELI3 mRNA levels were at a higher level than that of nontumor tissues; however, tumor tissue showed lower level of lncRNA RP5-837J1.2 compared to normal tissue. There were positive correlations between serum and tissue level of RNA RP5-837J1.2, miR-361-3p, and PELI3 mRNA, but they did not reach statistical significance. Receiver operating characteristics curve analyses showed that lncRNA RP5-837J1.2, miR-361-3p, and PELI3 mRNA expression levels can discriminate among OC patient, cases with benign mass, and controls with an accuracy of 96, 76, and 83%, respectively; which increased if they are combined. This novel diagnostic RNA-based panel biomarker could be helpful for OC diagnosis.
Collapse
Affiliation(s)
- Amal S El-Shal
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular biology Department, Faculty of Medicine, Ain Shams University Research Institute, Cairo, Egypt
| | - Ahmed M Abdelaziz
- Obstetrics and Gynecology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ali A Morsy
- Obstetrics and Gynecology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Eman H Abdelbary
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
25
|
Xu D, Dong P, Xiong Y, Yue J, Ihira K, Konno Y, Kobayashi N, Todo Y, Watari H. MicroRNA-361: A Multifaceted Player Regulating Tumor Aggressiveness and Tumor Microenvironment Formation. Cancers (Basel) 2019; 11:E1130. [PMID: 31394811 PMCID: PMC6721607 DOI: 10.3390/cancers11081130] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNA-361-5p (miR-361) expression frequently decreases or is lost in different types of cancers, and contributes to tumor suppression by repressing the expression of its target genes implicated in tumor growth, epithelial-to-mesenchymal transition (EMT), metastasis, drug resistance, glycolysis, angiogenesis, and inflammation. Here, we review the expression pattern of miR-361 in human tumors, describe the mechanisms responsible for its dysregulation, and discuss how miR-361 modulates the aggressive properties of tumor cells and alter the tumor microenvironment by acting as a novel tumor suppressor. Furthermore, we describe its potentials as a promising diagnostic or prognostic biomarker for cancers and a promising target for therapeutic development.
Collapse
Affiliation(s)
- Daozhi Xu
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kei Ihira
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yosuke Konno
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Noriko Kobayashi
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yukiharu Todo
- Division of Gynecologic Oncology, National Hospital Organization, Hokkaido Cancer Center, Sapporo 003-0804, Japan
| | - Hidemichi Watari
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 060-8638, Japan.
| |
Collapse
|
26
|
MiR-361-5p inhibits cell proliferation and induces cell apoptosis in retinoblastoma by negatively regulating CLDN8. Childs Nerv Syst 2019; 35:1303-1311. [PMID: 31161266 DOI: 10.1007/s00381-019-04199-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE MiR-361-5p has been reported to act as tumor suppressor in several types of cancers. Retinoblastoma (RB) is the most common ocular tumor in childhood. The current study aimed to investigate the expression pattern and biological function of miR-361-5p in RB. METHODS Quantitative real time was utilized to determine and compare the expression of miR-361-5p in RB cells and normal retinal pigment epithelial cell line ARPE-19. CCK-8 and Edu assay were performed to assess cell proliferation. Cell apoptosis was evaluated using flow cytometry assay. Bioinformatics databases and luciferase reporter assay were applied to predict and confirm the target gene of miR-361-5p in RB cells. RESULTS Here, we found miR-361-5p was significantly downregulated in RB cells compared with normal retinal pigment epithelial cell line ARPE-19. MiR-361-5p overexpression significantly inhibited or silencing promoted cell proliferation in Y79 and SO-RB50 cells, respectively. Flow cytometry assay showed a significantly decreased cell apoptosis in miR-361-5p silencing Y79 cells and increased cell apoptosis in miR-361-5p overexpressing SO-RB50 cells. Moreover, miR-361-5p directly bound to the 3' untranslated region of claudin 8 (CLDN8) and inhibited the expression of CLDN8. Furthermore, we found knockdown of CLDN8 photocopied the effect of miR-361-5p on cell proliferation and apoptosis in RB cells. CONCLUSION These results indicated that overexpression of miR-361-5p might act as a suppressor in RB by targeting CLDN8 to inhibit the cellular function.
Collapse
|
27
|
Li X, Zhou C, Zhang C, Xie X, Zhou Z, Zhou M, Chen L, Ding Z. MicroRNA-664 functions as an oncogene in cutaneous squamous cell carcinomas (cSCC) via suppressing interferon regulatory factor 2. J Dermatol Sci 2019; 94:330-338. [PMID: 31138473 DOI: 10.1016/j.jdermsci.2019.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Aberrant expression of microRNA-664 was involved in tumor growth and metastasis of various cancers. The specific role of miR-664 in cutaneous squamous cell carcinoma (cSCC) is yet to be elucidated. OBJECTIVE The present study aimed to investigate the molecular mechanisms underpinning of cSCC development and provide translational insights for future therapeutics. METHODS Human cSCC specimens were used to determine the miR-664 by in situhybridization and IRF2 by immunohistochemistry. To study the potential mechanisms in tumorigenesis, three cSCC cell lines including HSC-5, HSC-1 and A431 as well as BALB/C mouse tumor model was utilized. RESULTS We found that miR-664 was remarkably high in cSCC patient specimens and cSCC cell lines. Overexpression of miR-664 promotes tumorigenic behaviors such as increased cell proliferation, migration and invasion capacities in vitro and enhanced tumorigenicity in xenograft mouse model. Our data further identified IRF2 as a direct downstream target of miR-664. Knockdown of IRF2 reverses pro-tumorigenesis phenotype of miR-664; whereas IRF2 over-expression inhibits miR-664 tumorigenesis in cSCC. Together, it revealed miR-664 functions as an oncogene in cSCC via suppression of IRF2. CONCLUSION Our data demonstrates that aberrant expression of miR-664 plays a critical role in carcinogenesis of cSCC. The discovery of novel targets such as miR-664 and IRF2 will facilitate future development of therapeutic interventions.
Collapse
Affiliation(s)
- Xiangzhi Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cheng Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiongxiong Xie
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhaoming Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
28
|
Shen B, Zhou N, Hu T, Zhao W, Wu D, Wang S. LncRNA MEG3 negatively modified osteosarcoma development through regulation of miR‐361‐5p and FoxM1. J Cell Physiol 2019; 234:13464-13480. [PMID: 30624782 DOI: 10.1002/jcp.28026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Bin Shen
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Ningfeng Zhou
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Tao Hu
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Weidong Zhao
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Desheng Wu
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Shanjin Wang
- Department of Spinal Surgery Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| |
Collapse
|
29
|
Zhao D, Cui Z. MicroRNA-361-3p regulates retinoblastoma cell proliferation and stemness by targeting hedgehog signaling. Exp Ther Med 2018; 17:1154-1162. [PMID: 30679988 PMCID: PMC6327618 DOI: 10.3892/etm.2018.7062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
Retinoblastoma (RB) is the most common type of intraocular malignancy in children. During RB oncogenesis, sonic hedgehog (SHH) is commonly differentially expressed. Additionally, microRNAs (miRs) are known to serve crucial roles as oncogenes or tumor suppressors. Specifically, miR-361-3p has been revealed to serve a vital role in cutaneous squamous cell carcinoma, cervical cancer, prostate cancer, colorectal cancer, gastric cancer, hepatocellular carcinoma, breast cancer and lung cancer. However, the role of miR-361-3p in RB and the potential molecular mechanisms involved remain unknown. Therefore, the current study aimed to determine the involvement of miR-361-3p in the development of RB by targeting SHH signaling. In the present study, miR-361-3p expression levels in RB tissue and serum samples obtained from 10 patients with RB, normal retinal tissue and serum samples obtained from 10 healthy controls, and two human RB cell lines (Y79 and Weri-Rb-1) were determined using reverse transcription-quantitative polymerase chain reaction. In addition, a cell counting kit-8 assay, a cell transfection assay, a MTT assay, western blotting, a tumor sphere formation assay and a luciferase assay were used to assess the expression, function and molecular mechanism of miR-361-3p in human RB. It was demonstrated that miR-361-3p was significantly downregulated in RB tissues, RB serum and RB cell lines compared with normal retinal tissues and normal serum. The ectopic expression of miR-361-3p decreased RB cell proliferation and stemness. Furthermore, GLI1 and GLI3 were verified as potential direct targets of miR-361-3p. miR-361-3p was also revealed to exhibit a negative correlation with GLI1/3 expression in RB samples. Taken together, the results indicate that miR-361-3p functions as a tumor suppressor in the carcinogenesis and progression of RB by targeting SHH signaling. Thus, miR-361-3p should be further assessed as a potential therapeutic target for RB treatment.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Ophthalmology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| | - Zhe Cui
- Department of Ophthalmology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161000, P.R. China
| |
Collapse
|
30
|
Belarbi Y, Mejhert N, Gao H, Arner P, Rydén M, Kulyté A. MicroRNAs-361-5p and miR-574-5p associate with human adipose morphology and regulate EBF1 expression in white adipose tissue. Mol Cell Endocrinol 2018; 472:50-56. [PMID: 29191698 DOI: 10.1016/j.mce.2017.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/24/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022]
Abstract
Reduced adipose expression of the transcription factor Early B cell factor 1 (EBF1) is linked to white adipose tissue (WAT) hypertrophy. We aimed to identify microRNAs (miRNAs) associated with WAT hypertrophy and EBF1 regulation. We mapped WAT miRNA expression from 26 non-obese women discordant in WAT morphology and determined EBF1 activity in the non-obese and 30 obese women. Expression of 15 miRNAs was higher in hypertrophy and 10 were predicted to target EBF1. Binding of miR-365-5p/miR-574-5p were validated with 3'-UTR assay. Overexpression of miR-365-5p or miR-574-5p reduced EBF1 while inhibition of miR-574 increased EBF1 expression in human adipocytes in vitro. Additive effects on EBF1 were observed when concomitantly overexpressing both miRNAs. EBF1 targets were affected by over expression/inhibition of either miRNAs. Finally, miR-365-5p/miR-574-5p expression in 56 individuals correlated significantly with EBF1 activity. Our results suggest that miR-365-5p and miR-574-5p may be linked to WAT hypertrophy via effects on EBF1 expression.
Collapse
Affiliation(s)
- Yasmina Belarbi
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, SE-14186 Stockholm, Sweden
| | - Niklas Mejhert
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, SE-14186 Stockholm, Sweden
| | - Hui Gao
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, SE-14186 Stockholm, Sweden; Department of Biosciences & Nutrition, Karolinska Institutet, SE-141 Stockholm, Sweden
| | - Peter Arner
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, SE-14186 Stockholm, Sweden
| | - Mikael Rydén
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, SE-14186 Stockholm, Sweden
| | - Agné Kulyté
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, SE-14186 Stockholm, Sweden.
| |
Collapse
|
31
|
Liu J, Yang J, Yu L, Rao C, Wang Q, Sun C, Shi C, Hua D, Zhou X, Luo W, Wang R, Li W, Yu S. miR-361-5p inhibits glioma migration and invasion by targeting SND1. Onco Targets Ther 2018; 11:5239-5252. [PMID: 30214229 PMCID: PMC6118279 DOI: 10.2147/ott.s171539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Downregulation of miR-361-5p contributes to epithelial–mesenchymal transition of glioma cells. However, the relevance of miR-361-5p to migration and invasion of gliomas remains unknown. Materials and methods The relationship between miR-361-5p and SND1 expression was analyzed in 120 human gliomas and 8 glioma cell lines by in situ hybridization, immunohistochemistry, and Western blot. Dual-luciferase reporter assay was used to identify SND1 as a target of miR-361-5p. The mechanisms through which miR-361-5p inhibits glioma cell migration and invasion were studied by in vitro assays. Results miR-361-5p expression was significantly downregulated in glioma tissues and glioma cell lines, and was inversely correlated with glioma grades. However, SND1 expression was positively correlated with glioma grades and inversely correlated with miR-361-5p expression. miR-361-5p overexpression suppressed glioma cell migration and invasion through targeting SND1 and subsequently decreasing MMP-2 expression. In glioma cell lines, SND1 overexpression could partly reverse the antitumor effects of miR-361-5p. Conclusion The findings provide evidence that miR-361-5p directly targets SND1 to degradation and then reduces MMP-2 gene transcription, thus inhibiting glioma migration and invasion. miR-361-5p is an important tumor suppressor and a novel diagnostic biomarker of glioma, and miR-361-5p and SND1 are potential therapeutic candidates for malignant gliomas.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurosurgery and Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University School of Medicine, Shenzhen 518035, People's Republic of China, .,Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China,
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Lin Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences of Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Chun Rao
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, People's Republic of China,
| | - Qian Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, People's Republic of China,
| | - Cuiyun Sun
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, People's Republic of China,
| | - Cuijuan Shi
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, People's Republic of China,
| | - Dan Hua
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, People's Republic of China,
| | - Xuexia Zhou
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, People's Republic of China,
| | - Wenjun Luo
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, People's Republic of China,
| | - Run Wang
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, People's Republic of China,
| | - Weiping Li
- Department of Neurosurgery and Shenzhen Key Laboratory of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University School of Medicine, Shenzhen 518035, People's Republic of China,
| | - Shizhu Yu
- Department of Neuropathology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin 300052, People's Republic of China, .,Department of Neuropathology, Tianjin Key Laboratory of Injuries, Variations and Regeneration of the Nervous System, Tianjin 300052, People's Republic of China,
| |
Collapse
|
32
|
Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negahdari B, Sahebkar A. Regulation of tumor angiogenesis by microRNAs: State of the art. J Cell Physiol 2018; 234:1099-1110. [PMID: 30070704 DOI: 10.1002/jcp.27051] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs, miRs) are small (21-25 nucleotides) endogenous and noncoding RNAs involved in many cellular processes such as apoptosis, development, proliferation, and differentiation via binding to the 3'-untranslated region of the target mRNA and inhibiting its translation. Angiogenesis is a hallmark of cancer, which provides oxygen and nutrition for tumor growth while removing deposits and wastes from the tumor microenvironment. There are many angiogenesis stimulators, among which vascular endothelial growth factor (VEGF) is the most well known. VEGF has three tyrosine kinase receptors, which, following VEGF binding, initiate proliferation, invasion, migration, and angiogenesis of endothelial cells in the tumor environment. One of the tumor microenvironment conditions that induce angiogenesis through increasing VEGF and its receptors expression is hypoxia. Several miRNAs have been identified that affect different targets in the tumor angiogenesis pathway. Most of these miRNAs affect VEGF and its tyrosine kinase receptors expression downstream of the hypoxia-inducible Factor 1 (HIF-1). This review focuses on tumor angiogenesis regulation by miRNAs and the mechanism underlying this regulation.
Collapse
Affiliation(s)
- Nasser H Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nejad Mohammadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Ma J, Jing X, Chen Z, Duan Z, Zhang Y. MiR-361-5p decreases the tumorigenicity of epithelial ovarian cancer cells by targeting at RPL22L1 and c-Met signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2588-2596. [PMID: 31938372 PMCID: PMC6958233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/28/2018] [Indexed: 06/10/2023]
Abstract
A large number of studies have shown that miRNAs are important regulators of epithelial-to-mesenchymal transition (EMT) and are associated with metastasis in epithelial ovarian cancer (EOC). MiR-361-5p has been shown to play pivotal roles in tumorigenesis and metastasis; however, a role for miR-361-5p in EOC has not been reported. In this study, we found that miR-361-5p was significantly down-regulated in EOC tissues and cell lines. In addition, over-expression of miR-361-5p inhibited the migration and invasion of EOC cells in vitro. MiR-361-5p influenced the expression of the EMT-associated proteins by upregulating the epithelial marker E-cadherin and downregulating the mesenchymal markers, N-cadherin and vimentin. Further studies identify miR-361-5p directly targeted Ribosomal L22-like1 (RPL22L1) and c-Met. Moreover, miR-361-5p repressed the Akt/mTOR pathway after c-Met inhibition. Reintroduction of RPL22L1 and c-Met reversed miR-361-5p-induced EMT suppression. Consistently, inverse correlations were also observed between the expression of miR-361-5p and RPL22L1 or c-Met in human EOC tissue samples. Taken together, miR-361-5p inhibited the EMT progression in EOC cells by targeting RPL22L1 and c-Met/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Jing Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University Kunming, Yunnan, China
| | - Xiaotao Jing
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University Kunming, Yunnan, China
| | - Zhuo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University Kunming, Yunnan, China
| | - Zhenling Duan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University Kunming, Yunnan, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Kunming Medical University Kunming, Yunnan, China
| |
Collapse
|
34
|
Konicke K, López-Luna A, Muñoz-Carrillo JL, Servín-González LS, Flores-de la Torre A, Olasz E, Lazarova Z. The microRNA landscape of cutaneous squamous cell carcinoma. Drug Discov Today 2018; 23:864-870. [PMID: 29317340 DOI: 10.1016/j.drudis.2018.01.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/19/2017] [Accepted: 01/04/2018] [Indexed: 12/27/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a keratinocyte-derived skin tumor. It is the second-most-common cancer affecting the Caucasian population and is responsible for >20% of all skin-cancer-related deaths. The estimated incidence of non-melanoma skin cancer in the USA is >1000000 cases per year, of which roughly 20-30% are squamous cell carcinoma. To better understand and treat this challenging cancer, current research focuses on development of novel strategies to improve the understanding of tumor biogenesis on an individual basis. microRNAs are becoming important biomarkers in the diagnosis, prognosis and treatment of cSCC. This review describes the current knowledge on miRNA expression in cSCC and its role as a biomarker for personalized medicine.
Collapse
Affiliation(s)
- Kathryn Konicke
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - José Luis Muñoz-Carrillo
- Faculty of Odontology, School of Biomedical Sciences of the Cuauhtémoc University Aguascalientes, Aguascalientes, Mexico.
| | | | | | - Edit Olasz
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zelmira Lazarova
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
35
|
Ma F, Zhang L, Ma L, Zhang Y, Zhang J, Guo B. MiR-361-5p inhibits glycolytic metabolism, proliferation and invasion of breast cancer by targeting FGFR1 and MMP-1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:158. [PMID: 29132384 PMCID: PMC5683540 DOI: 10.1186/s13046-017-0630-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/03/2017] [Indexed: 01/23/2023]
Abstract
Background MicroRNAs function as key regulators in various human cancers, including breast cancer (BC). MiR-361-5p has been proved to be a tumor suppressor in colorectal cancer and gastric cancer in our previous study. In this study, we aim to find out the function of miR-361-5p in breast cancer progression and elaborate the mechanism that miR-361-5p acts its function in breast cancer. Methods and results Here we reported that miR-361-5p was down-regulated in breast cancer tissue compared with normal breast tissue and the expression of miR-361-5p was positively associated with prognosis in BC patients. Functional studies showed that overexpression of miR-361-5p suppressed the proliferation, invasion and metastasis of breast cancer cells both in vivo and in vitro. Mechanistically, we found that miR-361-5p inhibited the proliferation of BC cells by suppressing glycolysis. FGFR1, a promoter of glycolysis-related enzyme, was identified as the target of miR-361-5p that promoted glycolysis and repressed oxidative phosphorylation. Furthermore, we demonstrated that miR-361-5p inhibited breast cancer cells invasion and metastasis by targeting MMP-1. An inverse expression pattern was also found between miR-361-5p and FGFR1 or MMP-1 in a cohort of 60 BC tissues. Conclusion Our results indicate that miR-361-5p inhibits breast cancer cells glycolysis and invasion by respectively repressing FGFR1 and MMP-1, suggesting that miR-361-5p and its targets may serve as therapeutic targets in breast cancer treatment.
Collapse
Affiliation(s)
- Fei Ma
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nangang District, Harbin, China
| | - Lei Zhang
- Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Ma
- Computer Center, the Fifth Hospital of Harbin, Harbin, China
| | - Yiyun Zhang
- Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianguo Zhang
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nangang District, Harbin, China
| | - Baoliang Guo
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Street, Nangang District, Harbin, China.
| |
Collapse
|
36
|
Ihira K, Dong P, Xiong Y, Watari H, Konno Y, Hanley SJB, Noguchi M, Hirata N, Suizu F, Yamada T, Kudo M, Sakuragi N. EZH2 inhibition suppresses endometrial cancer progression via miR-361/Twist axis. Oncotarget 2017; 8:13509-13520. [PMID: 28088786 PMCID: PMC5355116 DOI: 10.18632/oncotarget.14586] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/03/2017] [Indexed: 12/31/2022] Open
Abstract
EZH2 inhibition and reactivation of tumor suppressor microRNAs (miRNAs) represent attractive anti-cancer therapeutic strategies. We found that EZH2-suppressed let 7b and miR-361, two likely tumor suppressors, inhibited endometrial cancer (EC) cell proliferation and invasion, and abrogated cancer stem cell-like properties. In EC cells, EZH2 induced and functioned together with YY1 to epigenetically suppress miR-361, which upregulated Twist, a direct target of miR-361. Treating EC cells with GSK343, a specific EZH2 inhibitor, mimicked the effects of siRNA-mediated EZH2 knockdown, upregulating miR-361 and downregulating Twist expression. Combining GSK343 with 5 AZA-2′-deoxycytidine synergistically suppressed cell proliferation and invasion in vitro, and decreased tumor size and weight in EC cell xenografted mice. Quantitative real-time PCR analysis of 24 primary EC tissues showed that lower let-7b and miR-361 levels were associated with worse patient outcomes. These results were validated in a larger EC patient dataset from The Cancer Genome Atlas. Our findings suggest that EZH2 drives EC progression by regulating miR-361/Twist signaling, and support EZH2 inhibition as a promising anti-EC therapeutic strategy.
Collapse
Affiliation(s)
- Kei Ihira
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Peixin Dong
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Ying Xiong
- Department of Gynecology, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Hidemichi Watari
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Yosuke Konno
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Sharon J B Hanley
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Masayuki Noguchi
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University N15, W7, Sapporo 0608638, Japan
| | - Noriyuki Hirata
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University N15, W7, Sapporo 0608638, Japan
| | - Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine Hokkaido University N15, W7, Sapporo 0608638, Japan
| | - Takahiro Yamada
- Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Masataka Kudo
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| | - Noriaki Sakuragi
- Department of Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan.,Department of Women's Health Educational System, Hokkaido University School of Medicine, Hokkaido University, Sapporo 0608638, Japan
| |
Collapse
|
37
|
Zhang S, Liu Z, Wu L, Wang Y. MiR-361 targets Yes-associated protein (YAP) mRNA to suppress cell proliferation in lung cancer. Biochem Biophys Res Commun 2017; 492:468-473. [PMID: 28837805 DOI: 10.1016/j.bbrc.2017.08.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
Abstract
Yes-associated protein (YAP) contributes to the development of multiple tumors, but the post-transcription modulation of YAP remains unexplored. Here, we present a new regulatory microRNA of YAP, miR-361, which directly targets YAP to inhibit cell proliferation in lung cancer. We used bioinformatics to predict that miR-361 could target 3'-untranslated region (3'UTR) of YAP mRNA. Luciferase reporter gene assays demonstrated that miR-361 could decrease the luciferase activities of 3'UTR vector of YAP. Furthermore, YAP expression was obviously abated by miR-361 using RT-PCR and immunoblotting in lung cancer A549 cells. In terms of function, MTT and colony formation analysis showed that ectopic miR-361 expression significantly suppressed cell proliferation in lung cancer. Notably, overexpressed YAP accelerated miR-361-bated proliferation of lung cancer cells. MiR-361 inhibitor promoted cell proliferation in lung cancer, but YAP RNA interference reversed miR-361 inhibitor-driven cell proliferation. Interestingly, miR-361 was capable of affecting the cell cycle in lung cancer progression. Finally, the negative correlation of miR-361 with YAP was found in clinical human lung cancer tissues. In conclusion, miR-361 targets 3'UTR of YAP mRNA to depress the proliferation of lung cancer cells.
Collapse
Affiliation(s)
- Suning Zhang
- Department of Thoracic Surgical, Shengjing Hospital Affiliated with China Medical University, Shenyang 110000, China.
| | - Zongang Liu
- Department of Thoracic Surgical, Shengjing Hospital Affiliated with China Medical University, Shenyang 110000, China
| | - Lin Wu
- Department of Thoracic Surgical, Shengjing Hospital Affiliated with China Medical University, Shenyang 110000, China
| | - Yudong Wang
- Department of Thoracic Surgical, Shengjing Hospital Affiliated with China Medical University, Shenyang 110000, China
| |
Collapse
|
38
|
Abstract
Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.
Collapse
Affiliation(s)
| | - George A Calin
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
39
|
Zhang X, Ye Q, Gong D, Lv Y, Cheng H, Huang C, Chen L, Zhao Z, Li L, Wei X, Zhang M, Xia X, Yu X, Zheng X, Wang S, Wang Z, Tang C. Apelin-13 inhibits lipoprotein lipase expression via the APJ/PKCα/miR-361-5p signaling pathway in THP-1 macrophage-derived foam cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:530-540. [PMID: 28444107 DOI: 10.1093/abbs/gmx038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 12/13/2022] Open
Abstract
Atherosclerotic lesions are characterized by the accumulation of abundant lipids and chronic inflammation. Previous researches have indicated that macrophage-derived lipoprotein lipase (LPL) promotes atherosclerosis progression by accelerating lipid accumulation and pro-inflammatory cytokine secretion. Although apelin-13 has been regarded as an atheroprotective factor, it remains unclear whether it can regulate the expression of LPL. The aim of this study was to explore the effects of apelin-13 on the expression of LPL and the underlying mechanism in THP-1 macrophage-derived foam cells. Apelin-13 significantly decreased cellular levels of total cholesterol, free cholesterol, and cholesterol ester at the concentrations of 10 and 100 nM. ELISA analysis confirmed that treatment with apelin-13 reduced pro-inflammatory cytokine secretion, such as interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α). It was also found that apelin-13 inhibited the expression of LPL as revealed by western blot and real-time PCR analyses. Bioinformatics analyses and dual-luciferase reporter assay indicated that miR-361-5p directly downregulated the expression of LPL by targeting the 3'UTR of LPL. In addition, apelin-13 + miR-361-5p mimic significantly downregulated the expression of LPL in cells. Finally, we demonstrated that apelin-13 downregulated the expression of LPL through activating the activity of PKCα. Taken together, our results showed that apelin-13 downregulated the expression of LPL via activating the APJ/PKCα/miR-361-5p signaling pathway in THP-1 macrophage-derived foam cells, leading to inhibition of lipid accumulation and pro-inflammatory cytokine secretion. Therefore, our studies provide important new insight into the inhibition of lipid accumulation and pro-inflammatory cytokine secretion by apelin-13, and highlight apelin-13 as a promising therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang 421001, China
| | - Qiong Ye
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Duo Gong
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yuan Lv
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang 421001, China
| | - Haipeng Cheng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Chong Huang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Lingyan Chen
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Zhenwang Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xie Wei
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Min Zhang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xiaodan Xia
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xiaohua Yu
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Xilong Zheng
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Sciences Center, Calgary, Alberta, CanadaT2N 4N1
| | - Shuzhi Wang
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang 421001, China
| | - Zongbao Wang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
- Department of Biochemistry and Molecular Biology, School of Pharmacy and Life Science University of South China, Hengyang 421001, China
| | - Chaoke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| |
Collapse
|
40
|
Tadokoro T, Morishita A, Sakamoto T, Fujihara S, Fujita K, Mimura S, Oura K, Nomura T, Tani J, Yoneyama H, Iwama H, Himoto T, Niki T, Hirashima M, Masaki T. Galectin‑9 ameliorates fulminant liver injury. Mol Med Rep 2017; 16:36-42. [PMID: 28534962 PMCID: PMC5482106 DOI: 10.3892/mmr.2017.6606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 03/16/2017] [Indexed: 01/21/2023] Open
Abstract
Fulminant hepatitis is a severe liver disease resulting in hepatocyte necrosis. Galectin-9 (Gal-9) is a tandem-repeat-type galectin that has been evaluated as a potential therapeutic agent for various diseases that regulate the host immune system. Concanavalin A (ConA) injection into mice results in serious, immune-mediated liver injury similar to human viral, autoimmune and fulminant hepatitis. The present study investigated the effects of Gal-9 treatment on fulminant hepatitis in vivo and the effect on the expression of microRNAs (miRNAs), in order to identify specific miRNAs associated with the immune effects of Gal-9. A ConA-induced mouse hepatitis model was used to investigate the effects of Gal-9 treatment on overall survival rates, liver enzymes, histopathology and miRNA expression levels. Histological analyses, TUNEL assay, immunohistochemistry and miRNA expression characterization, were used to investigate the degree of necrosis, fibrosis, apoptosis and infiltration of neutrophils and macrophages. Overall survival rates following ConA administration were significantly higher in Gal-9-treated mice compared with control mice treated with ConA + PBS. Histological examination revealed that Gal-9 attenuated hepatocellular damage, reduced local neutrophil infiltration and prevented the local accumulation of macrophages and liver cell apoptosis in ConA-treated mice. In addition, various miRNAs induced by Gal-9 may contribute to its anti-apoptotic, anti-inflammatory and pro-proliferative effects on hepatocytes. The results of the present study demonstrate that Gal-9 may be a candidate therapeutic target for the treatment of fulminant hepatitis.
Collapse
Affiliation(s)
- Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Teppei Sakamoto
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Shintaro Fujihara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Shima Mimura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Takako Nomura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Hirohito Yoneyama
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Hisakazu Iwama
- Life Science Research Center, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa 761‑0123, Japan
| | - Toshiro Niki
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Mitsuomi Hirashima
- Department of Immunology and Immunopathology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa 761‑0793, Japan
| |
Collapse
|
41
|
Bai M, Zhang M, Long F, Yu N, Zeng A, Wang X. MiR-217 promotes cutaneous squamous cell carcinoma progression by targeting PTRF. Am J Transl Res 2017; 9:647-655. [PMID: 28337292 PMCID: PMC5340699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Increasing evidences have suggested that microRNAs (miRNAs) act a critical role in tumor initiation, progression and metastasis. Deregulated expression of miR-217 has been identified in various tumors. However, the expression and role of miR-217 in the development of cutaneous squamous cell carcinoma (cSCC) remain unclear. In our study, we showed that miR-217 expression was upregulated in the cSCC tissues compared to adjacent non-tumor samples. We also demonstrated that miR-217 expression was upregualted in the cSCCcSCC cell lines. Overexpression of miR-217 promoted cSCCcSCC cell growth, cell cycle and invasion. We identified Polymerase I and Transcript Release Factor (PTRF) as a direct target gene of miR-217 in the SCC13 cell. In addition, PTRF expression was downregulated in the cSCCcSCC tissues. Moreover, we demonstrated that there was a significant inverse correlation between miR-217 and PTRF expression in the cSCCcSCC. Furthermore, overexpression of PTRF could rescue miR-217's oncogenic effect on cSCC. Therefore, these results suggested that upregulation of miR-217 could contribute to development of cSCCcSCC through targeting PTRF.
Collapse
Affiliation(s)
- Ming Bai
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing, China
| | - Mingzi Zhang
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing, China
| | - Fei Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing, China
| | - Nanze Yu
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing, China
| | - Ang Zeng
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing, China
| | - Xiaojun Wang
- Division of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing, China
| |
Collapse
|
42
|
Kar S, Bali KK, Baisantry A, Geffers R, Samii A, Bertalanffy H. Genome-Wide Sequencing Reveals MicroRNAs Downregulated in Cerebral Cavernous Malformations. J Mol Neurosci 2017; 61:178-188. [PMID: 28181149 DOI: 10.1007/s12031-017-0880-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/05/2017] [Indexed: 12/29/2022]
Abstract
Cerebral cavernous malformations (CCM) are vascular lesions associated with loss-of-function mutations in one of the three genes encoding KRIT1 (CCM1), CCM2, and PDCD10. Recent understanding of the molecular mechanisms that lead to CCM development is limited. The role of microRNAs (miRNAs) has been demonstrated in vascular pathologies resulting in loss of tight junction proteins, increased vascular permeability and endothelial cell dysfunction. Since the relevance of miRNAs in CCM pathophysiology has not been elucidated, the primary aim of the study was to identify the miRNA-mRNA expression network associated with CCM. Using small RNA sequencing, we identified a total of 764 matured miRNAs expressed in CCM patients compared to the healthy brains. The expression of the selected miRNAs was validated by qRT-PCR, and the results were found to be consistent with the sequencing data. Upon application of additional statistical stringency, five miRNAs (let-7b-5p, miR-361-5p, miR-370-3p, miR-181a-2-3p, and miR-95-3p) were prioritized to be top CCM-relevant miRNAs. Further in silico analyses revealed that the prioritized miRNAs have a direct functional relation with mRNAs, such as MIB1, HIF1A, PDCD10, TJP1, OCLN, HES1, MAPK1, VEGFA, EGFL7, NF1, and ENG, which are previously characterized as key regulators of CCM pathology. To date, this is the first study to investigate the role of miRNAs in CCM pathology. By employing cutting edge molecular and in silico analyses on clinical samples, the current study reports global miRNA expression changes in CCM patients and provides a rich source of data set to understand detailed molecular machinery involved in CCM pathophysiology.
Collapse
Affiliation(s)
- Souvik Kar
- International Neuroscience Institute, Rudolf-Pichlmayr-Strasse 4, 30625, Hannover, Germany.
| | - Kiran Kumar Bali
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Arpita Baisantry
- Department of Kidney, Liver and Metabolic Diseases, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Amir Samii
- International Neuroscience Institute, Rudolf-Pichlmayr-Strasse 4, 30625, Hannover, Germany
| | - Helmut Bertalanffy
- International Neuroscience Institute, Rudolf-Pichlmayr-Strasse 4, 30625, Hannover, Germany
| |
Collapse
|
43
|
Zhang X, Wei C, Li J, Liu J, Qu J. MicroRNA-361-5p inhibits epithelial-to-mesenchymal transition of glioma cells through targeting Twist1. Oncol Rep 2017; 37:1849-1856. [PMID: 28184914 DOI: 10.3892/or.2017.5406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/09/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNA-361-5p (miR-361-5p) has been reported to be dysregulated in various human cancer types. However, the function of miR-361-5p in glioma remains unknown. In the present study, we aimed to investigate the biological functions of miR-361-5p in regulating glioma progression and the underlying molecular mechanism. We found that miR-361-5p was significantly decreased in glioma tissues and cell lines as detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. Functional analysis revealed that miR-361-5p overexpression significantly inhibited glioma cell migration, invasion and epithelial-mesenchymal transition (EMT) whereas suppression of miR-361-5p showed opposite effects. Bioinformatic analysis showed that Twist1, a critical EMT inducer, was a predicted target of miR-361-5p which was validated by dual-luciferase reporter assay, RT-qPCR and western blot analysis. Further analysis indicated that miR-361-5p regulates the Twist1/Bmi-1 signaling axis. Rescue experiments showed that restoration of Twist1 expression significantly reversed the suppressive effect of miR-361-5p on cell migration, invasion and EMT. Taken together, the present study demonstrated an important role of miR-361-5p in glioma - which regulated the EMT of glioma cells by targeting and regulating Twist1. These findings provide novel insight into understanding the role and mechanism of miR-361-5p in regulating the biolo-gical behavior of glioma cells and suggest that miR-361-5p is a novel potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chunyan Wei
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiali Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianqiang Qu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
44
|
Yang S, Zhang Y, Zhao X, Wang J, Shang J. microRNA-361 targets Wilms' tumor 1 to inhibit the growth, migration and invasion of non-small-cell lung cancer cells. Mol Med Rep 2016; 14:5415-5421. [PMID: 27779659 DOI: 10.3892/mmr.2016.5858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 09/02/2016] [Indexed: 11/06/2022] Open
Abstract
The expression and functions of microRNA-361 (miR-361) have been studied in various human cancers. However, its expression and role in non‑small‑cell lung cancer (NSCLC) remains unclear. In the present study, the expression levels of miR‑361 in NSCLC tissues and cell lines were determined using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). In addition, the effect of miR‑361 on the proliferation, migration and invasion of NSCLC cells was assessed. Furthermore, a dual‑Luciferase reporter assay, RT‑qPCR and western blotting were performed to investigate whether miR‑361 directly targeted the 3' untranslated region of Wilms' tumor 1 (WT1). The results of the present study revealed that miR‑361 was downregulated in NSCLC tissues and cell lines. Enforced expression of miR‑361 suppressed the proliferation, migration and invasion of NSCLC cells. WT1 was identified as a direct target gene of miR‑361 in NSCLC. Furthermore, knockdown of WT1 had similar effects to miR‑361 overexpression in NSCLC cells. The present study provided novel insights into the molecular mechanism underlying the rapid growth and metastasis of NSCLC, and identified the association between miR‑361 and WT1 as a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Shuxiang Yang
- Department of General Internal Medicine, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Yingchao Zhang
- Department of Respiration, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Xin Zhao
- Department of General Surgery, Tianjin Baodi Hospital, Tianjin 301800, P.R. China
| | - Jingzheng Wang
- Department of Clinical Laboratory, Dongping People's Hospital, Tai'an, Shandong 271500, P.R. China
| | - Jianjing Shang
- Department of Clinical Laboratory, Dongping People's Hospital, Tai'an, Shandong 271500, P.R. China
| |
Collapse
|
45
|
Sun Q, Bai J, Lv R. Hedgehog/Gli1 signal pathway facilitates proliferation, invasion, and migration of cutaneous SCC through regulating VEGF. Tumour Biol 2016; 37:10.1007/s13277-016-5435-x. [PMID: 27752995 DOI: 10.1007/s13277-016-5435-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/23/2016] [Indexed: 12/28/2022] Open
Abstract
Since hedgehog (HH)/Gli1 that contributes to cancer proliferation and metastasis has been masked for decades, the signaling pathway was investigated about its exact role in proliferation and metastasis of cutaneous squamous cell carcinoma (SCC). Sonic hedgehog homolog (Shh), GLI family zinc finger 1 (Gli1), and vascular endothelial growth factor (VEGF) expressions in cutaneous SCC tissues were analyzed with immunohistochemistry, and their correlations with cutaneous SCC patients' prognosis were conducted with Kaplan-Meier curve. Regarding in vitro studies, effects of the HH signaling pathway, and cyclopamine on patched 1 (Ptch1), smoothened/frizzled class receptor (Smo) and VEGF expressions were assessed in A431 cells based on western blot and quantitative real-time polymerase chain reaction (qRT-PCR). Besides, Cell Counting Kit-8 (CCK-8) assay was implemented to evaluate cell proliferation, while wound-healing assay and transwell assay were performed to assess cell migration and invasion, respectively. Mice models were also established to observe effects of Gli1 on tumor diversity and incidence during a period of 20 weeks. Positively expressed VEGF, Gli1, and Shh proteins in cutaneous SCC tissues were correlated with poor survival of patients (P < 0.05). Besides, Gli1 messenger RNA (mRNA) and VEGF mRNA were observed to be significantly over-expressed in A431 cells (P < 0.05), and they were associated with incremental cell proliferation, invasiveness, and migration, which can be reversed by the interference of VEGF siRNA. Furthermore, cyclopamine treatment could induce inhibition of cell proliferation, invasiveness, and migration and suppression of Smo, Gli1, and VEGF expressions. The mice models also confirmed that Gli1 could significantly induce rise of tumor incidence and tumor diversity, while cyclopamine statistically relieved this transformation (P < 0.05). Abnormal activation of the HH signaling pathway plays critical roles in development of cutaneous SCC either in vivo or in vitro.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong, 250001, China
| | - Jing Bai
- Department of Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong, 250001, China
| | - Renrong Lv
- Department of Burn and Plastic Surgery, Provincial Hospital Affiliated to Shandong University, No 324 Jingwu Road Weiqi Road, Jinan, Shandong, 250021, China.
| |
Collapse
|
46
|
Cao ZG, Huang YN, Yao L, Liu YR, Hu X, Hou YF, Shao ZM. Positive expression of miR-361-5p indicates better prognosis for breast cancer patients. J Thorac Dis 2016; 8:1772-9. [PMID: 27499968 DOI: 10.21037/jtd.2016.06.29] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND MicroRNA-361-5p (miR-361-5p) has been reported to be tumor suppressor in colorectal, gastric and prostate cancer, but as an oncogene in cervical cancer. No previous research has focused on the expression of miR-361-5p and its exact prognostic role in breast cancer (BC). METHODS In this study, a tissue microarray (TMA)-based miRNA detection in situ hybridization (ISH) with LNA probe was used to detect miR-361-5p expression in 375 BC tissue. The expression level of miR-361-5p in BC and its potential prognostic value was investigated. RESULTS Positive miR-361-5p staining was observed in 78.7% (N=295; 78.7% positive, 21.3% negative) in the 375 cases. The clinical outcome of patients with positive miR-361-5p expression [median disease-free survival (DFS) time 95.52 months] was significantly better than that of patients (median DFS time 82.33 months) with negative miR-361-5p expression (P=0.002). Moreover, the prognostic value of miR-361-5p was most significant among patients with triple-negative breast cancer (TNBC) for DFS (P=0.004). CONCLUSIONS These results indicated that miR-361-5p expression is an independent predictive factor for better prognosis in BC.
Collapse
Affiliation(s)
- Zhi-Gang Cao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan-Ni Huang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling Yao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Rong Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Feng Hou
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Min Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China;; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China;; Institutes of Biomedical Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
47
|
Toll A, Salgado R, Espinet B, Díaz-Lagares A, Hernández-Ruiz E, Andrades E, Sandoval J, Esteller M, Pujol RM, Hernández-Muñoz I. MiR-204 silencing in intraepithelial to invasive cutaneous squamous cell carcinoma progression. Mol Cancer 2016; 15:53. [PMID: 27457246 PMCID: PMC4960761 DOI: 10.1186/s12943-016-0537-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/29/2016] [Indexed: 12/21/2022] Open
Abstract
Background Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer and frequently progresses from an actinic keratosis (AK), a sun-induced keratinocyte intraepithelial neoplasia (KIN). Epigenetic mechanisms involved in the phenomenon of progression from AK to cSCC remain to be elicited. Methods Expression of microRNAs in sun-exposed skin, AK and cSCC was analysed by Agilent microarrays. DNA methylation of miR-204 promoter was determined by bisulphite treatment and pyrosequencing. Identification of miR-204 targets and pathways was accomplished in HaCat cells. Immunofluorescence and immunohistochemistry were used to analyze STAT3 activation and PTPN11 expression in human biopsies. Results cSCCs display a marked downregulation of miR-204 expression when compared to AK. DNA methylation of miR-204 promoter was identified as one of the repressive mechanisms that accounts for miR-204 silencing in cSCC. In HaCaT cells miR-204 inhibits STAT3 and favours the MAPK signaling pathway, likely acting through PTPN11, a nuclear tyrosine phosphatase that is a direct miR-204 target. In non-peritumoral AK lesions, activated STAT3, as detected by pY705-STAT3 immunofluorescence, is retained in the membrane and cytoplasm compartments, whereas AK lesions adjacent to cSCCs display activated STAT3 in the nuclei. Conclusions Our data suggest that miR-204 may act as a “rheostat” that controls the signalling towards the MAPK pathway or the STAT3 pathway in the progression from AK to cSCC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0537-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agustí Toll
- Department of Dermatology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| | - Rocío Salgado
- Cytogenetics Molecular Biology Laboratory, Department of Pathology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Blanca Espinet
- Cytogenetics Molecular Biology Laboratory, Department of Pathology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Angel Díaz-Lagares
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | | | - Evelyn Andrades
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Juan Sandoval
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Ramón M Pujol
- Department of Dermatology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Inmaculada Hernández-Muñoz
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
| |
Collapse
|
48
|
Ma F, Song H, Guo B, Zhang Y, Zheng Y, Lin C, Wu Y, Guan G, Sha R, Zhou Q, Wang D, Zhou X, Li J, Qiu X. MiR-361-5p inhibits colorectal and gastric cancer growth and metastasis by targeting staphylococcal nuclease domain containing-1. Oncotarget 2016; 6:17404-16. [PMID: 25965817 PMCID: PMC4627317 DOI: 10.18632/oncotarget.3744] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/06/2015] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRs) function as key regulators of gene expression and their deregulation is associated with the carcinogenesis of various cancers. In the present study, we investigated the biological role and mechanism of miR-361-5p in colorectal carcinoma (CRC) and gastric cancer (GC). We showed that microRNA-361-5p (miR-361-5p) was down-regulated in CRC and GC in comparison to the controls. Meanwhile, the expression levels of miR-361-5p negatively correlated with lung metastasis and prognosis in clinical CRC patients. Overexpression of miR-361-5p markedly suppressed proliferation, migration and invasion of cancer cells. Additionally, this phenotype could be partially rescued by the ectopic expression of staphylococcal nuclease domain containing-1 (SND1). SND1 was identified as a target of miR-361-5p using bioinformatics analysis and in vitro luciferase reporter assays. In turn, SND1 bound to pre-miR-361-5p and suppressed the expression of miR-361-5p, thus exerting a feedback loop. Most interestingly, in vivo studies showed that restoration of miR-361-5p significantly inhibited tumor growth and especially the lung metastasis in nude mice. Therefore, it could be concluded that miR-361-5p functions as a tumor-suppressive miRNA through directly binding to SND1, highlighting its potential as a novel agent for the treatment of patients with CRC and GC.
Collapse
Affiliation(s)
- Fei Ma
- Department of Endoscopy, The Affiliated Cancer Hospital, Harbin Medical University, Harbin, China
| | - Hongjiang Song
- Department of Endoscopy, The Affiliated Cancer Hospital, Harbin Medical University, Harbin, China.,Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital, Harbin Medical University, Harbin, China
| | - Baoliang Guo
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxin Zhang
- Department of Gastrointestinal Surgery, The Affiliated Cancer Hospital, Harbin Medical University, Harbin, China
| | - Yasheng Zheng
- Department of General Surgery, Central Hospital of Jiuzhen, China
| | - Chengchun Lin
- Department of Gastroenterology, The First Hospital of Longyan, Fujian Medical University, Longyan, China
| | - Ying Wu
- Department of Pathology, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Guijie Guan
- Department of Pathology, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Ruihua Sha
- Department of Digestive Disease, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Qingxin Zhou
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dejun Wang
- Department of Ultrasound of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglu Zhou
- Department of Medical Imaging, The Affiliated Cancer Hospital of Harbin Medical University, Harbin, China
| | - Juan Li
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohui Qiu
- The Second Hospital of Longyan, Fujian Medical University, Longyan, China
| |
Collapse
|
49
|
Chen W, Wang J, Liu S, Wang S, Cheng Y, Zhou W, Duan C, Zhang C. MicroRNA-361-3p suppresses tumor cell proliferation and metastasis by directly targeting SH2B1 in NSCLC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:76. [PMID: 27164951 PMCID: PMC4863317 DOI: 10.1186/s13046-016-0357-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022]
Abstract
Background Lung cancer is the most common malignancies worldwide. However, the detailed molecular mechanisms underlying lung cancer progression are still not completely clear. MicroRNAs are small noncoding RNAs which occupy a crucial role of cancer metastasis. Accumulating evidence suggests that miR-361 plays important roles in human carcinogenesis. However, its precise biological role remains largely elusive, especially in lung cancer. This study examined the role of miR-361-3p in non-small cell lung cancer (NSCLC). Methods Real-time quantitative PCR (qRT-PCR) was used to analyze the expression of miR-361-3p in NSCLC tissue and in compared adjacent non-cancerous tissues. The effect of miR-361-3p on proliferation was evaluated by CCK8 and colony formation assays. The effect of miR-361-3p on migration and invasion was evaluated by transwell assays. Western blotting and immunohistochemical staining were applied to analyze the expression of target proteins and downstream molecule, and the luciferase reporter assay to assess the target genes of miR-361-3p in non-small cell lung cancer cells. Results miR-361-3p was significantly decreased in NSCLC tissue and cell lines, and its expression levels were highly correlated with lymph node metastasis (P < 0.01) and TNM stages (P < 0.05). Down-regulation of miR-361-3p promoted cell growth, proliferation, colony formation, invasion and migration in vitro, and promoted proliferation and metastasis in vivo (P < 0.01); whereas up-regulation of miR-361-3p had the contrary effects. The luciferase reporter assay showed that SH2B1 was a direct target gene of miR-361-3p. Enforced expression of miR-361-3p inhibited the expression of SH2B1 significantly and the restoration of SH2B1 expression reversed the inhibitory effects of miR-361-3p on NSCLC cell proliferation and metastasis. Conclusions miR-361-3p functions as a novel tumor suppressor in NSCLC and the anti-oncogenic activity may involve its inhibition of the target gene SH2B1. These findings suggest the possibility for miR-361-3p as a therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China
| | - Jun Wang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Institute of Medical Sciences, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China
| | - Sulai Liu
- Department of Urology Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China
| | - Shaoqiang Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China
| | - Wolong Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China
| | - Chaojun Duan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Institute of Medical Sciences, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
50
|
Yu X, Li Z. The role of miRNAs in cutaneous squamous cell carcinoma. J Cell Mol Med 2015; 20:3-9. [PMID: 26508273 PMCID: PMC4717857 DOI: 10.1111/jcmm.12649] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) are small, noncoding RNAs that negatively regulate gene expressions at posttranscriptional level. Each miR can control hundreds of gene targets and play important roles in various biological and pathological processes such as hematopoiesis, organogenesis, cell apoptosis and proliferation. Aberrant miR expression contributes to initiation and cell progression of cancers. Accumulating studies have found that miRs play a significant role in cutaneous squamous cell carcinoma (cSCC). Deregulations of miRs may contribute to cSCC carcinogenesis is through acting as oncogenic or tumour suppressive miRs. In this study, we summarized the recent data available on cSCC‐associated miRs. In particular, we will discuss the contribution of miR to the initiation and progression of cSCCs. Although there are many obstacles to be overcome, clinical use of miRs as biomarkers for diagnosis, prediction of prognosis and target for therapies, will be a promising area in the future with more expression and functional role of miRs revealed.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|